
SCHEDULING JOB OPERATIONS IN AN AUTOMATIC ASSEMBLY LINE

Kang G. Shin and Qin Zheng
Real-Time Computing Laboratory

Department of Electrical Engineering and Computer Science
The University of Michigan

Ann Arbor, Michigan 48109-2122.

Abstract

This paper addresses the problem of scheduling job oper-
ations in an automatic assembly line used for manufacturing
a small to medium volume of mixed workparts. The assem-
bly line model used here differs from the classical flow shop
model in the following three aspects: (1) there are no buffers
at machine stations, (2) constraints associated with the ma-
terial transport system are included, and (3) for each batch
of production, workparts are distinguished in groups, rather
than individually. An ‘optimal’ algorithm that requires very
little computation is derived first by minimizing the total fin-
ish time for two machine assembly lines. This result is then
generalized to the problem of scheduling an assembly line
with m > 2 machines processing single-operation jobs. In
order to reduce the computational complexity of the latter
problem, heuristic algorithms are also proposed and shown to
work quite well for all the cases considered. Finally, discussed
is the solution to the problem of scheduling an assembly line
with m > 2 machines processing multi-operation jobs.

1 Introduction

In an automatic assembly line, a sequence of operations are
performed by machine stations, and workparts are automatically
transferred from one station to the next station. Usually, an au-
tomatic assembly line is designed for mass production of some
commodity, such as home appliances and cars. Contemporary
research has mainly focused on the problem of allocating work to
different stations such that all stations have nearly identical com-
pletion time [5]. Since the station with the maximum completion
time dictates the assembly cycle, a perfectly balanced assembly
line with a given number of stations provides the highest produc-
tion rate.

In recent years, flexible manufacturing systems (FMS) have
been drawing considerable attention from both research and com-
mercial communities. The basic idea of FMS is to make assembly
lines capable of simultaneously manufacturing mixed workparts,
and efficiently handling a small to medium volume of workparts,
thus allowing for rapid responses to market changes and use of
expensive equipment for multiple purposes. If an assembly line is
designed to be capable of manufacturing a small to medium vol-
ume of mixed workparts, the problem of scheduling operations on

’The work reported in this paper was supported in part by the National
Science Foundation under Grant No. DMC-878721493. Any opinions, find-
ings, and recommendations expressed in this publication are those of the
authors and do not necessarily reflect the view of t h e NSF.

the different machine stations of this assembly line would become
a key to the issue of productivity. Hundreds of robots, sensors,
and millions of dollars’ worth of computer-controlled equipment
would not be cost-effective if they are under-utilized or spend
most of the time working on wrong parts because of poor plan-
ning [6] .

Various scheduling problems for classical flow shop models have
long been studied by numerous researchers [I, 31. However, most
of these flow shop problems are known to be NP-hard for which it
is impossible to obtain optimal solutions with reasonable compu-
tational efforts except for those of very small size [4]. Even those
problems for which optimal polynomial time or good heuristic
algorithms have been found cannot be directly applied to the
assembly line scheduling problem for the following reasons:

In a flow shop model, i t is assumed that there is no restriction
on buffer sizes a t machine stations, which is not the case for
automatic assembly lines.

Material transport systems are not figured in the flow shop
models.

Workparts are distinguished individually in the flow shop
model, whereas it is more suitable to distinguish them in
groups for an assembly line.

In this paper, we propose a model for automatic assembly lines
which can be used for manufacturing a small t o medium volume
of mixed workparts. First, we shall derive an optimal schedul-
ing algorithm for two machine assembly lines by minimizing the
total finish time. Based on this result, optimal and heuristic al-
gorithms for assembly lines each with more than two machines
are then developed and analyzed.

C. Sriskandarajah et. al [8] investigated a similar problem of
scheduling a production line with a circular conveyor. However,
they restricted all machines’ processing times to be identical, and
hence, their solution algorithm is optimal only if the job process-
ing time is equal to one unit of time, thus limiting its applica-
bility. There are also some other papers concerning the problem
of scheduling operations in assembly lines. For example, Burns
et. al [2] derived some analytical principles to reduce the set-up
cost and increase the capacity utilization, rather than minimizing
operation times, of assembly lines. O’Gorman et. a1 [7] simulated
some simple heuristic scheduling algorithms for a flexible transfer
line.

This paper is organized as follows. The structure of the auto-
matic assembly line to be considered is described and the schedul-
ing problem is formally stated in Section 2. Necessary terms are

CH2876-1/90/oooO/0176$01.00 0 1990 IEEE 176

also defined there. In Section 3, the optimal solutions for two
machine assembly lines are derived on the basis of which heuris-
tic algorithms for m > 2 machine assembly lines are developed
and evaluated in Section 4. The paper concludes with Section 5.

2 Terminology and Problem Formulation

As shown in Fig. 1, the automatic assembly line under con-
sideration is composed of a linear conveyor, m > 1 machines,
M1,Mz ,..., M,, a job entrance and a job exit. There are
T, pallets on the conveyor, each of which can carry one job
(or part to be worked on) a t a time. The conveyor moves
forward one pallet every unit of time. Although a machine
may be capable of executing more than one kind of job op-
erations, in order to reduce the set-up cost, we assume that
each machine is allowed to execute only one kind of oper-
ations during one batch of production. For 1 5 i 5 m
let Ti denote the processing time of a job by machine Mi.

job - iob
exit entrance -

I 4 I4
m a c h i n d 'I L

Fig. 1. Configuration of an automatic assembly line.

Jobs are distinguished in groups. Each group is denoted by Ji ,...iL
with identical jobs, where the subscript represents the or-
der of machines to process that type of jobs, 1 < i l , i 2 , ..., ik <
m, k 2 1. For example, each job of type 5132 must be processed
sequentially by MI, M3 and M2.

The automatic assembly line runs jobs according to the follow-
ing rules.

1. Jobs enter and leave the assembly line only through the job
entrance and the job exit, respectively. Only one job can
enter and one job can leave the assembly line during each
unit of time because a pallet can carry only one job.

2. Jobs enter and leave a machine through a gate connecting
the machine to the conveyor. In one unit of time, a machine
can output a finished job to a pallet a t the gate & accept
a job from the same pallet.

3. There are no buffers a t machine gates. So, when a machine
is busy, it cannot accept another job, and when the pallet at
the machine gate is occupied by a job which does not need
immediate processing by this machine, the machine cannot
output a job to the pallet.

4. Every job must leave the system when it arrives at the job
exit. If a job has not yet been completed when it arrives at
the job exit, it will be transferred back to the job entrance
in T, units of time and re-enter the assembly line later.

Under the above rules, our assembly line scheduling problem can
be stated as follows: Choose an input sequence of jobs to min-
imize the total finish time, which is defined as the time period

between the input of the first job and the input of the last job.

For the convenience of presentation, it is necessary to introduce
the following terms.

Definition 1: A machine is said to be free if it is not process-
ing any job. This includes two cases: 1) there is no job being
processed by the machine, and 2) there is a finished job in the
machine that is waiting to be outputed to the conveyor. In either
case, the machine is ready to accept a new job. (By the second
rule mentioned above, a new job can be accepted in the latter
case.)

Definition 2: A job is said to match a machine if the first re-
maining operation of the job is required to be processed by this
machine. A job is said to weakly match a machine if one of its
remaining operations is required to be processed by this machine.
For example, jobs of type J12 match only MI but weakly match
both MI and M2. Note that a J;,i, ...i,- type job will become a
Ji,. ..i,-type job after it is processed by Mi,.

Definition 3: Let Po(t) denote the pallet at the job entrance
a t time t . Po(t) is said to match a machine if (i) the machine is
free at the time Po(t) reaches the machine, and (ii) there is a t
least one job which weakly matches the machine will be inputed
to the assembly line. Po(t) is said to weakly match a machine if
only (i) is satisfied.

Definition 4: A machine is said to be missed at time t if (i) Po(t)
matches the machine, and (ii) no job is inputed to the machine at
the time Po(t) reaches the machine. A collision is said to occur
a t time t if Po(t) matches more than one machine. Time t is
said to be a collision time without machine miss if no machine
is missed at t . For instance, if Po(t) matches M I and M2, then t
can be made a collision time without machine miss by inputing
a J12-type job a t time t - TI and a J1-type job a t t .

Definition 5: An input sequence is said to be feasible if it can
have all the jobs processed in a finite time. A feasible sequence
is denoted by z = {z(1),2(2), ...}, where z (t) represents the type
of job inputed at time t . z (t) = 0 if no job is inputed at time
t . Let T (z) denote the total finish time for an input sequence z
and R denote the set of all feasible input sequences.

Definition 6: A job type is said to be available at time t if there
is at least one job of this type waiting to be inputed at time t.
Otherwise, this job type is said to be unavailable. A job type
is said to be in short supply at time t if the input rules require
a job of this type to be inputed at time t , but this job type is
unavailable a t time t .

Definition 7 : Let F, G be two subsets of 0. F is said to dom-
inate G if Vz E G, 3 q E F such that T(z1) 5 T (z) . The
set of optimal input sequences, denoted by S*, is defined as:
S' = {x : x E 0, T(Z) 5 T(Zl), VZl E 0).

3 A Special Case: Two Machine Assembly Lines

In this section, the problem of scheduling operations in a two
machine assembly line is addressed. The results obtained for this
special case will be generalized to m > 2 machine assembly lines
in the next section.

In a two machine assembly line, there could be three elemen-
tary job types: 51, Jz and Jlz. A job of any elementary type can
be completed by inputing it just to the assembly line. Jobs
of non-elementary types need to be inputed more than once, and
thus, can be viewed as compositions of elementary type jobs. For
instance, a Jzl-type job must be inputed first as a Jz-type job
and then as a J1-type job, so it can be treated as a composition
of a Jz-type job and a &type job. So is a Jlzl-type job: it is a
composition of a Jlz-type job and a J1-type job. Since the exis-
tence of non-elementary type jobs does not make any difference
to our scheduling problem, we shall first derive an optimal algo-
rithm for a two machine (M1,Mz)-three job type (J ~ , J z , J ~ z)
assembly line scheduling problem. Extensions of this algorithm
to those assembly lines with more machines and job types will
be addressed later in Section 4.

3.1 A Lower Bound of the Finish Time

A lower bound of the finish time for a two machine (MI, M2)-

three job type (51, J z , J 1 2) problem is derived to construct and
prove an optimal scheduling algorithm in the next subsection.

Let NI, Nz, Nlz be respectively the number of jobs of type
51, Jz, J ~ z , and suppose N1 t Nlz > 0, Nz t Nlz > 0. If the
last two inequalities do not hold, the problem would become a
one machine scheduling problem which is easier to solve. For any
z E R, let n;(z, t) denote the total number of times M , is missed
during [1,1- 11. Then, the last job matching M; will be inputed
to the assembly line at the time

Let Tm(z) = min{Tml(z),Tm2(z)}. Then, from Definition 3
and Definition 5, t is a collision time iff (1) Po(t) weakly matches
both machines, and (2) t I Tm(z).

rlz = klzTi = elzTz > 0, where k l , k z , k l z , ~ l , ~ z , ~ 1 2 are the
smallest nonnegative integers (or cm if not exist) satisfying these
equations. The physical meaning of 71 is that if t o is a collision
time, and M1 is missed at t o , then at least one of the following
events will happen in the time period [to + 1 , t o +- 71) : El = { M I
is missed once}, E2 = {Mz is missed once} and El2 = {a colli-
sion happens without machine miss}. This fact can be verified by
observing that if neither E1 nor E2 happens in [to + 1, t o t TI - 11,
then t o + 71 is a collision time. Thus, at least one of El, E2, E3
will happen at t o + TI. Similarly, the physical meaning of TZ
is that if t o is a collision time and Mz is missed at t o , then at
least one of El, E2 and E3 will happen during [to + 1 , t o t TZ].
If t o is a collision time without machine miss, then at least one
of El , EZ and E3 will happen duing [to t 1,to + ~ 1 2 1 . Roughly
speaking, ~1(72,712) can be thought as the maximum interval be-
tween the occurence of E1(E2,Elz) and that of one of El , Ez
and El2. Thus, none of El, E2 or E3 could happen after time
n l (z , T (z)) n + n z (z , T (z)) ~ z + n~z(z ,T(z))nz , where nlz(z,t)
denotes the total number of times collisions occur without ma-
chine miss during [l,t]. This concept is developed formally in the
following theorem.

T h e o r e m 1.
nlz(z, T (z)) must satisfy the following inequalities:

Let Q = klT1 + 1 = tlTz, r 2 = kzT1 = ezTz t 1 and

For any z E R , n l (z , T (z)) , n z (z ,T (z)) and

For the limitation of space, all proofs are not presented
in this paper. Theorem 1 specifies some constraints on
the values of nl(z,T(z)),n~(z,T(z)),nl~(z,T(z)). Given
ni(z,T(.)),nz(z,T(z)),niz(z,T(z)), the finish time of z can be
computed as

T (z) = "{(NI t NU - 1)Tl t nl(z,T(z)),
(N2 t NlZ - 1)Tz + nz(z.T(z))} + 1.

Thus, the solution of the following nonnegative integer pro-
gramming problem is a lower bound of the finish time:

subject to

niri t nzrz t ni2712 2 min{(Nl + N12 - 1)Tl + n1,
(N z t N12 - 1)Tz t n2) + 1).

n171 + n27z 2 Tl, n12 5 Nl2.
This problem can be easily solved by the following algorithm,

Algor i thm 1

Step 1. Set n1 = nz = n1z = 0. Compute TI , r 2 abd r l z (replace

S t e p 2. If nlr1 + n 2 7 ~ + ~ I Z T ~ Z 2 min((N1 + NIZ - 1)Tl t
111, (Nz + N12 - 1)Tz t RZ} t 1, then stop. The solution
is max((N1 + NU - 1)T' + nl, (N2 t N12 - 1)T2 + nz} t 1
and n1,nz,n12 are the minimizers. Otherwise, goto Step 3.

Step 3. Ifn171tn272 2 TI and n12 < N12, then let n12 = n l z t l ,

S t e p 4. If (NI t NIZ - 1)T' t n1 I (Nz + Nlz - 1)Tz t nz, then
let n1 = n1 t 1, goto Step 2. Otherwise, let nz = n2 t 1,
goto Step 2.

with a large positive integer if not exist).

goto Step 2. Otherwise, goto Step 4.

Since 71 2 1, this algorithm will terminate in a finite number
of steps. Let T* denote the solution and n; , r~ ; ,n ;~ denote the
minimizers.

3.2 An Optimal Scheduling Algorithm

We propose the following scheduling algorithm for the two ma-
chine (Mi, M~)-three job type (51, Jz, J12) problem.

Algor i thm 2

S t e p 1. Apply Algorithm 1 to determine the minimizer nTZ.

S t e p 2. Generate an input sequence z using the following input
rules at time t .

RULE 1: If Po(t) does not match any machine, z(t) = 0.
RULE 2: If &(t) matches only M2, z(2) = J2.

RULE 3: If Po(t) matches only MI, then z(t) = J12 if

RULE 4. If PO matches both machines, then
N12(t) > n;2, and z(t) = J1 otherwise.

0 If t > and N12(t) > 0, then z(t - 2'1) =
4 2 , nT2 = ni2 - 1, and z (t) = J12 if N12(t) > ni2,
and ~ (t) = 51 otherwise.

0 If t 5 or N12(t) = 0, then
- If (N l d t) + N d t) - 1)Tl < (N l d t) + N 2 (t) -

- If (N d t) + Nl(t) - 1)Tl 1 (N12(t) + N 2 (t) -
1)T2, then ~ (t) = J2.

1)T2, then z (t) = J12 if N12(t) > nf2 and
~ (t) = 51 otherwise.

where Nl(t),Nz(t),N12(t) are the numbers of jobs of type
J l , J z , J 1 2 which are not yet inputed at time t plus those
that are inputed before time t but will leave the conveyor as
unfinished jobs.

The optimality of Algorithm 2 is stated formally in the following
theorem under the assumption that no job will be in short supply.
(We will later remark on this assumption.)

Theorem 2. The input sequence z generated by Algorithm 2
belongs to S* if no job is in short supply during the entire input
process.

Several remarks are worth making on Algorithm 2 as follows.

1. The assumption used in Theorem 2 is that no job is in short
supply during the entire input process. For Algorithm 2, a
short supply could happen only if 4 2 < N12, i.e., some J12-

type jobs need to be inputed twice. Recall that a &-type
job becomes a &-type job after being processed by MI. If
all the &-type jobs a t the job entrance have been inputed
before a &-type job generated from a Jl2-type job reaches
the job entrance, and the input rules require a J2-type job
to be inputed a t this time, &-type jobs will be in short
supply. Note that RULE 3 and RULE 4 of Algorithm 2 have
made those Jlz-type jobs needing to enter twice inputed
as early as possible, thus reducing the possibility of short
supply. If this still cannot prevent short supply of jobs, we
can simply let z (t) = 0 at the time t, when a short supply
occurs and continue using Algorithm 2 to get a feasible input
sequence. However, in such a case there is no guarantee that
the resulting input sequence is still optimal.

2. If Algorithm 2 is applied to a two machine (Ml,Mz)-two
job type (51, J2) scheduling problem, an optimal input se-
quence will always be generated. The reason is that for the
two job type problem, N12 = n12 = 0, so no job will be in
short supply and by Theorem 2, the resulting input sequence
is always optimal. Moreover, Step 1 is no longer needed for
the two job-type problem, thus making Algorithm 2 an on-
line algorithm. No pre-computation is necessary and the
algorithm can be readily adapted to changes in the number
of jobs to be processed. For instance, if k J1-type jobs ar-
rive a t the system a t time t > 1, one can simply update
Nl(t) = Nl(t) t k. The adapted algorithm will make the
whole batch of jobs processed in minimum time.

4.1 m > 2 Machine Single-Operation Job Schedul-
ing Problem

A job is said to be of single-operation type if it needs to be pro-
cessed by one and only one machine. Otherwise, it is said to be
of multi-operotion type. For the m > 2 machine single-operation
job scheduling problem, there could be at most m different job
types 51, J2 , ..., J,. We propose the following input rules for a
set, M (t) , of machines which Po(t) matches at time t.

R1: If M (t) = 0, then z (t) = 0.

R2: If M (t) # 0, then let z (t) be any job type that matches a
machine in M(t) .

Clearly, in case IM(t)l 2 2, R2 cannot determine a unique
value for z(t) . Thus, there could be more than one feasible input
sequence satisfying R1 and R2. Let 01 be the set of all such
sequences. Then, we have the following theorem.

Theorem 3. R1 dominates R.

Since R1 and R2 may not determine a unique input sequence,
the following depth-first search algorithm can be used to find an
optimal sequence z' in RI.

Algor i thm 3

Step 1. Set the optimal finish time T' = 00, and the current
time t = 0.

Step 2. Let t = t -t 1,

0 If t 2 T', then t = t - 1, goto Step 3.

179

3.

4

As stated earlier, a non-elementary job can be viewed as
a composition of several elementary jobs. Thus, one can
decompose all non-elementary jobs into elementary ones and
let NI, N2,N12 be the total numbers of 51, Jz,J12 type jobs,
respectively, after such a decomposition. Then, Algorithm 2
can be applied and Theorem 2 still holds. In order to reduce
the possibility of short supply of jobs, those jobs needing to
cycle more than once should be inputed first. For instance,
a Jzl-type job needs two cycles and a Jzrzl-type job needs
three cycles to complete. If Algorithm 2 happens to yield
z (t) = J z , then a Jzlzl-type job should be inputed. Recall
that inputing jobs with a maximal number of cycles first is
a heuristic to reduce the possibility of short supply of jobs.

Scheduling m > 2 Machine Assembly Lines

Scheduling m > 2 machine assembly lines is naturally more
difficult than scheduling 2 machine assembly lines. In this sec-
tion, we first find a dominant subset of R for assembly lines with
m > 2 machines processing singleoperation jobs. An enumera-
tion algorithm is then proposed for searching this dominant sub-
set to obtain an optimal solution. To reduce the computational
complexity, heuristic algorithms are also developed. Simulation
results indicate that these algorithms work quite well. Finally,
we shall discuss the general m > 2 machine multi-operation job
scheduling problem for which a heuristic solution is proposed.

If all the jobs have been inputed, then T* = t - 1, z* =

Otherwise, let J (t) be the set of all job types matching

{z(t) , t = 1,2, ..., T*}, t = t - 1. Goto Step 3.

M (t) . Goto Step 4.

S t ep 3. If t = 0, stop. The optimal sequence is z*. Otherwise,
goto Step 4.

S t ep 4. If J (t) = 0, then z (t) = 0, goto Step 2. Otherwise, let
z (t) = J E J (t) , delete J from J (t) , and goto Step 2.

A program has been written in LISP to implement Algorithm
3. Theoretically, this program can be used to find optimal solu-
tions to all single-operation job type scheduling problems. How-
ever, due to its computational complexity, this program is use-
ful only for problems with very small numbers of machines and
jobs. For instance, a three machine-three job type problem with
job numbers NI = 17,Nz = 25,N3 = 13 and machine times
TI = 6,Tz = 4,T3 = 8 needs to search a total of 3540 input se-
quences and use 182.7 seconds of CPU time on an Apollo DN3000
workstation to find an optimal solution. If the numbers of jobs
are increased t o N1 = 25, Nz = 37, N3 = 17, a total of 74308 in-
put sequences need to be searched using 1851.7 seconds of CPU
time.

In order t o alleviate this computational complexity, R2 is
changed to the following heuristic input rule.

HR2: If M (t) # 0, let z (t) be any job matching the machine
with the maximum value of (Ni(t) - 1)T; in M (t) , where
N;(t) is the number of Ji-type jobs that have not yet been
inputed a t time t .

HR2 is a direct extension of the second part of RULE 4 in Algo-
rithm 2 to an m > 2 machine scheduling problem. The rationale
of HR2 can be explained as follows. At time t , the finish time of
z can be computed as:

T (2) = max{ maxiEM(t) { (~ , (t) - I)T, + n:(z , t) } + t + 1,
mai$M(t) {(NI - 1)Ti + ni(z,T(z)))}.

where n:(z, t) is the total number of times Mi has been missed
since t . Clearly, what is inputed a t time t has no effect on the
second argument of the max function. For an io E M (t) , if
z (t) = io, n:,(z,t) will remain unchanged a t time t , and all
other n:(x,t),i E M (t) are increased by 1. Thus, to minimize
T(z), a job matching the machine with the maximum value of
N, ((t) - 1)T, should be inputed first. However, this is only a
one-step optimization, and thus leads to an overall suboptimal
(rather than optimal) solution.

Since more than one machine may have the same largest value
of (N i (t) - 1)Ti a t time t , R1 and HR2 might not determine a
unique input sequence. To counter this problem, let flz denote
the set of all feasible input sequences satisfying R1 and HR2.
In case lRzl > 1, there are three ways to choose a suboptimal
sequence.

Me thod 1.

Method 2.

Choose an arbitrary z E Rz to be the solution.

Similarly to Algorithm 3, search Rz for an input
sequence with the minimum finish time.

Me thod 3. Partially search Rz as far as desired, e.g., search
for a certain period of time or a certain number of sequences
and choose the best sequence among those searched to be
the solution.

The obvious advantage of Method 1 is its simplicity, though the
solution obtained might not be as good as that of Method 2,
which requires more computational efforts. Method 3 is a com-
promise between these two.

In order to evaluate the goodness of the heuristic rule described
above, we simulated and compared the solutions with the follow-
ing lower bound of the finish time

where T$ is the lower bound of the finish time determined by
Algorithm 1 considering Mi and Mj only, and Tbl = Czl N, is
the total number of jobs. Since only one job can be inputed to
an assembly line during each unit of time, Tbl is a lower bound
of the finish time. Thus, the maximum of two lower bounds,
Tb, is also a lower bound. System parameters of the assembly
line to be simulated are as follows. Number of machines m = 7.
Length of the conveyor T, = 16. Machines are installed along
the conveyor a t positions 2,4,6,8,10,12,14 respectively. It takes
one unit time to trnasfer an unfinished job from job exit t o job
entrance. Simulation results are summarized below.

1. Randomly choose machine times ranging from 1 to 20 and
job numbers ranging from 1 to 50. Using Method 1, the
simulation results turned out to be surprisingly good. Of
1000 randomly generated examples, only in one example the
finish time obtained by Method 1 was 0.6% larger than the
lower bound Tb. The lower bound was reached in all other
examples. Thus, one can conclude: (1) in most cases, the
input sequences determined by Method 1 are optimal, and
(2) in most cases, the lower bound Tb is a good estimate of
the optimal finish time.

2. Method 1 was found to perform worst when (Ni- 1)Ti has an
identical value for all i. In order to study these worst cases,
we generated examples by randomly choosing machine times
Ti between 1 and 20, and letting Ni be the integer nearest to
200/Ti + 1. Thus, (N i - 1)T; + 1 approximately equals 200.
1600 such examples were studied. On average, the finish
times obtained by Method 1 were 2.86% larger than the lower
bound. In the worst case, the finish time was 13.30% larger
than the lower bound. If an arbitrary z1 E R1 was chosen
to be the solution, i.e., HR2 was not used (this is a kind of
simple-minded heuristic), the finish times turned out to be
23.05% larger than the lower bound. Thus, heuristic rule
HR2 can improve the solution by almost 10 times on the
average.

3. Searching Rz is much simpler than searching 01. For in-
stance, i t needs to search only 1128 sequences in Rz and
use 82.7 seconds of CPU time to find the same optimal so-
lution for the three machine-three job type problem dis-
cussed earlier, which needed to search 74308 sequences in
RI and use 1851.7 seconds of CPU time. The drawback of
Method 2 lies in that the solution obtained may not be over-
all optimal and it is still too time-consuming for large-size

180

problems. The latter can be alleviated by using Method
3 which can improve the results obtained from Method 1.
Consider an example with NI = 17, N2 = 17, N3 = 40, N4 =

5, T4 = 10, T5 = 5, T6 = 5, T7 = 7, the lower bound Tb = 203,
and the finish time obtained from Method 1 is 230, which is
13.30% larger than Tb. Using Method 3, the finish time is
reduced to 227 (11.82% larger than Tb) after searching 53953
sequences.

20,Ng = 40,Ng = 40,N7 = 29,Ti = 12,Tz = 12,T3 =

4.2 On Scheduling m > 2 Machines Processing
Multi-Operation Jobs

This is the most difficult problem, where the difficulty mainly
arises from the existence of multi-operation type jobs. For ex-
ample, the best way of processing a single Jln-type job is to
process it in one cycle. However, processing all multi-operation
jobs in a minimal number of cycles may not result in an overall
optimal input sequence. This fact can be seen from the fact that
while a multi-operation job is being processed by one machine,
the machine that will execute the job’s next operation may have
to wait (thus idle) so as to ensure itself to be free when the job
arrives at its gate. For the two machine scheduling problem, n;?
was found to be the optimal number of Jlz-type jobs that should
be processed in one cycle. By contrast, it appears to be practi-
cally impossible to derive such a number for the case of m > 2
machines processing multi-operation jobs. Thus, in what follows,
we shall derive two domination rules based on which a heuristic
algorithm for this general problem will be proposed.

Theorem 4. Let R3 be the set of all feasible input sequences
satisfying following input rules:

MR1:

MR2:

If M (t) = 0, z (t) = 0.

A job of type Ji l...ikiktl...iLt, should be inputed before a
job of type where 12 1, i k + l < ik.

Then, 523 j R.

sequence z from R3.
The following heuristic rule can be used to select an input

MH1: At time t , input a job such that the cost function

C(z,t) = (Ni(t) - l)Tinf(z)

is minimized, where M (t) is the set of machines that Po(t)
matches at time t, Ni(t) is the total number of jobs weakly
matching Mi which have not yet been inputed by time t
plus jobs weakly matching Mi that have been inputed before
time t but will leave the conveyor without Mi’s processing,
n:(z) = 1 if Mi is missed a t t , and TI:(.) = 0 otherwise.

iEM(t)

MH1 can be explained as follows.

1. In order to reduce the finish time T(z), at time t (1) the ma-
chine with the largest value of (Ni(t) - 1)Ti should not be
missed (see the explanation of HR2), and (2) the number of
machines missed at time t should be as small as possible.
However, these two requirements may not be met simul-
taneously. So, we construct a cost function C(z , t) whose

2.

value increases if either a machine with the largest value of
(Ni(t) - 1)T; is missed or the number of machines missed in-
creases. Thus, minimization of C(z,t) is equivalent to mak-
ing a compromise in meeting both requirements (1) and (2).

Since the number of job types is finite (and usually not
large), C(z , t) can be minimized by considering job types
one by one. If MHl, together with MR1 and MR2, still can-
not determine a unique job type, one can simply input a job
of one of these types which requires the maximal number of
operations. This can reduce the possibility of short supply
of jobs.

3. If all jobs are of single-operation type, then for all i E M (t) ,
a t most one nr(z) = 0, and all others have the value of 1.
Thus, minimization of C(x,t) requires a job matching the
machine with the largest value of (Ni(t) - 1)Ti in M (t) to
be inputed a t t. This is the same as HR2.

5 Conclusion

In this paper, we have formulated and sloved the problem of
scheduling operations of an automatic assembly line. Optimal
and suboptimal solutions - that require very little computation
- are derived for assembly lines with 2 machines as well as m > 2
machines processing single-operation jobs by minimizing the total
finish time. A heuristic approach is also proposed for the case of
m > 2 machines processing multi-operation jobs. Evaluation of
this heuristic approach is our next step of research, which will be
reported in a forthcoming paper.

References

[l] K. R. Baker, Introduction to Sequencing and Scheduling, Wi-
ley & Sons, 1974.

(21 L. D. Burns and C. F. Daganzo, “Assembly line job sequenc-
ing principles,” The International Journal of Production Re-
search, vol. 25, no. 1, pp. 71-99, 1987.

[3] S. French, Sequencing and Scheduling, Halsted Press, 1972.

(41 M. R. Garey and D. S. Johnson, Computers and
Intractability-A Guide to the Theory of NP-Completeness,
W. H. Freeman and Company, New York, 1979.

[5] S . Ghosh and R. J. Gagnon, “A comprehensive literature re-
view and analysis of the design, balancing, and scheduling of
assembly systems,” The International Journal of Production
Research, vol. 27, no. 4, pp. 637-670, 1989.

[6] T. E. Morton and T. L. Smunt, A Planning and Scheculing
System for Flezible Manufacturing, pp. 151-159, Elsevier Sci-
ence Publishers B. V. (North Holland), 1986.

[7] P. O’Gorman, J. Gibbons, and J. Browne, Evaluation of Sche-
culing Systems for a Flezible Transfer Line using a Simula-
tion Model, pp. 209-221, Elsevier Science Publishers B. V.
(North Holland), 1986.

[8] C. Sriskandrajah, P. Ladet, and R. Germain, Scheduling
Methods for a Manufacturing System, pp. 173-189, Elsevier
Science Publishers B. V. (North Holland), 1986.

