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Abstract- The computation-time delay in the feedback con- 
troller of a real-time control system may cause failure to update 
the control input during one or more sampling periods. If this 
delay exceeds a certain limit called a hard deadline, either the 
necessary conditions for system stability are violated or the 
system leaves the allowed state-space. In such a case a dynamic 
failure is said to occur to the system. A method for calculating the 
hard deadlines in linear time-invariant control systems by con- 
sidering system stability and the allowed state-space is presented. 
To derive necessary conditions for (asymptotic) system stability, 
the state difference equation is modified based on an assumed 
maximum delay and the probability distribution of delays whose 
magnitudes are less than, or equal to, the assumed maximum 
delay. Moreover, the allowed state-space-which is derived from 
given input and state constraints-is used to calculate the hard 
deadline as a function of time and the system state. A one-shot 
delay model in which a single event causes a dynamic failure is 
also considered. The knowledge of hard deadline is then applied 
to the design of error recovery in a triple modular redundant 
(TMR) controller computer. 

I. INTRODUCTION 
IGITAL COMPUTERS are commonly used in real-time D control systems due mainly to their improved perfor- 

mance and reliability in dealing with increasingly complex 
controlled processes. A digital computer in the feedback loop 
of such a control system calculates the control input by 
executing a sequence of instructions, thereby introducing an 
unavoidable delay-called the computation-time delay-to the 
controlled process. This is an extra delay in addition to the 
system delay commonly seen in the control literature. The 
computation-time delay is an important part of the delay in 
the feedback loop, which also includes the other parts of delay 
related to measurement or sensing, N D  and DIA conversion, 
and actuation. However, these other parts of delay are usually 
constant, and thus easy to deal with. 

Due to data-dependent loops and conditional branches, 
and unpredictable delays in sharing resources during the 
execution of programs that implement control algorithms, the 
computation-time delay is a continuous random variable that 
is usually much smaller than one sampling period, T,, if 
no failure occurs to the controller computer. Since a large 
number of real-time control systems are life, or safety-critical, 
controller computers for such systems must be equipped 
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with some fault-tolerance mechanisms. When a component 
failure or environmental disruption such as an electromagnetic 
interference (EMI) occurs, the time taken for error detection, 
fault location, and recovery must be added to the execution 
time of a control program, thus increasing the computation- 
time delay significantly. This increase in task execution time 
seriously degrades the system performance and may even lead 
to a catastrophe, or a dynamic failure by either violating the 
necessary conditions for system stability or making the system 
leave the state-space circumscribed by the given conditions 
(i.e., the allowed state-space) if the delay exceeds a certain 
limit called the hard deadline [lo]. 

Several researchers attempted to analyze the effects of 
computation-time delay on the performance of stability of a 
control system. The authors of (131 considered the qualita- 
tive effect of feedback delay on a multivariable, computer- 
controlled linear system by proposing an algorithm to compen- 
sate for the delay effect. The sufficient (necessary) conditions 
of stability with a feedback delay and the delay effects on 
quadratic performance indices were presented for a linear 
control system [2] (for a nonlinear robot control system [9]). In 
[8], a more detailed analysis of the stability of a digital control 
system with feedback delay was carried out by modifying 
the state difference equation. However, all these analyses are 
based on the assumption that the feedback delay is fixed 
or constant. Although the stability problem with a variable- 
feedback delay was investigated in [4], it was still based on a 
regular and periodic (i.e., thus deterministic) pattern of delay. 
In [l], a control system with a random time-varying delay 
in the feedback loop was modeled with a stochastic-delay 
differential equation, and sufficient conditions were derived 
for the almost-sure sample stability under which almost every 
possible differential equation is an ensemble of stochastic 
systems has a stable solution. However, this result did not give 
any explicit relation between the performance (or stability) 
and the magnitude of delay, but, instead, gave a condition 
of the coefficients of the state equations and the average 
rate-of-change of delay for sample stability. Furthermore, this 
work assumed a delay to be bounded by the “worst-case” 
intersample period. In [lo], the hard deadline in controlling 
the elevator deflection of the aircraft landing problem was 
obtained numerically by using the concept of allowed state- 
space. 

In this paper, we analyze computation-time delay effects on 
system stability and state constraints for linear, time-invariant 
control systems. Specifically, we derive the hard deadline for 
such control systems-the critical value of computation-time 
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Fig. 1.  A computer-controlled system. 

delay beyond which a dynamic failure occurs. The feedback 
delay is assumed to result only from the computation-time 
delay because other delay elements can be readily dealt with. 
The computation-time delay is assumed to be stochastically 
stationary, which corresponds to the characteristics of transient 
computer failures caused by, for example, electromagnetic in- 
terferences. This property can be represented by a binomially- 
distributed random variable. The system dynamics are mod- 
ified first according to the assumed maximum delay, NT,, 
and the probability distribution of delays whose occurrence 
periods 5 N T , ,  where N is changed from 1 to the actual 
maximum delay (or hard deadline) denoted by DT,. The pole 
positions of the modified state equation will then be tested to 
derive necessary conditions for (asymptotic) system stability. 
Also, the state and input constraints are used to derive the 
allowed state-space from which the hard deadline is derived 
as a function of time and the system state. This analysis is 
useful for the one-shot delay model, where a single event-a 
long-lasting failure-may cause a dynamic failure. 

Section I1 addresses the generic problem for qualitative 
analysis of computation-time delay effects and reviews the 
basic definition of a hard deadline in real-time digital control 
systems. Section I11 presents a method for modifying the state 
difference equation in the presence of the computation-time 
delay, and then analyzes system stability by examining the 
pole positions of the modified state difference equation. the 
hard deadline associated with the one-shot delay model is also 
analyzed there. Several simple linear systems are examined to 
demonstrate the approach in Section IV. Section V deals with 
the application of the hard-deadline information to the design 
of a reliable controller computer and the estimation of a control 
system's reliability. The paper concludes with Section VI. 

11. COMPUTATION-TIME DELAY EFFECTS ON 
CONTROLLED PROCESSES 

As shown in Fig. 1, a controller computer calculated the 
control input at each sampling interval for a linear time- 
invariant controlled process that is described by the vector 
difference equation: 

s ( k  + I) = & ( I C )  + Bu(lc) (1) 

where IC is the time index, one unit of time represents the 
sampling interval T,, and s E R" and U E 72' are the state 
and input vectors, respectively. 

The coefficient matrices, A E 72"'" and B E Rnx', 
are obtained from those of the corresponding continuous-time 

model: 

where A, and B, are the corresponding coefficient matrices of 
the continuous-time model. The (digital) controller computer 
reads sensor values of system output, compares them with 
desired values, and calculates the control input once every 
T, s according to a programmed control strategy. The control 
input, which is held constant within each sampling interval 
by a latch circuit, is applied to the continuous-time controlled 
process. 

Equation (1) must include the delays associated with the 
measurement or sensing, A/D and D/A conversion, and the 
execution of control algorithms, The sum of these delays is 
usually much smaller than one sampling period, T,, in the 
absence of computer failure(s) or external interferences like 
an EMI, which was called the delay problem in [9]. For the 
delay problem where the magnitude of delay, A: is smaller 
than T,, one can change the state (1) to 

s ( k  + 1) = h ( k )  + B I U ( k )  + &U(k - 1) (3 )  

where 

and 

When a fault' occurs in the controller computer, the 
computation-time delay resulting from the corresponding 
recovery actions may be large relative to T,. This was termed 
the loss problem in [9]. Suppose the controller computer fails 
to update the control input for the next n sampling intervals 
since time ko. The control input during these intervals will be 
held constant at u(lco) by the D/A converter and latch circuit. 
Since faults occur randomly during the mission lifetime, the 
failure to update the control input is considered a stochastic 
disturbance to the controlled process, which can be represented 
by a model depending on the fault characteristics. 

The delay introduced in the feedback loop degrades the 
performance of the controlled process, and it may even lead 
to a dynamic failure if the delay exceeds the hard deadline. A 
dynamic failure occurs if either the necessary conditions for 
system stability are violated or the system leaves the state- 
space circumscribed by the given conditions, i.e., the allowed 
state-space. 

When the environment is assumed to be stochastically sta- 
tionary, the occurrence of computer failure(s) or computation- 
time delay can be represented by a probability distribution 
function. The delay may change the pole positions of the 
controlled process, from which one can derive the necessary 
conditions for system stability. 

Let XA and UA be the allowed state-space and the admis- 
sible input space, respectively. Suppose the state is evolved 

An EM1 is considered a fault because it may cause the loss of the controller 
computer. 
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from time ko in the presence of a computation-time delay N 
according to 

Let the control input have been updated at t = mNT,. If 
the control inputs were not updated for i sampling periods 
from that time due to a long computation-time delay, where 
0 5 i 5 N ,  the corresponding state equations for the group of z ( k )  = $(k kO,Z(kO),U(k - N ) )  (4) 
intervals during which the system failed to update the control 
inputs become where $ is the state transition map. Then, the hard deadline 

of a control task starting at time ko can be represented by 

D ( 4 k o ) )  = 

SUP { N  : $ ( k ,  kO,z(kO),U(k - N ) )  E X A } .  (5) 
U( li - N j E u.4 

That is, the hard deadline of this task starting at time ko 
is defined as the maximum computation-time delay that the 
controlled process can tolerate at that time. The hard deadline 
of a task during the time intervals [koT,, IClT,] is also defined 
as 

D ( k l , s ( k o ) )  = inf sup{N : d ( k , k o , z ( k o ) ,  
U( IC - N j E u.4 

. ~ ( k  - N ) )  E X ~ , k o  I k 5 IQ}. (6) 

111. DERIVATION OF A HARD DEADLINE 

z(mN + 1) = h(") + BU(") 
s ( m N  + 2 )  = h(" + 1) + BU(") 

= A 2 s ( m N )  + ( A  + I ) B u ( m N )  

z ( m N  + i) = A i z ( m N )  
i-1 

+ A j B u ( m N )  
j = O  

z(mN + i + 1 )  = A i f l s ( m N )  
2 

The hard deadline is derived for the controlled process 
represented by (1). The conditions for asymptotic stability 
and/or making a controlled process stay in its allowed state- 
space-which must hold to avoid any dynamic failure-can 
be used to derive the hard deadline. Let NT,  and DT, be 
the assumed maximum and actual maximum delays, respec- 
tively. Then, the hard deadline can be obtained by iteratively 
testing the necessary conditions for system stability and state 
residence in the allowed state-space while changing N from 

N-1 

s ( (m  + 1 ) N )  = A N z ( m N )  + A j B u ( m N )  
j=N-i  

N-i-1 

+ A j B u ( m N + N - j - 1 )  
j = O  

1 to D. 

A. Effects of Stationary Occurrence of Delays on System 
Stability 

When a linear computer-controlled system is (symptotically) 
stable in the absence of computer failures, we want to derive 
necessary conditions under which it will remain (asymptoti- 
cally) stable even in the presence of random failures to the 
controller computer. These conditions require the knowledge 
of the system dynamic equations, the control algorithm to be 
used, and the environmental characteristics. 

Consider a simple controlled process represented by a linear 
time-invariant differential equation, which can be converted 
to a discrete-time problem by using (2) and a quadratic 
performance index: 

where m is the time index for the groups of N 
sampling intervals each. Let X ( m )  = [ z ~ , z ~ , . - . : x N ] ~  
[s(mN + l ) , s (mN + 2),...,z((m + l)N)IT and U ( m )  = 

1)N)IT, that is, X ( m )  and U(m) are respectively the 
argumented state and control vectors at the group of sampling 
intervals during which the system failed to update the control 
inputs (see Fig. 2). When the delay is equal to z sampling 
periods, the following augmented state equations result: 

[U1,U2,...,UN]T 5 [U("+ l ) ,u(mN +2) ; . . , u ( (m+ 

where \ 
[ z T ( k ) Q z ( k >  + ~~(k)Ra(k)] + 

. .  
(7) 

where the matrix Q E R"'" and R E R'X1 are positive 
semidefinite and positive definite, respectively, and are de- 
termined by the control objective of interest. The optimal 
control input is calculated by minimizing J while maintaining 

feedback gain matrix F is obtained by solving a discrete 
Riccati equation [6].  

AD 

0 

o F . . .  system stability, that is, u(k) = -Fz (k ) ,  where the state FD = 
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. (10) 

time t 
3 ( m - 1 )  3 ( m - - l ) + l  3 ( m - 1 ) + 2  3 ( m + 1 )  3 ( m + 1 ) + 1  3 ( m + 1 ) + 2  

c 
k :  ’ 3m 3 m + l  3 m + 2  3(m + 2) 

t :  I C  
I ‘  I ’  I 

i : 3  1 2  3 1 2  3 1 2  3 + m-1- m + m + 1 4  

Fig. 2.  Time index far newly-defined (argumented) vectors representing the 
stationary Occurrence of computer failures (delays) when .V = 3. 

BLt = 

BL, = 

B 0 . . .  0 

0 . . .  o (AB + B )  
. .  . .  . . .  

2 - 1  

0 . . .  o X A ~ B  
0 . . .  CAJB 

]=o 
1 

3=1 

. . .  r o  

0 . . .  0 

0 . . .  B 
0 . . .  AB 

. . .  

Suppose the occurrence of computer failure(s) is binomi- 
ally distributed with parameter P. Let qo, q 1 ~  . . . , q~ be the 
probabilities of delays 0, T,, . . . . NT,, respectively, such that 

l ,lqa = P. where the maximum delay is assumed to be 
NT,. This delay distribution can be derived in practice from 
the knowledge of environmental characteristics. By combining 
the state equations (2) with the delay distribution, the state 
equation including the effects of delay 5 NT, becomes 

N 

N 

x ( m  + 1) = A D X ( ~ )  + Ez(BLtU(m) + B&&U(m + 1)) 

(11) 
a=O 

where E1 E ( 0 , l )  is a binomially-distributed random variable 
with parameter q l ,  i.e., Pr[& = 11 = q2 .  Then, the first moment 
of (5)  is 

N 

x(m + 1) = A D X ( ~ )  + qi(Bb,U(m) + BLzU(m+ I)). 

(12) 
r=O 

Since the period of the index m is N ,  the complex variable z 
in the 2-transform of (6) corresponds to z?? where Zk  is the 
complex variable in the 2-transforms of equations with index 
I C ,  that is, the period of (12) is w / N  in the frequency domain, 
where w indicates the period of equations with index k in 
the frequency domain (subsampling). Using (3) and (12), the 
characteristic equation of the control system in the presence 

of stationary occurrences of feedback delay is represented by 

(13) 
! [ z=o Z=O 

N N 

det ( I  + q Z B & F ~ ) z N  - AD + q,Bbl FD = 0. 

The asymptotic stability can be tested with the pole positions 
of (13) whose characteristic equation reduces to a simple 
form due to the simple structure of AD despite its augmented 
dimension. The characteristic equation of the zero-delay case 
(i.e., qo = 1 and thus P = Cp!lqz = 0) is 

det[z”I - ( A  - BF)”] = 0. (14) 

Further, one can get the following characteristic equation for 
the worst case in which qnr = 1. or the control input is updated 
only once every N sampling intervals due to the periodic delay 
of an active duration NT,: 

z”I - A“ + AaBF 
i = O  

! N - 1 

”l 1 
A - 1  

z”I - 1 Ai(A - BF) + Ai = 0 (15) 
i=O i=l 

where A = QDQ-l by the similarity transformation if 
D =diag [ d l .  . . . , d,] and dz’s are the eigenvalues of A. If 
the system (represented by the transition matrix A) without 
any feedback is unstable-that is, there exists at least one 
eigenvalue Idj 1 2 1-then the feedback is used to stabilize the 
system by changing the transition matrix to A - BF, which 
can also be diagonalized by the similarity transformation R, 
i.e., A - BF = RAR-l, where A = diag [ A , , .  . . . A,] and 
X z ’ s  are the eigenvalues of A - BF. Then, for example, when 
N = 2: 

Eig[A2 - ( A  + I)BF] = Eig[(A + I ) ( A  - BF) - A] 

= Eig[QDIQ-lRAR-l - QDQ-’] (16) 

where D1 =diag [dl + 1, . . . , d, + I] .  The i j th element of the 
matrix T = A2 - ( A  + I ) B F ,  from which the eigenvalues of 
the matrix can be calculated numerically, is 

n /  n 

/ 
(17) 

IC= 1 l,m=l 

where qz3, qz;’, ra3, and T?;’ are ijth elements of Q. Q-’, R, 
and R-’ ,  respectively. 

When the assumed maximum delay is not an integral 
multiple of the sampling period, that is, T d  = ( N  - l)Ts + 
6,0 < 6 < T,, all procedures are the same as that of the 
assumed maximum delay of NT,, except for i = N :  

~ ( ( m  + 1 ) N )  = A”s(mN)+ 

+ B z ~ ( ( m  + l ) N  - 1) 
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No control update during this period 

time failure(s) occur 1. successful recovery ' 
IH 

k : b t - " '  ko ko f 1 ko f N kf 
' :: ' ' 

Fig. 3. Time index for the one-shot delay mode. 

where B1 = 1: eAc(Ts-t)B, d t ,  Bz = J? eAc(Ts-f)B, d t .  
Thus, BLA, and BLN in (10) are modified to 

Bb,v = 

0 . . .  B 
0 . . .  o A B + B  
. . .  . . .  . . .  

N - 2 

0 . . .  CAJB 

0 . . .  CAJB+B,  
j = O  

N - 1 

j=1 

0 

0 

B. The Hard Deadline Derived from State Constraints Using a 
One-Shot Delay Model 

The pole locations do not change in case of only one failure 
with a relatively long (> T,) active period (Fig. 3). The 
(asymptotic or global) stability condition discussed thus far 
is therefore no longer applicable. Instead, the terminal state 
constraints can be used to test whether or not the system 
leaves its allowed state-space. Note that every critical process 
must operate within the state-space circumscribed by given 
constraints, i.e., the allowed state-space. When the control 
input is not updated for a period exceeding the hard deadline, 
the system may leave the allowed state-space, thus causing a 
dynamic failure. The allowed state-space consists of two sets 
of states X L  and X i  defined as follows: 

Xi: the set of states in which the system must stay 
to avoid an immediate dynamic failure, e.g., a civilian 
aircraft flying upside down is viewed as an immediate 
dynamic failure. This set can usually be derived a priori 
from the physical constraints. 
X i :  the set of states that can lead to meeting the 
terminal constraints with appropriate control inputs. This 
set is determined by the terminal constraints, the dynamic 
equation, and the control algorithm used. 

The system must not leave X i  nor X i  in order to prevent 
catastrophic failure. 

Let k ~ ,  k f  , and N denote the indices for the delayifailure 
occurrence time, the mission completion time, and the period 
of delay measured in sampling periods, respectively. Then, the 
dynamic equation of a one-shot delay model is 

where nk , , (N)  is a rectangular function from ko to kO + N ,  
that is, & , ( N )  = [ ( k  - ko)  - < ( k  - ko - N )  where [ is a 
unit step function. 

1407 

To test if the constraints at time + N and k f  are met, 
one must derive z ( k 0  + N )  and z ( k f )  by solving (19): 

ko + N  - 1 

z ( k 0  + N )  = A"z(k0) + Ako+N-i-l  Bu(ko) (20) 
i=ko 

IC" +N - 1 

k i - 1  

Let A = ( T , ) / ( M )  for a certain M value determined 
according to the required accuracy of analysis and let X i  
be the set of the states at time k f  representing the terminal 
constraints. When the delay is equal to T d  = ( N  - l)Ts + A, 
the states at time koT, + T d  and k fT ,  are obtained in the 
same way as (20) and (21): 

z(koT, + Td) = ANz(koTs) 
ko +Ar - 1 

k f - 1  

i= ko + A' 

Then, the pseudocode, shown at the bottom of the page, 
can be used to derive the hard deadline for the system with 
the initial state 20 at time ko where zf E X i  can be tested 
indirectly by the following relation: 

5(kf) E xi e z ( k 0  + N )  E xi (23) 
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where where P ( k )  is the solution of the discrete Riccati equation: 

i = ko + N 
L I1 J I 

results. 
In practice, it is difficult to obtain Xi. Although there may 

be a one-to-one mapping between z (k0  + N) and z ( k f ) , X f ,  
is usually a continuum, which requires an excessive amount 
of computation due to the curse of dimensionality. The size of 
X i  will decrease as either N increases or k approaches k f ,  
but the size of Xi is usually larger than that of Xf, due to 
the (asymptotic) stability of a controlled process. 

Iv. EXAMPLES AND NUMERICAL RESULTS 

To demonstrate the concept of hard deadline, we derive the 
deadlines for several simple, yet practical, example control 
systems. The first two examples calculate hard deadlines via 
stability analysis. 

Example 1: Consider a simple controlled process: 

z ( k  + 1) = 1.05z(k) + 1.8u(k) 
where Q = 2, R = 7. This system is unstable without any 
feedback control but is controllable. The optimal feedback 
control is given by 

P(k)  = Q + ATP(k + 1)[1+ BK1BTP(lc  + 1)]-lA 

where P ( k f )  = 0. Hence, we obtain a steady-state feedback 
gain F = -0.3594 by plugging P ( k )  = P(k + 1) into (24), 
that is, u(k )  = -0.3594x(k) as k -+ ca. The system is 
stabilized by the feedback control that results from minimizing 
the performance index J (7), since the pole position X is 
changed from 1.05 to 0.4013. The relation between the pole 
position and N for the worst case2 is given in Table I, yielding 
the hard deadline D = 4 since the pole moves outside the unit 
circle beginning at D = 4. The pole position is affected by the 
probability distribution of delays as well as the magnitude of 
the maximum delay (NT,), which is shown in Table I1 where 
q1 = 1 - P, q 2  = P(l - p) ,  and q3 = PD. Since the pole 
in the worst case or when q N  = 1 is located at 0.9589 for 
N = 3, the pole in all other cases (i.e., q3 < l), for example 
X = 0.9033 when P = q2 = l , q 3  = 0, must reside inside of 
the unit circle. However, the pole approaches the unit circle 
quickly as the probability of a large delay increases. 

Example 2: For a more practical example of stationary 
occurrence of delays/failures, the dynamic behavior of the 
altitude of a spinning satellite is described in terms of the 
long-term control of the roll (9) and yaw ($) angles, which 
is based on the dynamic coupling resulting from the rotation 

'The "worst case" means the periodic occurrence of the largest delay 
possible, that is, deterministically qn: = 1. while updating the control input 

u(k)  = [ K I B T P P 1 ( k  + I) + BPP1(k  + 1)BTIP1Az(k) 
= F z ( k )  (25) once every L l i  sampling intervals. 

\*Recursive testing the allowed state space while increasing the delay TZ\ 
m = 1 \*subsampling period, ma*\ 
D=integer-time(Nli,) \*integer times of Ti\ 
if ( D  5 N1im) then 
while(m # T s / A  or test-constraints0 # TRUE) do 
Td := (D - 1)Td + ma 
if test-constaints (Td) then return Td\*hard deadline\, is Ti\ 
else m : m = 1 \*test\, larger Td by increasing m*\ 

e nd-wh i 1 e 
else return no hard deadline 

in t eger-t ime(NI;,) 
N = l  
while (N # N1im or test-constaints0 # TRUE) do 

if test-constaints ( T d )  then return N \*D = N,,, is obtained*\ 
else N : = N  + 1 \ test larger N*\ 
end-while 
test -constraints( T d )  
compute z ( ( k 0  + N)T,) from zo 
if ( z ( ( k 0  + N)T,) E Xi) then 

Td := NT, 

begin 
compute z(kfT,) from either x ( ( k 0  + N)T,) or zo 
if (z(kfT,) E X i )  then return FAILURE 
else return TRUE 

end 
else returnTRUE 
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TABLE I 
RELATION BETWEEN THE POLE POSITION 

AND ,V WHEN P = q,V = 1 

N 1x1 
2 0.4729 
3 0.9589 
4 1.1198 
5 1.1811 
6 1.2049 
7 1.2128 

TABLE I1 
RELATION BETWEEN THE POLE POSITION AND THE PROBABILITY 

DISTRIBUTION OF DELAYS WHEN A' = 3 

P = 0.3 P = 0.; 
3 1x1 3 1x1 
0 0.5596 0 0.7917 

0.1 0.5642 0.1 0.7970 
0.3 0.5731 0.3 0.8076 
0.5 0.5818 0.5 0.8178 
0.7 0.5903 0.7 0.8255 
0.9 0.5985 0.9 0.8375 

1 0.6024 1 0.8423 

TABLE I11 
MAXIMUM MAGNITUDE OF EIGENVALUES 

6 0.5219 
7 0.7732 
8 1.0381 
9 1.3055 
10 1.5682 

of the satellite around the earth: 

where the coefficients depend upon the orbital frequency, i.e., 
the angular velocity of the satellite with respect to the inertial 
frame, and U ,  and U ,  are control signals. The goal of the 
control is to maintain a desired orientation of the satellite 
in the orbit around the earth (the stabilization problem) with 
the minimum-control effort, which can be represented by a 
quadratic performance index (7) of the state and the control 
input. Discrete state equations are derived from (26) and (27) 
with T, = 1 s. The corresponding coefficient matrices are then 

[ 8.1660 2.74901 

[ 0.5470 0.78551 
0.0782 0.0391 

0 0.1003 A =  

B =  

L A  

L l  

One can derive the optimal (feedback) control gain matrix, F: 

F =  6.6508 2.2661 ' 

This feedback control changes the eigenvalues from (8.166, 
0.1003) to (0.1102 f 0.0045j}, thus stabilizing the satellite. 
Let the rate of failure occurrence be U500 per hour. Then, 
the change of poles as a result of incrementing N is derived 
for the occurrence of the largest delay possible ( P  = q,\r = 
5.556 x l O W 7 )  and is given in Table 111. Since the hard 
deadline D = 8Ts, the controller computer must have some 
mechanism of fault-tolerance, which can recover from any 
controller-computer failure within 8T, in order not to lose 
the (asymptotic) stability in rotating the satellite. Whereas the 
previous examples calculated hard deadlines via stability, the 
following examples will calculate hard deadlines using state 
constraints. 

Example 1: Consider the system of a double integrator [3], 
whose sampled model with T, = 0.01s is 

[ 4.7623 1.62491 

where the constraints on the control and state for ko 5 k 5 k f  
are given by 

R = { u ( k ) :  -1 5 u ( k )  5 l} 
X a  =((~l(k),~z(k)): -25 5 ~ 1 ( k )  5 25, -5 5 22(k) 5 5). 

The terminal state must belong to the set X i  = 
( ( ~ 1 . ~ 2 ) :  (z,I 5 0.2.2 = l , 2} .  From these constraints, one 
can find a simple (nonmaximal) R-invariant set X, which 
is a polyhedron defined by the vertices: 'ul = (0,5),v2 = 
(25,0), w3 = (25. -5).v, = - v % - ~ ,  i = 4,5,6.  A set X is 
said to be R-invariant with respect to G if X C G such that 
(i) V z ( k o )  = zo E X ,  3u(k)  E RVk. such that if z ( k 0 )  = z o  
then z ( k )  E GVk and limk,,z(k) = 0, and z ( k )  E XVk. 
An R-invariant set clearly belongs to the allowed state-space 
( X h n X i ) ,  since the state z ( k ) V k  E [ICo9 k f ]  must stay in the 
given state constraint set G and satisfy the terminal condition 
z(kf) E Xi by the convergence property of z ( k ) .  A constant 
feedback control input was simply derived by using Theorem 
3.1 in [3]: 

U ( k )  = -O.o'hi(k) - 0 . 2 ~ 2 ( k ) .  (28) 

The state constraint Xi, R-invariant set X with respect to 
Xi, and the state trajectory in the absence of delay, and the 
state trajectories in the presence of one-shot delay equal to 
the hard deadline with and without terminal constraints are 
plotted in Fig. 4, where the curves 1-5 indicate X i ,  X (or an 
R-invariant set), state trajectory in the absence of delay, state 
trajectories in the presence of delay equal to the hard deadline 
with terminal constraints, and without terminal constraints, 
respectively. 

The hard deadlines associated with the states on the tra- 
jectory in the absence of delay are derived by the algorithm 
in Section I11 for both cases with and without terminal con- 
straints, and are plotted in Fig. 5. 
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P31 P32 

g SI: No failure 
S1: One processor with failure(s) 
5'3: Two or three processors with failure(s) 

S,: Two sequential TMR failures 
Ss: Dynamic failure 

= One TMR failure 

Fig. 4. State trajectory in the absence of delay, and the state trajectories in 
the presence of one-shot delay equal to the hard deadline with and without 
terminal constraints. 

-10 I I I I I I 
-30 -20 -10 0 10 20 . 30 

X W  

Fig. 5. Hard deadlines of the state trajectory 3 of Fig. 4 in the absence of 
delay, 1) with terminal constraints, and 2) without terminal constraints. 
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for 2. 

I 
0 5 10 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0  

Time. k tnl 

Hard deadlines of the state trajectory 3 of Fig. 5 in the absence of Fig. 6.  
delay, (1) with terminal constraints and (2) without terminal constraints. 

In Fig. 6, the hard deadlines on the subset, (5 5 21 5 
15; ( U )  - 5 5 2 2  5 -1 and (b) 0 5 2 2  5 2) c X, are derived 
under the assumption that the remaining mission time is 38Ts 
for all states in the subset. 

Example 2: The physical meaning of a hard deadline based 
on the one-shot delay model can be explained with the real- 

time controller of a robotic manipulator, where the obstacles in 
the robot's workplace are translated into state constraints. That 
is, the system states (robot's positions) must be constrained to 
avoid collision with the obstacles. In addition to these state 
constraints, there are usually control input constraints due to 
the bounds on joint motor torques and energy. In [5], a point 
robot of Cartesian-coordinate class was modeled by a set of 
decoupled double integrators: 

[:I = [: gr] [:] + [; :] [ 9 ]  
where x, y, and U are two-dimensional position, velocity, and 
control vectors, respectively, and I E R2x2. The robot's 
end-effector is guided by the control input determined by 

subject to the control constraints lupl 5 U:", for i = 1 , 2 ,  and 
the state constraints specified by the obstacles. The obstacle 
avoidance strategy (OVS) used in [5] considers the dynamic 
environment and real-time control needs, where the obstacle- 
related state constraints are transformed into state-dependent 
control constraints by mapping each end-effector's position 
relative to an obstacle into the P-functionals: 

P = (zTz)k - (7.2)'" 

where the obstacle is assumed to be centered at the origin and 
covered by a circle of radius T .  The k in the P-functional most 
be chosen such that the set of permissible controls remains 
nonempty, and the system state and each obstacle's position 
determine x = [ X I  - a ,  2 2  - bIT, where ( a ?  b )  is the coordinate 
of a 2-D obstacle. According to Theorem 1 in [ 5 ] ,  k is set to 0.5 
so that the control input constraint set may remain nonempty 
oer the duration from the detection of a potential collision 
to the disappearance of this collision danger. A collision-free 
trajectory is guaranteed if P ( t )  > O M .  A potential collision 
was detected by checking 

(30) 
where i! = -p(0)/kmax is the time at which the minimum of 
P occurs. If the condition (30) is violated, the instantaneous 
value of Pma, is calculated, and an additional constraint (31) is 
included until P becomes positive, i.e., the danger of collision 
disappears. 

@(z, v) = { U :  P ~ u  + v'Pzzv 2 p,,,} (31) 

where Pz = = (m(x) I ) / ( zTz)  - 
( z ~ z ) - ~ / ' %  and m(x)  = 2k(zTz)"' .  The intersection of 
these constraints with the admissible control set R results in 
a polygonal control space: 

A =@(z,v)  n R. 

The optimal decision strategies (ODS) in [7] can be used to 
solve such a constrained minimization problem, similarly to 
a class of pointwise-optimal control laws constrained by hard 
control bounds. The hard deadline is derived using a pointwise- 
optimal control law with the OVS. Since the computation-time 
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delay causes the failure to update the control input, a collision 
(or a dynamic failure) occurs if the computation-time delay 
is longer than a certain threshold, which is a function of the 
system state and time. In this example, the state constraints 
change with system state (time), i.e., the state-dependent 
control constraints. Thus, the control input must be updated 
on the basis of new information to avoid any collision. 

The trajectories derived in both the absence and presence 
of delay DT,, and the hard deadlines on these trajectories in 
the absence of delay are plotted in Figs. 7 and 8. 

v. APPLICATION OF HARD DEADLINE INFORMATION 

The information on hard deadlines is very useful for mod- 
eling system reliability and designing both the hardware and 
software for a controller computer. When designing a con- 
troller computer, one has to make many design decisions in 
the context of controlled processes that are characterized by 
their hard deadlines and cost functions [lo], including: 

hardware design issues dealing with the number of pro- 
cessors and the type of interconnection network to be c I _ _  
used, and how to synchronize the processors, 
software design issues related to the implementation 
of control algorithms, task assignment and scheduling, 
redundancy management, error detection and recovery. 

From the hard deadline information, one can deduce the 
knowledge of system inertia, which can, in turn, be used to 
specify the fault-tolerance requirement of a real-time control 
system. This knowledge is required to estimate systems’ ability 
of meeting timing constraints in the presence of controller- 
computer failures, which was characterized in [ll] as the 
probability of dynamic failure, Pdyn .  

To illustrate the general idea of applying the knowledge of 
system inertia, let us consider a simple example of a triple 
modular redundant (TMR) controller computer in which three 
identical processors execute the same set of cyclic tasks. The 
TMR controller computer updates, once every T, s or every 
sampling period, the control input to the controlled process 
(plant). That is, the period of each cyclic task is equal to 
T,. The input of the cyclic task is a discretized output of 
the plant and the output of the cyclic task will be used to 
control the plant during the next sampling interval. The output 
of the TMR controller is correct for each task only if at least 
two of the three processors in the TMR controller produce 
correct outputs. A TMR failure is said to occur if more than 
one processor in the TMR controller fail during T,. Thus, 
the output of the TMR controller would not be updated in 
case of a TMR failure. The condition for a system (dynamic) 
failure resulting from controller-computer failures3 is derived 
from the hard deadline, which is the allowable maximum 
computation-time delay. In other words, this condition gives 
us the knowledge about the controlled system’s inertia against 
controller-computer failures. 

3The other sources of system failure(s), such as failures in actuators or 
sensors or mechanical parts and failures of AID and DIA converters, are not 
considered in this paper, because our main intent is to analyze the coupling 
between a controlled process and a (fault-tolerant) controller computer. , 

(b) 

Fig. 7. Hard deadlines (DT,) of the region { 5  2 .r1 2 15. - 5  2 .rz 2 -1) 
(S = . r l ,  1-  = .1‘2, 2 = 5), where the top and bottom values of Z-axis are 
24T, and ST,, respectively. (b) {.5 2 ,rl 2 15.0  2 .r2 2 2}, where the top 
and bottom values of Z-axis are 10Ts and T,. 

More than 90% of computer failures have been reported 
to be transient, especially with short active durations [ 121. 
Thus, the controller computer may recover from most failures 
in a few sampling intervals, and it can correctly update the 
control input without causing any dynamic failure, if the active 
duration of controller-computer failure is smaller than the hard 
deadline. 

Suppose the hard deadline derived from the controlled sys- 
tem is three sampling periods and a TMR controller computer 
is used. That is, no dynamic failure occurs if the faults inducing 
computer failures disappear (or are recovered by a fault- 
tolerant mechanism) within three sampling periods. Then, the 
reliability model for this controller computer (Fig. 9) is built 
by extending a Markov chain model whose parameters are to 
be estimated at a given level of confidence from empirical 
data. The additional states account for the system inertia, i.e., 
a dynamic failure results from only three consecutive incorrect 
(missing the update of) outputs of the controller computer or 
for a period of 3T,, not immediately from one or two incorrect 
(missing the update of) outputs. Without the information of 
hard deadline, one can overestimate the probability of a system 
failure under the assumption that the system has no delay- 
tolerance, i.e., one incorrect output can lead to a dynamic 
failure. 

VI. CONCLUSION 

The hard deadline for a critical-control task is usually 
assumed to be given a priori. This presupposes the existence 
of a precise definition of the hard deadline and a method to 
derive it, which, however, have not been addressed in detail. 
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Fig. 

5 ,  

I I I I I 
0 1 2 3 4 5 

8. 
absence of delay and 2, 3) in the presence of delay equal to DT,. 

State trajectories for a point robot with four obstacles, 1) in the 

I 
I I I I I I 

0 0.6 1 1.5 2 2.5 3 3.5 
xl 

A Markov reliability model with knowledge of the system inertia. Fig. 9. 

The knowledge of hard deadlines, which must be derived from 
real control applications, is very important for task assignment 
and scheduling, specification and evaluation of fault-tolerant 
controller computers. 

In this paper, hard deadlines are derived for linear time- 
invariant systems whose dynamic properties and control algo- 
rithms are given along with the characteristics of their envi- 
ronment (controller computer’s fault behavior). More complex 
control systems can be approximated by such simple systems. 
First, when the occurrence of computer failures is stationary 
or represented by an appropriate probability density function, 
the hard deadline is obtained as an integer multiple of the 
sampling period by using the (asymptotic) stability condition 
for a modified state equation. Second, a heuristic algorithm is 
proposed to iteratively compute the hard deadline as a function 
of the system state and time by testing for the given (or 
derived) constraints of control inputs and states. 
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