
1574 IEEE TRANSACTIO!,;S ON COMPUTER-AIDED DESIGN, VOL. II. NO, I�. DLCEMBER 1992

Restructuring WSI Hexagonal Processor Arrays
R, Venkateswaran, Student Member. IEEE. Pinaki Mazumder, Member. IEEE. and Kang G. Shin, Fellow. IEEE

Abstract-Fault-tolerant approaches have been widcly em­
ployed to improve the yield of ULSI and WSI processor arrays.
In this paper, we propose a host-driven reconfiguration scheme,
called HEX-REPAIR, for hexagonal processor arrays charac­
terized by a large number of relatively simple cells. Such arrays
have heen shown to be the most efficient for many digital signal
processing applications, such as matrix multiplication, and for
some classes of filtering operations. Reconfiguration for these
arrays is made difficult by the asymmetric nature of the inter­
connection network and the need for keeping the switching
overheads at a minimum. The algorithm presented in this pa­
per meets these requirements. In addition, it has excellent fault­
coverage characteristics, even in the presence of multiple faults,
and can accommodate multiple rows/columns of spare cells. The
restructured array is transparent to users and no modification
is required in any application program using the array.

1. INTRODUCTION

FOR SOME digital signal processing applications, such
as matrix multiplication and some classes of filtering

operations, the hexagonal interconnection network has
been proposed in literature [2] , [3] as the most efficient .
When implemented in a wafer-scale integration (WSI) or
an ultra-large scale integration (ULSI), a processor array
with thousands of cells can be squeezed into a single wafer
or chip. One of the main drawbacks with such large in­
tegrations is that these arrays are quite prone to defects
because of the imperfections in the manufacturing pro­
cess. A fault not only destroys the regularity of the array,
but also may make it useless for the algorithms using the
array. Thus fault tolerance is the only solution capable of
giving acceptable production yield, as it permits initial
testing and subsequent array reconfiguration using spare
cells and extra switching hardware. The locality of inter­
connections and regularity and simplicity of the switching
devices are important considerations. Much of the pre­
vious work in array reconfiguration [4]-[7] has primarily
dealt with rectangular or square arrays. These approaches
can be broadly divided into multiplexer-based and
switched-bus-based models.

The index-mapping algorithms of [5], [6] fall in the first
category. Index mapping refers to the technique of map-

Manuscript received April 18. 1990; revised December 31. 1992. This
work was supported by the Army Research Office under URI Program Grant
DAAL 03-87-K-0007. by the Office of Naval Research under Grant 00014-

85-K-0122, and by the National Science Foundation under Grant 9013092,

This paper was recommended by Associate Editor F. Brglez,
The authors are with the Department of Electrical Engineering and Com­

puter Science, the University of Michigan, Ann Arbor, MI 48109-2122.
IEEE Log Number 9200908.

ping a set of logical indexes onto a set of physical indexes
denoting working cells, Depending on the complexity of
the actual algorithm, such schemes tend to have a fair sur­
vival rate. Each PE is usually directly connected to many
other neighboring PE's through large switches/multiplex­
ers capable of connecting four to eight separate parallel
buses. A number of extra communication links are needed
to attain proper reconfiguration. Clearly such a scheme is
justifiable only when the individual PE's are relatively
complex, comprising several thousand transistors, thereby
making it highly desirable that all the nonfaulty proces­
sors be incorporated into the working logical array,

On the other hand, the switched-bus architecture, as
employed in [7] and others, is quite attractive when the
area for an individual cell is small . The reconfiguration is
based on a fixed number of horizontal and vertical buses
connected using simple 2 X 2 switches. A reeonfiguration
technique called modified indexed mapping is used to
overcome the deterministic process of index modification,
Reconfiguration is analyzed with respect to the switching
and routing capabilities of the interconnection network .
However , the generalization of these schemes to apply to
hexagonal arrays has not been studied much. The task is
certainly nontrivial, owing to the asymmetric nature of
the hexagonal interconnection and having to maintain
transparent connections to all six logical neighbors for
each PE,

Gordon et al. lill proposed the first reconfiguration
scheme intended primarily for hexagonal arrays wherein
the individual processors occupy relatively small silicon
area. It worked by bypassing faulty as well as some fault­
free PE's, using a bare minimum in terms of extra switch
hardware or links. However, the approach suffers from
very poor faull coverage and processor utilization in the
event of multiple faults. The authors justify it by claiming
that the probability of getting a chip with only one or two
faults is quite high, The reconfiguration algorithm HEX­
REPAIR, presented in this paper, is based on similar as­
sumptions as [II], However, HEX-REPAIR is much more
robust and has fault coverage rates comparable to the in­
dex-mapped schemes. The rest of the paper is organized
as follows, In Section II, we present the terminology and
the fault model used. Sections III and IV explain in detail
the inner workings of the algorithm. The proof of cor­
rectness is derived in Section V, while the fault-coverage
characteristics are studied in Section VI. Section VII per­
tains to implementation related aspects such as the area
and delay penalty of reconfiguration,

0278-0070192$03,00 1992 II:.IOE

VENKATESWARAN e' al.: RESTRUCTURING WSI HEXAGONAL PROCESSOR ARRAYS 1575

II. PRElIMINARIES

Before embarking on the mechanics of HEX-REPAIR,
it will be illuminating to understand the assumptions
made.

a) PE's, both faulty and nonfaulty, can be bypassed
during reconfiguration using simple switches. Thc by­
passed cells will be referred to as switching elements (SE)
to indicate the fact that they cease to perform processing,
but serve to maintain the logical interconnections between
logically adjacent cells. The switching-elements that are
actually working processors are sometimes called pseudo­
faults in the literature.

b) A conventional assumption that many approaches
[16], [9], [5,] [15] make is that faults affect only the PE's.
The switchcs and interconnects are considered to be fault­
free. We also makc this assumption . Thc rationale here is
that the PE's have to be designed with leading edge rules
so as to maximize speed and density, while the switches
and interconnects can be designed with more conservative
design rules. Also, interconnects are often formed on a
singlc laycr, whereas the PE's use multiple layers . This
leads to additional failure modes for the processors such
as mask misalignment and interlayer shorts, thereby re­
ducing the chip yield as a polynomial function of the num­
ber of masking levels used.

c) Each PE is associated with a six-port switch that can
provide six different switching functions . Such a switch
can be designed with as few as 15 ON/O!'!' devices. This
is the only overhead in temlS of extra hardware that has
to be incorporated into the array. Such low overhead is
critical , especially for digital signal processing applica­
tions whcrc thc processors may only comprise a few
hundred transistors. Using multiplexers, the relative
switching hardware overhead per processor increases to
an extent that the validity of the fault-free switch fault
model becomes questionable.

d) Our approach is intended for off-line rcconfigura­
tion, mainly to handle production failures. Testing infor­
mation regarding the location of faults is assumed to be
available using schemes such as the one suggested in [17].

The goal of reconfiguration is to recover a logical hex­
agonally connccted array of working cells from the orig­
inal physical array. Each cell of the array is represented
by a pair of physical indexes (Px, py), and a pair of log­
ical i ndexes (I" LJ that indicate the indexes of the func­
tion of each cell at runtime. The two are the same in the
absence of faults, but can differ when faults occur. Log­
ical indexes of faulty cells and the SE's are set to zero.
We let g; denote the fault set, i . e . , the collection of phys­
ical indexes of the faulty elements in the array; and let

I g; I denote the size of g;. Further, we let Xi and Yi denote
the Px and PI values of the ith fault, respectively.

DefinitiOll 1: Two cells are said to be horizontally con­
nected if they lie on the same physical row. Vertically and
diagonally' connected cells are defined similarly.

'By diagonal. we refer to the one going from the top left of the array
and proceeding to the bottom right.

Fig. I. An 8 X 8 hexagonal array with random faults.

Definition 2: Two cells are said to be row (column)
connected if they are either horizontally (vertically) or di­
agonally connected.

Definition 3: An H line is any collection of n I row­
connected PE's, where n I is the number of columns in the
physical grid . Thus, each H line starts at column I and
ends at the last column. Similarly, a V line is a collection
of m I column-connected PE' s, where m I is the number of
rows in the physical grid.

The algorithm HEX-REPAIR, presented in this paper,
can be divided into the following two phases:

Covering Phase: This determines an appropriate set, if
one exists, of H and V lines that cover all faulty cells. All
PE's on these cover lines are treated as switching ele­
ments in the final solution.

Procedure 1: The Covering Phase

I) Fault Enumeration: Find a one-to-one mapping 4>:
g; --> {I, 2, ... ,1g;1}.

2) Graph Construction: Construct the HCG and the
VCG for the given fault pattern.

3) Graph TransversaL: Determine the set Sh of all dis­
tinct paths in the HCG and the set 51, of all distinct
paths in the VCG that start at a root node and end
at the sink node.

4) Integer Programming: Determine the solution-set S
consisting of nil paths from Sh and nt, paths from S",
which together cover all faults in g; and which sat­
isfy

nh :5 number of spare rows = R

n" :5 number of spare columns = C.

Configuration Phase: Here we configure each SE so as
to ensure proper interconnections in the reconfigured ar­
ray. A simple scheme is presented to determine the par­
ticular configuration of an SE, based on the nature of in­
teraction between the H lines and V lines at that array

1576 IEEE TRANSACTIUNS ON COMPUTER·AlDED DESIGN. VOL II. NO. 12. DECEMBER 1992

location. The final step is in assigning the new logical
indices.

Fig. 1 shows an 8 X 8 physical grid. The indexes of
the 13 shaded processing elements represent the fault set
:f. This example array can be reconfigured using just one
spare row and one spare column of cells to yield a target
logical array of dimension 7 x 7. We shall use this prob­
lem as our running example throughout the rest of this
paper for illustrative purposes.

TIl. THE COVERING PHASE
In addition to finding a suitable set of H and V lines,

this phase also detem1ines the maximum size working
logical array that can be recovered from the given (faulty)
physical array. If this maximum is deemed to be insuffi­
cient, the reconfiguration process can be either terminated
or more spares can be added and the algorithm repeated.
Procedure 1 outlines the main steps involved in the cov­
ering phase. These are explained in greater detail in the
following paragraphs.

A. Fault Mapping

Let D) be the set consisting of cells with physical in­
dexes (x, y) such thatj = x + y - 1. Initialize the starting
fault index to 1:f.1 Now, visit the cells in each set DI , D2,
. . . in the increasing order of y for each Dj• For example.
in Fig. 2, the processing elements are visited in the order:
(1, 1), (2,1), (1,2), (3,1), (2,2), (1,3), (3,2), (2,3), (1,4),

(3,3), (2,4), (3,4). As each fault is encountered, it is
mapped to the current fault-index value and the fault-in­
dex value is then decremented by one. The fault indexes
for the example problem are indicated besides the faulty
cells in Fig. 1.

This step thus assigns a number between I and l:f 1 to
each fault in the array. This mapping is used in the con­
struction of the cover graphs and H!V lines.

B. Horizontal and Vertical Cover Graphs

The horizontal and vertical cover graphs (HCG), (VCG)
aid in identifying the maximal sets of faults such that all
the faults in one set can be simultaneously covered with
a single spare row (HCG) or column (VCG). The idea is
to impose a partial order on the set :f so that the search
for suitable lines can be restricted to just the fault set,
rather than the whole physical array. This is especially
important for large arrays with only a few faults.

Formally, these graphs can be defined as follows:
Definition 4: The HCG for a given :f consists of l:fl

+ I nodes, one for each fault amI a special sink node.
There exists a directed edge from node i to node j, iff

r; > Y; and Xi 2: Y0 and Y; - Y; 2: X; - Xi:
j is the sink node,
there do not exist nodes k, il• i2, • •• in in HCG such
that i --t k and k --+ i I --+ i2 -> • • • -> in -+ j. In other
words, i should not be directly connected to a node that
is an ancestor of j.

Defintion 5: The VCG for a given :f consists of l:fl +
I nodes, one for each fault and a special sink node. There

Fig. 2. Enumeration scheme for determining/ault indexes.

-
(a) (b)

Fig. 3. (a) Horizontal cover graph. (b) Vertical cover graph.

exists a directed edge from node i to node j, iff

X, > Xj and Y; 2: Y; and Xi - X) 2: Yi - Y;;
j is the sink node:
There do not exist nodes k, i), i2, • • • ill in VCG such
that i k and k -> i I -> i2 -> . . . -> ill -> j.
The HCG and VCG, as defined above, can be con­

structed in O(I:f12) time. Fig. 3 shows the two 13-nodc
HCG and VCG for our running example. The circled
nodes are those with no ancestors in thc graph. These will
be referred to as root nodes.

C. Graph Traversal

The set Sh(S,.) is a collection of paths in the HCG (VCG,
respectively). starting from a root node and terminating
at the sink node. New paths are generated using a depth­
first search strategy. Since, theoretically, the number of
possible paths in cach graph could be as high as 21"'1/2

,
we usc a parameter, called MaxPathLimit, to restrict the
maximum number of paths generated for each graph. Pro­
cedure 2 outlines the path traversal method.

The value set for MathPathLimit represents a tradeoff
between computation time and a 100% guarantee of find­
ing a feasible solution if one exists (MaxPathLimit = in­
finity). In our simulations, we have set MaxPathLimit to
1000 because we assume that the faults occur randomly
and the number of possible paths in each graph is rela­
tively small. Thus, the probability that a fault (node in the
graph) will occur in one of the 1000 chosen paths is quite
high.

VENKATESWARAN el al: RESTRUCTURING WSI HEXAGONAL PROCESSOR ARRAYS 1577

Procedure 2: Path Traversal Phase

PathsGenerated = 0;
ROD t Lis t = a circular l ist of all the root nodes in HCG (VCG);
While (Pat h sG en e rated < MaxPathLimit)and(RootList not empty) do

Cur r e n t Roo t = Next entry in the Roo t Lis t;
Generate a new path from Cur r e n t Roo t to thc sink node;
If no new path exists then

Remove Cu r r e n t Roo t from the Roo t L is t
Else

Increase Pat h 5 G e n era ted by one; Add this path to S" (SI')
Endif

EndWhile

D. Finding the Solution Set S
The solution sct S comprises of n" paths from S" and n,.

paths from S", such that togethcr they covcr all the faults
in :J, where n,,(n,.) is less than or equal to the number of
spare rows (spare columns) available. This problem is
similar to the prime implicant covering problem com­
monly encountered in gate minimization. A natural rep­
resentation is thc cover table that contains a row for each
horizontal path (member of S,,) and for each vcrtical path
(member of S,.) and a column for each fault in :J. A � is
placed in the ith row and jth column if fault j is covered
by the ith (horizontal and vertical) path. Certain rows and
columns can be deleted from the cover table to simplify
determining S. The rules for simplification follow.

I) Suppose, for a given column j, a � occurs only
once in row i. Then this row can be considered an
essential path and a part of every solution. This is
because faultj can only be covered and replaced by
this path. All the other columns k for which there is
a � in row i can also be removed.

2) If two or more columns are identical, al l but one can
be deleted.

3) Row i is said to dominate row j if it has a � in each
column wherej has one, and also in a few additional
columns. Furthermore, both i and j should either bc
horizontal paths or both be vertical paths. In this
case, the dominated row j can be deleted.

4) Column i is said to dominate column j if i contains
a � in every row where j has a �, and in addition
i has some more � in other rows too. In such a
case, we can remove the dominating column.

Hence, if we let Bi be a Boolean variable that is I if
row i of the cover table is selected for inclusion in S, and
Bjl' Bj2 • • • Bjn) be the rows that cover column (fault) j;
then the solution for covering all faults is given by the
product-of-sums Boolean equation

Using the distributive laws of Boolean algebra, this can
be equivalently represented by a sum-of-products expres-

sion of the form

p
L: (Bki Bk2 ... BkI,,) = I.

k�I

A product tcrm with the fewest number of literals will
constitute the minimum number of spares that are needed
to obtain a reconfiguration solution. However , any prod­
uct term that consists of fewer than n;, horizontal paths
and n" vertical paths, is an acceptable candidate for re­
configuration.

example: Table I is the cover table for the reconfigur­
ation problem shown in Fig. I. The top half of the table
indicates the six horizontal paths that exist in the HCG.
while the latter half gives the nine vertical paths that are
present in the VCG. Furthermore, columns 2 and 3 can
be removed, as they dominate column 4. A solution for
this coverage is easily determined to be {A, G} contain­
ing one horizontal path (A) and one vertical path (G). So
it is admissible , as we do have one spare row and one
spare column.

In practice, we solve the covering problem by employ­
ing the integer linear program paradigm for which effi­
cient computer routines are available [18]. Let Rand C
be positive integers denoting the number of available spare
rows and columns. Let each horizontal path be denoted
by a variable X, and let each vertical path be denoted by a
variable y;- Then our integer program can be stated as

Find a set of values for the m integer variables XI, X2'

• • . , Xm and the n integer variables YI, Y2, • • • , y,P
which minimize the objective function:

III

Subject to the I:J I + 2 constraints of rhe form

"

� ai,jXi + � aU+ml.jYi � 1,
i= I 1= I

wherej = 1,2, . . . ,I:JI;
III

� Xi -<; R; L: Y, -<; C
i= 1 i= I

1578 IEEE TRANSACTIONS ON COMPUTER-AIDED DESlliN. VOL. II. NO. 12, DECEMBER 1992

TABLE I
FUII.TCOVER TABU

Fault ImJex
Path
name 2 4 5 6 7 9 10 I I 12 13

A ,... ,... ,... ,... ,... ,... ,... v-
B v- v- ,... v- v- v- ,...

C v- v- v- v- ,... ,... v-
D ,... v- ,... v- v- ,... ,...

E v- ,... ,... ,...

F v- v- ,...

G ,... ,... ,... ,... ,... ,...

H v' ,... ,... v- ,... ,...

I '" v- v- v- ,... ,...

J v- ,... ,... '" v- v-
K v- v- v- V- '" ,...

L '" v- v'" v- ,... '"

M v- v- v- v'" '" v- ,...

N ,... '" '" v- v- v- v-
0 v' ,...

Here the quantities aj,j are either 0 or I and are obtained
from the cover table. The solution set S includes all paths
that correspond to a nonzero Xj or Yj value at the end of
the optimization. The constraints ensure that the number
of horizontal paths choscn do not exceed the number of
spare rows and the number of vertical paths do not exceed
the number of spare columns, The first set of 15'1 con­
straints ensure that each fault is accounted for in at least
one member of S,

For m rows and n columns, the algorithm typically finds
an reach the optimal vector after a number of iterations
that is no bigger than the order of m or n, whichever is
larger. In our case, m is detem1ined by the value for
MaxPathLimit and is independent of the array or fault-set
size and n = 1 g: I. Thus, the number of iterations required
is solely determined by the number of faults. For most
arrays with up to 25-30 faults that we simulated, we ob­
tained a solution in less than a second working on a Sun
Sparcstation. It is interesting to note that network flow
techniques can also be used to determine S.

IV. THE CONFIGURATION PHASE

Once the horizontal and vertical covering paths have
been successfully determined, the configuration phase is
next invoked. The three main steps constituting this phase
are stated in Procedure 3.
Procedure 3: The Configuration Phase

1) For each horizontal (vertical) path p in S, construct
a nonoverlapping H line (V line) that includes all
faults in p.

2) Reconfigure the array by assigning logical indices
to the remaining good processing elements.

3) Configure all the SE appropriately so as to ensure
that the restructured array is transparent to the var­
ious alogrithms using the hexagonal array. Thus a
PE can continue to communicate with its logical
neighbors on the same links as before, unaware that
it now reaches them through some SE's.

4) Perform postprocessing to shorten logical connec­
tions.

A. Constructinx H and V Lines

Each horizontal path in S is to he covered by an H line
and each vertical path by a V line. All of the cells of these
lines will become SE's in the final solution. With each of
these SE's, we associate an H type and a V type based on
the manner in which the H/V lines pass through it (sec
Fig. 4).

Based on the H line I passing through an SE with in­
dexes (i, j), its H type can be classified as being

I) U: (Unset) No H line passes through (i, j), which
means that this SE is intersected only by a V line.

2) S: (Straight) l connects (i, j) to (i, j - I) and (i, j
+ I), if they exist.

3) D: (Diagonal) I connects (i, j) to (i - I, j - I) and
(i+I,j+l).

4) LB: (Lower Bend) l connects (i, j) to (i I. j -

I) and (i, j + I).
5) UB: (Upper Bend) I connects (i. j) to (i + I, j +

1) and (i.j - I).
6) TR: (TwoRow) This is the case when two H lines

meet at (i, j).

Likewise, SE (i, j) can have its V type set to one of the
following six categories.

I) U: (Unset) No V line passes through (i, j).
2) S: (Straight) I connects (i, j) to (i, - I, j) and (i +

I, j), if they exist.
3) D: (Diagonal) l connects (i, j) to (i - I, j - I) and

(i+l,j+I).
4) LB: (Lower Bend) I connects (i, j) to (i - I, j) and

(i+l. j + I).
5) UB: (Upper Bend) l connects (i, j) to (i - I, j -

I) and (i + l,j).
6) TC: (Two Col) This is the case when two V lines

meet at (i, j).

The initial strategy used to construct an HIV line for
each path is stated below. "Let the horizontal (vertical)
path p in S consist of P faults {fl,!2, . . . ff'} arranged
in decreasing order of their fault indexes. The fault fl is
horizontally (vertically) connected to the PE in the first
column (row) of the row (column) of fl' Similarly, fp is
horizontally (vertically) connected to the PE in the last
column (row) of the row (column) of fp. For any other
two faults /; and f, � I, we find a (unique) PE k which can
be horizontally (vertically) connected to fi and diagonally
connected to /; + I' ' .

In the presence of faults occurring in more than one
line, this procedure can lead to some overlap between
H/V lines. We remove such overlap by removing the
COTTlmon faults from all but one line and reconstruct the
other lines as before.

VE1\KATESWARAN el 0/' RESTR\JCT\JRING WSI HEXAGONAL PROCESSOR ARRAYS 1579

0 -e- &. G- -6Z �
U .5. 11 Lll UB. ill

(a)

0 -e- 'Q � 'q) (k
U :; II Lll UB. li

(b)

Fig. 4. Different H and V line patterns. (a) H line types. (h) V line types.

-¢- ~ -$-
(j)NQrma! CQDflg

Fig. 5. Different SE configurations

B. Configuring the Switching Elements

A byproduct of the covering strategy used is that the
configuration of the SE's to maintain logical transparency
is reduced to a simple TABLE-LOOKUP operation. Note
that when we refer to an SE configuration, we actually
mean the configuration of the switch associated with that
PE. Fig. 5 shows the six different switching functions, of
which the first corresponds to a good PE and the latter
five correspond to an SE of type "a," "b," "c," "d,"
and "e," respectively. Table II is the SE configuration
table. Entries marked with a .. " indicate invalid H
type/V type combinations.

C. Assignment of Logical Indexes

Procedure 4 describes the scheme for assigning the log­
ical indices to the working cells of the reconfigured array.
First we scan, column by column, assigning a logical row
index to each PE in that column. This value is determined
by the numher of H lines that traverse the column above
the row under consideration. An SE gets a logical row
index of O.

We then perform a similar operation on each row, as-

Procedure 4: Assignment of New Logical Indexes

For each coLumn c Do

Fig. 6. Final result of the reconfiguratinn.

TABLE II
LOOKUP T 'BLE FOR SE SETTINGS

H type ->
V type � V S D LB VB TR

V a a
S b c e d
D b b

LB b e e
VB b d d
TC b

signing a logical column index to each PE, based on the
number of V lines met until that point. It is possible for
two cells, CI and Cz, to get assigned the same logical
indices when either two H lines or two V lines intersect
at the same SE. However, we note that for an n X n phys­
ical array, the total number of SE' s that result from two
such intersecting H or V lines is equal to 2n - 1. On the
other hand, every spare row or column consists of n cells.
Thus, we end up with an cxtra spare cell. We can there­
fore resolve the conllict by converting one of C1 or Cz to
an SE.

Corollary 1: Each switching element in thc reconfig­
ured array is intersected by at most one H line and at most
one V line. The proof follows from the H-V line con­
struction and conflict resolution strategy employed in Pro­
cedure 4.

Fig. 6 is the final result for our running example. The
logical indexes of all the working cells were determined
using Procedure 4, and the SE's were configured as per
Table II.

dR = a (dR counts the number of H Lines met so far)

For each row r Do

If (r, c) is a SE Then
dR = dR + k (w h ere k

and 1 ot h erwi se)

E L s e

If (r, c) is free Then

2 if H Line state for (T, c) is TR, a if it is U,

Mark LogicaL row for (r, c) as r - dR

1580 IEEE TRANSACTIONS ON COMPUTER-AIDED DES[GN, VOL. II, NO. 12. DECEMBER 1992

End For
For each row r Do

de =0 (de counts the number of V lines met so far)

For each col c Do

If Cr, c) is a SE Then

dc = de + k (w her e k 2 i f V Lin e st ate for C r, c) i s T C. 0 i fit i s U.

and I otherwi se)

Else

If Cr, c) is free Then

Mark logical col for (r, c) as c - de
Conflict Resolution:
I f a P E <i, j) has a l ready been ass i gned t he same

log i ca l i ndi ces Then

If Ir - i I "" Ic - j I The n
Mark U, j) as an SE of type a

Else

Mark <i, j) as an SE of typeb

End For

V . PROOF OF CORRECTNESS 01-' THE RECONFIGURATlON

ALGORITHM

Conceptually, the various H and V lincs partition the
array into several subareas, each possessing a certain re­
lationship between the logical and physical indices for the
processing elements within, In our example, there are
three such subareas: A, B, and C, (described in Table III).
We generalize this concept to several H and V lines,
thereby giving a constructive proof of the correctness of
HEX-REPAIR.

Theorem 1: The LOOKUP TABLE for switching ele­
ment settings guarantees a proper hexagonally connected
logic array of working PE's after the Logical Index As­
signment phase.

Proof: Let T(r, c) denote a subarea of working cells
which is bounded by r H lines above and c V lines to the
left. Then in this subarea, the logical indices of any cell
C" with physical indexes (i, j), is given by (i - r, j -
c). The proof of the correctness of the algorithm can be
established by enumerating the various possible cases.

Consider the logical right neighbor of CI. If the cell (i,
j + I) is good, then we are done. Assume otherwise.
There are two cases to be examined here. Let Cz be the
first cell on the same row as CI and to its right, that is
either free or contains an H line. Let the physical indices
of Cz be (i, j + k). Consequently, all cells between CI
and Cz have a V line passing through them and will be­
come SE's of type "b."

Case 1: Cz is a free, i.e. , working PE.
In this case, we have (1', j)R --- (i. j + 1), --- (i, j +

I)R ' (i, j + k)L' The subscripts denote the port
of entry or exit of that cell, viz. Left, Right, Top, Bottom,
Top Diagonal, and Bottom Diagonal. Since therc are k -
1 V lines between C1 and Cz, the latter lies in a subarea
of type T(r, c + k - 1). Thus, the logical indexes of Cz
are (i - r, (j + k) - (c + k - 1)) = (i - r, j - c +
1), which are the logical indexes required for the right
neighbor of CI.

Case 2: Cz contains an H line.
By similar arguments to the previous case, we can con­

clude that the right neighbor link of C[reaches the left
input of Cz. Furthermore, the H line type of Cz can only
be Diagonal or Lower Bend. This is because otherwise,
cell (i, j + k - 1) will also have an H line, which con­
tradicts the assumption that Cz is the first cell containing
one. Also cell C; = (i - 1, j + k - 1) is diagonally
connected to C2 via the same H line. So the H line type
of C; can only be Diagonal or Upper Bend.

Similarly, a V line, if any, through Cz can be Straight
or Lower Bend; and a V line, if any, through C; can only
be Straight or Upper Bend. From Table II, C2 can there­
fore be of type "a" or "e"; and C; can be of type "a"
or "d." In all cases, the signal path arriving at the left
port of Cz goes to the bottom diagonal port of C { and then
comes out of its right port.

Since at most one H line can pass through any cell,
C; cannot be simultaneously horizontally connected to cell
(i - 1,j + k) by an H line. Thus, we can extend the same
arguments we made before, by replacing occurrenccs of
C[and C;. We observe that with each H line, we move
up one physical row; and with each V line we proceed
one column to the right. Let this process finally terminate
at a good cell Cg which lies in a subarea of type T(r -
r', C + c'). This means that the signal path starting at the
right port of CI meets r' H lines and c' V lines. Therefore,
the physical indexes of Cg will be (i - r', j + c' + 1)_
Thus, the logical indices of Cg are «i - r') - (r - r'),
U + c' + 1) - (c + c')) = (i - r, j - c + 1), which
is as required.

The proof of correctness for up/down neighbor connec­
tions can be similarly derived, The case of diagonal con­
nections is slightly more involved. If the cell (i + 1, j +
1) has a Straight V line, then the path traced will be (i,

j)DR (i + l,j + I)DT--- (i + 1,j + Ih (i,j + l)s
..... (i, j + l)DB (i + 1, j + 2)DT' If on the other hand,

V E1\KATESWARAN et al.: RESTRUCTURING WSI H EXAGONAL PROCESSOR ARRAYS]581

SubArea

A
B
C

TABLE III
PARTITIONING DUE TO H 'ND V LiNES

Phy Index Log Index

y x

i-I
I

i-I

j
j -1
j - 1

the cell (i + I,) + I) has a Straight H line, then the path
traced will be (i'))DB ---> (i + I,) + I)DT ---> (i + I,) +
IlL ---> (i + I')R ---> (i + 1,j)DB -> (i + 2,j)DT' Finally,
the cell (i + I,.i + I) can have both a Straight V line and
a Straight H line. In this case the path traced will be (i,

j)DB ---> (i + I,) + I)DT ---> (i + I,) + l)DB --+ (i + 2,.i
+ 2)DT' Hence, if thc path encounters r' H lines and c' V
lines, the physical coordinates of C� arc (i + r' + 1,) +
c' + I). Since the type of subarea containing CK is givcn
by T(r + r', c + c'), the logical indexes of Cg are «i +
r' + 1) - (r + r'), (j + c' + I) - (c + c '») = (i - r
+ I,) - c + 1), which are as required. Q.E. D.

VI. EVALULATION OF THE ALGORITHM

Reconfiguration algorithms, such as HEX-REPAIR,
can be compared by thcir probability of getting stuck in a
fatal situation, namely, one for which the algorithm fails
to find a suitable reconfiguration. Even for optimal algo­
rithms based on local connections only, there are small
clusters of faults that cannot be overcome. For fixed prob­
ability of cell failurc, the probability that such clusters
occur therefore approaches onc as the array becomes in­
finitely large. Thus, there is a critical size of the array
that cannot be overcome unless the probability of single­
cell failure decreases. Thus, in such cases, a degradation
in array size would result unless new spares are added.

One pertinent measure is the critical constant (Xc which
is defined [19] to be the largest number such that if (X <
(XC' then for an array with N processors and individual
processor failure probability of 1/ NO:, the reconfiguration
will almost certainly gct stuck in a fatal situation. Thus,
it is desirable to have as small a value for (Xc as possible.
The rest of this section pertains to deriving the critical
constant for HEX-REPAIR.

Definition: An atomic fail pattern is defined as a fail
pattern that cannot be solved by the algorithm; while re­
moving any one fault from the pattcrn leads to a recon­
figurable array.

Theorem 2: For any array of size n x n with N = n2
processors, HEX-REPAIR contains O(n6) = O(N3) dif­
ferent fail patterns of size 3.

Proof An atomic fail pattern for HEX-REPAIR is
as follows: Pick any cell other than one lying along the
top two rows of the two rightmost columns. Place the first
fault there. Now place the second fault to the right and
above the first fault. Likewise, place the third fault to the
right and above the sccond fault. Fig. 7 shows a typical
member of the fail-pattern family. It consists of patterns

(1,1) i1
,

13---t--t--�-

(n,n)
Fig. 7. Typical member of an atomic fail-pattern for ct.

of the form:

W]')I). (i2,h), (i3,h)},

where the top left cell is labeled (1, 1).
Now, consider any three columns. It is clear that the

number of patterns T satisfying the constraints mentioned
above is given by

n-2 n-] n

() T =
i�] j � � I k �t-] 1 = n(n - l)(n - 2) / 6 = � .

We can also choose the columns in (3) ways. Hence, the
total number of patterns for such an array is (3)2. In
asymptotic notations2 this implies there are O(n6) = O(Nl)
different fail patterns of size 3. QED

Theorem 3: The critical constant (Xc for the reconfigu­
ration algorithm HEX-REPAIR approaches 1 as the num­
ber of processors N tends to infinity.

Proof: We consider only the case when all fail pat­
terns A are each the size k. This is true for HEX-REPAIR.
Let FA be a random variable equal to the number of fail
patterns in the processor array G. Let E(FA) and E(F�) be
its first and second moments, respectively. Then it was
shown in [19] that for positive constants a and {3

E(FA) = a' N6-ko.

k-I

� (S(i) . P 2k-i)
i -0

where TA•N is the number of fail patterns in G; SCi) denotes
the number of fail patterns B that have exactly i common
faults with any given fail pattern A; and N{3 oc T.4.N'

For one spare row and one spare column, by Theorem
2, each fault pattern is of size k = 3. Hence, {3 is also 3.
Therefore,

E(FA) = a . N3(1-a,. (6. 1)

If ex > 1 , then clearly E(FA) --> 0 a s N ---> 00. Thus,
there is almost certainly no fail pattern in G . This proves
the first part of the theorem. Likewise, if (X < 1, then
E(FA) 00 as N ---> 00. In this case, to establish that Pr(FA

'0(g(II) = {J(n): there exists posilive constants c anu no such thaI 0 :5
J(n) :5 cg(n) for all n 2': l1o}.

"0(,11 (11) = (f(l1): for any positive constant c > 0, there exists a constant
110 > 0 such that 0 :5 J(n) < cg(ll) for all n 2': nu}.

1582 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGI\. VOL. II. NO. 12. DECEMBER 1992

= 0) as N -> 00, we have to considcr Chebyshev's in­
equality. This implies for E(FA) '* 0

E F'
Pr(f1 = 0) � (A; - 1. E(FA)

It can be further shown that for each fail pattern A of
HEX-REPAIR,

5(0) = a2N3 - 0(N3), S(l)

5(2) = O(N).

Hence, for our fail pattern family, with the individual
processor failure probability of p = N-u, it follows that

E(F�) = E(F4) + N3 • (a2N1 _ O(N3» . p6

+ O(N} . n4
• / + N3 . n2

. p4)

= E(F4) + E(FA)2 - 0(E(F4)2)

+ O(N5(l-Sul + N4(l-Ul).

Hence, dividing by E(FA)2 = 02 • N6(1 -al
, we get

E(F2) 1
__ A __ 1 = ___ 0(1) + O(Noc-1 + N210C -11).
E(FA)2 E(F4)

As N -> 00, the right hand side -> O. Thus, from the
Chebyshev inequality, we can concludc that Pr(FA = 0)
-> 0 as N --+ 00 for a < 1. Q.E.D.

The same treatment can be extended to the case of say
r spare rows and c spare columns. The atomic fault pat­
tern now contains k = r + c + 1 faults and is constructed
similar to the 3-fault pattern. Each successive fault occurs
to the top and right of the preccding one. The number of
such patterns is given by the expression:

= CY
where the summation in each case is performed until

I.
Uj = (n -j + 1) - b if

r- (j+ I)

Uk = (n - k + 1).

When N -> 00, i.e. when N » k, the number of pat­
terns is O(N'). Since the number of faults in each pattern
is k, we get the critical constant a < I.

Thus, to summarize, our algorithm guarantees a recon­
figurable solution either when 1) the number of faults <
the number of spare rows and columns, or 2) the proba­
bility of failure of an individual processing element
� 1/ N, where N is the number of preocessors in the ar­
ray.

The analysis of Theorem 3 has been verified by exten­
sive simulations. Fig. 8 shows the successful reconfigu­
ration rate (100% fault coverage), and Fig. 9 the average
number of faults that could be covered. The data points
used to plot the graphs were the average taken over 1000

100
N 90 J c

1
8D .' I
70 ! 60

lOxlO

J ... '1
I 20><20

50 �:::.

J
.0 l l00xlOQ. .
30

2 0

10
0.8 0.9 1.1 1.2 1.3

a�

Fig. 8. Effect of ex on reconfiguration.

100

N 95 /1
I

//
90

.' I

... // !!!!!l!L-
3 85 2Ox20

/.'/
I �::.: If:!

t
80 1OOxlOQ. .

! 75

70
0.8 0.9 1.1 1.2 1.3

a�

Fig. 9. Eifect of C/ on average fault coverage.

independent runs using one spare row and one spare col­
umn of cells. The dimension of the arrays used is indi­
cated in the legend. Especially for the larger arrays, we
achieve 100% fault coverage when a > I as expected.

VII. IMPLEMENTATION ISSUES

A switch which realizes the six different switching
functions needed in HEX-REPAIR can be realized using
only 15 basic ON/OFF devices per cell. This is shown in
Fig. 10. Note, no additional datapaths or multiplexers or
long switched buses are required. Table IV shows how
the different transistors need to be set ON and OFF in the
six cases. Thus, for the hexagonal array, this scheme en­
tails only 2.5 switching devices per port of a cell.

On the other hand, the switching overheads for direct­
reconfiguration and other types of fault-stealing ap­
proaches [5], [6] is quite high. Based on the reconfigu­
ration rules for the direct scheme, for any cell (i, j), pos­
sible logical neighbors are:

• along vertical axis: cells (i - 2,j - 1), (i - 1,j -
1), (i,j - 1), (i - l,j), (i - 2,j + 1), (i - I,)
+ 1), (i,j + 1).

• along the horizontal axis: cells (i - 1, j - 1), i, j -
1), and (i + l,j + 1).

• along diagonal: cells (i + 1, j), (i - 1, j), (i - 2,
j), (i - 3,j), (i,) - 1), (i - l,j - 1), (i - 2,j

- 1), (i + 1,j - 2), (i,j - 2), (i - I,j - 2), (i
- 2, j - 2), (i - 3, j - 2).

Thus, each cell needs a 7 X I, a 3 x 1 and a 12 x 1
mux for selecting inputs and a 2 x 1 mux for selecting

VENKATESWARAN e/ al.: RESTRUCTURING WSI HEXAGONAL PROCESSOR ARRAYS 15R3

up

1ert --+--+H1!1--< HH+--�>--- riqht

dOVD

bot diaq

pass transistor or
e-beam charged gate i

Fig. 10. Switch design using pass transistors or floating gate transistors.

Switch
Configuration I

Normal cell 0
SwType a 0
SwType b I
SwType c 0
SwType d I
SwType e 0

0
I

0
0
0
0

TABLE IV
SWITCH['IG FUNCTION TABLE

ON/OFF settings

4 5 6 7 9 10 I I 12 13 14 15

0 0 0 0 0 0 0 I I I
0 I 0 0 0 0 I 0 0 0 0 0 0
0 0 0 I 0 I 0 0 0 0 0 0 0
I 0 I 0 I 0 0 0 0 0 0 0 0

0 0 0 0 I 0 I 0 0 0 0 0 0
I I 0 0 0 1 0 0 0 0 0 0 0

outputs. Direct interconnections are also required be­
tween cells with a Manhattan distance of 5. The total
length of interconnect required thus is considerable.

For production-time reconfiguration, these devices are
ideally e-beam/tlV programmed floating gate transistors.
By e-beam addition or UV deletion of the gate charge, the
transistor can be set to either the ON or OFF state. Alter­
natively, electronically programmable ON/OFF dcvices
sueh as pass transistors can be used. Besides offering an
easy mechanism for correcting in-service faults, they pro­
vide for yield enhancement reconfiguration with intercon­
nection adaptation to a particular problem. However, they
need more area since the state also has to be stored. The
other advantage of using physically restructurable
switches is that they typically introduce a smaller on-state
resistance than electronic switches. Thus signal rise time
degradation and propagation delay per switched link is
considerably reduced. The switch programming is non­
volatile and need not be run eaeh time on power-on. This
is especially important for a large array with many PE's.
The chief disadvantage is that they offer only a permanent
solution and the connections cannot be reprogrammed at
runtime to account for additional faults.

In systolic arrays, timing is important. It is desirable to

minimize the additional delay caused by communicating
over a logical link which could be made up of a series of
physical links connected by switches. Based on an incre­
mental distributed-RC model of electrical interconnec­
tion, the delay TRC introduced is roughly N2Rs"C"I' where
R,w is the series resistance introduced by each switch and
Cll! is the capacitance imposed by each link and N is the
number of links in the path. For a typical minimum ge­
ometry pass transistor, this can be about 10 ns delay per
cm of line length and per square of gate area. In our run­
ning example where one H line and one V line were used,
it can be shown from Theorem 4 that there are at most
three links per logical path. Assuming a link is O.l cm,
this places an upper bound of 3 ns of the delay. Clearly
it is preferable to keep the number of additional links per
reconfigured path as small as possible. The following
theorem establishes a bound on the maximum wire length
and, therefore, bounds the maximum delay in signals. In
practice, however, R and C need to be replaced by the
actual number of H lines and V lines that were used in
arriving at the solution.

Theorem 4: For a hexagonal array, with R spare rows
and C spare columns, the length I, of any path p, between
two logically adjacent cells satisfies the relation:

I ::S; max (2R + C + I, 2C + R + 1).

Proof: a) Horizontal direction: From Theorem 1, it
follows that the path p has two SE's on every H line be­
tween the cells; and one SE on every V line between.
Since there can be at most R H lines and C V lines be­
tween the two, this means that path p can at most com­
prise 2 R + C SE's. Hence, the maximum length in the
horizontal direction, lh is less than or equal to 2R +
C + 1.

b) Vertical direction: By similar arguments, it can be
shown that the maximum length in the vertical direction,
II is less than or equal to 2C + R + I.

c) Dia{?onal direction: From Theorem 1, we can de­
duce that this case is a combination of the above two.
Every cell on path p which contains a Straight H line re­
sembles a), and those that contain a Straight V line resem­
ble b). Thus, the maximum length in the diagonal direc­
tion ld, subject to postprocessing, is less than or equal to
max (2R + C + 1, 2C + R + I). However, fortype "c"
cells, the path length increases by just I for each pair of
an H line and V line. This has been found to be more the
typical case. Hence, ld is more often close to max (R +
I,C+I).

The theorem follows from the above three cases.
Q.E.D.

Postprocessing: A consequence of the automatic
switch settings done by table lookup is that a reconfigured
path may traverse at SE of type "c" twice. The presence
of such a loop in the path is unnecessary and is eliminated
in a postprocessing step, wherein the abovementioned
SE's of type "c" are reconfigured appropriately. Note that
these loops do not affect the correctness of the solution,

1584 IEEE TRANSACTIOl'S ON COMPUTER-AmEll DESIGN, VOL, I I, NO. 1 2 . DECEMBER 19Y2

(a) (b)

Fig. I I Eli minating redundant links by postprocessing.

but their removal improves the performance by reducing
the overall length. Fig . I I (a) shows how such a postpro­
cessing procedure can detect double traversals of the re­
configured path between logical cells (l , 2) and (2, 3) at
the cell marked with a * and reconfigure it as shown in
Fig. I I (b) . This step thus eliminates three additional links
in the reconfigured path .

VIII. CONCLUSION

In this paper we have presented and analyzed a recon­
figuration algorithm, HEX-REPAIR, intended for wafer­
scale hexagonal processor arrays. Reconfiguration
schemes can be evaluated by their fault-coverage char­
acteristics and the accompanying switching overhead
needed. The two are usually directly proportional to one
another. For example , fault-stealing approaches have
good fault coverage but need very large multiplexers and
a large number of extra data links between processors.
Consequently , they arc not suitable for many hexagonal
arrays used in digital signal and image processing appli­
cations, which often have relatively simple procesSOrs ,
each consisting of a few hundred transistors onl y .

HEX-REPAIR has been shown to b e fairly robust even
in the presence of multiple faults . Computational efficient
techniques such as fault compaction and suitable heuris­
tics, such as SE configuration by table-lookup, have been
employed to get a solution whenever possible, in time
which is polynomial in the number of faults. This is de­
spite the fact that the original problem is NP-col11plete.
The only extra hardware needed to implement this algo­
rithm is a switch made up of 15 ON/OFF devices per pro­
cessor. No extra data paths are introduced between pro­
cessing elements . Also , the switch complexity is
independent of the number of rows and columns of spare
cells used . The correctness of the reconfigured solution
and bounds on path length increase have been derived.

ACKNOWLEDGMENT

The authors would like to thank the Editor and other
reviewers for their numerous comments which have con­
siderably improved the content and presentation of the pa­
per.

REFERENCES

[I] S. Y. Kuo and W K. Fuchs. " S pare allocation and reconfiguration
in large area VLSI , " in Proe. Design Awomarioll Calif , 1988. pp.
609-6 1 2.

[2] S. Y. Kung, VLSI Array Processors. Englewood Clitrs. NJ : Pren­
tice Hall, 1 9 8 8 .

[3] T. Noll. "Semi-systolic ma,imum rate transversal filters with pro­
grammable coefficients . " Systolic Arrays, pp. 1 03- 1 1 2, 1 986,

[4] F , Distante. F. Lombardi. and D. Sciuto, " A rray partitioning: A
methodology for rcconfigurabil ity and reconfigllration problems , "
Proc. ICCD, 1 9 8 8 , p p . 564-567.

[5] R. Negri n i , M . Sami , and R. Stefanel l I , "Fault tolerance techniques
for array stmcture, used in supercomputing , " Computer, pp. 78-87 .
1986,

[61 M . Sami and R . Stefanell i . " Reconfigurable architectures for VLSI
processmg arrays , " i n Proc. IEEP;. vol . 74. pp, 7 1 2-722. May IYH6.

[7] F. Lombardi, M . G . Sami, and R . Stefanell i . "Reconfiguration of
VLSI arrays by covering," IEEE Trans. Compurer-Auied Design . vol
8 , pp. 952-965 , Sept. 1 989.

[8] 1. W. Greene and A. E. Gamal. "Configuration of VLSI arrays in the
presence of faults," 1. Ass. Campar. Much. , vol . 3 1 . pp. 694- 7 1 7 ,
Oct. 1 984.

[9] T. Leightun and C . E . Leisorson, " Wafer-scale integration of sys­
tolic arrays . " IEEE Trans. Calnpure,.s, vol. C-34 . pp. 448-46 1 . 1 985.

[1 0] S . K, Tewksbury , Wafer Level Integrared Svstems: ilnl'lemellrurioll
Issues. Kluwer Academic, 1 989.

[I l] D. Gordon, 1 . Koren . and G . M, Silberman, " Restructuring hexag­
onal arrays of processors in the presence of faults . " 1. VLSi Compo
S)'s/. , pp. 23-35 , 1987

[1 2] F, Distantc. M. G. Sami, and R . Stefanelli , " Reconfiguration tech­
niques in the presence of faulty interconnections , " in Pro('. Inf. Con!
on Wafer Scale Illtegration. 1 989, pp, 379-388.

[1 31 I . Koren. " A reeonfigurable and fault-tolerant VLSI multiprocessor
array . " in Fme. 8th Ann. Symp. Cnmpur. A rchirecrure. 1 98 1 , pp.
425-442.

[1 4] S, Y . Kuo and K. Wang. "Fault diagnosis in VLSI/WSI processor
array s , " in Proc. lilt. Conf on Wafer Smle InreRrarioll. 1 9 89. pp.
325-333.

[1 5J F . LombardI. " Reconfiguration of hexagonal arrays by diagonal dele­
tion . " inregrarirm . pp. 263-2YO, 1 9 8 8 .

[1 6] A. L. Rosenberg, "The Diogenes approach t o testable fault-tolerant
arrays of processors , " IEEE Trans. Compurer.s , vol . C-32, pp. 902-
9 1 0. Oct. 1 98 3 .

[1 71 D . Sciuto, "Testahility a n d design for testability for WSI systolic
hexagonal arrays , " in IFlP Workshop on Wafer Scale Illregrtllioll ,
1 990 , pp. 1 09- 1 1 9 .

[1 81 w . H . Press. B. p , Flannery, S . A . Teukolsky, and W . T. Vetterling,
Numerical Recipes ill C. New York: Cambridge Univ. Pre", 1 9 8 H ,

p p . 329-345.
[1 9] G. E. Farr and H. Schroder. "An evaluation of reconiiguration al­

gorithms in fault tolerant prot:e�s array s , " in Proc. 5,11 A11T COllI
Ad1'(l/lced Research in V151. pp . 1 3 1 - 1 4 8 . 1988 .

R. Venkateswaran (5 '89) received t h e B . Tech.
degree in computer science from the Indian Insti­
tute of Technology . Bombay, in 1 98 8 and cur­
rently , he is work 109 toward the Ph . D , degree at
the University of Michigan.

In the summer of 1 99 1 , he worked at the
Thorna� J. Watson Research Center. Yorktown
Heights, NY, on hierarchical compaction. lIis
area� of interest include computer-aiueJ de�ign,
with particular emphasis on \'1,1 ire layout. Other re�
search interests include parallel architecture. fault

tolerance and neural networks. He was the recipient of the IBM Fellowship
for 1 99 1 - 1 992.

VENKATESWARAN ('f ill. : RESTRUCTURING WSI H EXAGONAL PROCESSOR ARRAYS 15R5

Pinaki Mazumder (S ' 84-M '87) received the
B . S . E . E . degree from the Indian Institute of Sci­
ence i n 1 976, the M . Sc . degree in computer sci­
ence from the University of Alberta, Canada in
1 985, and the Ph . D . degree in e lectrical and com­
puter engineering from the University of Illinois,
Urbana-Champaign, in 1 987.

Presently he is an Associate Professor at the
Department of Electrical Engineering and Com­
puter Science at the University of Michigan, Ann
Arbor. Prior to this, he was a Research Assistant

at the Coordi nated Science Laboratory, University of Ill inois , and for over
six years was with Bharat Electronics Ltd . , India, (a collaborator uf RCA)
where he developed several types of analog and digital integrated circuits
for consumer electronics products. Du ring the summers of 1 985 and 1 986,
he was a Member of the Technical Staft' in the Naperville branch at AT&T
Bell Laboratories. His research interest includes VLSI testing, physical de­
sign automation, ultrafast digital circuit design, and neural networks. He
has published over 50 pape" in IEEE and ACM archival journals and re­
viewed international conference proceedings. He is a Guest Editor of the
IEEE DESIGN A"'D TEST magazme ' s special issue on memory testing, to be
published in 1 993.

Dr. Mazumder is a memher of Sigma X i , Phi Kappa Phi and ACM
SIGDA. He i s a recipient of Digita l 's Incentives for Excellence Award,
National Science Foundation Research Initiation Award, and Bell Northern
Research Lahoratory Faculty Award .

Kang G, Shin (S'75-M'78-S M ' 8 3 - F '92) re­
ceived the B . S . degree in electronic; engineering
from Seoul National University, Seou l , Korea. in
1 970, and the M . S . and Ph . D . degrees in electri­
cal engineering from Cornell Un iversity, Ithaca.
NY in 1 976 and 1978, respect ive ly .

From 1 978 to 1 982 he was on t h e faculty o r lhe
Rensselaer Polytechnic Institute, Troy, New York .
He has held visiting positions at the U . S . Air Force
F light Dynamics Laboratory , AT&T Bell Labo­
ratories, Computer Science Division w ithin the

Department of Electrical Engineering and Computer Science at Univer�ity
of Cal ifornia, Berkeley. ami International Computer Science Institute,
Berkeley, CA. He is Professor and Associate Chair of Electrical Engi­
neering and Computer Science (EECS) for Computer Science and Engi­
neering, the University of Michigan, Ann Arbor. He has authored/coau­
thored over 1 80 technical papers (ahout 80 of these in archival journals)
and several book chapters in the areas of distributed real-time computing
and control, fault-tulerant computing, computer architecture, and robotics
and automation. In 1 987, he received the Outstanding IEFE TRANSArTIONS
ON AUTOMAT IC COI\TROL Paper Award for a paper on robot trajectory plan­
ning. In 1989, he also received the Research Excellence Award from the
Uni versity of Michigan . In 1 985. he foundcd the Real-Time Compuling
Laboratory , where he and his colleagues are currently building a 1 9-node
hexagonal mesh multicomputer, called HARTS, to validate various archi­
lectures and analyt ic resu lts in the area of distributed real-time computing.

Dr. Shin was the Program Chairman of the 1 986 IEEE Real-Time Sys­
tems Symposium (RTSS), the General Chairman uf the 1 987 RTSS, the
Guest Editor of the 1 9R7 August special issue of IEEE TRA�SACTIO�S O�

COMPUTERS on Real-Time Systems, and is a Program Cu-Chair for the 1992
International Conference on Parallel Processing. He currently chairs the
IEEE Technical Committee on Real-Time Systems, is a Distinguished V i s­
itor of the Computer Society of the IEEE, an Editor of IEEE TRANSACTIO�S
ON PARAI.I.EL AND DISTRIBUTED Cm1P1JTINO, and an Area Editor of fnrer­
national Journal of Time- Critical Computing S\,stems.

