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Abstract—Fault-tolerant approaches have been widely em-
ployed to improve the yield of ULSI and WSI processor arrays.
In this paper, we propose a host-driven reconfiguration scheme,
called HEX-REPAIR, for hexagonal processor arrays charac-
terized by a large number of relatively simple cells. Such arrays
have been shown to be the most efficient for many digital signal
processing applications, such as matrix multiplication, and for
some classes of filtering operations. Reconfiguration for these
arrays is made difficult by the asymmetric nature of the inter-
connection network and the need for keeping the switching
overhecads at a minimum. The algorithm presented in this pa-
per meets these requirements. In addition, it has excellent fault-
coverage characteristics, even in the presence of multiple faults,
and can accommodate multiple rows/columns of spare cells. The
restructured array is transparent to users and no modification
is required in any application program using the array.

I. INTRODUCTION

OR SOME digital signal processing applications, such
as matrix multiplication and some classes of filtering
operations, the hexagonal interconnection network has
been proposed in literature 2], [3] as the most eflicient.
When implemented in a wafer-scale integration (WSI) or
an ultra-large scale integration (ULSI), a processor array
with thousands of cells can be squeezed into a single wafer
or chip. One of thc main drawbacks with such large in-
tegrations is that these arrays are quite pronc to defects
because of the imperfections in the manufacturing pro-
cess. A fault not only destroys the rcgularity of the array,
but also may make it useless for the algorithms using the
array. Thus fault tolerancc is the only solution capable of
giving acceptable production yield, as it permits initial
testing and subsequent array reconfiguration using spare
cells and extra switching hardware. The locality of inter-
connections and regularity and simplicity of the switching
devices are important considerations. Much of the pre-
vious work in array reconfiguration [4]-[7] has primarily
dealt with rectangular or square arrays. These approaches
can be broadly divided into multiplexer-based and
switched-bus-based models.
The index-mapping algorithms of [5], [6] fall in the first
category. Index mapping refers to the technique of map-
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ping a set of logical indexes onto a set of physical indexes
denoting working cells. Depending on the complexity of
the actual algorithm, such schemes tend to have a fair sur-
vival rate. Each PE is usually dircctly connected to many
other neighboring PE’s through large switches/multiplcx-
ers capable of connecting four to eight separate parallel
buses. A number of cxtra communication links are needed
to attain proper reconfiguration. Clearly such a scheme is
justifiable only when the individual PE’s are relatively
complex, comprising several thousand transistors, thereby
making it highly desirable that all the nonfaulty proces-
sors be incorporated into the working logical array.

On the other hand, the switched-bus architecture, as
employed in [7] and others, is quite attractive when the
area for an individual cell is small. The reconfiguration is
based on a fixed number of horizontal and vertical buses
connected using simple 2 X 2 switches. A reconfiguration
technique called modified indexed mapping is used to
overcome the deterministic process of index modification.
Reconfiguration is analyzed with respect to the switching
and routing capabilities of the interconnection network.
However, the generalization of these schemecs to apply to
hexagonal arrays has not been studicd much. The task is
certainly nontrivial, owing to thec asymmetric nature of
the hexagonal interconnection and having to maintain
transparent connections to all six logical neighbors for
each PE.

Gordon er al. [11] proposed the first reconfiguration
scheme intended primarily for hexagonal arrays wherein
the individual processors occupy relatively small silicon
area. It worked by bypassing faulty as well as somc fault-
free PE’s, using a bare minimum in terms of extra switch
hardware or links. However, the approach suffers from
very poor faull coverage and processor utilization in the
event of multiple faults. The authors justify it by claiming
that the probability of getting a chip with only one or two
faults is quite high. The reconfiguration algorithm HEX-
REPAIR, presented in this paper, is based on similar as-
sumptions as [11]. However, HEX-REPAIR is much more
robust and has fault coverage rates comparable to the in-
dex-mapped schemes. The rest of the paper is organized
as follows. In Section I, we present the terminology and
the fault model used. Sections III and IV explain in detail
the inner workings of the algorithm. The proof of cor-
rectness is derived in Section V. while the fault-coverage
characteristics are studied in Section VI. Section VII per-
tains to implementation related aspects such as the area
and delay penalty of reconfiguration.
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IT. PRELIMINARIES

Before embarking on the mechanics of HEX-REPAIR,
it will be illuminating to understand the assumptions
made.

a) PE’s, both faulty and nonfaulty, can be bypassed
during reconfiguration using simple switches. Thc by-
passed cells will be referred to as switching elements (SE)
to indicate the fact that they cease to perform processing,
but serve to maintain the logical interconnections between
logically adjacent cells. The switching-elements that are
actually working processors are sometimes called pseudo-
faulis in the literature.

b) A conventional assumption that many approaches
[16], (9], (5.] [15] make is that faults affect only the PE’s.
The switches and interconnects are considered to be fault-
free. We also make this assumption. Thc rationale here is
that the PE’s have to be designed with leading edge rules
so as to maximize speed and density, while the switches
and interconnects can be designed with more conservative
design rules. Also, interconnects are often formed on a
singlc laycr, whereas the PE’s use multiple layers. This
leads to additional failure modes for the processors such
as mask misalignment and interlayer shorts, thereby re-
ducing the chip yield as a polynomial function of the num-
ber of masking levels used.

c) Each PE is associated with a six-port switch that can
provide six different switching functions. Such a switch
can be designed with as few as 15 on/orr devices. This
is the only overhead in terms of extra hardware that has
to be incorporated into the array. Such low overhead is
critical, especially for digital signal processing applica-
tions wherc the processors may only comprise a few
hundred transistors. Using multiplexers, the relative
switching hardware overhead per processor increases to
an extent that the validity of the fault-free switch fault
model becomes questionable.

d) Our approach is intended for off-line rcconfigura-
tion, mainly to handle production failures. Testing infor-
mation regarding the location of faults is assumed to be
available using schemes such as the one suggested in [17].

The goal of reconfiguration is to recover a logical hex-
agonally connccted array of working cells from the orig-
inal physical array. Each cell of the array is represented
by a pair of physical indexes ( p,, p,), and a pair of log-
ical indexes (I,, ;) that indicate the indexes of the func-
tion of each cell at runtime. The two are the same in the
absence of faults, but can differ when faults occur. Log-
ical indexes of faulty cells and the SE’s are set to zero.
We let & denote the fault set, i.e., the collection of phys-
ical indexes of the faulty elements in the array; and let
|F| denote the size of &F. Further, we let X; and Y; denote
the p, and p, values of the ith fault, respectively.

Definition 1: Two cells are said to be horizontally con-
nected if they lie on the same physical row. Vertically and
diagonally' connected cells are defined similarly.

'By diagonal. we refer to the one going from the top left of the array
and proceeding to the bottom right.
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Fig. . An 8 x 8 hexagonal array with random faults.

Definition 2: Two cells are said to be row (column)
connected if they are either horizontally (vertically) or di-
agonally connected.

Definition 3: An H line is any collection of n' row-
connected PE’s, where n' is the number of columns in the
physical grid. Thus, each H line starts at column 1 and
ends at the last column. Similarly, a V line is a collection
of m' column-connected PE’s, where m’ is the number of
rows in the physical grid.

The algorithm HEX-REPAIR, presented in this paper,
can be divided into the following two phases:

Covering Phase: This determines an appropriate set, if
one exists. of H and V lines that cover all faulty cells. All
PE’s on these cover lines are treated as switching ele-
ments in the final solution.

Procedure 1: The Covering Phase

1) Fault Enumeration: Find a one-to-one mapping :
F-{l1,2, ).

2) Graph Construction: Construct the HCG and the
VCG for the given fault pattern.

3) Graph Transversal: Determine the set S, of all dis-
tinct paths in the HCG and the set S, of all distinct
paths in the VCG that start at a root node and end
at the sink node.

4) Integer Programming: Determine the solution-set §
consisting of n,, paths from S, and n,, paths from S,.,
which together cover all faults in & and which sat-
isfy

A

number of spare rows =R
C.

n, =

IA

n, < number of spare columns

Configuration Phase: Here we configure each SE so as
to ensure proper interconnections in the reconfigured ar-
ray. A simple scheme is presented to determine the par-
ticular configuration of an SE, based on the nature of in-
teraction between the H lines and V lines at that array
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location. The final step is in assigning the new logical
indices.

Fig. 1 shows an 8 X 8 physical grid. The indexes of
the 13 shaded processing elements represent the fault sct
. This example array can be reconfigured using just one
spare row and one spare column of cells to yield a target
logical array of dimension 7 X 7. We shall use this prob-
lem as our running example throughout the rest of this
paper for illustrative purposes.

IIT. THE COVERING PHASE

In addition to finding a suitable set of H and V lines,
this phase also determines the maximum size working
logical array that can be recovered from the given (faulty)
physical array. If this maximum is deemed to be insuffi-
cient, the reconfiguration process can be either terminated
or more spares can be added and the algorithm repeated.
Procedure 1 outlines the main steps involved in the cov-
ering phase. These are explained in greater detail in the
following paragraphs.

A. Fault Mapping

Let D, be the set consisting of cells with physical in-
dexes (x, y) such thatj = x + y — 1. Initializc the starting
fault index to |F.| Now, visit the cells in each set D, D;,

- - inthe increasing order of y for each D;. For example.
in Fig. 2, the processing elements are visited in the order:
(1,1, (2,1, (1,2), 3.1), (2,2), (1,3), (3,2), (2,3), (1,4),
3,3), (2,4), (3,4). As each fault is encountered, it is
mapped to the current fault-index value and the faulr-in-
dex value is then decremented by one. The fault indexes
for the example problem are indicated besides the faulty
cells in Fig. 1.

This step thus assigns a number between 1 and |F! to
each fault in the array. This mapping is used in the con-
struction of the cover graphs and H/V lincs.

B. Horizontal and Vertical Cover Graphs

The horizontal and vertical cover graphs (HCG), (VCG)
aid in identifying the maximal sets of faults such that all
the faults in one set can be simultaneously covered with
a singlc spare row (HCG) or column (VCG). The idea is
to impose a partial order on the set & so that the search
for suitable lines can be restricted to just the fault set,
rather than the whole physical arrday. This is especially
important for large arrays with only a few faults.

Formally, these graphs can be defincd as follows:

Definition 4: The HCG for a given § consists of |F|
+ 1 nodes, one for each fault and a special sink node.
There exists a directed edge from node i to node j, iff

,>YandX, = Xand ¥, - ¥, = X; — X:

J is the sink node,

there do not exist nodes k, iy, &, * * * i, in HCG such

thati =+ kandk =i, > i, » -+ — i, — j. Inother

words, ¢ should not be directly connected to a node that

is an ancestor of j.

Defintion 5: The VCG for a given § consists of |F| +
1 nodes, one for each fault and a special sink node. There
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(b)
Fig. 3. (a) Horizontal cover graph. (b) Vertical cover graph.

exists a directed edge from node i to node j, iff

X, >X;andY; = Yand X; — X, = ¥, - }};
J is the sink node;

There do not exist nodes k, iy, i, - * *
thati > kand k — i, = i, = - -

The HCG and VCG, as defined above, can be con-
structed in O(|€F|2) time. Fig. 3 shows the two 13-nodc
HCG and VCG for our running example. The circled
nodes are those with no ancestors in the graph. These will
be referred to as root nodes.

i, in VCG such

RV

C. Graph Traversal

The set S,(S,) is a collection of paths in the HCG (VCG,
respectively), starting from a root node and terminating
at the sink node. New paths are generated using a depth-
first search strategy. Since, theoretically, the number of
possible paths in each graph could be as high as 215172,
we usc a parameter, called MaxPathLimit, to restrict the
maximum number of paths generated for cach graph. Pro-
cedure 2 outlines the path traversal method.

The value set for MathPathLimit represents a tradeoft
between computation time and a 100 % guarantee of find-
ing a feasible solution if one exists (MaxPathLimit = in-
finity). In our simulations, we have set MaxPathLimit to
1000 because we assume that the faults occur randomly
and the number of possible paths in each graph is rela-
tively small. Thus, the probability that a fault (node in the
graph) will occur in one of the 1000 chosen paths is quite
high.
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Procedure 2: Path Traversal Phase

PathsGenerated = 0O;

RootList = a circular list of all the root nodes in HCG (VCG);
While (PathsGenerated < MaxPathLimit)and (RootlList not empty) do

CurrentRoot = Next entry in the RootList;

Generate a new path from CurrentRoot to thc sink nodce;

If no new path exists then

Remove currentRoot from the RootList

Else

Increase PathsGenerated by one: Add this path to S, (S,)

Endif
EndWhile

D. Finding the Solution Set §

The solution sct $ comprises of n, paths from S, and n,,
paths from S, such that togethcr they cover all the faults
in &, where n,(n,) is less than or equal to the number of
spare rows (spare columns) available. This problem is
similar to the prime implicant covering problem com-
monly encountered in gate minimization. A natural rep-
resentation is thc cover table that contains a row for each
horizontal path (member of S},) and for each vcrtical path
(member of S,,) and a column for each fault in F. A + is
placed in the ith row and jth column if fault j is covered
by the ith (horizontal and vertical) path. Certain rows and
columns can be deleted from the cover table to simplify
determining §. The rules for simplification follow.

1) Suppose, for a given column j, a + occurs only
once in row i. Then this row can be considered an
essential path and a part of every solution. This is
because fault j can only be covered and replaced by
this path. All the other columns k for which there is
a v in row i can also be removed.

2) Iftwo or more columns are identical, all but one can
be deleted.

3) Row i is said to dominate row j if it has a »~ in each
column where j has one, and also in a fcw additional
columns. Furthermore, both i and j should either bc
horizontal paths or both be vertical paths. In this
case, the dominated row j can be deleted.

4) Column i is said to dominate column j if i contains
a v inevery row where j has a «, and in addition
i has some more » in other rows too. In such a
case, we can remove the dominating column.

Hence, if we let B; be a Boolean variable that is 1 if
row { of the cover table is selected for inclusion in 8§, and
Bj,.Bj; - -+ B}, be thc rows that cover column (fault) j;
then the solution for covering all faults is given by the
product-of-sums Boolean equation

H1 By +By+ -+ +B,) =1
= .

Using the distributive laws of Boolcan algebra, this can
be equivalently represented by a sum-of-products expres-

sion of the form

P

kZI (BuBi2 * "+ Bi) = 1.

A product term with the fewest number of literals will
constitute the minimum number of spares that are needed
to obtain a reconfiguration solution. However, any prod-
uct term that consists of fewer than n;, horizontal paths
and n, vertical paths, is an acceptable candidate for re-
configuration.

Example: Table I is the cover table for the reconfigur-
ation problem shown in Fig. 1. The top half of the table
indicates the six horizontal paths that exist in the HCG,
while the latter half gives the nine vertical paths that are
present in the VCG. Furthermore, columns 2 and 3 can
be removed, as they dominate column 4. A solution for
this coverage is easily determined to be {4, G} contain-
ing one horizontal path (A) and one vertical path (G). So
it is admissible, as we do have one spare row and one
spare column.

In practice, we solve the covering problem by employ-
ing the integer linear program paradigm for which effi-
cient computer routines are available [18]. Let R and C
be positive integers denoting the number of available spare
rows and columns. Let each horizontal path be denoted
by a variable x, and let each vertical path be denoted by a
variable y;. Then our integer program can be stated as

Find a set of values for the m integer variables x,, x,,
©, X, and the n integer variables v\, y,, * =+, y,,
which minimize the objective function:

m n

R'lglxi"'c"zy,’

i=1

Subject to the |F| + 2 constraints of the form

m H
121 a;;x; + 21 iy myyi = 1,
- i=

where j = 1,2, -+, |F
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TABLE |
FautT COVER TABLE
Fault Index

Path

name 1 2 3 4 5 6 7 8 9 10 11 12 13
A v v I I v v
B v v v v
C v v v v %
D A I v v
E v o v v
F v N
G v v v v
H v g v v
1 T v v
I v v P o~ v
K v v v v
L v v e e v e
M v I v v
N v ~ % v %4
(@] I'd v

Here the quantities q, ; are either O or | and are obtained
from the cover table. The solution set § includes all paths
that correspond to a nonzero .x; or y; value at the end of
the optimization. The constraints ensure that the number
of horizontal paths choscn do not exceed the number of
sparerows and the number of vertical paths do not cxceed
the number of spare columns. The first set of |F| con-
straints ensure that each fault is accounted for in at least
onc member of §.

For m rows and n columns, the algorithm typically finds
an reach the optimal vecctor after a number of iterations
that is no bigger than the order of m or n, whichever is
larger. In our case, m is determined by the value for
MaxPathLimir and is independent of the array or fault-set
size and n = |F|. Thus, the number of iterations required
is solely determined by thc number of faults. For most
arrays with up to 25-30 faults that we simulated, we ob-
tained a solution in less than a second working on a Sun
Sparcstation. It is interesting to note that network flow
techniques can also be used to detcrmine S.

IV. THE CONFIGURATION PHASE

Once the horizontal and vertical covering paths have
been successfully determined, the configuration phase is
next invoked. The three main steps constituting this phase
are stated in Procedure 3.

Procedure 3: The Configuration Phase

1) For each horizontal (vertical) path p in §, construct
a nonoverlapping H line (V line) that includes all
faults in p.

2) Reconfigure the array by assigning logical indices
to the remaining good processing elements.

3) Configure all the SE appropriately so as to ensure
that the restructured array is transparent to the var-
ious alogrithms using thc hexagonal array. Thus a
PE can continuc to communicate with its logical
neighbors on the same links as before, unaware that
it now reaches them through some SE’s.
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4) Perform postprocessing to shorten logical connec-
tions.

A. Constructing H and V Lines

Each horizontal path in 8 is to be covered by an H line
and each vertical path by a V line. All of the cells of these
lines will become SE's in the final solution. With each of
these SE’s, we associate an H rype and a V ¢ype based on
the manner in which the H/V lines pass through it (sec
Fig. 4).

Based on the H line / passing through an SE with in-
dexes (i, j), its H type can be classified as being

1) U: (Unset) No H line passcs through (i, j), which
means that this SE is intersected only by a V line.

2) S: (Straight) I connects (i, j) to (i, j — 1) and (i, j
+ 1), if they exist.

3) D: (Diagonal) / connects (i, j)to (i — 1, j — 1) and

G+ 1.j+1).

4) LB: (Lower Bend) / connects (i, j)to (i — 1. j —
1) and (i,j + 1).

5) UB: (Upper Bend) / connects (i. j)to (i + 1,j +
and (i, j = 1).

6) TR: (TwoRow) This is the case when two H lines
meet at (1, j).

Likewise, SE (7, j) can have its V type set to one of the
following six catcgories.

1) U: (Unset) No V line passes through (i, j).

2) S: (Straight) / connects (i, j)to (i, — 1, j)and (i +
1, j), if they exist.

3) D: (Diagonal) / connects (i, j)to (i — 1, — 1) and

i+1,j+1.

4) LB: (Lower Bend) / connects (i, j)to (i — 1, /) and
@+ 1.5+

5) UB: (Upper Bend) / connects (i, j)to (! — I, j —

) and (0 + 1, ).
6) TC: (TwoCol) This is the case when two V lines
meet at (i, j).

The initial stratecgy used to construct an H/V line for
each path is stated below. ‘‘Let the horizontal (vertical)
path p in 8 consist of P faults { f;, f5, * * * fp} arranged
in decreasing order of their fault indexes. The fault f; is
horizontally (vertically) connected to the PE in thc first
column (row) of the row (column) of f,. Similarly, fp is
horizontally (vertically) connected to thc PE in the last
column (row) of the row (column) of f,. For any other
two faults f; and f; . |, we find a (unique) PE k which can
be horizontally (vertically) connected to f; and diagonally
connected to f;, |.""

In the presence of faults occurring in more than one
line, this procedure can lead to some overlap between
H/V lines. We remove such overlap by removing the
common faults from all but one line and reconstruct the
other lines as before.
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Fig. S. Different SE configurations

B. Configuring the Switching Elements

A byproduct of the covering strategy used is that the
configuration of the SE’s to maintain logical transparency
is reduced to a simple TABLE-LOOKUP operation. Note
that when we refer to an SE configuration, we actually
mean the configuration of the switch associated with that
PE. Fig. 5 shows the six difterent switching functions, of
which the first corresponds to a good PE and the latter
five correspond to an SE of type ‘‘a,”’ “‘b,”” ‘‘c,”” **d,”
and ‘‘e,’”’” respectively. Table II is the SE configuration
table. Entries marked with a ‘-’ indicate invalid H
type/V type combinations.

C. Assignment of Logical Indexes

Procedure 4 describes the scheme for assigning the log-
ical indices to the working cells of the rcconfigured array.
First we scan, column by column, assigning a logical row
index to each PE in that column. This value is determined
by the number of H lines that traverse the column above
the row under consideration. An SE gets a logical row
index of 0.

We then perform a similar operation on each row, as-

Procedure 4: Assignment of New Logical Indexes

column ¢ Do

0 (dp counts the number of H

each row r Do

If(r, ¢) is a SE Then
dp = dp + k (where k = 2
and 1 otherwise)

Else

If (r, ©)
Mark Llogical

For each
dR =
For

if H

is free Then
row for (r,

line state for (r,

D e

ORO\ORENOREN\OON

Fig. 6. Final result of the reconfiguration.

TABLE II
LeoxUP TABLE FOR SE SETTINGS

V type ¢ u S D LB UB TR

a a
a e d c
[

r
w
coooo |
a0 oo w
|

Ie]
|

signing a logical column index to each PE, based on the
number of V lines met until that point. It is possible for
two cells, C, and C,, to get assigned the same logical
indices when either two H lines or two V lines intersect
at the same SE. However, we note that forann X n phys-
ical array, the total number of SE’s that result from two
such intersecting H or V lines is equal to 2n — 1. On the
other hand, every spare row or column consists of n cells.
Thus, we end up with an cxtra spare cell. We can there-
fore resolve the conflict by converting one of C, or C, to
an SE.

Corollary 1: Each switching element in thc rcconfig-
ured array is intcrsected by at most one H line and at most
one V line. The proof follows from the H-V line con-
struction and conflict resolution strategy employed in Pro-
cedure 4.

Fig. 6 is the final result for our running example. The
logical indexes of all the working cells were determined
using Procedure 4, and the SE’s were configured as per
Table II.

lines met so far)

is TR, 0 if it is U,

c) as r — dg
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End For
For each row r oo
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dc =0 (dc counts the number of V lines met so far)

For each col ¢ Do

If (r, ¢) is a SE Then
dc = dc + k (where k =
and | otherwise)

Else

If (r, ¢) is free Then
Mark logical col for (r,
Conflict Resolution:
1f a PE (1, j)
logical indices Then

2 if v

Line state for (r, ¢)

is TC, 0O if it is U,

c) as ¢ - dc¢

has already been assigned the same

If r — il = |c - j| Then

Mark (i, j) as an SE of type a
Else

Mark (i, j) as an SE of typeb

End For

V. Proor oF CORRECTNESS OF THE RECONFIGURATION
ALGORITHM

Conceptually, the various H and V lincs partition the
array into several subareas, each possessing a certain re-
lationship between the logical and physical indices for the
processing elements within. In our example, there are
three such subareas: A, B, and C, (described in Tablc III).
We generalize this concept to several H and V lines,
thereby giving a constructive proof of the correctness of
HEX-REPAIR.

Theorem 1: The LOOKUP TABLE for switching ele-
ment settings guarantees a proper hexagonally connected
logic array of working PE’s after the Logical Index As-
signment phase.

Proof: Let T(r, c) denote a subarea of working cells
which is bounded by r H lines above and ¢ V lines to the
left. Then in this subarea, the logical indices of any cell
C,, with physical indexes (i, j), is given by (i — r, j —
¢). The proof of the correctness of the algorithm can be
established by enumerating the various possible cases.

Consider the logical right neighbor of C,. If the cell (i,
j + 1) is good, then we are done. Assume otherwise.
There arc two cases to be examined here. Let C, be the
first cell on the same row as C; and to its right, that is
either free or contains an H linc. Let the physical indices
of G, be (i, j + k). Consequently, all cells between C,
and C, have a V line passing through them and will be-
come SE’s of type **b.”’

Case 1: C,is a free, i.e., working PE.

In this case, we have (i, j)p = ((,j + 1) = (i,j +
1)g = =+« = (i, j + k). The subscripts denote the port
of entry or exit of that cell, viz. Left, Right, Top, Bottom,
Top Diagonal, and Bottom Diagonal. Since therc are k —
1 V lines between C, and C,, the latter lies in a subarea
of type T(r, ¢ + k — 1). Thus, the logical indexes of C,
are(( —r,(j+k —(c+tk-1)=0G(—-r,j—c+
1), which are the logical indexes required for thc right
neighbor of C;.

Case 2: G, contains an H line.

By similar arguments to the previous case, wc can con-
clude that the right neighbor link of C; reaches the left
input of C,. Furthermore, the H line type of C, can only
be Diagonal or Lower Bend. This is because otherwise,
cell (i, j + k — 1) will also have an H line, which con-
tradicts the assumption that C, is the first cell containing
one. Also cell C; = (i — 1,j + k — 1) is diagonally
connected to C, via the same H line. So the H line type
of C can only be Diagonal or Upper Bend.

Similarly, a V linc, if any, through C, can be Straight
or Lower Bend; and a V line, if any, through C| can only
be Straight or Upper Bend. From Table II, C, can there-
fore be of type “*a’’ or ‘‘e’’; and C; can be of type ‘‘a”
or ‘‘d.”” In all cases, the signal path arriving at the left
port of C, goes to the bottom diagonal port of C and then
comes out of its right port.

Since at most one H line can pass through any cell,

1 cannot be simultaneously horizontally connected to cell
(i — 1,j + k) by anH line. Thus, we can extend the same
arguments we made bcfore, by replacing occurrenccs of
C,; and C|. We observe that with each H line, we move
up one physical row; and with each V line we proceed
onc column to the right. Let this process finally terminate
at a good cell C, which lies in a subarea of type T(r —
r', ¢ + ¢’). This means that the signal path starting at the
right port of C; mcets ' H lines and ¢’ V lines. Therefore,
the physical indexes of C, will be (i — r', j + ¢’ + 1).
Thus, the logical indices of C, are (( — r') — (r — 1),
(jtc'+1)=(c+c)Y)=0—-r,j—c+ 1), which
is as required.

The proof of correctness for up/down neighbor connec-
tions can be similarly derived. The case of diagonal con-
nections is slightly more involved. If the cell (i + L, j +
1) has a Straight V line, then the path traced will be (i,
Doa> G+ Lj+Dpr= G+ 1,7+ Dy >@Gj+ Dy
=+ (i,j+ Dpg = (i + 1,j + 2)pr. If on the other hand,
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TABLE 111
PARTITIONING BUE TO H aND V LINES
Phy Index Log Index
SubArea X y b3 y
A i j i—1 i
B i j 1 j-1
C i j i—1 j-1

the cell (i + 1,/ + 1) has a Straight H line, then the path
traced willbe (i, j)pg = (i + 1,j+ pr = ( + 1,5 +
1), =@+ 1,)Dg =G+ 1,j)pg = (i +2,j)pr Finally,
the cell (i + 1, + 1) can have both a Straight V line and
a Straight H line. In this case the path traced will be (i,
Jie > G+ 1, j+ pr >+ 1,j+ Dpg > (G +2,j
+ 2)pr. Hence, if thc path encounters »’ H lines and ¢’ V
lines, the physical coordinates of C,arc (i + r' + 1,/ +
¢’ + 1). Since the type of subarea containing C, is given
by T(r + r', ¢ + ¢, the logical indexes of C,are ((( +
r+1)—(r+r),(+c' +1)—(c+c)=(~—-r
+ 1,j — ¢ + 1), which are as required. Q.E.D.

VI. EVALULATION OF THE ALGORITHM

Rcconfiguration algorithms, such as HEX-REPAIR,
can be compared by thcir probability of getting stuck in a
fatal situation, namely, one for which the algorithm fails
to find a suitable reconfiguration. Even for optimal algo-
rithms based on local connections only, there are small
clusters of faults that cannot be overcome. For fixed prob-
ability of cell failurc, the probability that such clusters
occur therefore approaches onc as the array becomes in-
finitely large. Thus, there is a critical size of the array
that cannot be overcome unless the probability of single-
cell failure decreases. Thus. in such cases, a degradation
in array sizc would result unless new spares are added.

One pertinent measure is the critical constant . which
is defined [19] to be the largest number such that if & <
a., then for an array with N processors and individual
processor failure probability of 1/N*, the reconfiguration
will almost certainly gct stuck in a fatal situation. Thus,
it is desirable to have as small a value for ¢, as possible.
The rest of this section pertains to deriving the critical
constant for HEX-REPAIR.

Definition: An atomic fail pattern is defined as a fail
pattcrn that cannot be solved by the algorithm; while re-
moving any one fault from the pattcrn leads to a recon-
figurable array.

Theorem 2: For any array of size n X n with N = n?
processors, HEX-REPAIR contains on®) = O(N3) dif-
fercnt fail patterns of size 3.

Proof: An atomic fail pattern for HEX-REPAIR is
as follows: Pick any cell other than one lying along the
top two rows of the two rightmost columns. Place the first
fault there. Now place the second fault to the right and
above the first fault. Likewise, place the third fault to the
right and above the sccond fault. Fig. 7 shows a typical
member of the fail-pattern family. It consists of patterns

N

{n.n)

Fig. 7. Typical member of an atomic fail-pattern for Q.

of the form:

{G1. 0, (o, J2), (3, J3)}s

where the top left cell is labeled (1, 1).

Now, consider any three columns. It is clear that the
number of patterns T satisfying the constraints mentioned
above is given by

h>h >k )i <) <ij

n—2 n—1 n
T=2 2 X =n(n*1)(n42)/6=<n>.
i=1j=i+1 k=j+1 3

We can also choose the columns in (5)) ways. Hence, the
total number of patterns for such an array is (§)°. In
asymptotic notations this implies there are o(r®) = ON?)
different fail patterns of size 3. QED

Theorem 3: The critical constant «, for the reconfigu-
ration algorithm HEX-REPAIR approaches 1 as the num-
ber of processors N tcends to infinity.

Proof: We consider only the case when all fail pat-
terns A are each the size k. This is true for HEX-REPAIR.
Let F, be a random variable equal to the number of fail
patterns in the processor array G. Let E(F,) and E(F3) be
its first and second moments, respectively. Then it was
shown in [19] that for positive constants a and #

E(Fy) =a- NP7t
k=1

E(F) = E(F,) + Tyn - % (SO - p™™)

where T, y is the number of fail patterns in G; S(i) denotes
the number of fail patterns B that have exactly i common
faults with any given fail pattern 4; and N o Ty N

For one spare row and onc sparc column, by Theorem
2, each fault pattern is of size k = 3. Hence, (3 is also 3.
Therefore,

E(F,) =a - N~ 6.1)

If « > 1, then clearly E(F,) > 0as N = o. Thus,
there is almost certainly no fail pattern in G. This proves
the first part of the theorem. Likewise, if @ < 1, then
E(F,) - o as N = oo. In this case, to establish that Pr(F,

2O(g(n)) = { f(n): there exists positive constants ¢ and n, such that 0 <
S(n) = cg(n) forall n = ny}.

*o(g (m)) = { f(n): for any positive constant ¢ > 0, there exists a constant
no > 0 suchthat 0 < f(n) < cg(n) forall n = ny}.
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= (0) as N = o, we have to considcr Chebyshev’s in-
equality. This implies for E(F) # 0
E(F3)
Pr(F, = 0) < -1
T = ey

It can be further shown that for each fail pattern 4 of
HEX-REPAIR,

S0 = @®*N? — o(N?, S(1) = ONY
S(2) = O(N).

Hence, for our fail pattern family, with the individual
processor failure probability of p = N7, it follows that

E(F) = E(F) + N* - (&N — o(N*) - p°

+ ON*-n*-p* + N - ph
= E(Fy) + EF — o(EFL))
+ 0(N5(l—5(\) + N4(l*¢').
Hence, dividing by E(F,)? = «* - N®' ™2 we get

EF) 1
E(F,) E(F,)

—o(l) + ON*"" + N7 1),

As N — oo, the right hand side = 0. Thus, from the
Chebyshev inequality, we can concludc that Pr(F, = 0)
— 0asN » oo fora < 1. Q.E.D.

The same treatment can be extended to the case of say
r spare rows and c spare columns. The atomic fault pat-
tern now contains k = r + ¢ + 1 faults and is constructed
similar to the 3-fault pattern. Each successive fault occurs
to the top and right of the preceding one. The number of
such patterns is given by the expression:

n oo w w 1\ 2
<k> . ikgl i;%i\ o i:§| i1§1 b= <k>
where the summation in each case is performed until
k
w=m—j+10)- X i

r—(j+ 1

uk=(n—k+1).

When N — oo, i.e. when N >> k, the number of pat-
terns is O(N'"). Since the number of taults in each pattern
is k, we get the critical constant o < 1.

Thus, to summarize, our algorithm guarantees a recon-
figurable solution either when 1) the number of faults <
the number of spare rows and columns, or 2) the proba-
bility of failure of an individual processing element
=<1/N, where N is the number of preocessors in the ar-
ray.

The analysis of Theorem 3 has been verificd by exten-
sive simulations. Fig. 8 shows the successful reconfigu-
ration rate (100% fault coverage), and Fig. 9 the average
number of faults that could be covered. The data points
used to plot the graphs were the average taken over 1000
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Fig. 8. Effect of « on reconfiguration.
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Fig. 9. Effect of a on average fault coverage.

independent runs using one spare row and one spare col-
umn of cells. The dimension of the arrays used is indi-
cated in the legend. Especially for the larger arrays, we
achieve 100% fault coverage when a > 1 as expected.

VII. IMPLEMENTATION ISSUES

A switch which realizes the six different switching
functions nceded in HEX-REPAIR can be realized using
only 15 basic oN/oFF devices per cell. This is shown in
Fig. 10. Note, no additional datapaths or multiplexers or
long switched buses are requircd. Table IV shows how
the different transistors need to be set oN and OFF in the
six cases. Thus, for the hexagonal array, this scheme en-
tails only 2.5 switching devices per port of a cell.

On the other hand, the switching overheads for direct-
reconfiguration and other types of fault-stealing ap-
proaches [5], [6] is quite high. Based on the reconfigu-
ration rules for the direct scheme, for any cell (i, j ), pos-
sible logical neighbors are:

® along vertical axis: cells (i —2,j — 1), — 1,j —
D, =-D,6-1,)G0-2,j+1D,G¢~-1,j
+1),G,j+ 1.

® along the horizontal axis: cells (( — 1,j — 1), {,j —
D,and (¢ + 1,5 + 1).

® along diagonal: cells (! + 1,j), (i — 1,j), (i — 2,
J =3, G~ D, G~ 1,j— D, —2,j
-D,+1,j-2,0Gj-2,G-1,j-2),0
-2,j—=2),(-3,j-2).

Thus, each cell needsa 7 X 1,a3 x landa 12 x 1
mux for selecting inputs and a 2 X 1 mux for selecting
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right

diag

pass transistor or
e-beam charged gate

Fig. 10. Switch design using pass transistors or floating gate transistors.

down

TABLE IV
SWITCHING FUNCTION TABLE

ON/OFF settings

Switch
Configuration | 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Normalcell 0 0 0 0 0 0 0 0 0 I I 1 1 1 1
SwType ¢ ol1Lo0oifto0oo0oo0oo01 0 O 0O O 0 O
SwType b 100001010 O O 0 O 0 O
SwType ¢ o001 o0ot1ro1o0oo0o o o0 o0 o0 o0 o
SwType d 1l ooo0oo0oo01$101 O O0O OO O O
SwType ¢ 001100010 O O OO O O

outputs. Direct interconnections are also required be-
tween cells with a Manhattan distance of 5. The total
length of interconnect required thus is considerable.

For production-time reconfiguration, these devices are
ideally e-beam/UV programmed floating gate transistors.
By e-beam addition or UV deletion of the gate charge, the
transistor can be set to either the ON or OFF state. Alter-
natively, electronically programmablec ON/OFF dcvices
such as pass transistors can be used. Besides offering an
easy mechanism for correcting in-service faults, they pro-
vide for yield enhancement reconfiguration with intercon-
nection adaptation to a particular problem. However, they
need more area since the state also has to be stored. The
other advantage of using physically restructurable
switches is that they typically introduce a smaller on-state
resistance than electronic switches. Thus signal rise time
degradation and propagation delay per switched link is
considerably reduced. The switch programming is non-
volatile and necd not be run cach time on power-on. This
is especially important for a large array with many PE’s.
The chief disadvantage is that they offer only a permanent
solution and the connections cannot be reprogrammed at
runtime to account for additional faults.

In systolic arrays, timing is important. It is desirable to
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minimize the additional delay caused by communicating
over a logical link which could be made up of a series of
physical links connected by switches. Based on an incre-
mental distributed-RC model of electrical interconnec-
tion, the delay 7¢ introduced is roughly NZRM,,C,,,, where
R, is thec series resistance introduced by each switch and
C,, is the capacitance imposed by each link and N is the
number of links in the path. For a typical minimum ge-
ometry pass transistor, this can be about 10 ns delay per
cm of line length and per square of gate area. In our run-
ning example where one H line and one V linc were used,
it can be shown from Theorem 4 that there are at most
three links per logical path. Assuming a link is 0.1 cm,
this places an upper bound of 3 ns of the delay. Clearly
it is preferable to keep the number of additional links per
reconfigured path as small as possible. The following
theorem establishes a bound on the maximum wire length
and, therefore, bounds the maximum delay in signals. In
practice, however, R and C need to be replaced by the
actual number of H lines and V lines that were used in
arriving at the solution.

Theorem 4: For a hexagonal array, with R spare rows
and C spare columns, the length /, of any path p, between
two logically adjacent cells satisfies the relation:

Il <=max(2R+C+ 1,2C + R + 1).

Proof: a) Horizontal direction: From Theorem 1, it
follows that the path p has two SE’s on every H line be-
tween the cells; and one SE on every V line between.
Since there can be at most R H lines and C V lines be-
tween the two, this means that path p can at most com-
prise 2 R + C SE’s. Hence, the maximum length in the
horizontal direction, /, is less than or equal to 2R +
C+ 1.

b) Vertical direction: By similar arguments, it can be
shown that the maximum length in the vertical direction,
1, is less than or equal to 2C + R + 1.

¢) Diagonal direction: From Theorem 1, we can de-
duce that this case is a combination of the above two.
Every cell on path p which contains a Straight H line re-
sembles a), and thosc that contain a Straight V line resem-
ble b). Thus, the maximum length in the diagonal direc-
tion /,, subject to postprocessing, is less than or equal to
max (2R + C + 1,2C + R + 1). However, fortype ‘‘c”’
cells, the path length increases by just 1 for each pair of
an H line and V linc. This has been found to be more the
typical case. Hence, /, is more often close to max (R +
1,C + 1).

The theorem follows from the above three cases.

Q.E.D.

Postprocessing: A conscquence of the automatic
switch scttings donc by table lookup is that a reconfigured
path may traverse at SE of type ‘‘c’’ twice. The presence
of such a loop in the path is unnecessary and is eliminated
in a postprocessing step, wherein the abovementioned
SE's of type “‘c’” are reconfigured appropriately. Note that
these loops do not affect the correctness of the solution,
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(b)

Fig. 11 Eliminating redundant links by postprocessing.

but their removal improves the performance by reducing
the overall length. Fig. 11(a) shows how such a postpro-
cessing procedure can detect double traversals of the re-
configured path between logical cclls (1, 2) and (2, 3) at
the cell marked with a * and reconfigure it as shown in
Fig. 11(b). This step thus eliminates three additional links
in the reconfigured path.

VIII. CoNcCLUSION

In this paper we have presented and analyzed a recon-
figuration algorithm, HEX-REPAIR, intended for wafer-
scale hexagonal processor arrays. Reconfiguration
schemes can be evaluated by their fault-coverage char-
acteristics and thc accompanying switching overhead
needed. The two are usually directly proportional to one
another. For example, fault-stealing approaches have
good fault coverage but need very large multiplexers and
a large number of extra data links between processors.
Consequently, they arc not suitable for many hexagonal
arrays used in digital signal and image processing appli-
cations, which often have relatively simple processors,
each consisting of a few hundred transistors only.

HEX-REPAIR has been shown to be fairly robust even
in the presence of multiple faults. Computational efficient
techniques such as fault compaction and suitable heuris-
tics, such as SE configuration by table-lookup, have been
employed to get a solution whenever possible, in time
which is polynomial in the number of faults. This is de-
spite the fact that the original problem is NP-complete.
The only extra hardware needed to implement this algo-
rithm is a switch made up of 15 oN/OFF devices per pro-
cessor. No extra data paths are introduced betwcen pro-
cessing elements. Also, the switch complexity is
independent of the number of rows and columns of spare
cells used. The correctness of the reconfigured solution
and bounds on path length increase have been derived.
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