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Abstract 

This paper addresses the problem of scheduling job oper- 
ations in an automatic assembly line used for manufacturing 
a small to medium volume of mixed workparts. The assem- 
bly line model used here differs from the classical flow shop 
model in the following three aspects: (1) there are no buffers 
at machine stations, (2) constraints associated with the ma- 
terial transport system are included, and (3) for each batch 
of production, workparts are distinguished in groups, rather 
than individually. An ‘optimal’ algorithm that requires very 
little computation is derived first by minimizing the total fin- 
ish time for two machine assembly lines. This result is then 
generalized to the problem of scheduling an assembly line 
with m > 2 machines processing single-operation jobs. In 
order to reduce the computational complexity of the latter 
problem, heuristic algorithms are also proposed and shown to 
work quite well for all the cases considered. Finally, discussed 
is the solution to the problem of scheduling an assembly line 
with m > 2 machines processing multi-operation jobs. 

1 Introduction 

In an automatic assembly line, a sequence of operations are 
performed by machine stations, and workparts are automatically 
transferred from one station to  the next station. Usually, an au- 
tomatic assembly line is designed for mass production of some 
commodity, such as home appliances and cars. Contemporary 
research has mainly focused on the problem of allocating work to 
different stations such that all stations have nearly identical com- 
pletion time [5]. Since the station with the maximum completion 
time dictates the assembly cycle, a perfectly balanced assembly 
line with a given number of stations provides the highest produc- 
tion rate. 

In recent years, flexible manufacturing systems (FMS) have 
been drawing considerable attention from both research and com- 
mercial communities. The basic idea of FMS is to make assembly 
lines capable of simultaneously manufacturing mixed workparts, 
and efficiently handling a small to medium volume of workparts, 
thus allowing for rapid responses to  market changes and use of 
expensive equipment for multiple purposes. If an assembly line is 
designed to be capable of manufacturing a small to medium vol- 
ume of mixed workparts, the problem of scheduling operations on 
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the different machine stations of this assembly line would become 
a key to the issue of productivity. Hundreds of robots, sensors, 
and millions of dollars’ worth of computer-controlled equipment 
would not be cost-effective if they are under-utilized or spend 
most of the time working on wrong parts because of poor plan- 
ning [ 6 ] .  

Various scheduling problems for classical flow shop models have 
long been studied by numerous researchers [I, 31. However, most 
of these flow shop problems are known to be NP-hard for which it 
is impossible to obtain optimal solutions with reasonable compu- 
tational efforts except for those of very small size [4]. Even those 
problems for which optimal polynomial time or good heuristic 
algorithms have been found cannot be directly applied to  the 
assembly line scheduling problem for the following reasons: 

In a flow shop model, i t  is assumed that there is no restriction 
on buffer sizes a t  machine stations, which is not the case for 
automatic assembly lines. 

Material transport systems are not figured in the flow shop 
models. 

Workparts are distinguished individually in the flow shop 
model, whereas it is more suitable to distinguish them in 
groups for an assembly line. 

In this paper, we propose a model for automatic assembly lines 
which can be used for manufacturing a small t o  medium volume 
of mixed workparts. First, we shall derive an optimal schedul- 
ing algorithm for two machine assembly lines by minimizing the 
total finish time. Based on this result, optimal and heuristic al- 
gorithms for assembly lines each with more than two machines 
are then developed and analyzed. 

C. Sriskandarajah et. al [8] investigated a similar problem of 
scheduling a production line with a circular conveyor. However, 
they restricted all machines’ processing times to  be identical, and 
hence, their solution algorithm is optimal only if the job process- 
ing time is equal to one unit of time, thus limiting its applica- 
bility. There are also some other papers concerning the problem 
of scheduling operations in assembly lines. For example, Burns 
et. al [2] derived some analytical principles to reduce the set-up 
cost and increase the capacity utilization, rather than minimizing 
operation times, of assembly lines. O’Gorman et. a1 [7] simulated 
some simple heuristic scheduling algorithms for a flexible transfer 
line. 

This paper is organized as follows. The structure of the auto- 
matic assembly line to be considered is described and the schedul- 
ing problem is formally stated in Section 2. Necessary terms are 
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also defined there. In Section 3, the optimal solutions for two 
machine assembly lines are derived on the basis of which heuris- 
tic algorithms for m > 2 machine assembly lines are developed 
and evaluated in Section 4. The paper concludes with Section 5. 

2 Terminology and Problem Formulation 

As shown in Fig. 1, the automatic assembly line under con- 
sideration is composed of a linear conveyor, m > 1 machines, 
M1,Mz ,..., M,, a job entrance and a job exit. There are 
T, pallets on the conveyor, each of which can carry one job 
(or part to be worked on) a t  a time. The conveyor moves 
forward one pallet every unit of time. Although a machine 
may be capable of executing more than one kind of job op- 
erations, in order to  reduce the set-up cost, we assume that 
each machine is allowed to execute only one kind of oper- 
ations during one batch of production. For 1 5 i 5 m 
let Ti denote the processing time of a job by machine Mi. 

job - iob 
exit entrance - 

I 4  I4  
m a c h i n d  'I L 

Fig. 1. Configuration of an automatic assembly line. 

Jobs are distinguished in groups. Each group is denoted by Ji ,...iL 
with identical jobs, where the subscript represents the or- 
der of machines to process that type of jobs, 1 < i l , i 2 ,  ..., ik < 
m, k 2 1. For example, each job of type 5132 must be processed 
sequentially by MI, M3 and M2. 

The automatic assembly line runs jobs according to the follow- 
ing rules. 

1. Jobs enter and leave the assembly line only through the job 
entrance and the job exit, respectively. Only one job can 
enter and one job can leave the assembly line during each 
unit of time because a pallet can carry only one job. 

2. Jobs enter and leave a machine through a gate connecting 
the machine to the conveyor. In one unit of time, a machine 
can output a finished job to a pallet a t  the gate & accept 
a job from the same pallet. 

3. There are no buffers a t  machine gates. So, when a machine 
is busy, it cannot accept another job, and when the pallet at 
the machine gate is occupied by a job which does not need 
immediate processing by this machine, the machine cannot 
output a job to the pallet. 

4. Every job must leave the system when it arrives at the job 
exit. If a job has not yet been completed when it arrives at 
the job exit, it will be transferred back to the job entrance 
in T, units of time and re-enter the assembly line later. 

Under the above rules, our assembly line scheduling problem can 
be stated as follows: Choose an input sequence of jobs to min- 
imize the total finish time, which is defined as the time period 

between the input of the first job and the input of the last job. 

For the convenience of presentation, it is necessary to  introduce 
the following terms. 

Definition 1: A machine is said to  be free if it is not process- 
ing any job. This includes two cases: 1) there is no job being 
processed by the machine, and 2) there is a finished job in the 
machine that is waiting to be outputed to the conveyor. In either 
case, the machine is ready to accept a new job. (By the second 
rule mentioned above, a new job can be accepted in the latter 
case.) 

Definition 2: A job is said to match a machine if the first re- 
maining operation of the job is required to be processed by this 
machine. A job is said to weakly match a machine if one of its 
remaining operations is required to be processed by this machine. 
For example, jobs of type J12 match only MI but weakly match 
both MI and M2. Note that a J;,i, ...i,- type job will become a 
Ji,. ..i,-type job after it is processed by Mi,.  

Definition 3: Let Po(t) denote the pallet at the job entrance 
a t  time t .  Po(t) is said to match a machine if (i) the machine is 
free at the time Po(t) reaches the machine, and (ii) there is a t  
least one job which weakly matches the machine will be inputed 
to the assembly line. Po(t) is said to weakly match a machine if 
only (i) is satisfied. 

Definition 4: A machine is said to  be missed at time t if (i) Po(t)  
matches the machine, and (ii) no job is inputed to the machine at 
the time Po(t) reaches the machine. A collision is said to occur 
a t  time t if Po(t) matches more than one machine. Time t is 
said to be a collision time without machine miss if no machine 
is missed at t .  For instance, if Po(t) matches M I  and M2, then t 
can be made a collision time without machine miss by inputing 
a J12-type job a t  time t - TI and a J1-type job a t  t .  

Definition 5: An input sequence is said to be feasible if it can 
have all the jobs processed in a finite time. A feasible sequence 
is denoted by z = {z(1),2(2), ...}, where z ( t )  represents the type 
of job inputed at time t .  z ( t )  = 0 if no job is inputed at time 
t .  Let T ( z )  denote the total finish time for an input sequence z 
and R denote the set of all feasible input sequences. 

Definition 6: A job type is said to be available at time t if there 
is at least one job of this type waiting to  be inputed at time t. 
Otherwise, this job type is said to be unavailable. A job type 
is said to  be in short supply at time t if the input rules require 
a job of this type to be inputed at time t ,  but this job type is 
unavailable a t  time t .  

Definition 7 :  Let F, G be two subsets of 0. F is said to dom- 
inate G if Vz E G, 3 q  E F such that T(z1) 5 T ( z ) .  The 
set of optimal input sequences, denoted by S*, is defined as: 
S' = {x : x E 0, T(Z)  5 T(Zl), VZl E 0). 

3 A Special Case: Two Machine Assembly Lines 

In this section, the problem of scheduling operations in a two 
machine assembly line is addressed. The results obtained for this 
special case will be generalized to  m > 2 machine assembly lines 
in the next section. 



In a two machine assembly line, there could be three elemen- 
tary job types: 51, Jz and Jlz. A job of any elementary type can 
be completed by inputing it just to  the assembly line. Jobs 
of non-elementary types need to  be inputed more than once, and 
thus, can be viewed as compositions of elementary type jobs. For 
instance, a Jzl-type job must be inputed first as a Jz-type job 
and then as a J1-type job, so it can be treated as a composition 
of a Jz-type job and a &type job. So is a Jlzl-type job: it is a 
composition of a Jlz-type job and a J1-type job. Since the exis- 
tence of non-elementary type jobs does not make any difference 
to  our scheduling problem, we shall first derive an optimal algo- 
rithm for a two machine (M1,Mz)-three job type ( J ~ , J z , J ~ z )  
assembly line scheduling problem. Extensions of this algorithm 
to those assembly lines with more machines and job types will 
be addressed later in Section 4. 

3.1 A Lower Bound of the Finish Time 

A lower bound of the finish time for a two machine (MI, M2)- 

three job type (51, J z ,  J 1 2 )  problem is derived to construct and 
prove an optimal scheduling algorithm in the next subsection. 

Let NI,  Nz, Nlz be respectively the number of jobs of type 
51, Jz, J ~ z ,  and suppose N1 t Nlz > 0, Nz t Nlz > 0. If the 
last two inequalities do not hold, the problem would become a 
one machine scheduling problem which is easier to  solve. For any 
z E R, let n;(z, t)  denote the total number of times M ,  is missed 
during [1,1- 11. Then, the last job matching M; will be inputed 
to  the assembly line at the time 

Let Tm(z) = min{Tml(z),Tm2(z)}. Then, from Definition 3 
and Definition 5, t is a collision time iff (1) Po(t) weakly matches 
both machines, and (2) t I Tm(z). 

rlz = klzTi = elzTz > 0, where k l , k z , k l z , ~ l , ~ z , ~ 1 2  are the 
smallest nonnegative integers (or cm if not exist) satisfying these 
equations. The physical meaning of 71 is that if t o  is a collision 
time, and M1 is missed at t o ,  then at least one of the following 
events will happen in the time period [to + 1 , t o  +- 71) : El = { M I  
is missed once}, E2 = {Mz is missed once} and El2 = {a colli- 
sion happens without machine miss}. This fact can be verified by 
observing that if neither E1 nor E2 happens in [ to  + 1, t o t  TI - 11, 
then t o  + 71 is a collision time. Thus, at least one of El, E2, E3 
will happen at t o  + TI. Similarly, the physical meaning of TZ 
is that if t o  is a collision time and Mz is missed at t o ,  then at 
least one of El, E2 and E3 will happen during [to + 1 , t o  t TZ]. 
If t o  is a collision time without machine miss, then at least one 
of El ,  EZ and E3 will happen duing [to t 1,to + ~ 1 2 1 .  Roughly 
speaking, ~1(72,712) can be thought as the maximum interval be- 
tween the occurence of E1(E2,Elz) and that of one of El ,  Ez 
and El2. Thus, none of El, E2 or E3 could happen after time 
n l ( z , T ( z ) ) n  + n z ( z , T ( z ) ) ~ z  + n~z(z ,T(z) )nz ,  where nlz(z,t) 
denotes the total number of times collisions occur without ma- 
chine miss during [l,t]. This concept is developed formally in the 
following theorem. 

T h e o r e m  1. 
nlz(z, T ( z ) )  must satisfy the following inequalities: 

Let Q = klT1 + 1 = tlTz, r 2  = kzT1 = ezTz t 1 and 

For any z E R , n l ( z , T ( z ) ) ,  n z ( z ,T ( z ) )  and 

For the limitation of space, all proofs are not presented 
in this paper. Theorem 1 specifies some constraints on 
the values of nl(z,T(z)),n~(z,T(z)),nl~(z,T(z)). Given 
ni(z,T(.)),nz(z,T(z)),niz(z,T(z)), the finish time of z can be 
computed as 

T ( z )  = "{(NI t NU - 1)Tl t nl(z,T(z)), 
(N2 t NlZ - 1)Tz + nz(z.T(z))} + 1. 

Thus, the solution of the following nonnegative integer pro- 
gramming problem is a lower bound of the finish time: 

subject to  

niri t nzrz t ni2712 2 min{(Nl + N12 - 1)Tl + n1, 
( N z  t N12 - 1)Tz t n2) + 1). 

n171 + n27z 2 Tl, n12 5 Nl2. 
This problem can be easily solved by the following algorithm, 

Algor i thm 1 

Step 1. Set n1 = nz = n1z = 0. Compute TI ,  r 2  abd r l z  (replace 

S t e p  2. If nlr1 + n 2 7 ~  + ~ I Z T ~ Z  2 min((N1 + NIZ - 1)Tl t 
111, (Nz + N12 - 1)Tz t RZ} t 1, then stop. The solution 
is max((N1 + NU - 1)T' + nl,  (N2 t N12 - 1)T2 + nz} t 1 
and n1,nz,n12 are the minimizers. Otherwise, goto Step 3. 

Step 3. Ifn171tn272 2 TI and n12 < N12, then let n12 = n l z t l ,  

S t e p  4. If (NI t NIZ - 1)T' t n1 I (Nz + Nlz - 1)Tz t nz, then 
let n1 = n1 t 1, goto Step 2. Otherwise, let nz = n2 t 1, 
goto Step 2. 

with a large positive integer if not exist). 

goto Step 2. Otherwise, goto Step 4. 

Since 71 2 1, this algorithm will terminate in a finite number 
of steps. Let T* denote the solution and n; , r~ ; ,n ;~  denote the 
minimizers. 

3.2 An Optimal Scheduling Algorithm 

We propose the following scheduling algorithm for the two ma- 
chine (Mi,  M~)-three job type (51, Jz, J12) problem. 

Algor i thm 2 

S t e p  1. Apply Algorithm 1 to determine the minimizer nTZ. 

S t e p  2. Generate an input sequence z using the following input 
rules at time t .  



RULE 1: If Po(t) does not match any machine, z( t )  = 0. 
RULE 2: If &(t) matches only M2, z(2) = J2. 

RULE 3: If Po(t) matches only MI, then z( t )  = J12 if 

RULE 4. If PO matches both machines, then 
N12(t) > n;2, and z( t )  = J1 otherwise. 

0 If t > and N12(t) > 0, then z(t - 2'1) = 
4 2 ,  nT2 = ni2 - 1, and z ( t )  = J12 if N12(t) > ni2, 
and ~ ( t )  = 51 otherwise. 

0 If t 5 or N12(t) = 0, then 
- If ( N l d t )  + N d t )  - 1)Tl < ( N l d t )  + N 2 ( t )  - 

- If ( N d t )  + Nl(t) - 1)Tl 1 (N12(t) + N 2 ( t )  - 
1)T2, then ~ ( t )  = J2. 

1)T2, then z ( t )  = J12 if N12(t) > nf2 and 
~ ( t )  = 51 otherwise. 

where Nl(t),Nz(t),N12(t) are the numbers of jobs of type 
J l , J z , J 1 2  which are not yet inputed at time t plus those 
that are inputed before time t but will leave the conveyor as 
unfinished jobs. 

The optimality of Algorithm 2 is stated formally in the following 
theorem under the assumption that no job will be in short supply. 
(We will later remark on this assumption.) 

Theorem 2. The input sequence z generated by Algorithm 2 
belongs to S* if no job is in short supply during the entire input 
process. 

Several remarks are worth making on Algorithm 2 as follows. 

1. The assumption used in Theorem 2 is that no job is in short 
supply during the entire input process. For Algorithm 2, a 
short supply could happen only if 4 2  < N12, i.e., some J12- 

type jobs need to be inputed twice. Recall that a &-type 
job becomes a &-type job after being processed by MI. If 
all the &-type jobs a t  the job entrance have been inputed 
before a &-type job generated from a Jl2-type job reaches 
the job entrance, and the input rules require a J2-type job 
to  be inputed a t  this time, &-type jobs will be in short 
supply. Note that RULE 3 and RULE 4 of Algorithm 2 have 
made those Jlz-type jobs needing to  enter twice inputed 
as early as possible, thus reducing the possibility of short 
supply. If this still cannot prevent short supply of jobs, we 
can simply let z ( t )  = 0 at the time t, when a short supply 
occurs and continue using Algorithm 2 to get a feasible input 
sequence. However, in such a case there is no guarantee that 
the resulting input sequence is still optimal. 

2. If Algorithm 2 is applied to a two machine (Ml,Mz)-two 
job type (51, J2) scheduling problem, an optimal input se- 
quence will always be generated. The reason is that for the 
two job type problem, N12 = n12 = 0, so no job will be in 
short supply and by Theorem 2, the resulting input sequence 
is always optimal. Moreover, Step 1 is no longer needed for 
the two job-type problem, thus making Algorithm 2 an on- 
line algorithm. No pre-computation is necessary and the 
algorithm can be readily adapted to  changes in the number 
of jobs to  be processed. For instance, if k J1-type jobs ar- 
rive a t  the system a t  time t > 1, one can simply update 
Nl(t) = Nl(t) t k. The adapted algorithm will make the 
whole batch of jobs processed in minimum time. 

4.1 m > 2 Machine Single-Operation Job Schedul- 
ing Problem 

A job is said to be of single-operation type if it needs to  be pro- 
cessed by one and only one machine. Otherwise, it is said to  be 
of multi-operotion type. For the m > 2 machine single-operation 
job scheduling problem, there could be at most m different job 
types 51, J2 ,  ..., J,. We propose the following input rules for a 
set, M ( t ) ,  of machines which Po(t) matches at time t. 

R1: If M ( t )  = 0, then z ( t )  = 0. 

R2: If M ( t )  # 0, then let z ( t )  be any job type that matches a 
machine in M(t ) .  

Clearly, in case IM(t)l 2 2, R2 cannot determine a unique 
value for z( t ) .  Thus, there could be more than one feasible input 
sequence satisfying R1 and R2. Let 01 be the set of all such 
sequences. Then, we have the following theorem. 

Theorem 3. R1 dominates R. 

Since R1 and R2 may not determine a unique input sequence, 
the following depth-first search algorithm can be used to find an 
optimal sequence z' in RI. 

Algor i thm 3 

Step 1. Set the optimal finish time T' = 00, and the current 
time t = 0. 

Step 2. Let t = t -t 1, 

0 If t 2 T', then t = t - 1, goto Step 3. 
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3. 

4 

As stated earlier, a non-elementary job can be viewed as 
a composition of several elementary jobs. Thus, one can 
decompose all non-elementary jobs into elementary ones and 
let NI, N2,N12 be the total numbers of 51, Jz,J12 type jobs, 
respectively, after such a decomposition. Then, Algorithm 2 
can be applied and Theorem 2 still holds. In order to  reduce 
the possibility of short supply of jobs, those jobs needing to 
cycle more than once should be inputed first. For instance, 
a Jzl-type job needs two cycles and a Jzrzl-type job needs 
three cycles to  complete. If Algorithm 2 happens to  yield 
z ( t )  = J z ,  then a Jzlzl-type job should be inputed. Recall 
that inputing jobs with a maximal number of cycles first is 
a heuristic to  reduce the possibility of short supply of jobs. 

Scheduling m > 2 Machine Assembly Lines 

Scheduling m > 2 machine assembly lines is naturally more 
difficult than scheduling 2 machine assembly lines. In this sec- 
tion, we first find a dominant subset of R for assembly lines with 
m > 2 machines processing singleoperation jobs. An enumera- 
tion algorithm is then proposed for searching this dominant sub- 
set to  obtain an optimal solution. To reduce the computational 
complexity, heuristic algorithms are also developed. Simulation 
results indicate that these algorithms work quite well. Finally, 
we shall discuss the general m > 2 machine multi-operation job 
scheduling problem for which a heuristic solution is proposed. 



If all the jobs have been inputed, then T* = t - 1, z* = 

Otherwise, let J ( t )  be the set of all job types matching 

{z( t ) , t  = 1,2, ..., T*},  t = t - 1. Goto Step 3. 

M ( t ) .  Goto Step 4. 

S t ep  3. If t = 0, stop. The optimal sequence is z*. Otherwise, 
goto Step 4. 

S t ep  4. If J ( t )  = 0, then z ( t )  = 0, goto Step 2. Otherwise, let 
z ( t )  = J E J ( t ) ,  delete J from J ( t ) ,  and goto Step 2. 

A program has been written in LISP to implement Algorithm 
3. Theoretically, this program can be used to find optimal solu- 
tions to  all single-operation job type scheduling problems. How- 
ever, due to its computational complexity, this program is use- 
ful only for problems with very small numbers of machines and 
jobs. For instance, a three machine-three job type problem with 
job numbers NI = 17,Nz = 25,N3 = 13 and machine times 
TI = 6,Tz = 4,T3 = 8 needs to search a total of 3540 input se- 
quences and use 182.7 seconds of CPU time on an Apollo DN3000 
workstation to find an optimal solution. If the numbers of jobs 
are increased t o  N1 = 25, Nz = 37, N3 = 17, a total of 74308 in- 
put sequences need to be searched using 1851.7 seconds of CPU 
time. 

In order t o  alleviate this computational complexity, R2 is 
changed to the following heuristic input rule. 

HR2: If M ( t )  # 0, let z ( t )  be any job matching the machine 
with the maximum value of (Ni(t) - 1)T; in M ( t ) ,  where 
N;(t) is the number of Ji-type jobs that have not yet been 
inputed a t  time t .  

HR2 is a direct extension of the second part of RULE 4 in Algo- 
rithm 2 to  an m > 2 machine scheduling problem. The rationale 
of HR2 can be explained as follows. At time t ,  the finish time of 
z can be computed as: 

T ( 2 )  = max{ maxiEM(t) { ( ~ , ( t )  - I)T, + n:(z , t ) }  + t + 1, 
mai$M(t)  {(NI - 1)Ti + ni(z,T(z)))}. 

where n:(z, t)  is the total number of times Mi has been missed 
since t .  Clearly, what is inputed a t  time t has no effect on the 
second argument of the max function. For an io E M ( t ) ,  if 
z ( t )  = io, n:,(z,t) will remain unchanged a t  time t ,  and all 
other n:(x,t),i E M ( t )  are increased by 1. Thus, to minimize 
T(z), a job matching the machine with the maximum value of 
N, ( ( t )  - 1)T, should be inputed first. However, this is only a 
one-step optimization, and thus leads to an overall suboptimal 
(rather than optimal) solution. 

Since more than one machine may have the same largest value 
of ( N i ( t )  - 1)Ti a t  time t ,  R1 and HR2 might not determine a 
unique input sequence. To counter this problem, let flz denote 
the set of all feasible input sequences satisfying R1 and HR2. 
In case lRzl > 1, there are three ways to choose a suboptimal 
sequence. 

Me thod  1. 

Method  2. 

Choose an arbitrary z E Rz to be the solution. 

Similarly to  Algorithm 3, search Rz for an input 
sequence with the minimum finish time. 

Me thod  3. Partially search Rz as far as desired, e.g., search 
for a certain period of time or a certain number of sequences 
and choose the best sequence among those searched to be 
the solution. 

The obvious advantage of Method 1 is its simplicity, though the 
solution obtained might not be as good as that of Method 2, 
which requires more computational efforts. Method 3 is a com- 
promise between these two. 

In order to evaluate the goodness of the heuristic rule described 
above, we simulated and compared the solutions with the follow- 
ing lower bound of the finish time 

where T$ is the lower bound of the finish time determined by 
Algorithm 1 considering Mi and Mj only, and Tbl = Czl N, is 
the total number of jobs. Since only one job can be inputed to 
an assembly line during each unit of time, Tbl is a lower bound 
of the finish time. Thus, the maximum of two lower bounds, 
Tb, is also a lower bound. System parameters of the assembly 
line to be simulated are as follows. Number of machines m = 7. 
Length of the conveyor T, = 16. Machines are installed along 
the conveyor a t  positions 2,4,6,8,10,12,14 respectively. It takes 
one unit time to trnasfer an unfinished job from job exit t o  job 
entrance. Simulation results are summarized below. 

1. Randomly choose machine times ranging from 1 to 20 and 
job numbers ranging from 1 to  50. Using Method 1, the 
simulation results turned out to be surprisingly good. Of 
1000 randomly generated examples, only in one example the 
finish time obtained by Method 1 was 0.6% larger than the 
lower bound Tb. The lower bound was reached in all other 
examples. Thus, one can conclude: (1) in most cases, the 
input sequences determined by Method 1 are optimal, and 
(2) in most cases, the lower bound Tb is a good estimate of 
the optimal finish time. 

2. Method 1 was found to perform worst when (Ni- 1)Ti has an 
identical value for all i. In order to study these worst cases, 
we generated examples by randomly choosing machine times 
Ti between 1 and 20, and letting Ni be the integer nearest to 
200/Ti + 1. Thus, ( N i  - 1)T; + 1 approximately equals 200. 
1600 such examples were studied. On average, the finish 
times obtained by Method 1 were 2.86% larger than the lower 
bound. In the worst case, the finish time was 13.30% larger 
than the lower bound. If an arbitrary z1 E R1 was chosen 
to be the solution, i.e., HR2 was not used (this is a kind of 
simple-minded heuristic), the finish times turned out to be 
23.05% larger than the lower bound. Thus, heuristic rule 
HR2 can improve the solution by almost 10 times on the 
average. 

3. Searching Rz is much simpler than searching 01. For in- 
stance, i t  needs to search only 1128 sequences in Rz and 
use 82.7 seconds of CPU time to find the same optimal so- 
lution for the three machine-three job type problem dis- 
cussed earlier, which needed to search 74308 sequences in 
RI and use 1851.7 seconds of CPU time. The drawback of 
Method 2 lies in that the solution obtained may not be over- 
all optimal and it is still too time-consuming for large-size 
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problems. The latter can be alleviated by using Method 
3 which can improve the results obtained from Method 1. 
Consider an example with NI = 17, N2 = 17, N3 = 40, N4 = 

5, T4 = 10, T5 = 5, T6 = 5, T7 = 7, the lower bound Tb = 203, 
and the finish time obtained from Method 1 is 230, which is 
13.30% larger than Tb. Using Method 3, the finish time is 
reduced to 227 (11.82% larger than Tb) after searching 53953 
sequences. 

20,Ng = 40,Ng = 40,N7 = 29,Ti = 12,Tz = 12,T3 = 

4.2 On Scheduling m > 2 Machines Processing 
Multi-Operation Jobs 

This is the most difficult problem, where the difficulty mainly 
arises from the existence of multi-operation type jobs. For ex- 
ample, the best way of processing a single Jln-type job is to 
process it in one cycle. However, processing all multi-operation 
jobs in a minimal number of cycles may not result in an overall 
optimal input sequence. This fact can be seen from the fact that 
while a multi-operation job is being processed by one machine, 
the machine that will execute the job’s next operation may have 
to wait (thus idle) so as to ensure itself to  be free when the job 
arrives at its gate. For the two machine scheduling problem, n;? 
was found to be the optimal number of Jlz-type jobs that should 
be processed in one cycle. By contrast, it appears to be practi- 
cally impossible to derive such a number for the case of m > 2 
machines processing multi-operation jobs. Thus, in what follows, 
we shall derive two domination rules based on which a heuristic 
algorithm for this general problem will be proposed. 

Theorem 4. Let R3 be the set of all feasible input sequences 
satisfying following input rules: 

MR1: 

MR2: 

If M ( t )  = 0, z ( t )  = 0. 

A job of type Ji l...ikiktl...iLt, should be inputed before a 
job of type where 12 1, i k + l  < ik. 

Then, 523 j R. 

sequence z from R3. 
The following heuristic rule can be used to select an input 

MH1: At time t ,  input a job such that the cost function 

C(z,t)  = (Ni(t) - l)Tinf(z) 

is minimized, where M ( t )  is the set of machines that Po(t) 
matches at time t, Ni(t) is the total number of jobs weakly 
matching Mi which have not yet been inputed by time t 
plus jobs weakly matching Mi that have been inputed before 
time t but will leave the conveyor without Mi’s processing, 
n:(z) = 1 if Mi is missed a t  t ,  and TI:(.) = 0 otherwise. 

iEM(t)  

MH1 can be explained as follows. 

1. In order to  reduce the finish time T(z), at time t (1) the ma- 
chine with the largest value of (Ni(t) - 1)Ti should not be 
missed (see the explanation of HR2), and (2) the number of 
machines missed at time t should be as small as possible. 
However, these two requirements may not be met simul- 
taneously. So, we construct a cost function C(z , t )  whose 

2. 

value increases if either a machine with the largest value of 
(Ni(t) - 1)T; is missed or the number of machines missed in- 
creases. Thus, minimization of C(z,t)  is equivalent to mak- 
ing a compromise in meeting both requirements (1) and (2). 

Since the number of job types is finite (and usually not 
large), C(z , t )  can be minimized by considering job types 
one by one. If MHl, together with MR1 and MR2, still can- 
not determine a unique job type, one can simply input a job 
of one of these types which requires the maximal number of 
operations. This can reduce the possibility of short supply 
of jobs. 

3. If all jobs are of single-operation type, then for all i E M ( t ) ,  
a t  most one nr(z) = 0, and all others have the value of 1. 
Thus, minimization of C(x,t) requires a job matching the 
machine with the largest value of (Ni(t) - 1)Ti in M ( t )  to  
be inputed a t  t. This is the same as HR2. 

5 Conclusion 

In this paper, we have formulated and sloved the problem of 
scheduling operations of an automatic assembly line. Optimal 
and suboptimal solutions - that require very little computation 
- are derived for assembly lines with 2 machines as well as m > 2 
machines processing single-operation jobs by minimizing the total 
finish time. A heuristic approach is also proposed for the case of 
m > 2 machines processing multi-operation jobs. Evaluation of 
this heuristic approach is our next step of research, which will be 
reported in a forthcoming paper. 
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