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Restructuring WSI Hexagonal Processor Arrays 
R, Venkateswaran, Student Member. IEEE. Pinaki Mazumder, Member. IEEE. and Kang G. Shin, Fellow. IEEE 

Abstract-Fault-tolerant approaches have been widcly em­
ployed to improve the yield of ULSI and WSI processor arrays. 
In this paper, we propose a host-driven reconfiguration scheme, 
called HEX-REPAIR, for hexagonal processor arrays charac­
terized by a large number of relatively simple cells. Such arrays 
have heen shown to be the most efficient for many digital signal 
processing applications, such as matrix multiplication, and for 
some classes of filtering operations. Reconfiguration for these 
arrays is made difficult by the asymmetric nature of the inter­
connection network and the need for keeping the switching 
overheads at a minimum. The algorithm presented in this pa­
per meets these requirements. In addition, it has excellent fault­
coverage characteristics, even in the presence of multiple faults, 
and can accommodate multiple rows/columns of spare cells. The 
restructured array is transparent to users and no modification 
is required in any application program using the array. 

1. INTRODUCTION 

FOR SOME digital signal processing applications, such 
as matrix multiplication and some classes of filtering 

operations, the hexagonal interconnection network has 
been proposed in literature [2] , [3] as the most efficient . 
When implemented in a wafer-scale integration (WSI) or 
an ultra-large scale integration (ULSI), a processor array 
with thousands of cells can be squeezed into a single wafer 
or chip. One of the main drawbacks with such large in­
tegrations is that these arrays are quite prone to defects 
because of the imperfections in the manufacturing pro­
cess. A fault not only destroys the regularity of the array, 
but also may make it useless for the algorithms using the 
array. Thus fault tolerance is the only solution capable of 
giving acceptable production yield, as it permits initial 
testing and subsequent array reconfiguration using spare 
cells and extra switching hardware. The locality of inter­
connections and regularity and simplicity of the switching 
devices are important considerations. Much of the pre­
vious work in array reconfiguration [4]-[7] has primarily 
dealt with rectangular or square arrays. These approaches 
can be broadly divided into multiplexer-based and 
switched-bus-based models. 

The index-mapping algorithms of [5], [6] fall in the first 
category. Index mapping refers to the technique of map-
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ping a set of logical indexes onto a set of physical indexes 
denoting working cells, Depending on the complexity of 
the actual algorithm, such schemes tend to have a fair sur­
vival rate. Each PE is usually directly connected to many 
other neighboring PE's through large switches/multiplex­
ers capable of connecting four to eight separate parallel 
buses. A number of extra communication links are needed 
to attain proper reconfiguration. Clearly such a scheme is 
justifiable only when the individual PE's are relatively 
complex, comprising several thousand transistors, thereby 
making it highly desirable that all the nonfaulty proces­
sors be incorporated into the working logical array, 

On the other hand, the switched-bus architecture, as 
employed in [7] and others, is quite attractive when the 
area for an individual cell is small . The reconfiguration is 
based on a fixed number of horizontal and vertical buses 
connected using simple 2 X 2 switches. A reeonfiguration 
technique called modified indexed mapping is used to 
overcome the deterministic process of index modification, 
Reconfiguration is analyzed with respect to the switching 
and routing capabilities of the interconnection network . 
However , the generalization of these schemes to apply to 
hexagonal arrays has not been studied much. The task is 
certainly nontrivial, owing to the asymmetric nature of 
the hexagonal interconnection and having to maintain 
transparent connections to all six logical neighbors for 
each PE, 

Gordon et al. lill proposed the first reconfiguration 
scheme intended primarily for hexagonal arrays wherein 
the individual processors occupy relatively small silicon 
area. It worked by bypassing faulty as well as some fault­
free PE's, using a bare minimum in terms of extra switch 
hardware or links. However, the approach suffers from 
very poor faull coverage and processor utilization in the 
event of multiple faults. The authors justify it by claiming 
that the probability of getting a chip with only one or two 
faults is quite high, The reconfiguration algorithm HEX­
REPAIR, presented in this paper, is based on similar as­
sumptions as [II], However, HEX-REPAIR is much more 
robust and has fault coverage rates comparable to the in­
dex-mapped schemes. The rest of the paper is organized 
as follows, In Section II, we present the terminology and 
the fault model used. Sections III and IV explain in detail 
the inner workings of the algorithm. The proof of cor­
rectness is derived in Section V, while the fault-coverage 
characteristics are studied in Section VI. Section VII per­
tains to implementation related aspects such as the area 
and delay penalty of reconfiguration, 
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II. PRElIMINARIES 

Before embarking on the mechanics of HEX-REPAIR, 
it will be illuminating to understand the assumptions 
made. 

a) PE's, both faulty and nonfaulty, can be bypassed 
during reconfiguration using simple switches. Thc by­
passed cells will be referred to as switching elements (SE) 
to indicate the fact that they cease to perform processing, 
but serve to maintain the logical interconnections between 
logically adjacent cells. The switching-elements that are 
actually working processors are sometimes called pseudo­
faults in the literature. 

b) A conventional assumption that many approaches 
[16], [9], [5,] [15] make is that faults affect only the PE's. 
The switchcs and interconnects are considered to be fault­
free. We also makc this assumption . Thc rationale here is 
that the PE's have to be designed with leading edge rules 
so as to maximize speed and density, while the switches 
and interconnects can be designed with more conservative 
design rules. Also, interconnects are often formed on a 
singlc laycr, whereas the PE's use multiple layers . This 
leads to additional failure modes for the processors such 
as mask misalignment and interlayer shorts, thereby re­
ducing the chip yield as a polynomial function of the num­
ber of masking levels used. 

c) Each PE is associated with a six-port switch that can 
provide six different switching functions . Such a switch 
can be designed with as few as 15 ON/O!'!' devices. This 
is the only overhead in temlS of extra hardware that has 
to be incorporated into the array. Such low overhead is 
critical , especially for digital signal processing applica­
tions whcrc thc processors may only comprise a few 
hundred transistors. Using multiplexers, the relative 
switching hardware overhead per processor increases to 
an extent that the validity of the fault-free switch fault 
model becomes questionable. 

d) Our approach is intended for off-line rcconfigura­
tion, mainly to handle production failures. Testing infor­
mation regarding the location of faults is assumed to be 
available using schemes such as the one suggested in [17]. 

The goal of reconfiguration is to recover a logical hex­
agonally connccted array of working cells from the orig­
inal physical array. Each cell of the array is represented 
by a pair of physical indexes (Px, py), and a pair of log­
ical i ndexes (I" LJ that indicate the indexes of the func­
tion of each cell at runtime. The two are the same in the 
absence of faults, but can differ when faults occur. Log­
ical indexes of faulty cells and the SE's are set to zero. 
We let g; denote the fault set, i . e . ,  the collection of phys­
ical indexes of the faulty elements in the array; and let 

I g; I denote the size of g;. Further, we let Xi and Yi denote 
the Px and PI values of the ith fault, respectively. 

DefinitiOll 1: Two cells are said to be horizontally con­
nected if they lie on the same physical row. Vertically and 
diagonally' connected cells are defined similarly. 

'By diagonal. we refer to the one going from the top left of the array 
and proceeding to the bottom right. 

Fig. I. An 8 X 8 hexagonal array with random faults. 

Definition 2: Two cells are said to be row (column) 
connected if they are either horizontally (vertically) or di­
agonally connected. 

Definition 3: An H line is any collection of n I row­
connected PE's, where n I is the number of columns in the 
physical grid . Thus, each H line starts at column I and 
ends at the last column. Similarly, a V line is a collection 
of m I column-connected PE' s, where m I is the number of 
rows in the physical grid. 

The algorithm HEX-REPAIR, presented in this paper, 
can be divided into the following two phases: 

Covering Phase: This determines an appropriate set, if 
one exists, of H and V lines that cover all  faulty cells. All 
PE's on these cover lines are treated as switching ele­
ments in the final solution.  

Procedure 1: The Covering Phase 

I) Fault Enumeration: Find a one-to-one mapping 4>: 
g; --> {I, 2, ... ,1g;1}. 

2) Graph Construction: Construct the HCG and the 
VCG for the given fault pattern. 

3) Graph TransversaL: Determine the set Sh of all dis­
tinct paths in the HCG and the set 51, of all distinct 
paths in the VCG that start at a root node and end 
at the sink node. 

4) Integer Programming: Determine the solution-set S 
consisting of nil paths from Sh and nt, paths from S", 
which together cover all faults in g; and which sat­
isfy 

nh :5 number of spare rows = R 

n" :5 number of spare columns = C. 

Configuration Phase: Here we configure each SE so as 
to ensure proper interconnections in the reconfigured ar­
ray. A simple scheme is presented to determine the par­
ticular configuration of an SE, based on the nature of in­
teraction between the H lines and V lines at that array 
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location. The final step is in assigning the new logical 
indices. 

Fig. 1 shows an 8 X 8 physical grid. The indexes of 
the 13 shaded processing elements represent the fault set 
:f. This example array can be reconfigured using just one 
spare row and one spare column of cells to yield a target 
logical array of dimension 7 x 7. We shall use this prob­
lem as our running example throughout the rest of this 
paper for illustrative purposes. 

TIl. THE COVERING PHASE 
In addition to finding a suitable set of H and V lines, 

this phase also detem1ines the maximum size working 
logical array that can be recovered from the given (faulty) 
physical array. If this maximum is deemed to be insuffi­
cient, the reconfiguration process can be either terminated 
or more spares can be added and the algorithm repeated. 
Procedure 1 outlines the main steps involved in the cov­
ering phase. These are explained in greater detail in the 
following paragraphs. 

A. Fault Mapping 

Let D) be the set consisting of cells with physical in­
dexes (x, y) such thatj = x + y - 1. Initialize the starting 
fault index to 1:f.1 Now, visit the cells in each set DI , D2, 
. . .  in the increasing order of y for each Dj• For example. 
in Fig. 2, the processing elements are visited in the order: 
(1, 1), (2,1), (1,2), (3,1), (2,2), (1,3), (3,2), (2,3), (1,4), 

(3,3), (2,4), (3,4). As each fault is encountered, it is 
mapped to the current fault-index value and the fault-in­
dex value is then decremented by one. The fault indexes 
for the example problem are indicated besides the faulty 
cells in Fig. 1. 

This step thus assigns a number between I and l:f 1 to 
each fault in the array. This mapping is used in the con­
struction of the cover graphs and H!V lines. 

B. Horizontal and Vertical Cover Graphs 

The horizontal and vertical cover graphs (HCG), (VCG) 
aid in identifying the maximal sets of faults such that all 
the faults in one set can be simultaneously covered with 
a single spare row (HCG) or column (VCG). The idea is 
to impose a partial order on the set :f so that the search 
for suitable lines can be restricted to just the fault set, 
rather than the whole physical array. This is especially 
important for large arrays with only a few faults. 

Formally, these graphs can be defined as follows: 
Definition 4: The HCG for a given :f consists of l:fl 

+ I nodes, one for each fault amI a special sink node. 
There exists a directed edge from node i to node j, iff 

r; > Y; and Xi 2: Y0 and Y; - Y; 2: X; - Xi: 
j is the sink node, 
there do not exist nodes k, il• i2, • •• in in HCG such 
that i --t k and k --+ i I --+ i2 -> • • • -> in -+ j. In other 
words, i should not be directly connected to a node that 
is an ancestor of j. 

Defintion 5: The VCG for a given :f consists of l:fl + 
I nodes, one for each fault and a special sink node. There 

Fig. 2. Enumeration scheme for determining/ault indexes. 

- .... 
(a) (b) 

Fig. 3. (a) Horizontal cover graph. (b) Vertical cover graph. 

exists a directed edge from node i to node j, iff 

X, > Xj and Y; 2: Y; and Xi - X) 2: Yi - Y;; 
j is the sink node: 
There do not exist nodes k, i), i2, • • • ill in VCG such 
that i ..... k and k -> i I -> i2 -> . . . -> ill -> j. 
The HCG and VCG, as defined above, can be con­

structed in O(I:f12) time. Fig. 3 shows the two 13-nodc 
HCG and VCG for our running example. The circled 
nodes are those with no ancestors in thc graph. These will 
be referred to as root nodes. 

C. Graph Traversal 

The set Sh(S,.) is a collection of paths in the HCG (VCG, 
respectively). starting from a root node and terminating 
at the sink node. New paths are generated using a depth­
first search strategy. Since, theoretically, the number of 
possible paths in cach graph could be as high as 21"'1/2

, 
we usc a parameter, called MaxPathLimit, to restrict the 
maximum number of paths generated for each graph. Pro­
cedure 2 outlines the path traversal method. 

The value set for MathPathLimit represents a tradeoff 
between computation time and a 100% guarantee of find­
ing a feasible solution if one exists (MaxPathLimit = in­
finity). In our simulations, we have set MaxPathLimit to 
1000 because we assume that the faults occur randomly 
and the number of possible paths in each graph is rela­
tively small. Thus, the probability that a fault (node in the 
graph) will occur in one of the 1000 chosen paths is quite 
high. 
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Procedure 2: Path Traversal Phase 

PathsGenerated = 0; 
ROD t Lis t = a circular l ist of all the root nodes in HCG (VCG); 
While ( Pat h sG en e rated < MaxPathLimit)and(RootList not empty) do 

Cur r e n t Roo t = Next entry in the Roo t Lis t; 
Generate a new path from Cur r e n t Roo t to thc sink node; 
If no new path exists then 

Remove Cu r r e n t Roo t from the Roo t L is t 
Else 

Increase Pat h 5 G e n era ted by one; Add this path to S" (SI') 
Endif 

EndWhile 

D. Finding the Solution Set S 
The solution sct S comprises of n" paths from S" and n,. 

paths from S", such that togethcr they covcr all the faults 
in :J, where n,,(n,.) is less than or equal to the number of 
spare rows (spare columns) available. This problem is 
similar to the prime implicant covering problem com­
monly encountered in gate minimization. A natural rep­
resentation is thc cover table that contains a row for each 
horizontal path (member of S,,) and for each vcrtical path 
(member of S,.) and a column for each fault in :J. A � is 
placed in the ith row and jth column if fault j is covered 
by the ith (horizontal and vertical) path. Certain rows and 
columns can be deleted from the cover table to simplify 
determining S. The rules for simplification follow. 

I) Suppose, for a given column j, a � occurs only 
once in row i. Then this row can be considered an 
essential path and a part of every solution. This is 
because faultj can only be covered and replaced by 
this path. All the other columns k for which there is 
a � in row i can also be removed. 

2) If two or more columns are identical, al l but one can 
be deleted. 

3) Row i is said to dominate row j if it has a � in each 
column wherej has one, and also in a few additional 
columns. Furthermore, both i and j should either bc 
horizontal paths or both be vertical paths.  In this 
case, the dominated row j can be deleted. 

4) Column i is said to dominate column j if i contains 
a � in every row where j has a �, and in addition 
i has some more � in other rows too. In such a 
case, we can remove the dominating column. 

Hence, if we let Bi be a Boolean variable that is I if 
row i of the cover table is selected for inclusion in  S, and 
Bjl' Bj2 • • •  Bjn) be the rows that cover column (fault) j; 
then the solution for covering all faults is given by the 
product-of-sums Boolean equation 

Using the distributive laws of Boolean algebra, this can 
be equivalently represented by a sum-of-products expres-

sion of the form 

p 
L: (Bki Bk2 ... BkI,,) = I. 

k�I 

A product tcrm with the fewest number of literals will 
constitute the minimum number of spares that are needed 
to obtain a reconfiguration solution. However , any prod­
uct term that consists of fewer than n;, horizontal paths 
and n" vertical paths, is an acceptable candidate for re­
configuration. 

example: Table I is the cover table for the reconfigur­
ation problem shown in Fig. I. The top half of the table 
indicates the six horizontal paths that exist in the HCG. 
while the latter half gives the nine vertical paths that are 
present in the VCG. Furthermore, columns 2 and 3 can 
be removed, as they dominate column 4. A solution for 
this coverage is easily determined to be {A, G} contain­
ing one horizontal path (A) and one vertical path (G). So 
it is admissible , as we do have one spare row and one 
spare column. 

In practice, we solve the covering problem by employ­
ing the integer linear program paradigm for which effi­
cient computer routines are available [18]. Let Rand C 
be positive integers denoting the number of available spare 
rows and columns. Let each horizontal path be denoted 
by a variable X, and let each vertical path be denoted by a 
variable y;- Then our integer program can be stated as 

Find a set of values for the m integer variables XI, X2' 

• • .  , Xm and the n integer variables YI, Y2, • • •  , y,P 
which minimize the objective function: 

III 

Subject to the I:J I + 2 constraints of rhe form 

" 

� ai,jXi + � aU+ml.jYi � 1, 
i= I 1= I 

wherej = 1,2, . . .  ,I:JI; 
III 

� Xi -<; R; L: Y, -<; C 
i= 1 i= I 
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TABLE I 
FUII.TCOVER TABU 

Fault ImJex 
Path 
name 2 4 5 6 7 9 10 I I  12 13 

A ,... ,... ,... ,... ,... ,... ,... v-
B v- v- ,... v- v- v- ,... 

C v- v- v- v- ,... ,... v-
D ,... v- ,... v- v- ,... ,... 

E v- ,... ,... ,... 

F v- v- ,... 

G ,... ,... ,... ,... ,... ,... 

H v' ,... ,... v- ,... ,... 

I '" v- v- v- ,... ,... 

J v- ,... ,... '" v- v-
K v- v- v- V- '" ,... 

L '" v- v'" v- ,... '" 

M v- v- v- v'" '" v- ,... 

N ,... '" '" v- v- v- v-
0 v' ,... 

Here the quantities aj,j are either 0 or I and are obtained 
from the cover table. The solution set S includes all paths 
that correspond to a nonzero Xj or Yj value at the end of 
the optimization. The constraints ensure that the number 
of horizontal paths choscn do not exceed the number of 
spare rows and the number of vertical paths do not exceed 
the number of spare columns, The first set of 15'1 con­
straints ensure that each fault is accounted for in at least 
one member of S, 

For m rows and n columns, the algorithm typically finds 
an reach the optimal vector after a number of iterations 
that is no bigger than the order of m or n, whichever is 
larger. In our case, m is detem1ined by the value for 
MaxPathLimit and is independent of the array or fault-set 
size and n = 1 g: I. Thus, the number of iterations required 
is solely determined by the number of faults. For most 
arrays with up to 25-30 faults that we simulated, we ob­
tained a solution in less than a second working on a Sun 
Sparcstation. It is interesting to note that network flow 
techniques can also be used to determine S. 

IV. THE CONFIGURATION PHASE 

Once the horizontal and vertical covering paths have 
been successfully determined, the configuration phase is 
next invoked. The three main steps constituting this phase 
are stated in Procedure 3. 
Procedure 3: The Configuration Phase 

1) For each horizontal (vertical) path p in S, construct 
a nonoverlapping H line (V line) that includes all 
faults in p. 

2) Reconfigure the array by assigning logical indices 
to the remaining good processing elements. 

3) Configure all the SE appropriately so as to ensure 
that the restructured array is transparent to the var­
ious alogrithms using the hexagonal array. Thus a 
PE can continue to communicate with its logical 
neighbors on the same links as before, unaware that 
it now reaches them through some SE's. 

4) Perform postprocessing to shorten logical connec­
tions. 

A. Constructinx H and V Lines 

Each horizontal path in S is to he covered by an H line 
and each vertical path by a V line. All of the cells of these 
lines will become SE's in the final solution. With each of 
these SE's, we associate an H type and a V type based on 
the manner in which the H/V lines pass through it (sec 
Fig. 4). 

Based on the H line I passing through an SE with in­
dexes (i, j), its H type can be classified as being 

I) U: (Unset) No H line passes through (i, j), which 
means that this SE is intersected only by a V line. 

2) S: (Straight) l connects (i, j) to (i, j - I) and (i, j 
+ I), if they exist. 

3) D: (Diagonal) I connects (i, j) to (i - I, j - I) and 
(i+I,j+l). 

4) LB: (Lower Bend) l connects (i, j) to (i I. j -

I) and (i, j + I). 
5) UB: (Upper Bend) I connects (i. j) to (i + I, j + 

1) and (i.j - I). 
6) TR: (TwoRow) This is the case when two H lines 

meet at (i, j). 

Likewise, SE (i, j) can have its V type set to one of the 
following six categories. 

I) U: (Unset) No V line passes through (i, j). 
2) S: (Straight) I connects (i, j) to (i, - I, j) and (i + 

I, j), if they exist. 
3) D: (Diagonal) l connects (i, j) to (i - I, j - I) and 

(i+l,j+I). 
4) LB: (Lower Bend) I connects (i, j) to (i - I, j) and 

(i+l. j + I). 
5) UB: (Upper Bend) l connects (i, j) to (i - I, j -

I) and (i + l,j). 
6) TC: (Two Col) This is the case when two V lines 

meet at (i, j). 

The initial strategy used to construct an HIV line for 
each path is stated below. "Let the horizontal (vertical) 
path p in S consist of P faults {fl,!2, . . . ff'} arranged 
in decreasing order of their fault indexes. The fault fl is 
horizontally (vertically) connected to the PE in the first 
column (row) of the row (column) of fl' Similarly, fp is 
horizontally (vertically) connected to the PE in the last 
column (row) of the row (column) of fp. For any other 
two faults /; and f, � I, we find a (unique) PE k which can 
be horizontally (vertically) connected to fi and diagonally 
connected to /; + I' ' . 

In the presence of faults occurring in more than one 
line, this procedure can lead to some overlap between 
H/V lines. We remove such overlap by removing the 
COTTlmon faults from all but one line and reconstruct the 
other lines as before. 
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(b) 

Fig. 4. Different H and V line patterns. (a) H line types. (h) V line types. 

-¢- ~ -$-
(j)NQrma! CQDflg 

Fig. 5. Different SE configurations 

B. Configuring the Switching Elements 

A byproduct of the covering strategy used is that the 
configuration of the SE's to maintain logical transparency 
is reduced to a simple TABLE-LOOKUP operation. Note 
that when we refer to an SE configuration, we actually 
mean the configuration of the switch associated with that 
PE. Fig. 5 shows the six different switching functions, of 
which the first corresponds to a good PE and the latter 
five correspond to an SE of type "a," "b," "c," "d," 
and "e," respectively. Table II is the SE configuration 
table. Entries marked with a .. " indicate invalid H 
type/V type combinations. 

C. Assignment of Logical Indexes 

Procedure 4 describes the scheme for assigning the log­
ical indices to the working cells of the reconfigured array. 
First we scan, column by column, assigning a logical row 
index to each PE in that column. This value is determined 
by the numher of H lines that traverse the column above 
the row under consideration. An SE gets a logical row 
index of O. 

We then perform a similar operation on each row, as-

Procedure 4: Assignment of New Logical Indexes 

For each coLumn c Do 

Fig. 6. Final result of the reconfiguratinn. 

TABLE II 
LOOKUP T 'BLE FOR SE SETTINGS 

H type -> 
V type � V S D LB VB TR 

V a a 
S b c e d 
D b b 

LB b e e 
VB b d d 
TC b 

signing a logical column index to each PE, based on the 
number of V lines met until that point. It is possible for 
two cells, CI and Cz, to get assigned the same logical 
indices when either two H lines or two V lines intersect 
at the same SE. However, we note that for an n X n phys­
ical array, the total number of SE' s that result from two 
such intersecting H or V lines is equal to 2n - 1. On the 
other hand, every spare row or column consists of n cells. 
Thus, we end up with an cxtra spare cell. We can there­
fore resolve the conllict by converting one of C1 or Cz to 
an SE. 

Corollary 1: Each switching element in thc reconfig­
ured array is intersected by at most one H line and at most 
one V line. The proof follows from the H-V line con­
struction and conflict resolution strategy employed in Pro­
cedure 4. 

Fig. 6 is the final result for our running example. The 
logical indexes of all the working cells were determined 
using Procedure 4, and the SE's were configured as per 
Table II. 

dR = a (dR counts the number of H Lines met so far) 

For each row r Do 

If (r, c) is a SE Then 
dR = dR + k (w h ere k 

and 1 ot h erwi se) 

E L s e 

If (r, c) is free Then 

2 if H Line state for (T, c) is TR, a if it is U, 

Mark LogicaL row for (r, c) as r - dR 
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End For 
For each row r Do 

de =0 (de counts the number of V lines met so far) 

For each col c Do 

If Cr, c) is a SE Then 

dc = de + k ( w her e k 2 i f V Lin e st ate for C r, c) i s T C. 0 i fit i s U. 

and I otherwi se) 

Else 

If Cr, c) is free Then 

Mark logical col for (r, c) as c - de 
Conflict Resolution: 
I f a P E  <i, j) has a l ready been ass i gned t he same 

log i ca l i ndi ces Then 

If Ir - i I "" Ic - j I The n 
Mark U, j) as an SE of type a 

Else 

Mark <i, j) as an SE of typeb 

End For 

V .  PROOF OF CORRECTNESS 01-' THE RECONFIGURATlON 

ALGORITHM 

Conceptually, the various H and V lincs partition the 
array into several subareas, each possessing a certain re­
lationship between the logical and physical indices for the 
processing elements within, In our example, there are 
three such subareas: A, B, and C, (described in Table III). 
We generalize this concept to several H and V lines, 
thereby giving a constructive proof of the correctness of 
HEX-REPAIR. 

Theorem 1: The LOOKUP TABLE for switching ele­
ment settings guarantees a proper hexagonally connected 
logic array of working PE's after the Logical Index As­
signment phase. 

Proof: Let T(r, c) denote a subarea of working cells 
which is bounded by r H lines above and c V lines to the 
left. Then in this subarea, the logical indices of any cell 
C" with physical indexes (i, j), is given by (i - r, j -
c). The proof of the correctness of the algorithm can be 
established by enumerating the various possible cases. 

Consider the logical right neighbor of CI. If the cell (i, 
j + I) is good, then we are done. Assume otherwise. 
There are two cases to be examined here. Let Cz be the 
first cell on the same row as CI and to its right, that is 
either free or contains an H line. Let the physical indices 
of Cz be (i, j + k). Consequently, all cells between CI 
and Cz have a V line passing through them and will be­
come SE's of type "b." 

Case 1: Cz is a free, i.e. ,  working PE. 
In this case, we have (1', j)R --- (i. j + 1), --- (i, j + 

I)R ..... ' ....... (i, j + k)L' The subscripts denote the port 
of entry or exit of that cell, viz. Left, Right, Top, Bottom, 
Top Diagonal, and Bottom Diagonal. Since therc are k -
1 V lines between C1 and Cz, the latter lies in a subarea 
of type T(r, c + k - 1). Thus, the logical indexes of Cz 
are (i - r, (j + k) - (c + k - 1)) = (i - r, j - c + 
1), which are the logical indexes required for the right 
neighbor of CI. 

Case 2: Cz contains an H line. 
By similar arguments to the previous case, we can con­

clude that the right neighbor link of C[ reaches the left 
input of Cz. Furthermore, the H line type of Cz can only 
be Diagonal or Lower Bend. This is because otherwise, 
cell (i, j + k - 1) will also have an H line, which con­
tradicts the assumption that Cz is the first cell containing 
one. Also cell C; = (i - 1, j + k - 1) is diagonally 
connected to C2 via the same H line. So the H line type 
of C; can only be Diagonal or Upper Bend. 

Similarly, a V line, if any, through Cz can be Straight 
or Lower Bend; and a V line, if any, through C; can only 
be Straight or Upper Bend. From Table II, C2 can there­
fore be of type "a" or "e"; and C; can be of type "a" 
or "d." In all cases, the signal path arriving at the left 
port of Cz goes to the bottom diagonal port of C { and then 
comes out of its right port. 

Since at most one H line can pass through any cell, 
C; cannot be simultaneously horizontally connected to cell 
(i - 1,j + k) by an H line. Thus, we can extend the same 
arguments we made before, by replacing occurrenccs of 
C[ and C;. We observe that with each H line, we move 
up one physical row; and with each V line we proceed 
one column to the right. Let this process finally terminate 
at a good cell Cg which lies in a subarea of type T(r -
r', C + c'). This means that the signal path starting at the 
right port of CI meets r' H lines and c' V lines. Therefore, 
the physical indexes of Cg will be (i - r', j + c' + 1)_ 
Thus, the logical indices of Cg are «i - r') - (r - r'), 
U + c' + 1) - (c + c')) = (i - r, j - c + 1), which 
is as required. 

The proof of correctness for up/down neighbor connec­
tions can be similarly derived, The case of diagonal con­
nections is slightly more involved. If the cell (i + 1, j + 
1) has a Straight V line, then the path traced will be (i, 

j)DR ..... (i + l,j + I)DT--- (i + 1,j + Ih ..... (i,j + l )s 
..... (i, j + l)DB ..... (i + 1, j + 2)DT' If on the other hand, 
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SubArea 

A 
B 
C 

TABLE III 
PARTITIONING DUE TO H 'ND V LiNES 

Phy Index Log Index 

y x 

i-I 
I 

i-I 

j 
j -1 
j - 1 

the cell (i + I,) + I) has a Straight H line, then the path 
traced will be (i'))DB ---> (i + I,) + I)DT ---> (i + I,) + 
IlL ---> (i + I')R ---> (i + 1,j)DB -> (i + 2,j)DT' Finally, 
the cell (i + I,.i + I) can have both a Straight V line and 
a Straight H line. In this case the path traced will be (i, 

j)DB ---> (i + I,) + I)DT ---> (i + I,) + l)DB --+ (i + 2,.i 
+ 2)DT' Hence, if thc path encounters r' H lines and c' V 
lines, the physical coordinates of C� arc (i + r' + 1,) + 
c' + I). Since the type of subarea containing CK is givcn 
by T(r + r', c + c'), the logical indexes of Cg are «i + 
r' + 1) - (r + r'), (j + c' + I) - (c + c '») = (i - r 
+ I,) - c + 1), which are as required. Q.E. D. 

VI. EVALULATION OF THE ALGORITHM 

Reconfiguration algorithms, such as HEX-REPAIR, 
can be compared by thcir probability of getting stuck in a 
fatal situation, namely, one for which the algorithm fails 
to find a suitable reconfiguration. Even for optimal algo­
rithms based on local connections only, there are small 
clusters of faults that cannot be overcome. For fixed prob­
ability of cell failurc, the probability that such clusters 
occur therefore approaches onc as the array becomes in­
finitely large. Thus, there is a critical size of the array 
that cannot be overcome unless the probability of single­
cell failure decreases. Thus, in such cases, a degradation 
in array size would result unless new spares are added. 

One pertinent measure is the critical constant (Xc which 
is defined [19] to be the largest number such that if (X < 
(XC' then for an array with N processors and individual 
processor failure probability of 1/ NO:, the reconfiguration 
will almost certainly gct stuck in a fatal situation. Thus, 
it is desirable to have as small a value for (Xc as possible. 
The rest of this section pertains to deriving the critical 
constant for HEX-REPAIR. 

Definition: An atomic fail pattern is defined as a fail 
pattern that cannot be solved by the algorithm; while re­
moving any one fault from the pattcrn leads to a recon­
figurable array. 

Theorem 2: For any array of size n x n with N = n2 
processors, HEX-REPAIR contains O(n6) = O(N3) dif­
ferent fail patterns of size 3. 

Proof An atomic fail pattern for HEX-REPAIR is 
as follows: Pick any cell other than one lying along the 
top two rows of the two rightmost columns. Place the first 
fault there. Now place the second fault to the right and 
above the first fault. Likewise, place the third fault to the 
right and above the sccond fault. Fig. 7 shows a typical 
member of the fail-pattern family. It consists of patterns 

(1,1) i1 
, 

13---t--t--�-

(n,n) 
Fig. 7. Typical member of an atomic fail-pattern for ct. 

of the form: 

W]')I). (i2,h), (i3,h)}, 

where the top left cell is labeled (1, 1). 
Now, consider any three columns. It is clear that the 

number of patterns T satisfying the constraints mentioned 
above is given by 

n-2 n-] n 

( ) T = 
i�] j � � I k �t- ] 1 = n(n - l)(n - 2) / 6  = � . 

We can also choose the columns in (3) ways. Hence, the 
total number of patterns for such an array is (3)2. In 
asymptotic notations2 this implies there are O(n6) = O(Nl) 
different fail patterns of size 3. QED 

Theorem 3: The critical constant (Xc for the reconfigu­
ration algorithm HEX-REPAIR approaches 1 as the num­
ber of processors N tends to infinity. 

Proof: We consider only the case when all fail pat­
terns A are each the size k. This is true for HEX-REPAIR. 
Let FA be a random variable equal to the number of fail 
patterns in the processor array G. Let E(FA) and E(F�) be 
its first and second moments, respectively. Then it was 
shown in [19] that for positive constants a and {3 

E(FA) = a' N6-ko. 

k-I 

� (S(i) . P 2k-i) 
i -0 

where TA•N is the number of fail patterns in G; SCi) denotes 
the number of fail patterns B that have exactly i common 
faults with any given fail pattern A; and N{3 oc T.4.N' 

For one spare row and one spare column, by Theorem 
2, each fault pattern is of size k = 3. Hence, {3 is also 3. 
Therefore, 

E(FA) = a . N3(1-a,. (6. 1 )  

If ex > 1 ,  then clearly E(FA) --> 0 a s  N ---> 00. Thus, 
there is almost certainly no fail pattern in G .  This proves 
the first part of the theorem. Likewise, if (X < 1, then 
E(FA) ..... 00 as N ---> 00. In this case, to establish that Pr(FA 

'0( g(II) = {J(n): there exists posilive constants c anu no such thaI 0 :5 
J(n) :5 cg(n) for all n 2': l1o}. 

"0(,11 (11) = (f(l1): for any positive constant c > 0, there exists a constant 
110 > 0 such that 0 :5 J(n) < cg(ll) for all n 2': nu}. 
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= 0) as N -> 00, we have to considcr Chebyshev's in­
equality. This implies for E(FA) '* 0 

E F' 
Pr(f1 = 0) � (A; - 1. E(FA) 

It can be further shown that for each fail pattern A of 
HEX-REPAIR, 

5(0) = a2N3 - 0(N3), S(l)  

5(2) = O(N). 

Hence, for our fail pattern family, with the individual 
processor failure probability of p = N-u, it follows that 

E(F�) = E(F4) + N3 • (a2N1 _ O(N3» . p6 

+ O(N} . n4 
• / + N3 . n2 

. p4) 

= E(F4) + E(FA)2 - 0(E(F4)2) 

+ O(N5(l-Sul + N4(l-Ul). 

Hence, dividing by E(FA)2 = 02 • N6(1 -al
, we get 

E(F2) 1 
__ A __ 1 = ___ 0(1) + O(Noc-1 + N210C -11). 
E(FA)2 E(F4) 

As N -> 00, the right hand side -> O. Thus, from the 
Chebyshev inequality, we can concludc that Pr(FA = 0)  
-> 0 as  N --+ 00 for a < 1. Q.E.D. 

The same treatment can be extended to the case of say 
r spare rows and c spare columns. The atomic fault pat­
tern now contains k = r + c + 1 faults and is constructed 
similar to the 3-fault pattern. Each successive fault occurs 
to the top and right of the preccding one. The number of 
such patterns is given by the expression: 

= CY 
where the summation in each case is performed until 

I. 
Uj = (n -j + 1) - b if 

r- (j+ I) 

Uk = (n - k + 1). 

When N -> 00, i.e. when N » k, the number of pat­
terns is O(N'). Since the number of faults in each pattern 
is k, we get the critical constant a < I. 

Thus, to summarize, our algorithm guarantees a recon­
figurable solution either when 1) the number of faults < 
the number of spare rows and columns, or 2) the proba­
bility of failure of an individual processing element 
� 1/ N, where N is the number of preocessors in the ar­
ray. 

The analysis of Theorem 3 has been verified by exten­
sive simulations. Fig. 8 shows the successful reconfigu­
ration rate (100% fault coverage), and Fig. 9 the average 
number of faults that could be covered. The data points 
used to plot the graphs were the average taken over 1000 

100 
N 90 J c 

1 
8D .' I 
70 ! 60 

lOxlO 

J ... '1 
I 20><20 

50 �:::. 

J 
.0 l l00xlOQ. . 
30 

2 0  

10 
0.8 0.9 1.1 1.2 1.3 

a� 

Fig. 8. Effect of ex on reconfiguration. 
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I 

// 
90 

.' I 

... // !!!!!l!L-
3 85 2Ox20 

/.'/ 
I �::.: If:! 

t 
80 1OOxlOQ. . 

! 75 

70 
0.8 0.9 1.1 1.2 1.3 

a� 

Fig. 9. Eifect of C/ on average fault coverage. 

independent runs using one spare row and one spare col­
umn of cells. The dimension of the arrays used is indi­
cated in the legend. Especially for the larger arrays, we 
achieve 100% fault coverage when a > I as expected. 

VII. IMPLEMENTATION ISSUES 

A switch which realizes the six different switching 
functions needed in HEX-REPAIR can be realized using 
only 15 basic ON/OFF devices per cell. This is shown in 
Fig. 10. Note, no additional datapaths or multiplexers or 
long switched buses are required. Table IV shows how 
the different transistors need to be set ON and OFF in the 
six cases. Thus, for the hexagonal array, this scheme en­
tails only 2.5 switching devices per port of a cell. 

On the other hand, the switching overheads for direct­
reconfiguration and other types of fault-stealing ap­
proaches [5], [6] is quite high. Based on the reconfigu­
ration rules for the direct scheme, for any cell (i, j ), pos­
sible logical neighbors are: 

• along vertical axis: cells (i - 2,j - 1), (i - 1,j -
1), (i,j - 1), (i - l,j), (i - 2,j + 1), (i - I,) 
+ 1), (i,j + 1). 

• along the horizontal axis: cells (i - 1, j - 1), i, j -
1), and (i + l,j + 1). 

• along diagonal: cells (i + 1, j), (i - 1, j), (i - 2, 
j), (i - 3,j), (i,) - 1), (i - l,j - 1), (i - 2,j 

- 1), (i + 1,j - 2), (i,j - 2), (i - I,j - 2), (i 
- 2, j - 2), (i - 3, j - 2). 

Thus, each cell needs a 7 X I, a 3 x 1 and a 12 x 1 
mux for selecting inputs and a 2 x 1 mux for selecting 
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up 

1ert --+--+H1!1--< HH+--�>--- riqht 

dOVD 

bot diaq 

pass transistor or 
e-beam charged gate i 

Fig. 10. Switch design using pass transistors or floating gate transistors. 

Switch 
Configuration I 

Normal cell 0 
SwType a 0 
SwType b I 
SwType c 0 
SwType d I 
SwType e 0 

0 
I 

0 
0 
0 
0 

TABLE IV 
SWITCH['IG FUNCTION TABLE 

ON/OFF settings 

4 5 6 7 9 10 I I  12 13 14 15 

0 0 0 0 0 0 0 I I I 
0 I 0 0 0 0 I 0 0 0 0 0 0 
0 0 0 I 0 I 0 0 0 0 0 0 0 
I 0 I 0 I 0 0 0 0 0 0 0 0 

0 0 0 0 I 0 I 0 0 0 0 0 0 
I I 0 0 0 1 0 0 0 0 0 0 0 

outputs. Direct interconnections are also required be­
tween cells with a Manhattan distance of 5. The total 
length of interconnect required thus is considerable. 

For production-time reconfiguration, these devices are 
ideally e-beam/tlV programmed floating gate transistors. 
By e-beam addition or UV deletion of the gate charge, the 
transistor can be set to either the ON or OFF state. Alter­
natively, electronically programmable ON/OFF dcvices 
sueh as pass transistors can be used. Besides offering an 
easy mechanism for correcting in-service faults, they pro­
vide for yield enhancement reconfiguration with intercon­
nection adaptation to a particular problem. However, they 
need more area since the state also has to be stored. The 
other advantage of using physically restructurable 
switches is that they typically introduce a smaller on-state 
resistance than electronic switches. Thus signal rise time 
degradation and propagation delay per switched link is 
considerably reduced. The switch programming is non­
volatile and need not be run eaeh time on power-on. This 
is especially important for a large array with many PE's. 
The chief disadvantage is that they offer only a permanent 
solution and the connections cannot be reprogrammed at 
runtime to account for additional faults. 

In systolic arrays, timing is important. It is desirable to 

minimize the additional delay caused by communicating 
over a logical link which could be made up of a series of 
physical links connected by switches. Based on an incre­
mental distributed-RC model of electrical interconnec­
tion, the delay TRC introduced is roughly N2Rs"C"I' where 
R,w is the series resistance introduced by each switch and 
Cll! is the capacitance imposed by each link and N is the 
number of links in the path. For a typical minimum ge­
ometry pass transistor, this can be about 10 ns delay per 
cm of line length and per square of gate area. In our run­
ning example where one H line and one V line were used, 
it can be shown from Theorem 4 that there are at most 
three links per logical path. Assuming a link is O.l cm, 
this places an upper bound of 3 ns of the delay. Clearly 
it is preferable to keep the number of additional links per 
reconfigured path as small as possible. The following 
theorem establishes a bound on the maximum wire length 
and, therefore, bounds the maximum delay in signals. In 
practice, however, R and C need to be replaced by the 
actual number of H lines and V lines that were used in 
arriving at the solution. 

Theorem 4: For a hexagonal array, with R spare rows 
and C spare columns, the length I, of any path p, between 
two logically adjacent cells satisfies the relation: 

I ::S; max (2R + C + I, 2C + R + 1). 

Proof: a) Horizontal direction: From Theorem 1, it 
follows that the path p has two SE's on every H line be­
tween the cells; and one SE on every V line between. 
Since there can be at most R H lines and C V lines be­
tween the two, this means that path p can at most com­
prise 2 R + C SE's. Hence, the maximum length in the 
horizontal direction, lh is less than or equal to 2R + 
C + 1. 

b) Vertical direction: By similar arguments, it can be 
shown that the maximum length in the vertical direction, 
II is less than or equal to 2C + R + I. 

c) Dia{?onal direction: From Theorem 1, we can de­
duce that this case is a combination of the above two. 
Every cell on path p which contains a Straight H line re­
sembles a), and those that contain a Straight V line resem­
ble b). Thus, the maximum length in the diagonal direc­
tion ld, subject to postprocessing, is less than or equal to 
max (2R + C + 1, 2C + R + I). However, fortype "c" 
cells, the path length increases by just I for each pair of 
an H line and V line. This has been found to be more the 
typical case. Hence, ld is more often close to max (R + 
I,C+I). 

The theorem follows from the above three cases. 
Q.E.D. 

Postprocessing: A consequence of the automatic 
switch settings done by table lookup is that a reconfigured 
path may traverse at SE of type "c" twice. The presence 
of such a loop in the path is unnecessary and is eliminated 
in a postprocessing step, wherein the abovementioned 
SE's of type "c" are reconfigured appropriately. Note that 
these loops do not affect the correctness of the solution, 
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(a) (b) 

Fig. I I  Eli minating redundant links by postprocessing. 

but their removal improves the performance by reducing 
the overall length. Fig .  I I  (a) shows how such a postpro­
cessing procedure can detect double traversals of the re­
configured path between logical cells ( l ,  2) and (2, 3) at 
the cell marked with a * and reconfigure it as shown in 
Fig. I I (b) . This step thus eliminates three additional links 
in the reconfigured path . 

VIII. CONCLUSION 

In this paper we have presented and analyzed a recon­
figuration algorithm, HEX-REPAIR, intended for wafer­
scale hexagonal processor arrays. Reconfiguration 
schemes can be evaluated by their fault-coverage char­
acteristics and the accompanying switching overhead 
needed. The two are usually directly proportional to one 
another. For example ,  fault-stealing approaches have 
good fault coverage but need very large multiplexers and 
a large number of extra data links between processors. 
Consequently , they arc not suitable for many hexagonal 
arrays used in digital signal and image processing appli­
cations, which often have relatively simple procesSOrs , 
each consisting of a few hundred transistors onl y .  

HEX-REPAIR has been shown to b e  fairly robust even 
in the presence of multiple faults . Computational efficient 
techniques such as fault compaction and suitable heuris­
tics, such as SE configuration by table-lookup, have been 
employed to get a solution whenever possible, in time 
which is polynomial in the number of faults. This is de­
spite the fact that the original problem is NP-col11plete. 
The only extra hardware needed to implement this algo­
rithm is a switch made up of 15 ON/OFF devices per pro­
cessor. No extra data paths are introduced between pro­
cessing elements . Also , the switch complexity is 
independent of the number of rows and columns of spare 
cells used . The correctness of the reconfigured solution 
and bounds on path length increase have been derived. 
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