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time. Divide memory modules into two groups A and B. Place 2
in group A and x2x—; in group B, k = 1.2.---. The computation
of linked list prefix requires the communication of n/2 data items
between groups A and B while the interface between two groups has
only o(p) cells. Therefore, timing O(n/p) cannot be achieved.
Another way to weaken the local memory PRAM model is to
limit the degree of each processor. The degree of a processor is the
number of processors it is directly connected to. The degree of a
parallel computer is the maximum of the degrees of its processors. A
p-processor local memory PRAM with p shared cells corresponds to
a parallel machine of p processors with an interconnection network
connecting every pair of processors. The degree of each processor
in this machine is p. However, reducing the degree of a computer
could significantly weaken its communication power [6]. There are
n input data items and n output data items, a permutation from the
input data items to the output data items is required for computing
the linked list prefix problem. The results of Gottlieb and Kruskal [6]

show that with a computer of degree k Q("]—Of—"—’i) is a lower bound

for static permutation. When the computer has degree k = gellos )
timing O(n/p) cannot be achieved.

Finally, the memory sharing scheme of the p memory cells could
possibly be weakened for computing the linked list prefix. We are
not clear if it is possible to achieve time O(n/p +logn) without
concurrent access to the p shared cells.
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A RAM Architecture for Concurrent
Access and On-Chip Testing

Jyh-Charn Liu and Kang G. Shin

Abstract— A new RAM architecture supporting concurrent memory
access and on-chip testing (CMAT) is proposed. A large-capacity memory
chip is decomposed into rest neighborhoods (TND’s), each of which is
tested independently of the others. When there are data stored in a TND,
the data are saved into a buffer before testing the TND, and the TND’s
contents are restored using buffered data after testing the TND. If an
external request is not made to the TND, the request can be directed to
the addressed memory cells. Otherwise, the buffered data can be loaded
back into the TND, or the request is detoured to a corresponding buffer.
By deriving an analytical model, the performance penalty and hardware
overhead of the CMAT architecture are shown to be very small.

Index Terms— Address mapping mechanism (AMM), built-in tester
(BIT), concurrent memory access and on-chip testing (CMAT), mean fault
detection time, memory access locality, single-cell pattern sensitive fault
(SPSF), single decoder fault, test neighborhood (TND).

I. INTRODUCTION

For critical applications such as avionic control and life support
systems, a crash in the computer system could lead to an economic
disaster and/or loss of human lives. Thus, any computer system
designed for critical applications must have a high degree of fault
tolerance. A hardware fault is defined as an incorrect state caused
by the physical change in a component, whereas an error is defined
to be the incorrect information/data resulting from the manifestation
of a fault. The period from the occurrence of an error (fault) to its
detection is called the error (fault) detection time. While it is relatively
easy to diagnose and recover from a single fault, it is extremely
difficult and costly to handle multiple faults [1].

For real-time applications, a shorter fault detection time means a
longer time available to take appropriate actions (¢.g., damage assess-
ment and recovery) against the fault before the associated deadlines, if
any, expire. To shorten the mean fault detection time with negligible
performance penalties, we propose a new architecture which supports
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concurrent memory access and on-chip testing (CMAT) of permanent
faults. Thus, the proposed memory architecture will henceforth be
called the CMAT architecture. In the CMAT architecture, the contents
of memory cells are saved before testing them, and a memory chip can
be tested concurrently, but not simultancously, with normal memory
access. A memory matrix is decomposed into test neighborhoods
(TND’s), and each TND is tested independently. When a TND is to
be tested, its contents are first saved in a buffer, and then test patterns
are applied to the TND. After the TND is tested, its buffered data
are loaded back into the corresponding memory cells.

Most related work only addresses off-line testing of memory
chips. Single-cell pattern-sensitive fault (SPSF) model is most widely
accepted memory fault model for its practicality [2]—[4]. Single error
correcting and double error detecting (SECDED) codes for main
memory have been widely used in large computer systems. It has
been reported that if coding methods were used as the sole means of
error detection/correction, then a very long (one hour or more) fault
detection time in main memory may result {5]. The long fault latency
with SECDED codes can be reduced by memory scrubbing [6], [7].
However, unless more error correction bits are added to the system,
performance penalties of memory scrubbing increase with memory
size. Other related work includes built-in testers (BIT’s) for testing
different memories [8]-[10], and parity encoding [11].

The remainder of this correspondence is divided into four sec-
tions. Section II presents design details for testing different parts of
memory. The performance of the CMAT architecture is analyzed in
Section III. Finally, concluding remarks are made in Section IV.

II. CMAT ARCHITECTURE

Memory components are tested in two parts: peripheral circuits and
memory cells. The testing task is assumed to be free-running, and a
BIT tests a memory matrix or chip autonomously.

A. Architectural Characteristics

When the capacity of a RAM chip is very large, the chip is usually
made of several memory matrices, where each of them is an N x N
bit matrix. Let C';; denote the memory cell located at the (i, j)
position of a memory matrix. Each matrix has the same structure,
say, 8K bits of memory cells, a row decoder (RD), a column decoder
(CD) and sense amplifiers, as shown in Fig. 1. A CMAT architecture
consists of a BIT, peripheral circuits, and memory cells. The row
decoder, column decoder, and sense amplifiers are collectively called
the peripheral circuit of a memory matrix. The BIT is composed
of an address mapping mechanism (AMM), a buffer, an ASND
mirror (to be defined later), a column neighborhood (CN) and a row
neighborhood (RN), and comparators for verifying the outputs of
TND’s.

In the CMAT architecture, data may be stored in the regular
memory cells or in the buffer(s). Since both external access requests
and the BIT may read/write data, data consistency between the regular
memory cells and the buffer(s) must be maintained in the CMAT
architecture. There are two strategies to achieve data consistency.
The first is that, when the TND is requested, the testing procedure is
suspended, and all the data stored in the buffer are loaded back into
the TND. After the data are loaded back into the TND, normal access
operations in the memory are resumed. The second strategy is that,
when the TND is requested, the request is detoured to the buffer.
For the purpose of exploring potential design complexity, only the
more complicated case of detouring request to the buffer will be
considered here.

An AMM is used to map a TND address to a buffer address, and
vice versa. When an external memory access request is not made to
the TND being tested, the request can be serviced as if it were made to
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Fig. 1. A two-and-half-dimensional RAM organization.
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Fig. 2. Design for peripheral circuit testing.

regular cells. When the TND is requested, the current memory access
cycle is either extended so that data in the buffer can be loaded back
into the regular cells, or the request is detoured to the buffer. Thus,
the system must allow for variable memory access times.

B. Peripheral Circuit Testing

The peripheral circuits include a row decoder, a column decoder,
and sense amplifiers. A single decoder fault occurs when one of the
row or column decoders, but not both, is faulty. A row (column)
neighborhood, denoted by RN (CN), is a collection of cells in a row
(column). To test single decoder faults, dedicated row and column
neighborhoods are proposed. As shown in Fig. 2, the row (column)
neighborhood is made independent of the original row (column)
decoder by using an independent row (column) enable line. The
row (column) decoder is tested by reading from, and writing to, the
column (row) neighborhood.
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The testing procedure first sets row and column neighborhoods to
known initial states, and then various test patterns, such as those
in [2] and [12], can be readily applied. Note that test patterns
cannot be applied to row and column decoders simultaneously. Thus,
when one test pattern is applied to the row (column) decoder, all
column (row) decoder outputs are disabled and the column (row)
neighborhood is enabled by an independent signal. Each read/write
operation generated from the pattern generator is applied, say, to
the row decoder first, and then to the column decoder. For a read
operation, the ith cell in the column neighborhood is first read and
stored in a latch, and then the ith cell in the row neighborhood is
read and compared to the value in the latch. For a write operation, the
ith cells in the row and column neighborhoods can be written in two
consecutive cycles. When the testing pattern proposed in [2] is used
for column and row testing, the length of the testing procedure for
decoders is 2|T D|, where |TD| = N(2N%+43N+4) memory cycles.

A slow recovery sense amplifier is detected by a long stream of
1’s (0’s) followed by a 0 (1): each cell in the column neighborhood
is connected to a distinct sense amplifier. The ith sense amplifier can
be tested by the test pattern WleR,W,’“WlRi, where W; (Wl)
is to write 1 (0) to an arbitrary memory cell connected to amplifier
i, R; is to read the corresponding memory cell, and k is the sense
amplifier’s time constant. To test a sense amplifier, the row decoder
is disabled first, and then one of the column decoder outputs, the
CN-enable, and the RN-enable lines are enabled simultaneously. As
shown in Fig. 2, the test pattern is applied simultaneously to the ith
sense amplifier (0 < ¢ < N — 1) and the column neighborhood’s
sense amplifier for the purpose of demonstration. The outputs of the
two sense amplifiers can then be verified by a two-rail comparator.
It will take N (2k + 4) cycles to test sense amplifiers. Thus, it needs
a total of N(2N? 4+ 3N + 2k) memory cycles to test the peripheral
circuits.

C. Memory Cell Testing

For memory cell testing, an augmented single-cell test neighbor-
hood (ASND) is used in this correspondence. An ASND is a 3 x 3
matrix composed of nine memory cells. As will be seen later, use of
ASND’s can greatly simplify the BIT design. SPSF’s are to be tested
in the memory cells, and testing outcomes are verified by comparing
the outputs of two identical circuits. Thus, a set of test patterns are
applied to an ASND and an ASND mirror simultaneously, where the
ASND mirror has exactly the same number of memory cells as that
of an ASND. The testing length for the memory matrix is N?K,
where R is the length of a selected test pattern for an ASND.

Since data patterns are stored in the memory cells, data must
be loaded/saved properly during testing of these memory cells.
An ASND with the center located at C;; is denoted by ASND;j,
ASND;; = {Cimli-1 <k <i+1,j—1<m < j+1}. ASND,;
can be decomposed into three rows or columns, ie., ASND;; =
U3_, SRY or ASND;; = Ui_, SCF, where SRY; (SCL) is the
kth row (column) of ASND;;.

Starting with ASNDy;, the data in {ASND;|i is 0dd,0 < k <
N — 1} are saved, and then loaded from left to right. For simplicity,
boundary ASND’s are not included in the testing procedure. After
an odd numbered row i is tested, SR}y _, is loaded into memory
and S R?+ IN—1 is saved into the buffer. Every even numbered row
is loaded from right to left, and SR} (S R13'+1o) is loaded (saved)
when a row is tested. This sequence is described by the following
algorithm, pseudo-coded in C.

Save ASND;, into buffer;

for (i = 134 < N — 25 4+ +){

D= (-1
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L=+ D+1;

U= N;S _ N;3D+1;
r=2+D;
y=2-D;

for (j = Lij # Usj = —=D){
test ASND;;;

load SC7;

save S Cf’j 0}

load SR};;

save SRfH];}.

It takes six memory cycles to load and save data between two
adjacent ASND’s. It needs 6(N? — 4N + 4) memory cycles for the
above load—save procedure.

According to the load/save procedure, the AMM and the buffer
must perform correct address mapping without physically moving
the data in the buffer. A design which can simplify the AMM’s
structure is shown in Fig. 3. Both the buffer and the ASND mirror
are expanded into a 4 X 4 matrix, and the least significant two bits of
the address bus can be used directly to access the buffer and/or the
mirror. Since each data load operation moves a row or column, ie.,
SR’ or SC*, of data into the regular memory cells, two up—down
counters are sufficient to indicate the row and column to be loaded.

The memory organization for the testing of SPSF’s is given in
Fig. 4. The total length of testing procedure, ¢p, including the data
load/save procedure, is tp = 2N(2N? + 3N +4) + N(2k +4) +
N2K +6(N%—4N +4) memory cycles. For example, when k& = 10,
and the test pattern in [2] is used, K = 2720, we get tp = 4N° +
2732N? 4+ 8N + 24 memory cycles. Additional circuits necessary
to implement CMAT are the row and column neighborhoods, pattern
generators, the multiplexer between the external address and the test
pattern from the pattern generator, etc; 2NV +4|ASND]| extra memory
cells are needed to implement CMAT. The hardware overhead of
memory cells is 23482, which is less than 0.9% for N = 256,
and 2% for N = 128. It should be noted that use of multiplexers
is essential to any built-in testing architecture. Thus, the hardware
overhead will be dominated by pattern generators.



1156

fault detected

two-rail

data I/O

Sense Amp & MUX

IEEE TRANSACTIONS ON COMPUTERS, VOL. 40, NO. 10, OCTOBER 1991

b= log,N

—O00-0-000] RrD

ASND mirror

ASND
requeste

y row address

CD

4

&)

pattern
generator

column address

Fig. 4. Serial testing for SPSF’s in a RAM matrix.

sense
amplifiers
Jdeee .1
" 4 PG
@ : . g A

=®

k:

o

o

buffer <
o
1=}
load
L 1 1
IND TND
requested

load
counter
LSB of
external Lfsgc
request N

Fig. 5. Design of the buffer and AMM for the parallel testing of memory
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D. Parallel Testing of Memory Cells

To further speed up memory testing, the sense amplifiers can be
modified to allow parallel testing of memory cells.

The parallel testing design in [8] can be easily modified for the
CMAT architecture. The buffer of a CMAT chip for testing SPSF’s
is composed of four rows. The shift control gates are used for both
loading/saving buffers in the CMAT architecture and shifting test
patterns for the testing procedure. However, before testing a row of
{ASND;;|1 < j < N}, the shift control gates are used to load
its data into the buffer. After testing {ASND;;|1 < j < N}, the
contents of the nonoverlapping row are restored with the buffered
data. At the next test cycle, similar load—test—save procedures
are repeated. A block diagram for parallel testing in the CMAT
architecture is shown in Fig. 5. When data are loaded into the buffer,
their physical locations are left-skewed by one column position. Thus,

when an external request needs data in the buffer, the data must be
loaded back into the original memory cells first.

It takes V' cycles to both load and save data in the parallel testing
method. The length of parallel testing procedure for peripheral circuits
is the same as its serial testing counterpart. However, the testing
speed of memory cells is N times faster than that of serial testing.
Thus, tp = 2|TD| + N(2k+4) + 2N + NK. When K = 2720
and k = 10, we get tp = 4N® + 6N? + 2754N. The parallel
testing method needs four columns of memory cells for the buffer,
shift control gates, an AMM, a pattern generator, and a two-rail
comparator. While the overhead of most components is determined

4

by the design implementation, the overhead for buffer is .

III. PERFORMANCE ANALYSIS

Based on a new memory access model, the computational loss and
fault detection time of CMAT are computed in this section. However,
the multiplexing delay is excluded from our discussion, because such
delay is inevitable for all built-in testing methods.

A. Memory Access Model

The existence of memory access locality has long been recognized
in computer systems. That is, once a program starts to access a
specific memory area, it tends to access the area continuously for
a certain period. A program’s behavior of memory access can be
modeled by an active agent visiting several chips and forming access
set(s). An access set, AS? , is defined as a memory area that is
continuously accessed for a certain period at the active agent’s ith
visit to chip j. For tractability reasons, it is assumed that 1) all
memory chips have the same structure and testing strategy, 2) an
access set does not cross chips and its lifetimes are independent and
identically distributed (i.i.d.), and 3) the agent’s present and future
visits to chips are independent of its past visits.

There are m chips in the system, and the system is said to be in
state ¢ when the agent is in chip i. Let V) represent the event of
the agent’s kth visit to chip ¢, and M; be the lifetime of V;'. Let S
denote the time V} begins, and N*(t) = sup{k|5,‘C < t}. Since M}’s



IEEE TRANSACTIONS ON COMPUTERS, VOL. 40, NO. 10, OCTOBER 1991

are assumed to be i.i.d., {N"'(t).t > 0} is a renewal process, and
{NY (), N2(t), - -, N™(t),t > 0} is a Markovian renewal process.
Let Z(t) denote the system state at time ¢, i.c., the agent is in chip
Z(t) at time t. Then, {Z(t),t > 0} is a semi-Markov process. A
random variable .J(/) = j is used to represent that the agent’s ith
visit is made to chip j. By Assumption 3), {J(i),7 > 1} is a Markov
chain. For a given time interval [0,¢),¢ > 0, the total number of the
agent’s visits to chips is N(t) = 7 N¥(¢).

There may exist n different distributions for Mj ’s in each chip. Let
Dj denote the agent’s selection of a memory access time distribution
at its jth visit to chip 7 and let D} = k when the distribution F}
is selected, where P(D} = k) = ay. The normal memory access
time during the agent’s jth visit to chip i is denoted by X!. Thus,
IiY;‘D;:k(t) = Pl(fL

When the agent is in chip ¢, it may or may not access the TND
being tested. An indicator function Ij associated with Vf represents
whether or not the agent accesses the TND; I} = 1 (0) when
the agent accesses (does not access) the TND. The probabilities
of I} = 1 and I! = 0 are denoted by P(I;=1) = 3 and
P(I; = 0) = 1 - 3, ¥i, j, respectively. 7 is determined by A3NPI
where |[ASND]| is the number of memory cells in an ASND and
N? is the size of the memory matrix. M ]‘ = X, when the agent
does not access the TND being tested, and M} = X! + Y, when
the agent accesses the TND, where Y is a random variable repre-
senting the delay of request-detouring or data-load/save. Thus, the
distribution function of M; is Fw}(t) =(1-3)>r, aFe(t)+

i
BYkoy ak fy fxigyipi—i(€)dE, where f, is the density func-
J J, 7
tions of a random’ variable X. For the tractability of analysis, we
shall consider only the case when X} and Y are independent.

B. Computational Loss

The computational loss due to the load/save procedures is deter-
mined by the system workload and testing strategies used. From the
agent’s point of view, it makes no difference to which chip the
performance penalty occurs.

Since both Yj’s and M;’s are assumed to be iid., E(Y}) =
E(Y), and f,;i = fu, Vi.j, where Y is a representative random
variable for Y?’s and M for M j’s. Now, we want to evaluate
the ratio of access delay to the normal memory access time as a
relative performance penalty. For this, the system model is refined
with two states A and W. The system is in a) state A when the
agent accesses chip ¢ without hitting the TND being tested, or
b) state W when the agent accesses the TND and, thus, waits until
the data are loaded/saved. The system can then be modeled as a
regenerative process; the system regenerates itself as it enters state
W then A, A,---, then W then A--.. The time interval between
two consecutive regenerative instants is called a cycle, denoted by C,
whose length is Tc. Denote the time interval for the system staying in
states A and W by random variables Ta, and Ty, respectively, the
expected computational loss then becomes Pw = E(Tw)/E(Tc),
where E(Tw) is the average time that the system is in state W.
Since E(Tc) = E(Tw)+ 3372, i(1— 3) ' E(Ta) = E(Tw) +
E(T4)/8, we get

E(T4) } (3.1)

Assume that the width of both row and column addresses is b, i.c.,
N=2 3= Z% and 3 = ;’—b, for the serial and parallel testing of
memory cells, respectively. Performance loss of the parallel testing
method is plotted in Fig. 6. Note that for the same parameters as that
of parallel testing, the performance penalty of CMAT architecture is
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negligible (& 2%) even under an extremely conservative condition
that E(T4) = E(Tw ). Since the load/save procedure of the parallet
testing needs only two memory access cycles, E(T4)/E(Tw) is
expected to be very high. Thus, the performance penalty of the
parallel testing can also be kept very low.

C. Fault Detection Time

The basic assumptions for the analysis of fault detection time in
the CMAT architecture are summarized as follows: 1) the length
of testing procedure, ¢, is fixed, 2) a memory chip is tested
continuously by its BIT, and 3) normal memory access is given
priority over the testing operation. Given the occurrence of a fault,
the testing length, t; < tp), is defined as the time to detect the fault
with the BIT in a noninterruptive manner. When a fault occurs in
chip 7, the fault detection time is actually T = t, + E*, where E*
is a random variable representing the total normal memory access
time of chip 7 before the fault is detected.

To derive the distribution of T} , one must know exactly when and
where a fault occurs. It is assumed that a fault may occur at any
time with an equal probability, and the effects of the BIT’s testing
on memory access times are assumed to be negligible in the analysis
of fault detection time, i.e., ]Mlj 5 Xf, Vi, j. Since {Z(t)} is a semi-
Markov process, the steady-state probability of the agent being in chip
iis Py = [, ni/ 30w, Tk sk, where [, = limj—oo P(J(j) = i),
and p; = limn e 377_, Mj/n, the agent’s mean sojourn time in
chip . )

Viewing the system from the BIT in chip 7, events Vi, V|, Vy,
V, -+ occur sequentially, where V; = (J, , Vi, n # i, and
Si < S < Siii. Let M, denote the lifetime of 7, we can get

1=Fu 0 (v)
Fry () = _ETA«?T [13), where R} () is the remaining lifetime of
Vi at time ¢.

A fault may occur during ¥V} or V. When a fault in chip :
occurs during V), the fault cannot be detected before the active
agent leaves the chip. After the agent leaves the chip, the chip
may be visited n times, 0 < n < oc, before the fault is detected.
Thus, the event requiring a testing length ¢, to detect the fault is
U (S50 3 > 40, X5 3L <t} U (M5 > t0}. Thus,
T}, = Ri +tr for My > tr,and T} = Ry + $.550 M; +1t, for
n > 1. Derivation of an exact form for FTE is in general intractable.
However, for a given n > 0, the upper bound of T} is 11‘+Zfi£ M}
by moving the point of fault occurrence to Sj. )

We now consider the case when a fault occurs during V. The
fault may be detected during V', or the chip may be visited by the
active agent n times, 1 < n < oc, before the fault is detected. Thus,
for a given tr, the event of fault detection is

(B> o YUR T > B <n} U

n=2
) ktn v - kfn—1
: {R;+ S M >t R+ Y .\1;<fL}
j=k+1 J=k+1

where T} = t1, if Ry > t;, and T} = Z’]‘I}\‘H Mi+triftn>1.
It is easy to determine the distribution of 77 if M ]L ’s are governed

by a Poisson process. When fﬁ,: = pe™ "V ki we get fﬁi =

+7i- When a fault in chip ¢ occurs during Vi, for a given ¢,
k

the probability of detecting the fault during V,;,n is Peyn(ty) =
L) [y > 0. Since M ’s are assumed to be i.id., E(M!) =

E(M?) ¥ j. The expected fault detection time for a given t; is
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Fig. 6. Performance loss of the CMAT architecture with a parallel testing scheme.

then
E(Ti ltL) = E(R;;.) i+ i PH,z(tL)nE(Ml)
n=1
= E(RL) + (1 +;¢E(Ali))tL.

Similarly, when a fault occurs during V¢, the probability of detecting
the fault during Vi, is Peyn(ty) = St 5 >
because fm = fﬁ;’ and thus the distribution of fault detection
time is Frs (t +1) = 3200 Pegn(te) fy fr7 (€) dE, where f7,
is the j-fold self-convolution of f,,:. Thus, the conditional mean
fault detection time is E(Tj|tz) = [1+ pE(M')]ts. Using the
assumption that the distribution of ¢;, is uniform, we get

t

p(1) = 2 |p(m) + £ [ {1+ p(a )
0

1 lD{l-{—E(M‘)y}tdt

tp
0

- rp(a) '3 (142 (1)).

+ (1-P)
(3.2)

E(R}) can be expressed in terms of E(M') as E(R}) =

E((M*)?)
2E(M?)
shorter than that of serial testing. Thus, when F (Ri) is small, and
E(MY) < %, the mean fault detection time of parallel testing
scheme is nearly IV times shorter than that of serial testing scheme.

Through similar computational steps as that of the CMAT archi-
tecture, performance of SECDED codes with scrubbing can also be
analyzed. A computer system with M, = 16 megabytes of main
memory, |AS| = 1 kilobytes, and t. = 1 minute is used as an
example. For typical parameter values A = 107>, 32-bit data width
and 7-bit error correction codes, mean fault detection time for the
coding methods without scrubbing is approximately 4.7 X 10° h.
When the whole memory is scrubbed once every Ty time units, each
time taking T, < T, the mean fault detection time is Ty/2, and the
performance loss is T, /Ty.

Consider a case where each matrix contains 64 Kbits, the memory
cycle is 200 ns, and the example testing procedure in Section III-B is
used. Then, the mean fault detection time of the CMAT architecture is
approximately 50 s, with a negligible performance penalty. The mean
fault detection time can be reduced to 200 ms when a parallel testing
scheme is used in the CMAT architecture. The performance loss of
scrubbing can become substantial when a short mean fault detection
time is important. For example, when the test patterns in [7] is used,
the performance loss would be 27%, as shown in Fig. 7, for a coding
method with scrubbing to obtain the same mean fault detection time

. The length of test pattern for parallel testing is N times
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Fig. 7. The performance loss of SECDED codes with scrubbing versus mean
fault detection time.

as that of the CMAT testing scheme. SECDED codes along with
scrubbing would be sufficient if the arrival rate of failures is low
and the cost of system crash is not too high. However, if both latent
faults and performance loss are serious concerns, the conventional
ECC plus scrubbing technique will quickly reach its limit, and other
techniques like CMAT or adding more error correction/detection bits
to the system should be considered.

IV. ConNcLusioN

Although early fault detection may not have direct impacts on
system reliability, it will make the subsequent fault handling proce-
dures (e.g., fault containment and recovery) much easier. The CMAT
architecture is intended to ease the problem of testing large-capacity
memory chips with little hardware overhead and performance loss.
The distribution function of fault detection time appears to be very
complex. In order not to distract readers from our main intent, i.e.,
the CMAT architecture, derivation of a closed-form expression for
general distributions was not pursued. An optimal testing strategy for
each application needs to be derived to meet its specific requirements.
The expected fault detection time can be controlled by adjusting

the length of testing procedure, the length that the agent stays in -

a chip, and the interarrival time of the agent at each chip. An optimal
testing strategy should also consider the different fault coverage
and hardware overhead of different designs. The analysis of system
behavior becomes much more complicated in that case.
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Branch Strategies: Modeling and Optimization

Pradeep K. Dubey and Michael J. Flynn

Abstract— Instruction dependency introduced by conditional branch
instructions, which is resolved only at run-time, can have a severe
performance impact on pipelined machines. A variety of strategies are in
wide use to minimize this impact. Additional instruction traffic generated
by these branch strategies can also have an adverse effect on the
system performance. Therefore, in addition to the likely reduction a
branch prediction strategy offers in average branch delay, resulting
excess t-traffic can be an important parameter in evaluating its overall
effectiveness. The objective of this paper is twofold: to develop a model for
different approaches to the branch problem and to help select an optimal
strategy after taking into account the additional i-traffic generated by
branch strategies.

The model presented provides a flexible tool for comparing different
branch strategies in terms of the reduction it offers in average branch
delay and also in terms of the associated cost of wasted instruction
fetches. This additional criterion turns out to be a valuable consideration
in choosing between two almost equally performing strategies. More
importantly, it provides a better insight into the expected overall system
performance. Simple compiler-support-based low implementation-cost
strategies can be very effective under certain conditions. An active branch
prediction scheme based on loop buffer can be as competitive as a
branch-target-buffer based strategy

Index Terms—Branch prediction, conditional branches, degree of de-
pendency, instruction dependency, instruction traffic, pipelining,
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