
Copyright © IFAC Real Time Programming
Georgia. USA. 1991

GENERATING SYNTHETIC WORKLOADS
FOR REAL-TIME SYSTEMS

D. L. Kiskis and K. G. Shin

Real-Time Computing Laboratory. Department 0/ Electrical Engineering and

Computer Science. The University o/Michigan. Ann Arbor. MI48109-2122. USA

Abstract . In this paper, we describe a software system which generates synthetic workloads for use in

the performance evaluation of distributed real-time computer systems. The software system consists

of a high-level description language and its compiler. The language provides a flexible, easy-to-use

description of the structure and behavior of the real-time workload. The compiler, called a synthetic

workload generator (SWG), uses this description to produce an executable synthetic workload (SW).

The SW may then be used to drive the system under evaluation while measurements are being made.

Keywords. Computer selection and evaluation; real-time computer systems; software tools ; specification

languages .

INTRODUCTION

Real-time systems have str ict performance requirements. To
determine if these requirements are met, the performance
of a system is evaluated through experimentation. During
the experiments, the values of selected performance indices
a re measured while the system is running a workload. The
selection of the drive workload directly influences the results
of the evaluation.

One possibility in the selection of the drive workload is to
use the actual application software. However, there are a
number of situations where the real workload is unavailable
or unrealistic. Such situations include new systems where an
application workload has not yet been developed and criti­
cal systems where, for safety reasons, performance evalua­
tions must be done off-line. In these cases, we advocate the
use of an SW as the drive workload. An SW consists pri­
marily of a set of parameterized synthetic application tasks
(SATs) which execute on a system and produce demands for
resources. It also incluues a driver task which controls the
actions of the SW to facilitate the lI se of the SW during ex·
perimentation. It controls when the SW starts and stops. It
also determines when the indi vidual tasks execute.

In this paper, we describe a suite of software tools which
we have designed and implemented to support the specifi­
cation, generation, and execution of SWs for a distributed
real-time system. This suite provides the high level support
necessary to efficiently produce SWs which are customized
for a particular evaluation. The suite consists of the syn­
thetic workload generator (SWG) and some minor support
programs. The SWG compiles a description of the work­
load that is specified in the synthetic workload specification
language (SWSL). SWSL describes the structure of the SW

The work reported in this report was supported in part by the NASA

under Grant No. NAG-I-296 and NAG-I-492 and the Office of Naval

Research under Contract No. NOOOI4-85-K-OI22.

103

based on a dataflolV model.

There are two primary goa ls in the design of the SWG suite.
The first is to be capable of accurately representing act lIal
real-time workloads. This goal is met t hrough the select. ion
of an appropriate workload model. The model was chosen
to reflect the structure of the software which composes the
workload being modeled. By accurately modeling the st ruc­
ture of the workload, we also capture many of its behavioral
characteristics. Representat iveness is enhanced by the selec­
tion of parameters for the objects in the workload. Param­
eters are defined for both the SATs and the resources that
they use and, possibly, share. These pa.rameters were se­
lected to reflect both common software properties and those
properties which are specific to real·t ime softwa.re.

The second goal in the design of the SWG su ite is ease of use.
All components of the su ite should be easy to lIse while re­
taining their flexibility and power. Ease of use is enhanced by
the simple, regular structure of SWSL. The language struc·
tures allow one to change bot.h the values of parameters and
the interactions between SATs with little effort. We also
provide a simple user interface to the SWG. It is comp letely
automated to handle all the various compilation stages and
their corresponding intermediate files.

This paper is organized as follows. In Section we describe
the no tat ion used to specify the SW. In Section we discuss
the functions of the S\VG, and in Section we discuss the
SW which is being supported by the SWG suite . Section
we give our summary and discuss our future work.

THE WORI\LOAD ilIODEL

The workload model provides a high level description of the
structure of the workload. \Ve represent this structure us­
ing a dataflow notation . A dataflow notation was chosen
because it is commonly used to specify software structure.
Workload specifications in other dataflow notations may be

easily translated into our dataflow notation. The translated
workload will retain the structure of the original. Hence,
it will be quite representative. Using our notation , we can
specify both the individual tasks and the interactions be­
tween tasks.

Task Level Notation

The notation is divided into two levels of abstraction . The
higher level, or task level. defines the tasks, the resources they
use, and their int.eract.ions. The task level notation uses for­
malisms borrowed from t he area of structured analysis (SA).
In particular, we base the notation on ESML, an SA notation
crcated by ilruyn and others (1988). ESI\IL was developed
for the high-Ie \'el specifi cation of real-t ime software. It is a
combinat ion of t he Ward / \lellor (Ward, 86; Ward and ,\lel-
101' , 1986) and iloeing/ IIatley (Hatley and Pribh ai, 1987) SA
notat ions. These t.wo notations were independently derived
and use differ ing approaches to add timing and control infor­
mation to t he basic data fl ow model develo ped by De;\'larco
(1978).

By basi ng ou r notation on the SA notat ion, we accom pli sh
our primary goa ls. First. wc ti e the structure of the SW di ­
rectly to t he st ructure of the workload, t hus improving the
abilit.y of t he notation t.o accurately model actual workloads.
Our notation is the first to be based on a high-level software
spec ifi cat ion notation. Pre \'i ous systems were based eit.her
on low-level specifications such as flowcharts (l1 aird , 197:3;
WaIte rs, 1976) or on high-le ve l notation s such as liCLA
graphs (Singh, 1981) whi ch arc not related to software spec­
ifi ca tion notat ions. Second, we make it cas ier for the user
of the SWG sui te to produce workloads. The SA not at ions
arc ('ommonly used by CASE tools for hi gh-Ievd soft ware
sJ)('c ifi cat ion . llcne(' it is likclv Ih 'lf Ih" or. " , 1 ",. prono,(' rI
workload be ing mod"led has been specified in t.erm s of an SA
or sim il a r notation. To produce a description of thc workload
in our not.ation, the usc r must t ranslat.e the spec ifi cat ions.
This pro('css may b" perform('d manually, or may be auto­
mat.ed as part. of a CASE tool. By usi ng a simila r notation ,
wc simplify the translation.

SWSL defines the workload in t.erm s of tran sform ations,
flows, stores , an d te rmin ators. Transform at ions represent
units of computat.ion, generally tasks. Flows are data and
control paths. Stores a rc uni ts of data storage, and termi­
nators are in terfaces betwe('n the workloa.d and the environ ­
ment. The paramet('rs for these objects defin e characteristic,
such as t.ask interact. ion s, scheduling requirements for tasks,
and access properties of sha red obj ec ts .

Opera t. ion Level Notat ion

Th(' lowcr leve l abst.raction in the notat.ion is the o))cmtion

let,cI. It defin es the task's internal structure, behavior. and
the manner in whi ch it uses resources . This not a tion is sim­
ila r to that uscd by Singh and Segall (1982) in t he Pegasus
sys tem. A task is defin('d in terms of sequences of operation s
and cont rol logic. Each opera tion represents the use of a sin­
gle resource by t he task, and the control logic determines the
sequence in which the resources are used.

The control st ructures consist of loops and bran ches. They
execute probabilistically to simulate the variation of prograJl1
execution ba sed on the value of the t ask' s input data . lIence,
t he SATs simulate the random execution time di st ributions
of real appli cat ion tasks . The control structures also cause
the SATs to si mul ate the resou rce usage patterns of the real
application tasks and not just the quantiti es of resources

104

used. By simulating the random execution times and the re­
source usage patterns , the S\V models the workload more re­
alistically. This realism is necessary when studying real-time
systems. The SW must express the time-specific behavior of
the workload. It is this behavior which affects the real-time
aspects of the system.

THE SY NTHETIC WORKLOAD
GENERATOR

The SWG compiles the SWSL specification to produce the
SW . It reads the task level description and produces param­
eter tables . These tables describe the structure and param­
eters of the task level notation in a form th at may be used
by the SW driver. The SWG compiles the operation level
description to produce C code. Each operation in the de­
scription is expanded into its equivalent code. This code is
stored in a library cont.aining code for all possible operations.
Later , the SWG invokes the C compiler t.o create the object
code for the SATs. This object codI" is then linked with t he
parameter tables and the obj ec t code for the SW driver to
produce the complete ('xec utable SW.

The SWG offers a number of support features to aid in the
creation of S\Vs . It performs syntax and semant ic error han­
dling on the input fil es . It also does consistency checking
on the dataflow graph for the workload. It ('n forces the con­
st ruct ion rul es for the nota t ion , thu s reducing t.he probabilit.y
of logica l e rrors in t.he SW.

The SWG provides another important featu re. It supports
the aut.omatic creat ion of rep li cated objects from temp lates
in the SWSL specification. This feature is used when mul­
tiple tasks in tlH' workload ha ve the sam(' parameter valu('s.
The user specincs th(' st. ruct.ure of one instan ce of the task.
The task defirdion stat.es that a copy of t he task be exe­
cuted on each of a num ber of difrcrent processors . Those
copies a re then generated automatically. Th e user does not
need to individually program the specifi cat ion s of each copy
of the task. The SW speci fic at ions ar(' therefore smaller an d
less likely to contain errors.

Repli cating tasks involves both ('[eating copies of the task
and resolving nam ing conflicts caused by the replica t.i on.
Copying the task is simple; resolving the nam ing confli cts
is more difficult . Name resolution involves processing each
task in the workload. Any reference to tht' repli cated task
must be replaced with a re fe rence to the appropriate copy
of the task . SWSL defines rules for determining whid, copy
to reference. These rules may be superseded in the sp('c i­
fication of an individual component by ex pli ci tl y spec ify ing
which copy is to be used.

THE SYNTHETIC WORJ\LOAD

The output of t he SWG is an executable SW. Our proto­
type SW is desnibed in (J\iskis and Shin, 1990). The S\V
exec utes on a distribut ed system. Each processor exec utes a
driver task and the appropriate SATs . The driver controls
the activities of the SW in the context of the experiment. An
experiment is divided into a number of independent runs. A
run is a single execution cycle of t he SW. During each run ,
the SW is initialized by the driver , and the SATs execute and
eventually termina te . In the SWSL description of t he SW,
the user specifies the number of runs. For each component
of t he workload, different parameter va lues may be specified
for each run.

At the beginning of each run, t he dri ver initi a li zes t he SW.
It reads the paramete r tables whi ch were produced by the

SWG and creates the specified SATs. Next, the drivers on all
processors synchronize. Once synchronized, they begin the
execution of their respective SATs as specified by the SATs'
parameters for that run. By synchronizing at the beginning
of each run, the driver ensures that the SW's behavior will
stabilize quickly. The SW must be executing stably before
accurate measurements may be made on the system. There
are two ways to specify the end of a run in the SWSL speci­
fication . The first is to specify a time limit for the run. The
second is to specify a condition, which, when met, indicates
to the driver that the run has completed. An example of
such a condition is the completion of N executions of a spe­
cific periodic SAT. When the driver determines that a run
is over, it stops the execution of the SW. All SATs are re­
set and system resources are returned to their initial states.
The driver then waits before beginning the next run. This
wait gives the user an opportunity to upload locally stored
performance data or to reset external measurement devices .
The driver begins the next run when it receives a signal from
the user.

The SW is designed to be compatible with a wide range of
performance measurement techniques. It executes as an ap­
plication on the target system. Therefore, it may be used
with any measurement mechanism which is part of the hard­
ware, system software, or which is external to the system.
It requires no special support and therefore will not inter­
fere with these mechanisms. It also may be used with soft­
ware measurement mechanisms which are not part of the
system software. These measurement tasks may be specified
as SATs. They will be invoked by the driver and will execute
for the duration of the run.

SUMMARY AND FUTURE WORK

As real-time systems become larger and more complex, we
need more sophisticated tools to analyze their performan ce.
The SWG suite is one such tool. It is des igned to produce
SWs which execute on distributed real-time systems. The
workload model and corresponding language are specifically
defined to describe the structure and behavior parameters
of real-time workloads. The SWG supports features such as
replication of tasks which facilitat e its use on a distributed
system. Finally, the SW is designed to support experimen­
tation.

The SWG as described is operational. All functions de­
scribed in this paper have been implemented. We will be
using the SWG to make baseline performance measurements
of the experimental, distributed real-time system HARTS
and its operating system HARTOS. Both HARTS and HAR­
TOS are under development at the Real-Time Computing
Laboratory at the University of Michigan. As we use the
SWG suite and become more experienced with the problems
of performance evaluation, we will be upgrading the SWG
software to incorporate new features.

Baird, R. (1973) . APET - a versatile tool for estimating
computer application performance. Software­
Practice and Experience, 3, 385- 395.

Bruyn, W., R. Jensen, D. Keskar, and P. Ward (1988).
ESML: An extended systems modeling language
based on the data flow diagram . AGM Software
Enginee1'ing Notes, 13, 1,58-67.

DeMarco, T . (1978). Structured Analysis and System Speci­
fication. Prentice-Hall, New Jersey.

105

Hatiey, O. J. , and I. A. Pribhai (1987) Strategies for Real­
Time System Specification. Dorset House Pub­
lishing, New York .

Kiskis , D. 1. and K. G. Shin (1990). A synthetic workload
for real-time systems. In Proc. Seventh IEEE
Workshop on Real- Time Operating Systems and
Software, pp. 77-81.

Singh , A. (1981) P egasus: A controllable, interactive, work­
load genera/or for multiprocessors. 1Ilas/er 's the­
sis, Carnegie-Mellon University.

Singh, A., and Z. Segall (1982). Synthetic workload gener­
ation for experimentation with multiprocessors.
In Proc. In/ '/ ConI on Dis/ributed Computing
Systems, pp. 778- 785.

Waiters, R. E. (1976). Benchmark techniques: a constructive
approach. The Com put er Journal, 19, 1, 50- 55.
2

Ward , P. T. (1986). The transformation schema: An ex ten­
sion of the data f1011' diagram to reprf'sE'nt. control
and t.iming. I £EE Trans. Softll'are ElIg;lltCrillg.
5E-12, 2, 198- 210. 2

Ward, P. T., and S. J. ;"Iellor (1986). Structured Develop­
ment for Rcal- Time System, Vol. 1-3, Yourdon
Press, Englewood Cli ffs.

