
Any-Dimension AlgorithmsDavid J. Musliner Edmund H. Durfee Kang G. ShinComputer Science and Engineering DivisionDepartment of Electrical Engineering and Computer ScienceThe University of MichiganAnn Arbor, Michigan 48109-2122djm@eecs.umich.edu(313) 763-5363IntroductionIn striving to apply computer control systems to domains which require predictable performance,researchers have developed methods of obtaining performance guarantees using limited systemresources. These guarantees are usually based on either o�-line scheduling techniques that reserveresources (e.g., the Spring kernel [5]), or on-line techniques that dynamically adjust resource usageto meet guarantees. These on-line techniques are exempli�ed by \any-time" algorithms, whichcan be interrupted at any time to yield a result, possibly with reduced precision, con�dence orcompleteness [2, 3]. Any-time algorithms provide an on-line, dynamic method for guaranteeingthe timeliness of a result. This paper generalizes the any-time technique to provide guarantees onother measures of performance, and examines some of the issues involved with the resulting classof any-dimension algorithms.Any-Dimension AlgorithmsWe can measure a system's performance by its progress along a set of (not necessarily ortho-gonal) dimensions that describe its resource usage (e.g., time, data, memory) and the quality of itsoutput (e.g., timeliness,1 precision, con�dence). On-line performance guarantees are often de�nedby the conditions that determine when a system's control algorithm returns a result. We call meth-ods that halt when they reach a certain threshold along a dimension \any-dimension" algorithms.Any-time algorithms are one type of any-dimension algorithm, terminated when an interrupt in-dicates that a temporal threshold has been reached. Similarly, \any-precision" algorithms haltwhen a result with a certain precision has been achieved; many iterative numerical methods [1]are any-precision algorithms. Thus any-dimension algorithms can provide guarantees on either thequality of the �nal output of a process or the maximum resources it will consume while running.Because they must be able to halt and produce a result whenever a threshold is passed, any-dimension algorithms must be iterative, incremental computations. That is, they loop arounda computation that produces intermediate results, usually in the same form as the �nal, idealresult. Most existing work on speci�c any-dimension algorithms focuses on iterative algorithmswhich produce intermediate results with non-decreasing quality. In most cases, this restrictionis really only used to justify further iterations in the hope that better results will be produced.If the results could get worse as more e�ort is expended, intuition tells us that e�ort may bewasted. However, no aspect of the any-dimension paradigm requires algorithms to have monotonicresults. Any-dimension algorithms are characterized solely by their incremental nature and theirThe work reported in this paper was supported in part by the National Science Foundation under Grants DMC-8721492 and IRI-9158473, and by a NSF Graduate Fellowship. The opinions, �ndings, and recommendations ex-pressed in this publication are those of the author, and do not necessarily re
ect the views of the NSF.1Note the duality of time as a resource and timeliness as measure of output quality.



last result = initial guess;while (quality(last result) < threshold)f new result = incremental computation();if (quality(new result) > quality(last result))f last result = new result; ggreturn(last result);Figure 1: A simple shell to conceal lower-quality intermediate results.termination threshold. This 
exibility is an advantage, because non-monotonic results are bothcommon and desirable. For example, many search domains have local minima and maxima thatcan trap monotonic search algorithms at non-optimal solutions. A non-monotonic algorithm canmove out of local extrema in order to continue searching for a globally optimal result.However, it is not necessary to reveal this non-monotonic nature outside of the any-dimensionalgorithm. Wrapping the simple shell shown in Figure 1 around an arbitrary incremental compu-tation will prevent lower-quality results from being returned, and thus any incremental algorithmcan be made to appear monotonic.The mechanisms which actually monitor progress along some dimension and terminate an any-dimension algorithm can be synchronous or asynchronous. For synchronous monitoring, the any-dimension algorithm's code, which generates incremental results within a loop, also checks withinthat loop for the termination condition (as in Figure 1). For asynchronous monitoring, a processexternal to the any-dimension process monitors the termination condition and sends an interruptto the any-dimension algorithm when the threshold is reached.Synchronously-monitored algorithms are most appropriate for thresholds based on the qualityof the computed result, since the any-dimension algorithm need only check its threshold conditionwhen a new incremental result has been computed. A continuous asynchronous monitor mightcheck the condition too frequently, wasting e�ort by repeatedly examining the quality of a resultthat has not changed. Or, an asynchronous monitor might not run frequently enough, so that someintermediate results would never be checked against the termination threshold. Furthermore, themost logical place to locate the knowledge of a desired result attribute is in the program generatingthe results, as opposed to some external arbiter.Asynchronously-monitored algorithms are more appropriate for thresholds on resource dimen-sions, since the any-dimension process itself may not have su�ciently �ne-grained access to monitorits resource usage. Also, if we are monitoring memory usage, for example, we would not want theany-dimension algorithm's code to be responsible for checking a memory limit each time an alloca-tion was performed; that should be done outside the any-dimension process, preferably in operatingsystem code.Related WorkLiu et al. [4] have investigated an approach known as \imprecise computation," which is verysimilar to an any-time algorithm. They discuss using an incremental algorithm which generates in-termediate results with non-decreasing precision. The key di�erence from pure any-time algorithmsis that the authors of [4] also postulate that a known amount of computation time will lead to anacceptably precise result. Given this minimum \mandatory" computation time, they can then buildtask schedules that guarantee to achieve the minimum required precision by always reserving the2



xguess = initial xguess;while (abs(xnew { xguess) > .01)f xguess = xnew;xnew = xguess { F(xguess) / Fprime(xguess);g initial xguessF 1 10 20x2 7 10 11ex � 1 4 13 23e25x � 1 27 252 502(a) Newton's method. (b) Iterations to achieve .01 precision.Figure 2: Showing the di�culty of mapping precision to time for Newton's root-�nding method.corresponding minimum required computation time.Unfortunately, this type of guarantee relies on an accurate mapping between the time an impre-cise computation algorithm runs and the precision of its result. In general, such a mapping is notavailable, because the precision of a result is highly dependent on the particular problem to whichthe algorithm is being applied. For example, Liu et al. [4] describe an any-time implementation ofNewton's method for �nding the roots of a function F . Unfortunately, as illustrated in Figure 2,the number of iterations this method requires to achieve a result with speci�ed precision is highlydependent on both the function F and the initial guess for the root value. Thus the root-�ndingcomputation cannot be cleanly separated into mandatory and optional parts based on time alone;the precision threshold cannot be mapped onto the time dimension.This example shows that, while various quality and resource dimensions may be related, theirrelationships are usually not constant functions. Instead, the mappings of response quality toresource usage will be highly dependent on both the domain (F ) and on the internal state of thesystem (initial xguess). Thus any-dimension algorithms do not rely on such mappings to makeguarantees. Instead, any-dimension algorithms retain their thresholds on the original measurementdimensions.A similar argument applies to Dean and Boddy's work on \deliberation scheduling," decidinghow long to run any-time algorithms [2]. Their formulation does indicate that the problem domaincan have an e�ect on the mapping of an algorithm's result utility to running time. However, they donot discuss precisely how that e�ect can be quanti�ed. Casting iterative computations as any-timealgorithms is fairly straightforward, but obtaining a parameterized mapping of result quality toresource usage is not. Even if an accurate mapping function was known, computing the e�ect of aparticular domain on the performance of an algorithm might involve considerable e�ort.Combining DimensionsThe termination conditions used by any-dimension algorithms can be combined using conjunc-tion and disjunction to yield more interesting algorithmic behavior. Disjunctive (or) combinationsof any-dimension methods lead to a guarantee that crossing one threshold or the other will yield aresult. Thus, combining any-time and any-con�dence conditions might be an appropriate methodfor solving problems in a timed exam or planning parts of a path under time pressure; the result-ing algorithm would work on each problem until it either found a result in which it had su�cientcon�dence, or until the time allotted to that problem expired.Disjunctive combinations of thresholds are actually quite common. A pure any-dimension al-gorithm will run until it uses up the speci�ed resources or its result reaches the quality threshold.Thus any-dimension algorithms can fail to terminate if, for example, they never �nd a result withsu�ciently high quality. As a practical matter, most implementations of any-dimension algorithmsalso include an alternative termination condition, so that they will terminate even if their original3



dimensional threshold is never reached. For example, an any-time search algorithm might haveboth a deadline and a termination condition specifying the goal of the search. If the goal is reachedbefore the deadline arrives, the algorithm terminates and returns its highest-quality result, withoutever reaching its resource threshold.Conjunctive (and) combinations of any-dimension methods lead to guarantees over multipledimensions. For example, combining any-con�dence and any-precision conditions leads to resultswith guaranteed precision and con�dence: the algorithm will continue until both thresholds arereached. However, if we try to conjoin any-time and any-precision algorithms, we will not neces-sarily obtain guaranteed precision and guaranteed timeliness. What happens if the time threshold(deadline) is reached before the precision threshold? The deadline indicates that all the allocatedresource (time) has been consumed, so the algorithm cannot ignore the deadline and continue run-ning. This example illustrates a fundamental restriction on conjunctive combinations: they cannotbe applied to resource-monitoring any-dimension algorithms. They can be applied to quality-monitoring methods because the thresholds on those dimensions are minima rather than maxima:while a resource threshold indicates the maximum available resource, a quality threshold indicatesthe minimum acceptable quality. Going beyond a resource threshold is prohibited, while goingfurther on a quality dimension is generally desirable.ConclusionWe have described the general class of any-dimension algorithms, which can provide on-linedynamic guarantees for a variety of performance dimensions. Our investigation of any-dimensionalgorithms is just beginning. This new classi�cation of methods may lend useful insight to softwareengineers responsible for translating program speci�cations into algorithms. The any-dimensionparadigm clari�es the performance guarantees made by an algorithm, and thus can help in determ-ining appropriate methods for a given problem.Also, by mapping existing methods into the single classi�cation space of any-dimension al-gorithms, we may be able to recognize areas of that space that have not yet been explored. Forexample, many search programs consume memory as a resource, maintaining a growing open-list ofnodes yet to be searched. An any-memory search algorithm would terminate when it had used upan allocated portion of memory. This type of algorithm might be appropriate for problems whichhave no time limit, but do encompass an enormous search space (e.g., the game go).By stressing the nature of guarantees made along distinct performance dimensions, the any-dimension concept di�ers from the imprecise computation paradigm. Rather than trying to mapquality thresholds to a time threshold, any-dimension algorithms retain the original quality thresholdsand thus provide domain-independent performance guarantees.References[1] R. L. Burden and J. D. Faires, Numerical Analysis, PWS-KENT Publishing Co., 1989.[2] T. Dean and M. Boddy, \An Analysis of Time-Dependent Planning," in Proc. National Conf.on Arti�cial Intelligence, pp. 49{54, 1988.[3] K.-J. Lin, S. Natarajan, and J. W.-S. Liu, \Imprecise Results: Utilizing Partial Computationsin Real-Time Systems," in Proc. Real-Time Systems Symposium, pp. 210{217, December 1987.[4] J. W.-S. Liu, K.-J. Lin, and S. Natarajan, \Scheduling Real-Time, Periodic Jobs Using ImpreciseResults," in Proc. Real-Time Systems Symposium, pp. 252{260, December 1987.[5] J. A. Stankovic and K. Ramamritham, \The Design of the Spring Kernel," in Proc. Real-TimeSystems Symposium, pp. 146{157, December 1987.4


