Copyright © IFAC

Real Time Programming
Georgia, USA, 1991

GENERATING SYNTHETIC WORKLOADS
FOR REAL-TIME SYSTEMS

D. L. Kiskis and K. G. Shin

Real-Time Computing Laboratory, Department of Electrical Engineering and
Computer Science, The University of Michigan, Ann Arbor, M1 48109-2122, USA

Abstract. In this paper, we describe a software system which generates synthetic workloads for use in

the performance evaluation of distributed real-time computer systems. The software system consists

of a high-level description language and its compiler. The language provides a flexible, easy-to-use

description of the structure and behavior of the real-time workload. The compiler, called a synthetic

workload generator (SWG), uses this description to produce an executable synthetic workload (SW).

The SW may then be used to drive the system under evaluation while measurements are being made.

Keywords. Computer selection and evaluation; real-time computer systems; software tools; specification

languages.

INTRODUCTION

Real-time systems have strict performance requirements. To
determine il these requirements are met, the performance
of a system is evaluated through experimentation. During
the experiments, the values of selected performance indices
are measured while the system is running a workload. The
selection of the drive workload directly influences the results
of the evaluation.

One possibility in the selection of the drive workload is to
use the actual application software. However, there are a
number of situations where the real workload is unavailable
or unrealistic. Such situations include new systems where an
application workload has not yet been developed and criti-
cal systems where, for safety reasons, performance evalua-
tions must be done off-line. In these cases, we advocate the
use of an SW as the drive workload. An SW consists pri-
marily of a set of parameterized synthetic application tasks
(SATSs) which execute on a system and produce demands for
resources. It also includes a driver task which controls the
actions of the SW to facilitate the use of the SW during ex-
perimentation. It controls when the SW starts and stops. It
also determines when the individual tasks execute.

In this paper, we describe a suite of software tools which
we have designed and implemented to support the specifi-
cation, generation, and execution of SWs for a distributed
real-time system. This suite provides the high level support
necessary to efficiently produce SWs which are customized
for a particular evaluation. The suite consists of the syn-
thetic workload generator (SWG) and some minor support
programs. The SWG compiles a description of the work-
load that is specified in the synthetic workload specification
language (SWSL). SWSL describes the structure of the SW

The work reported in this report was supported in part by the NASA
under Grant No. NAG-1-206 and NAG-1-492 and the Office of Naval
Research under Contract No. N00014-85-K-0122.

103

based on a dataflow model.

There are two primary goals in the design of the SWG suite.
The first is to be capable of accurately representing actual
real-time workloads. This goal is met through the selection
of an appropriate workload model. The model was chosen
to reflect the structure of the software which composes the
workload being modeled. By accurately modeling the struc-
ture of the workload, we also capture many of its behavioral
characteristics. Representativeness is enhanced by the selec-
tion of parameters for the objects in the workload. Param-
eters are defined for both the SATs and the resources that
they use and, possibly, share. These parameters were se-
lected to reflect both common software properties and those
properties which are specific to real-time software.

The second goal in the design of the SWG suite is ease of use.
All components of the suite should be easy to use while re-
taining their flexibility and power. Ease of use is enhanced by
the simple, regular structure of SWSL. The language struc-
tures allow one to change both the values of parameters and
the interactions between SATs with little effort. We also
provide a simple user interface to the SWG. It is completely
automated to handle all the various compilation stages and
their corresponding intermediate files.

This paper is organized as follows. In Section we describe
the notation used to specify the SW. In Section we discuss
the functions of the SWG, and in Section we discuss the
SW which is being supported by the SWG suite. Section
we give our summary and discuss our future work.

THE WORKLOAD MODEL

The workload model provides a high level description of the
structure of the workload. We represent this structure us-
ing a dataflow notation. A dataflow notation was chosen
because it is commonly used to specify software structure.
Workload specifications in other dataflow notations may be



easily translated into our dataflow notation. The translated
workload will retain the structure of the original. Hence,
it will be quite representative. Using our notation, we can
specify both the individual tasks and the interactions be-
tween tasks.

Task Level Notation

The notation is divided into two levels of abstraction. The
higher level, or task level. defines the tasks, the resources they
use. and their interactions. The task level notation uses for-
malisms borrowed from the area of structured analysis (SA).
In particular, we base the notation on ESML, an SA notation
created by Bruyn and others (1988). ESML was developed
for the high-level specification of real-time software. It is a
combination of the Ward/Mellor (Ward, 86; Ward and Mel-
lor, 1086) and Boeing/Hatley (Hatley and Pribhai, 1987) SA
notations. These two notations were independently derived
and use differing approaches to add timing and control infor-
mation to the basic data flow model developed by DeMarco
(1978).

By basing our notation on the SA notation, we accomplish
our primary goals. First, we tie the structure of the SW di-
rectly to the structure of the workload, thus improving the
ability of the notation to accurately model actual workloads.
Our notation is the first to be based on a high-level software
specification notation. Previous systems were based either
on low-level specifications such as flowcharts (Baird, 1973
Walters, 1976) or on high-level notations such as UCLA
graphs (Singh, 1981) which are not related to software spec-
ification notations. Second, we make it casier for the user
of the SWG suite to produce workloads. The SA notations
are commonly used by CASE tools for high-level software

specification. Hence it is likely that the aetual ar pronosed
workload being madeled has been specified in terms of an SA
or similar notation. To produce a description of the workload
in our notation, the user must translate the specifications.
This process may be performed manually, or may be auto-
mated as part of a CASE tool. By using a similar notation,
we simplily the translation.

SWSL defines the workload in terms of transformations,
flows. stores, and terminators. Transformations represent
units of computation, generally tasks. Flows are data and
control paths. Stores are units of data storage, and termi-
nators are interfaces between the workload and the environ-
ment. The parameters for these objects define characteristics
such as task interactions, scheduling requirements for tasks.
and access propertics of shared objects.

Operation Level Notation

The lower level abstraction in the notation is the eperalion
level. Tt defines the task’s internal structure, behavior. and
the manner in which it uses resources. This notation is sim-
ilar to that used by Singh and Segall (1982) in the Pegasus
system. A task is defined in terms of sequences of operations
and control logic. Each operation represents the use of a sin-
gle resource by the task, and the control logic determines the
sequence in which the resources are used.

The control structures consist of loops and branches. They
execute probabilistically to simulate the variation of program
execution based on the value of the task’s input data. Hence,
the SATs simulate the random execution time distributions
of real application tasks. The control structures also cause
the SATs to simulate the resource usage patterns of the real
application tasks and not just the quantities of resources

104

used. By simulating the random execution times and the re-
source usage patterns, the SW models the workload more re-
alistically. This realism is necessary when studying real-time
systems. The SW must express the time-specific behavior of
the workload. It is this behavior which affects the real-time
aspects of the system.

THE SYNTHETIC WORKLOAD
GENERATOR

The SWG compiles the SWSL specification to produce the
SW. It reads the task level description and produces param-
eter tables. These tables describe the structure and param-
eters of the task level notation in a form that may be used
by the SW driver. The SWG compiles the operation level
description to produce C code. Each operation in the de-
scription is expanded into its equivalent code. This code is
stored in a library containing code for all possible operations.
Later, the SWG invokes the ¢ compiler to create the object
code for the SATs. This object code is then linked with the
parameter tables and the object code for the SW driver to
produce the complete executable SW.

The SWG offers a number of support features to aid in the
creation of SWs. It performs syntax and semantic error han-
dling on the input files. It also does consistency checking
on the dataflow graph for the workload. It enforces the con-
struction rules for the notation, thus reducing the probability
of logical errors in the SW.

The SWG provides another important feature. It supports
the automatic creation of replicated objects from templates
in the SWSL specification. This feature is used when mul-
tiple tasks in the workload have the same parameter valucs.
The user specifies the structure of one instance of the task.
The task definition states that a copy of the task be exe-
cuted on each of a number of different processors. Those
copies are then generated antomatically. The user does not
need to individually program the specifications of cach copy
of the task. The SW specifications are therefore smaller and
less likely to contain errors.

Replicating tasks involves both creating copies of the task
and resolving naming conflicts caused by the replication.
Copying the task is simple; resolving the naming conflicts
is more difficult. Name resolution involves processing each
task in the workload. Any reference to the replicated task
must be replaced with a reference to the appropriate copy
of the task. SWSL defines rules for determining which copy
to reference. These rules may be superseded in the speci-
fication of an individual component by explicitly specilying
which copy is to be used.

THE SYNTHETIC WORKLOAD

The output of the SWG is an exccutable SW. Our proto-
type SW is described in (Kiskis and Shin, 1990). The SW
executes on a distributed system. Each processor executes a
driver task and the appropriate SATs. The driver controls
the activities of the SW in the context of the experiment. An
experiment is divided into a number of independent runs. A
run is a single execution cycle of the SW. During each run,
the SW is initialized by the driver, and the SATs execute and
eventually terminate. In the SWSL description of the SW,
the user specifies the number of runs. For each component
of the workload. different parameter values may be specified
for each run.

At the beginning of each run, the driver initializes the SW.
It reads the parameter tables which were produced by the



SWG and creates the specified SATs. Next, the drivers on all
processors synchronize. Once synchronized, they begin the
execution of their respective SATs as specified by the SATs’

parameters for that run. By synchronizing at the beginning.

of each run, the driver ensures that the SW's behavior will
stabilize quickly. The SW must be executing stably before
accurate measurements may be made on the system. There
are two ways to specify the end of a run in the SWSL speci-
fication. The first is to specify a time limit for the run. The
second is to specify a condition, which, when met, indicates
to the driver that the run has completed. An example of
such a condition is the completion of N executions of a spe-
cific periodic SAT. When the driver determines that a run
is over, it stops the execution of the SW. All SATs are re-
set and system resources are returned to their initial states.
The driver then waits before beginning the next run. This
wait gives the user an opportunity to upload locally stored
performance data or to reset external measurement devices.
The driver begins the next run when it receives a signal from
the user.

The SW is designed to be compatible with a wide range of
performance measurement techniques. It executes as an ap-
plication on the target system. Therefore, it may be used
with any measurement mechanism which is part of the hard-
ware, system software, or which is external to the system.
It requires no special support and therefore will not inter-
fere with these mechanisms. It also may be used with soft-
ware measurement mechanisms which are not part of the
system software. These measurement tasks may be specified
as SATs. They will be invoked by the driver and will execute
for the duration of the run.

SUMMARY AND FUTURE WORK

As real-time systems become larger and more complex, we
need more sophisticated tools to analyze their performance.
The SWG suite is one such tool. It is designed to produce
SWs which execute on distributed real-time systems. The
workload model and corresponding language are specifically
defined to describe the structure and behavior parameters
of real-time workloads. The SWG supports features such as
replication of tasks which facilitate its use on a distributed
system. Finally, the SW is designed to support experimen-
tation.

The SWG as described is operational, All [unctions de-
scribed in this paper have been implemented. We will be
using the SWG to make baseline performance measurements
of the experimental, distributed real-time system HARTS
and its operating system HARTOS. Both HARTS and HAR-
TOS are under development at the Real-Time Computing
Laboratory at the University of Michigan. As we use the
SWG suite and become more experienced with the problems
of performance evaluation, we will be upgrading the SWG
software to incorporate new features.

Baird, R. (1973). APET - a versatile tool for estimating
computer application performance. Software -
Practice and Ezrperience, 3, 385-395.

Bruyn, W., R. Jensen, D. Keskar, and P. Ward (1988).
ESML: An extended systems modeling language
based on the data flow diagram. ACM Software
Engineering Notes, 13, 1, 58-67.

DeMarco, T. (1978). Structured Analysis and System Speci-
fication. Prentice-Hall, New Jersey.

105

Hatiey, D. J., and I. A. Pribhai (1987) Strategies for Real-
Time System Specification. Dorset House Pub-
lishing, New York.

Kiskis, D. L. and K. G. Shin (1990). A synthetic workload
for real-time systems. In Proc. Seventh IEEE
Workshop on Real-Time Operating Systems and
Software, pp. T7-81.

Singh, A. (1981) Pegasus: A controllable, interactive, work-
load generator for mulliprocessors. Master’s the-
sis, Carnegie-Mellon University.

Singh, A., and Z. Segall (1982). Synthetic workload gener-
ation for experimentation with multiprocessors.
In Proc. Int’l Conf. on Distributed Compufing
Systems, pp. TT8-T85.

Walters, R. E. (1976). Benchmark techniques: a constructive

approach. The Computer Journal, 19, 1, 50-55.

2

Ward, P. T. (1986). The transformation schema: An exten-
sion of the data flow diagram to represent control
and timing. [EEE Trans. Software Engineering.
SE-12, 2, 198-210. 2

Ward, P. T., and S. J. Mellor (1986). Structured Develop-
ment for Real-Time System, Vol. 1-3, Yourdon
Press, Englewood Cliffs.



