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Abstract . In this paper, we describe a software system which generates synthetic workloads for use in 

the performance evaluation of distributed real-time computer systems. The software system consists 

of a high-level description language and its compiler. The language provides a flexible, easy-to-use 

description of the structure and behavior of the real-time workload. The compiler, called a synthetic 

workload generator (SWG), uses this description to produce an executable synthetic workload (SW). 

The SW may then be used to drive the system under evaluation while measurements are being made. 
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INTRODUCTION 

Real-time systems have str ict performance requirements. To 
determine if these requirements are met, the performance 
of a system is evaluated through experimentation. During 
the experiments, the values of selected performance indices 
a re measured while the system is running a workload. The 
selection of the drive workload directly influences the results 
of the evaluation. 

One possibility in the selection of the drive workload is to 
use the actual application software. However, there are a 
number of situations where the real workload is unavailable 
or unrealistic. Such situations include new systems where an 
application workload has not yet been developed and criti­
cal systems where, for safety reasons, performance evalua­
tions must be done off-line. In these cases, we advocate the 
use of an SW as the drive workload. An SW consists pri­
marily of a set of parameterized synthetic application tasks 
(SATs) which execute on a system and produce demands for 
resources. It also incluues a driver task which controls the 
actions of the SW to facilitate the lI se of the SW during ex· 
perimentation. It controls when the SW starts and stops. It 
also determines when the indi vidual tasks execute. 

In this paper, we describe a suite of software tools which 
we have designed and implemented to support the specifi­
cation, generation, and execution of SWs for a distributed 
real-time system. This suite provides the high level support 
necessary to efficiently produce SWs which are customized 
for a particular evaluation. The suite consists of the syn­
thetic workload generator (SWG) and some minor support 
programs. The SWG compiles a description of the work­
load that is specified in the synthetic workload specification 
language (SWSL). SWSL describes the structure of the SW 
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based on a dataflolV model. 

There are two primary goa ls in the design of the SWG suite. 
The first is to be capable of accurately representing act lIal 
real-time workloads. This goal is met t hrough the select. ion 
of an appropriate workload model. The model was chosen 
to reflect the structure of the software which composes the 
workload being modeled. By accurately modeling the st ruc­
ture of the workload, we also capture many of its behavioral 
characteristics. Representat iveness is enhanced by the selec­
tion of parameters for the objects in the workload. Param­
eters are defined for both the SATs and the resources that 
they use and, possibly, share. These pa.rameters were se­
lected to reflect both common software properties and those 
properties which are specific to real·t ime softwa.re. 

The second goal in the design of the SWG su ite is ease of use. 
All components of the su ite should be easy to lIse while re­
taining their flexibility and power. Ease of use is enhanced by 
the simple, regular structure of SWSL. The language struc· 
tures allow one to change bot.h the values of parameters and 
the interactions between SATs with little effort. We also 
provide a simple user interface to the SWG. It is comp letely 
automated to handle all the various compilation stages and 
their corresponding intermediate files. 

This paper is organized as follows. In Section we describe 
the no tat ion used to specify the SW. In Section we discuss 
the functions of the S\VG, and in Section we discuss the 
SW which is being supported by the SWG suite . Section 
we give our summary and discuss our future work. 

THE WORI\LOAD ilIODEL 

The workload model provides a high level description of the 
structure of the workload. \Ve represent this structure us­
ing a dataflow notation . A dataflow notation was chosen 
because it is commonly used to specify software structure. 
Workload specifications in other dataflow notations may be 



easily translated into our dataflow notation. The translated 
workload will retain the structure of the original. Hence, 
it will be quite representative. Using our notation , we can 
specify both the individual tasks and the interactions be­
tween tasks. 

Task Level Notation 

The notation is divided into two levels of abstraction . The 
higher level, or task level. defines the tasks, the resources they 
use, and their int.eract.ions. The task level notation uses for­
malisms borrowed from t he area of structured analysis (SA). 
In particular, we base the notation on ESML, an SA notation 
crcated by ilruyn and others (1988). ESI\IL was developed 
for the high-Ie \'el specifi cation of real-t ime software. It is a 
combinat ion of t he Ward / \lellor (Ward, 86; Ward and ,\lel-
101' , 1986) and iloeing/ IIatley (Hatley and Pribh ai, 1987) SA 
notat ions. These t.wo notations were independently derived 
and use differ ing approaches to add timing and control infor­
mation to t he basic data fl ow model develo ped by De;\'larco 
( 1978). 

By basi ng ou r notation on the SA notat ion, we accom pli sh 
our primary goa ls. First. wc ti e the structure of the SW di ­
rectly to t he st ructure of the workload, t hus improving the 
abilit.y of t he notation t.o accurately model actual workloads. 
Our notation is the first to be based on a high-level software 
spec ifi cat ion notation. Pre \'i ous systems were based eit.her 
on low-level specifications such as flowcharts ( l1 aird , 197:3; 
WaIte rs, 1976 ) or on high-le ve l notation s such as liCLA 
graphs (Singh, 1981) whi ch arc not related to software spec­
ifi ca tion notat ions. Second, we make it cas ier for the user 
of the SWG sui te to produce workloads. The SA not at ions 
arc ('ommonly used by CASE tools for hi gh-Ievd soft ware 
sJ)('c ifi cat ion . llcne(' it is likclv Ih 'lf Ih" or. " , 1 ",. prono,(' rI 
workload be ing mod"led has been specified in t.erm s of an SA 
or sim il a r notation. To produce a description of thc workload 
in our not.ation, the usc r must t ranslat.e the spec ifi cat ions. 
This pro('css may b" perform('d manually, or may be auto­
mat.ed as part. of a CASE tool. By usi ng a simila r notation , 
wc simplify the translation. 

SWSL defines the workload in t.erm s of tran sform ations, 
flows, stores , an d te rmin ators. Transform at ions represent 
units of computat.ion, generally tasks. Flows are data and 
control paths. Stores a rc uni ts of data storage, and termi­
nators are in terfaces betwe('n the workloa.d and the environ ­
ment. The paramet('rs for these objects defin e characteristic, 
such as t.ask interact. ion s, scheduling requirements for tasks, 
and access properties of sha red obj ec ts . 

Opera t. ion Level Notat ion 

Th(' lowcr leve l abst.raction in the notat.ion is the o))cmtion 

let,cI. It defin es the task's internal structure, behavior. and 
the manner in whi ch it uses resources . This not a tion is sim­
ila r to that uscd by Singh and Segall (1982) in t he Pegasus 
sys tem. A task is defin('d in terms of sequences of operation s 
and cont rol logic. Each opera tion represents the use of a sin­
gle resource by t he task, and the control logic determines the 
sequence in which the resources are used. 

The control st ructures consist of loops and bran ches. They 
execute probabilistically to simulate the variation of prograJl1 
execution ba sed on the value of the t ask' s input data . lIence, 
t he SATs simulate the random execution time di st ributions 
of real appli cat ion tasks . The control structures also cause 
the SATs to si mul ate the resou rce usage patterns of the real 
application tasks and not just the quantiti es of resources 

104 

used. By simulating the random execution times and the re­
source usage patterns , the S\V models the workload more re­
alistically. This realism is necessary when studying real-time 
systems. The SW must express the time-specific behavior of 
the workload. It is this behavior which affects the real-time 
aspects of the system. 

THE SY NTHETIC WORKLOAD 
GENERATOR 

The SWG compiles the SWSL specification to produce the 
SW . It reads the task level description and produces param­
eter tables . These tables describe the structure and param­
eters of the task level notation in a form th at may be used 
by the SW driver. The SWG compiles the operation level 
description to produce C code. Each operation in the de­
scription is expanded into its equivalent code. This code is 
stored in a library cont.aining code for all possible operations. 
Later , the SWG invokes the C compiler t.o create the object 
code for the SATs. This object codI" is then linked with t he 
parameter tables and the obj ec t code for the SW driver to 
produce the complete ('xec utable SW. 

The SWG offers a number of support features to aid in the 
creation of S\Vs . It performs syntax and semant ic error han­
dling on the input fil es . It also does consistency checking 
on the dataflow graph for the workload. It ('n forces the con­
st ruct ion rul es for the nota t ion , thu s reducing t.he probabilit.y 
of logica l e rrors in t.he SW. 

The SWG provides another important featu re. It supports 
the aut.omatic creat ion of rep li cated objects from temp lates 
in the SWSL specification. This feature is used when mul­
tiple tasks in tlH' workload ha ve the sam(' parameter valu('s. 
The user specincs th(' st. ruct.ure of one instan ce of the task. 
The task defirdion stat.es that a copy of t he task be exe­
cuted on each of a num ber of difrcrent processors . Those 
copies a re then generated automatically. Th e user does not 
need to individually program the specifi cat ion s of each copy 
of the task. The SW speci fic at ions ar(' therefore smaller an d 
less likely to contain errors. 

Repli cating tasks involves both ('[eating copies of the task 
and resolving nam ing conflicts caused by the replica t.i on. 
Copying the task is simple; resolving the nam ing confli cts 
is more difficult . Name resolution involves processing each 
task in the workload. Any reference to tht' repli cated task 
must be replaced with a re fe rence to the appropriate copy 
of the task . SWSL defines rules for determining whid, copy 
to reference. These rules may be superseded in the sp('c i­
fication of an individual component by ex pli ci tl y spec ify ing 
which copy is to be used. 

THE SYNTHETIC WORJ\LOAD 

The output of t he SWG is an executable SW. Our proto­
type SW is desnibed in (J\iskis and Shin, 1990). The S\V 
exec utes on a distribut ed system. Each processor exec utes a 
driver task and the appropriate SATs . The driver controls 
the activities of the SW in the context of the experiment. An 
experiment is divided into a number of independent runs. A 
run is a single execution cycle of t he SW. During each run , 
the SW is initialized by the driver , and the SATs execute and 
eventually termina te . In the SWSL description of t he SW, 
the user specifies the number of runs. For each component 
of t he workload, different parameter va lues may be specified 
for each run. 

At the beginning of each run, t he dri ver initi a li zes t he SW. 
It reads the paramete r tables whi ch were produced by the 



SWG and creates the specified SATs. Next, the drivers on all 
processors synchronize. Once synchronized, they begin the 
execution of their respective SATs as specified by the SATs' 
parameters for that run. By synchronizing at the beginning 
of each run, the driver ensures that the SW's behavior will 
stabilize quickly. The SW must be executing stably before 
accurate measurements may be made on the system. There 
are two ways to specify the end of a run in the SWSL speci­
fication . The first is to specify a time limit for the run. The 
second is to specify a condition, which, when met, indicates 
to the driver that the run has completed. An example of 
such a condition is the completion of N executions of a spe­
cific periodic SAT. When the driver determines that a run 
is over, it stops the execution of the SW. All SATs are re­
set and system resources are returned to their initial states. 
The driver then waits before beginning the next run. This 
wait gives the user an opportunity to upload locally stored 
performance data or to reset external measurement devices . 
The driver begins the next run when it receives a signal from 
the user. 

The SW is designed to be compatible with a wide range of 
performance measurement techniques. It executes as an ap­
plication on the target system. Therefore, it may be used 
with any measurement mechanism which is part of the hard­
ware, system software, or which is external to the system. 
It requires no special support and therefore will not inter­
fere with these mechanisms. It also may be used with soft­
ware measurement mechanisms which are not part of the 
system software. These measurement tasks may be specified 
as SATs. They will be invoked by the driver and will execute 
for the duration of the run. 

SUMMARY AND FUTURE WORK 

As real-time systems become larger and more complex, we 
need more sophisticated tools to analyze their performan ce. 
The SWG suite is one such tool. It is des igned to produce 
SWs which execute on distributed real-time systems. The 
workload model and corresponding language are specifically 
defined to describe the structure and behavior parameters 
of real-time workloads. The SWG supports features such as 
replication of tasks which facilitat e its use on a distributed 
system. Finally, the SW is designed to support experimen­
tation. 

The SWG as described is operational. All functions de­
scribed in this paper have been implemented. We will be 
using the SWG to make baseline performance measurements 
of the experimental, distributed real-time system HARTS 
and its operating system HARTOS. Both HARTS and HAR­
TOS are under development at the Real-Time Computing 
Laboratory at the University of Michigan. As we use the 
SWG suite and become more experienced with the problems 
of performance evaluation, we will be upgrading the SWG 
software to incorporate new features. 
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