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Short Papers

Minimum-Time Collision-Free Trajectory
Planning for Dual-Robot Systems

Kang G. Shin and Qin Zheng

Abstract—Collision-free multirobot motion planning can be achieved
in two steps: path planning and trajectory planning. Path planning finds
for the robots geometric paths to avoid collision with static obstacles and
trajectory planning determines how fast each robot must move along
its geometric path to avoid collision with other moving robots. For a
dual-robot system, a simple trajectory planning strategy is to let each
robot move along its path as fast as possible and delay ome robot at
its initial position to avoid collision with the other robot. We derive in
this paper a sufficient condition under which this simple (thus easy to
implement) strategy for dual-robot systems can achieve time optimality as
well as collision avoidance, i.e., the two robots reach their final positions
without colliding with each other in the minimum amount of time. A
demonstrative example is presented, showing how this strategy can be
used for loading and unloading applications.

Index Terms—Collision avoidance, collision region, minimum-time tra-
jectory planning, multirobot systems.

1. INTRODUCTION

The use of multiple robots in a common workspace can enhance the
utilization of robots, increase productivity, and improve the versatility
in handling different applications. However, when more than one
robot is used in a common workspace, they may become obstacles
to each other. Therefore, in addition to avoiding collision with
static objects, motion planning must also include collision avoidance
between moving robots [1].

One approach to collision-free motion planning for multiple robots
is to decompose the problem into two subproblems: path planning and
trajectory planning [2]. Path planning finds for the robots geometric
paths that do not intersect static obstacles, and trajectory planning
determines how fast each robot must move along its path to avoid
collision with others.

This paper deals with the problem of collision-free trajectory
planning for multiple robots. For simplicity, we assume that the
robots” paths are planned such that at most two robots might collide
at a time. Therefore, only dual-robot systems need to be considered
for trajectory planning.

The authors of [3] studied the dual-robot collision-avoidance
problem. They modeled the robots as spheres and restricted each robot
to move along a straight-line path. By approximating the collision
region (to be defined later) with rectangles, they showed that delaying
one robot at its initial position can achieve a smaller motion time
than other collision-avoidance strategies (such as speed reduction or
delaying the robot at the middle of its path) if the collision region
contains only one rectangle. They also showed an example in which
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this conclusion may not be true if the collision region contains more
than one rectangle.

We extend significantly the result of [3] by allowing arbitrary
paths and more accurate geometric models of a robot. In other
words, the robots do not have to move along straight lines, and
more accurate geometric models than spheres can be used to describe
the geometric shape of a robot. Under these relaxed conditions, we
show that delaying one robot at its initial position can still achieve
the minimum motion time among all collision-avoidance trajectory
planning strategies if the collision region is strongly connected (to
be defined later). A sufficient condition for verifying the strong
connectivity of a collision region is that the two robots might collide
at most once when they move along their paths. This condition is
easy to check and can be satisfied in most multirobot applications.

The main intent of this paper is to provide an easy-to-use guideline
for the collision-free trajectory planning of dual-robot systems. We
prove that if the objective is to minimize the robots’ motion time,
then delaying one robot at its initial position for the minimum period
required for collision avoidance is the best solution. So, we do
not need more complex strategies like speed reduction or delaying
the robot at the middle of the path, which are usually difficuit or
expensive to implement.

This paper is organized as follows. The main crux of the paper
is given in Section II, presenting an algorithm for collision-free
trajectory planning and stating its time optimality. A demonstrative
example is given in Section III, and the paper concludes with Section
Iv.

[I. MINIMUM-TIME COLLISION-FREE TRAJECTORY PLANNING

Suppose there are two robots, Ry and Rz, working in the same
workspace. The path for each robot to follow is given in parametric
form: ¢; = g,(s:), 0 < s; < 1,i = 1.2, where ¢, is R;’s joint
position vector, and s; is the parameter representing the robot’s
position. For example, s; could be the normalized arc length along
the path. Our trajectory planning problem is to determine a pair of
feasible collision-free trajectories @ : s; = fi(t).s = 1.2 such
that £;(0) = 0, fi(ti) = 1, df:i(0)/dt = dfi(tic)/dt = 0, and
the maximum motion completion time of the two robots, J(m) =
max{tic, 2.}, is minimized, where ;. is the (unconstrained) time
for robot R; to complete the motion.

A trajectory is said to be feasible if the above terminal conditions
are satisfied and it does not require torques beyond the robots’
capabilities. Clearly, a necessary condition for s; = fi(t) to be a
feasible trajectory is that f;(t) is C", i.e., continuously differentiable.
A pair of trajectories 7 : s; = fi(t),i = 1,2, is said to be collision-
free if v(s1 (f®) n 52(f2(z))) = 0,0 <t < max{tic.t2e },
where S ( fi(t)) denotes the physical space occupied by R; at
position s; = f;(t) and V(S) denotes the volume of space 5. Note
that, according to this definition, R; does not collide with R if R,
slides on the surface of Ro. This can be easily met by enlarging
the robots’ physical dimensions in their mathematical models by the
amounts determined based on the required clearance for safety.

There exist several algorithms that produce a minimum-time tra-
jectory for a single robot [4]-[6]. One simple but elegant discrete
approximation algorithm is the perturbation trajectory improvement
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algorithm (PTIA) developed by Shin and Mckay [6]. Based on this
algorithm, a pair of collision-free trajectories =* for two robots can
be obtained by delaying one of them at its initial position as follows:
Algorithm 1:
Step 1: Apply the PTIA in [6] to derive two minimum-time
trajectories s; = fi(t) and s = f5(¢) individually for
R, and R,, respectively. Let f(t) = 0, Vt < 0 and
fr) =1, vt > tie,i = 1,2.

Step 2: Let Ty = {tdl ttenr > 0, 51 = fi(t - ty) and
sp = fi(t) are collision—free trajectories} and Ty =
{taz : taz > 0,51 = fI(t) and s2 = f5(t — taz) are
collision-free trajectories}. Let ¢, be the infimum of Ty;,
i = 1,2

Step 3: Let m @ 51 = flq(t) = fi(t —th).s2 = f5(t), and
ma i 81 = fi(t),s2 = fsa(t) = f7(t — tip). Then

7 =m if J(m) < J(m2), and 7* = m otherwise.

To state the conditions for the time optimality of Algorithm 1, we
need the following definitions.

Definition 1: The collision region on an s, X so plane is defined as
D. = {(s1,52):0< 5 <1, 0< s2 <1, two robots collide with
each other if they are at positions ¢, = g,(s;) and ¢, = g,(s2),
respectively }.

Definition 2: D, is said to be strongly connected if ¥ 0 < si <
53<1,0<s5<s3<1, Denn{(s1,82): si <s1 <82, 52 <
s2 < s3} is either connected or an empty set. Clearly, the condition
of strong connected D, is stronger than connectedness but weaker
than the convexity of D..

We have the following theorem stating the time optimality of
Algorithm 1.

Theorem: Let 7" be the trajectories obtained from Algorithm 1.
If A1) no collision occurs when at least one robot is at its starting
position (s = 0) or ending position (s = 1), and A2) D, is
strongly connected, then J(7*) < J(x) for any feasible collision-free
trajectories m : s; = fi(t), i = 1,2.

The proof of this theorem is quite involved, so only a sketch of the
proof is given here to illustrate the main ideas. A detailed, rigorous
proof can be found in [7]. Specifically, we will prove the following
results.

Result 1: If Al holds, then Algorithm 1 can always produce a pair
of feasible collision-free trajectories.

If the collision region D. is strongly connected, then we
only need to consider strictly monotone trajectories in
order to obtain minimum-time trajectories. By “strictly
monotone trajectory” we mean that, once a robot starts
moving, it keeps moving forward with a positive speed
until it reaches its final position.

Among all feasible collision-free strictly monotone tra-
jectories, the one determined by Algorithm 1 has the
minimum motion completion time.

Result 2:

Result 3:

It is easy to see Result 1 since Assumption Al ensures that all
possible collisions can be avoided by delaying one of the two robots
at its starting position by at most the amount of time needed for the
other robot to reach its final position.

Result 2 plays a key role in the proof of the theorem. Though Result
2 may seem obvious, it is difficult to prove rigorously. The difficulty
lies in the dependence of Result 2 on the strong connectedness of D..
If D. is not connected, one can easily see a situation where Result 2
does not hold. The optimal trajectory on the s; X s» plane could be
the one going through between two disconnected collision regions.
This means that R, might need to move to a middle point, wait there,
and move again. However, the assumption on the connectedness of
D, still cannot lead to Result 2. The weakest assumption with which

Fig. 1. The configuration of a dual-robot system.

we could prove Result 2 is the strong connectedness of D.. See the
proof of Lemma 2 in [7] for a detailed account of this.

Result 3, which leads to the conclusion of the theorem, can be
easily obtained from Result 2 by using the fact that strictly monotone
trajectories and the connected collision region, D., on the s; X sg
plane lead to connected collision regions on the s; Xt planes, 7 = 1, 2.
We prove the theorem by replacing any monotone trajectories with
those obtained from PTIA and shifting one of them upward by the
minimum amount needed to avoid connection to the collision region
on the s; x t plane.

The above theorem is the main contribution of this paper. We have
tried our best to impose the weakest assumption on the collision
region D.. Note that the strong connectedness of D. is much weaker
than the convexity of D., which could greatly simplify the proof of
the theorem.

The practical significance of the above theorem depends on how
easily Conditions Al and A2 can be satisfied in real applications. In
what follows we give some physical insights into these conditions.

Assumption Al means that no collision will occur when at least
one robot is at its initial position (s = 1) or final position (s = 1).
This is usually true since these two positions are often the working
positions of the robots, i.e., robots perform useful operations there.
It is reasonable to plan one robot’s path not to intersect the working
positions of the other robot (at the path planning stage).

Assumption A2 requires that the collision region D. be strongly
connected, which depends on the geometric shapes of both robots and
the given paths for the robots to follow. Geometrically, a sufficient
condition for D. to be strongly connected is that a robot may enter D,
at most once while traveling in the north—east direction on the s; X s2
plane. The physical meaning of this sufficient condition is that, if both
robots always move forward (they may stop moving somewhere but
never move back) along their paths, they may collide at most once.
Under a proper path planning policy, this is not an unreasonable
limitation for most multirobot applications. (See a typical loading
and unloading example in the next section.)

The theorem also provides a tool for solving more complex
multirobot motion planning problems. For example, each robot may
be required to perform several sequential operations in different
areas of its workspace. Using the theorem, one can search for an
optimal combination of delays in these areas to obtain collision-free
trajectories by minimizing the overall motion completion time.

Another potential application of the theorem is to combine path
planning and trajectory planning. In this paper, we have separated
path planning from trajectory planning in such a way that path
planning is concerned only with collision avoidance between robots
and static obstacles, whereas trajectory planning deals with collision
avoidance between moving robots. However, there is no reason why
path planning cannot assume some of the responsibilities of trajectory
planning. At one extreme, the paths of two robots can be planned
such that they do not intersect at all. Then there will be no need to
delay a robot. However, this does not necessarily mean a smaller
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Fig. 3. Robot 2’s trajectory.

motion completion time since nonintersecting paths may be take
longer times than the intersecting ones. Thus, it is a better idea to
construct several pairs of paths with different degrees of intersection
and use the theorem to determine the completion time for each of
them. The one with the minimum completion time is finally chosen.

III. AN EXAMPLE

In this section, we present an example to show the use of the
above theorem for two robots in loading and unloading applications.
As discussed in [8], each robot can be modeled with the cylindrical
configuration of a rotational joint 3 and a translational joint r as
shown in Fig. 1. The vertical movement is usually restricted and,
therefore, not considered for collision avoidance.

The parameters to be used in the example are as follows. The
distance between the rotational joints of two robots is a constant
a = 2 m. The initial and final positions of R1 are 1 = 1 m,
By =7/2and 7y = 2m, B —m/2, and those of Rz are
ro = 1 m, 32 —7n/2 and T2 2 m, B2 w/2. R1 moves
along the path r; 1431, i (1 — 2s1)7/2 and R2 along
ro = 14 82, B2 (282—1)7!'/2,0S81Sl,OSSQSI.
Clearly, two paths intersect and collisions may occur between the
two robots moving along these two paths. For simplicity, the torque
constraints are assumed to be |d2ry /dt?| < 1(m?[s), |d*B1/dt*| <
3, |d®ro/dt?| < 1(m?/s), |d*Bz/dt?| < 2. If both robots are
moving with the maximum velocities determined by the PTIA, a
collision occurs.

Using a bisectional search for t3;, the collision-free trajectories
7 obtained from Algorithm 1 are shown in Figs. 2 and 3. Both
robots move with their maximum speeds, and R1 is delayed at its
initial position for 0.81 s to avoid collision with R2. The motion
completion time is 2.86 s.

Clearly, no collision can occur when one robot is at its initial or
final position. Also, the two robots can collide at most once when they
move forward along their specified paths. So, both Assumptions Al
and A2 of the theorem are satisfied. We conclude that the collision-
free trajectories obtained from Algorithm 1 are time optimal. In other
words, no other collision-avoidance trajectory planning strategies can
achieve smaller motion completion times than those obtained from
this algorithm. )

IV. CONCLUSION

We presented a sufficient condition under which the time optimality
of dual-robot collision-free trajectory planning can be achieved by
simply delaying one of the two robots. This result can relieve the users
of the need to wade through more complex solutions to the collision-
avoidance problem when this condition is satisfied. An example is
also presented to show the applicability of the result.
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Multiple-Goal Kinematic Optimization of a Parallel
Spherical Mechanism with Actuator Redundancy

Ronald Kurtz and Vincent Hayward

Abstract—A new kinematic design will be presented that is fully parailel
and actuator redundant. Actuator redundancy refers to the use of more
actuators than are strictly necessary to control the mechanism without
increasing the mobility. The uses of this form of redundancy include the
ability to partially control the internal forces, increase the workspace,
remove singularities, and augment the dexterity. Optimization will take
place based on several objective functions. The kinematic dexterity, the
forces present at the actuators, and the uniformity of the dexterity over
the workspace will all be investigated as potential objectives. Global
measures will be derived from each of these quantities for optimization
purposes. Examining only a single objective may not yield an acceptable
design. Instead, optimization of several factors is done simultaneously by
specifying a primary objective and minimum performance standards for
the secondary measures.

I. INTRODUCTION

Parallel kinematic structures are important means to improve the
performance of robot manipulators. Justifications for this have been
extensively discussed in the literature, for example [10], [13], [15],
in terms of structural and actuator advantages. Much attention have
been devoted to the analysis of these structures from the kinematic
(position and velocity) and dynamic viewpoints. A survey of these
techniques, even partial, would be quite impossible to fit here, so
references will be made as needed.

Of the immense number of possibilities offered by parallel kine-
matic structures, it appears that two have been extensively used: the
pantograph mechanism and its derivatives (vast numbers of industrial
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manipulators), and the iso-static (or Stewart) platform. Many others
have been proposed and used, but once again, a survey would be
outside the scope of this paper.

The observation of biological manipulators was used to suggest
alternate structures that could contribute to the design of manip-
ulators. From a kinematic viewpoint, dualities between serial and
parallel mechanisms have been pointed out [17]. One of them is not
often discussed: the relative work volume for a given mechanical
mobility. Serial chains have a large workspace (and poor structural
properties); parallel ones have a reduced workspace (but good struc-
tural properties). It is not surprising that biological manipulators
have hybrid structures: bones, tendons, and skeletal muscles form
numerous chains closed regionally, yet the general architecture of
biological manipulators is serial [8]. In addition, the work volume
of biological manipulators can be large, for example, the human arm
[12].

Part of the human shoulder can be approximated by a spherical
ball and socket joint actuated by six muscle groups to control three
degrees of freedom when four are strictly needed. This can be
viewed as a case of actuator redundancy in which the redundant
shoulder muscles are used to supply the internal forces needed to
keep the humeral head (ball) firmly anchored to the glenoid (socket)
throughout a large workspace. It also can be viewed as a means
to increase workspace, among many other plausible interpretations
such as the possibilities offered by antagonist actuation. This has
inspired the development of a mechanical counterpart with similar
properties: a three-degree-of-freedom mechanism fully parallel and
actuator redundant. A detailed kinematic analysis has revealed that
actuator redundancy can be used for more than just controlling
internal forces [7]. Increasing the workspace, removal of singularities,
decreasing joint forces, and improving dexterity are all possible with
this technique.

This paper is concerned with the design optimization of the
said mechanism, which consists of determining fixed geometric
parameters in accordance with some set objectives. For any design
problem, there will potentially be many objectives that cannot all be
satisfied simultaneously. In addition, technological constraints must
be considered before a practical design can be realized. Here, the
focus is on kinematics and on the determination of a range of good
designs from this perspective.

Purely numerical methods of optimization are avoided as they
would give no insight into the workings of the mechanism. Instead,
the approach is to form a hierarchy of objectives. Each objective
will be examined in turn to reveal the best designs. The idea is to
maximize the high-order objectives such that the low-order objectives
satisfy some minimum criteria.

II. DESCRIPTION OF THE MECHANISM

The general case of a spherical fully parallel platform mechanism
with linear actuation consists of a movable body attached to n legs
with one actuator per leg. Each leg has one prismatic joint interposed
between two spherical joints. A point of the platform is constrained
by a spherical joint permitting freedom of orientation (see Fig. 1). Let
us denote the center of rotation as C, the point of attachment of each
leg to the platform as P;, and the point of attachment of each leg to
a fixed frame A;, ¢ = 1,...,n. For the nonredundant case, n = 3,
with n > 3 for all the redundant cases. The parallel mechanism to
be described will have four actuators, one being “redundant” — yet
essential!
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