REAL-TIME COMMUNICATION IN LOCAL AREA
RING NETWORKS

Q. Zheng and K. G. Shin
Real-Time Computing Laboratory
Department of Electrical Engineering and Computer Science
The University of Michigan
Ann Arbor, Michigan 48109-2122
E-mail: {zheng,kgshin}@eecs.umich.edu

Abstract

Timed token protocols are almost ezclusively used
for medium access control in local area ring nei-
works. We consider in this paper the feasibility of
using buffered transmission which has the advantages
of eliminating the token passing overhead and relieving
the network interface from the complez token handling
operations. By establishing real-time channels (each of
which is a unidirectional virtual connection), the end-
to—end delivery delay of real-time packets can also be
controlled more flezibly than the timed token protocols.

We first review the concept of real-time channel
(RTC) and the RTC establishment procedures. Iis
performance is then compared with the FDDI timed
token protocol. Qur simulation results show that
the buffered transmission in local area ring networks
equipped with real-time channels enhances both the
networks’ throughput and the ability to support het-
erogeneous real-time traffic. The implementation of
the network interface is also ezamined with an ezam-
ple design showing the feasibility of real-time channels
in high-speed local area networks.

1 Introduction

The ring topology has been widely used in Local
Area Networks (LANs). Two well-known examples
of these are the IBM token ring and the Fiber Dis-
tributed Data Interface (FDDI). Compared to the bus

*The work reported in this paper was supported in part by
the Office of Naval Research under Grants No. N0O0014-92—-J—
1080 and NO00014-91-J-1115, and the National Science Foun-
dation under Grant No. MIP-9012549. Any opinions, findings,
and recommendations expressed in this publication are those of
the authors, and do not necessarily reflect the views of the *
funding agencies.

0742-1303/92 $3.00 © 1992 IEEE

MR

416

topology like the Ethernet, the ring topology is bet-
ter suited for high-performance networks operating at
a very high transmission rate ranging from 20 to 500
mega bits per second (Mbps) [1]. Unlike the bus topol-
ogy, a ring network can connect many stations over a
long distance without significant performance degra-
dation.

With a proper Medium Access Control (MAC) pro-
tocol, a ring network can provide bounded access de-
lays for real-time packets. One such example is the
FDDI’s timed token protocol which guarantees the
maximum access delay for synchronous packets not
to exceed two times the preset Target Token Rota-
tion Time (TTRT). However, the bounded access de-
lay provided by a timed token ring is not small enough
for a true multimedia LAN [2] or for distributed real-
time systems for the following two reasons.

First, the ring latency (defined as the token rota-
tion time in the absence of network traffic) has a sig-
nificant effect on the maximum network throughput
when a stringent access delay bound is required. It
was suggested in [3] that to maintain throughput lev-
els of the FDDI above 80 Mbps, the TTRT should be
at least five times the ring latency. For the maximum
configuration of the FDDI with 1000 stations and a
200 km fiber, the ring latency is about 1.62ms [3].
This requires TTRT > 8.1ms. The minimum access
delay bound for synchronous packets is then at least
16.2ms, making the network inadequate for those real-
time applications with deadlines tighter than this.

The second problem of a timed token ring is its in-
flexibility in supporting heterogeneous real-time traf-
fic with different delay and bandwidth requirements.
This is because the access delay is controlled by the
TTRT which is identical for all stations. So, all real-
time traffic is guaranteed to have the same access de-
lay, resulting in the inefficient use of network band-

width when some real-time traffic needs stringent de-
lay bounds while others do not.

To alleviate the first problem, Shin and Zheng [4]
proposed an improved version of the timed token pro-
tocol which can maintain the network throughput to
a maximum possible level while guaranteeing the re-
quested access delay bound for synchronous packets.
The main idea in [4] was to modify the FDDI’s timed
token protocol such that the average token rotation
time equals the maximum token rotation time when
there is a heavy network throughput demand (note
that the average token rotation time is one half of the
maximum token rotation time for a standard FDDI).
This is equivalent to reducing the network latency by
a factor of two. For the maximum FDDI configuration
described above, the modified protocol can provide the
access delay bound as small as 16.2/2 = 8.1ms.

Another way of enhancing the FDDI, called FDDI-
I, was proposed to make FDDI suitable for multi-
media applications [1, 2]. Realizing the continuous-
stream property of the voice traffic, FDDI-II adds a
circuit-switched service to the ring, which sets up con-
nections at data rates of multiples of 8 Kbits per sec-
ond (Kbps). Circuit switching is suitable for constant
bit rate traffic, but may waste link bandwidth or cause
performace deterioration in case of variable bit rate
traffic, e.g, the compressed video transmission.

The fundamental idea behind any token-controlled
medium access protocol is to view the whole ring as a
single resource, and accesses to the resource are sched-
uled in a pseudo-centralized manner, i.e., using a sin-
gle token. Due to the geographical distribution of the
stations, any centralized scheduling mechanism will
inevitably introduce undesirable overhead. In this pa-
per, we address the feasibility and advantages of using
buffered transmission in ring networks. When buffered
transmission is used, each link is viewed as an inde-
pendent resource and link-access scheduling is done
at each station in a decentralized manner. Thus, no
MAC overhead will occur and the network bandwidth
could be used more efficiently than the usual single
token approach.

Buffered transmission has long been used in
message-passing multicomputers [5, 6] whose point~
to—point interconnection networks make any token
protocols very inefficient. Transmission techniques
like virtual cut-through and wormhole routing to-
gether with hardware-implemented switching func-
tions have made the speed of packet transmission fast
enough to handle tightly-coupled distributed compu-
tations.

One problem with buffered transmission, however,

417

is its inability to support real-time communication.
Due to the random queueing delays at each link and
multihops a packet must traverse, end-to—end packet
delivery delays are difficult to control. Unlike the
FDDI, a bare buffered network cannot guarantee the
maximum packet delivery delay bound.

To counter the above problem, Ferrari and Verma
{7] proposed the concept of real-time channel to sup-
port time-constrained communication in buffered wide
area networks. Real-time channels use two tech-
niques to guarantee end—to—end packet delivery delay
bound: admission control of the channels and deadline
scheduling of packet transmissions.

Like circuit switching, admission control requires
those processes requesting real-time communication
to establish real-time channels before starting packet
transmission. A channel establishment request may
be accepted or rejected, depending on the current
network-load condition. Admission control is neces-
sary because packet delay bounds cannot be guaran-
teed without controlling the network traffic load. In-
terested readers are referred to 7, 8, 9, 10] for a com-
plete discussion on the conditions and procedures of
real-time channel establishment.

Packet transmissions are scheduled as follows.
Real-time packets have a higher transmission priority
than that of the non real-time packets. Each real-
time packet is assigned a deadline over each link it
traverses. When several real-time packets contend for
use of the same link, the packet with the earliest dead-
line is transmitted first. There are two advantages of
using deadline scheduling as follows.

1. Minimal effects of contention delays: For real-
time applications, we need to guarantee the maz-
imum packet delay bound. Unlike the average
delay, the contention delays at the transmission
links have significant effects on the maximum
packet delays, even when the traffic load is not
heavy. The deadline scheduling policy can mini-
mize the effects of contention delays in the sense
that given any set of packets with deadlines, if
they are schedulable under any scheduling policy
(i.e., every packet can be transmitted before its
deadline), so can they under the deadline schedul-
ing policy [11]. Thus, the deadline scheduling pol-
icy gives the communication network the max-
imum capacity to accommodate real-time chan-
nels. In other words, deadline scheduling mini-
mizes the probability of rejecting channel estab-
lishment requests.

2. Channel protection: Under the deadline schedul-

ing policy, real-time channels are protected from
one another. When establishing a new real-time
channel, the worst-case queueing delay is calcu-
lated for each link under the assumption that
all existing real-time channels over this link will
generate packets according to their prespecified
patterns (i.e., do not exceed their a priori speci-
fied maximum packet generation rate and max-
imum packet length). In practice, however, it
is possible that some channels exceed their pre-
specified rates. By properly assigning deadlines
to the packets of different channels [8], the dead-
line scheduling policy can ensure that those chan-
nels exceeding their pre-specified rates will not
affect the timely delivery of the other channels’
packets. Other scheduling policies, like FIFO or
priority scheduling, do not possess this property.

In summary, a real-time channel has the perfor-
mance of a dedicated circuit without monopolizing the
circuit. It guarantees the end-to—end delay bound as
long as the source node does not generate packets at a
rate higher than the pre-specified value. However, un-
like a dedicated circuit, a real-time channel does not
reserve any transmission bandwidth. The links are
free to transmit other non real-time packets whenever
there are no packets of the real-time channels to be
transmitted. This makes real-time channels efficient
for time—constrained communication.

We will in this paper address the performance and
implementation issues of real-time channels in buffered
local area ring networks. The performance of real-
time channels is compared with that of the FDDI to-
ken ring in Section 2, showing that real-time channels
are better suited to support heterogeneous real-time
communication in addition to their improved network
throughput. Section 3 discusses the issues in imple-
menting the ring interface to support real-time chan-
nels. The paper concludes with Section 4.

2 Performance of Real-time Channels

We first describe briefly a centralized version of
real-time channel establishment procedure [9, 8] which
will be used to evaluate the performance of real-time
channels against that of FDDI timed token ring.

To set up a real-time channel, the requesting pro-
cess must determine two parameters, T and C, spec-
ifying its traffic generation pattern, where T is the
minimum packet inter-generation time and C is the
maximum packet transmission time. It is reasonable
to assume prior knowledge of these parameters for

418

many applications, such as interactive voice transmis-
sion and real-time control/monitoring. In other appli-
cations where the traffic pattern is less predictable, the
estimated values of T and C could be used. A process
may exceed its prespecified maximum packet genera-
tion rate at the risk that these packets may be deliv-
ered with delays longer than the prespecified bound
or may even be discarded, but due to the deadline
scheduling of packet transmissions, this particular pro-
cess will not affect the guarantees of the other existing
channels.

The process then sends a channel request message
containing T and C together with the end-to—end
packet delay bound D and addresses of the source and
destination nodes to a special node containing the Net-
work Manager (NM), which maintains the information
of all existing channels and executes the following al-
gorithm to check if the requested channel can be es-
tablished under the current network-load condition.

Channel Establishment Algorithm:

Step 1. Suppose a new channel is to run over the
route from the source to destination that contains
k links £;, - - -, £;. Calculate the minimum packet
delay bounds &,;,, over link £, j = 1,---,k under
the deadline scheduling policy.

Step 2. If Z;‘:l & ;, < D, the requested real-time
channel can be established. Assign the delay qf £
tobe d = i, +6/k, where § = D=3 5_, dnip-

min
Otherwise, the channel establishment request is

rejected.

The algorithm for calculating the minimum packet
delay ;. in Step 1 is presented in the Appendix.
Interested readers are referred to [9] for a detailed ac-
count.

The Network Manager then sends a reply message
to the requesting process notifying the acceptance or
rejection of the channel request. If the channel request
is accepted, the requesting process also gets the cal-
culated delay bounds d’s over the links with which a
packet’s deadlines for the links on the route are cal-
culated and added to the header of the packet. Each
intermediate node strips off the corresponding dead-
line field in the header of a packet and uses this infor-
mation to schedule the transmission of the packet in
the presence of other packets. When a real-time chan-
nel is no longer needed, it is removed by having the
requesting process send a channel removal message to
the Network Manager.

We now compare the performance of real-time

channels with that of FDDI token ring in terms of
their ability to support both real-time and non real-
time communication. The example we are going to
use i8 a typical FDDI dual-ring network with the link
transmission bandwidth 100 Mbps. The network has
80 stations with the ring latency of 0.4ms. Assuming
a propagation delay of 5.058us/km and a latency of
0.6us per station [3], this corresponds to a ring length
of 70 km.

The network is designed to support the following
three types of traffic:

Non real-time traffic: This type of traffic is gen-
erated randomly and does not have any explicit
packet delivery delay requirements. Usually, this
type represents the main portion of network traf-
fic. The network must be able to support this
type of traffic as much as possible.

Type A real-time traffic: This type of traffic has
stringent packet-delivery delay requirements, but
represents only a small portion of network traf-
fic. The (worst-case) traffic pattern for this type
is usually known in advance. Examples of this
type of traffic are the synchronization and con-
trol signals in distributed real-time control sys-
tems. We assume the requested packet-delivery
delay of 5 ms, the maximum packet size of 500
bits, and the maximum packet generation rate of
20 packets/second for each connection/channel of
this type in the following example.

Type B real-time traffic: This type of traffic re-
quires moderate packet-delivery delays, and forms
a moderate portion of network traffic with pre-
specified (worst-case) traffic patterns. Examples
of this type of traffic are packetized voice and pe-
riodic real-time data collection (e.g., sensor read-
ing). We assume the requested packet delivery
delay of 100 ms, the maximum packet size of 5000
bits, and the maximum packet generation rate of
20 packets/second for each connection/channel of
this type in the following example.

In what follows, the FDDI timed-token network
is compared with the buffered dual-ring network
equipped with real-time channels with respect to net-
work efficiency and the network’s ability of supporting
real-time communication.

Network Efficiency: For an FDDI timed-token
ring network, in order to handle type A real-time traf-
fic, the maximum token rotation time must be less
than the minimum requested packet delay minus the

ring latency = 5ms—0.4ms = 4.6ms. The average to-
ken rotation time would thus be one half of the max-
imum token rotation time, i.e., 2.3 ms [12]. Thus,
(2.3ms — 0.4ms)/2.3ms = 82.6 % of the link band-
width is used to transmit packets, leading to a 200
Mbps x82.6% = 165.2 Mbps network bandwidth for
a dual-ring network.

By contrast, in a buffered ring network no time is
wasted for token transmissions. Assuming the uniform
distribution of source-destination distance and the
shortest path routing, the average distance a packet
needs to travel to reach its destination for a dual-ring
network with 80 stations is 20 links. Thus, the average
network bandwidth = 100 Mbps x160 links/20 links
= 800 Mbps. One can see that by using buffers at in-
termediate stations, the network bandwidth becomes
800/165.2 = 4.84 times higher than that without using
buffers at intermediate stations.

Ability to Support Real-time Communication:
We use the number of different types of real-time chan-
nels that a network can support as a yardstick in mea-
suring the network’s ability to support real-time com-
munication. Let N4 and Np denote respectively the
number of type A and type B channels that a net-
work can support. As discussed above, in the FDDI
token ring the average token rotation time must not
be greater than 2.3ms, and during each token’s rota-
tion, 1.9ms can be used to transmit packets. The time
needed to transmit a type A packet is 500 bits/100
Mbps = 5us, and the time needed to transmit a type
B packet is 5000 bits/100 Mbps = 50us. Thus, the
number of type A and type B channels that an FDDI
dual-ring network can support must satisfy:

5N4 + 50Np < 2 x 1900 = 3600.

In the absence of type B traffic, the token ring can
thus support up to 3600/5 = 720 type A channels.
However, the existence of type B traffic greatly reduces
the network’s ability to support type A traffic. For
example, with 50 type B channels in the network, at
most 220 type A channels can be established. In the
absence of type A traffic, the maximum number of
type B channels the network can support is 72.

The number of real-time channels that can be sup-
ported by a buffered network depends on the distribu-
tion of the source and destination stations. We assume
the uniform distribution for this and ran simulations
to determine the values of N4 and Np. The num-
ber of successfully established type A channels vs. the
number of type A channel establishment requests is

419

T 1 LB T 1 T U

-

8
1
L

¢ ~——o FDDI with 0 typo B channels

< 1200} A—4 FDD] with 50 type B chanaols -
é ©-~--0 Real-tims chaunal with O type B chamncls
1000 §~ 27~ =4 Real-timo chanusl with 500 typo B chamnsls
o"'.1
*®
- 'ﬁ‘*"'“’

E &§ 8 &
L

L L l 1 L L 1
O 200 400 600 800 1000 1200 1400
Roquostod Type A Channols

Figure 1: Network’s ability to support real-time chan-
nels.

plotted in Fig. 1. In general, if the requested number
of channels to be established is less than 400, all the re-
quested channels can be established. As the number
of requests for establishing channels increases, some
of these requests will be rejected due to the increased
load at certain links. The saturation point of the num-
ber of establishable type A channels is around 1000 in
the absence of type B traffic.

From Fig. 1, it can be seen that without type B
traffic, the timed-token network is a little superior in
supporting type A channels to the buffered transmis-
sion network when the number of requested type A
channels is between 400 and 720. However, this su-
periority disappears quickly as the number of type B
channels increases. The reason for this is that a timed-
token network has to be configured to support the
most stringent real-time traffic, i.e., packets with the
tightest delivery deadlines. All other real-time traffic
is also guaranteed to meet this tight delivery delay re-
quirement. This, in turn, results in inefficient use of
network sources. So, the timed-token network is suit-
able for homogeneous real-time communication, while
the buffered transmission with real-time channels is
better suited to support heterogeneous real-time com-
munication.

3 Hardware Support for Real-time
Channels

To accommodate real-time channels, the physical
network needs to support buffered transmission and
deadline scheduling of packet transmissions.

Figure 2: Architecture of the ring interface.

Buffered transmission has been widely used in mul-
ticomputer systems. Various switch architectures have
been proposed [5, 6]. For a ring network, the switch is
simpler than that for point-to—point connected mul-
ticomputers since there is only one incoming link and
one outgoing link (a switch for a dual ring can be
constructed with two single ring switches). The small
number of incoming and outgoing links reduces the
switch size and complexity of packet routing.

There are many advantages of using deadline
scheduling for packet transmissions as discussed in the
Introduction, but little has been done on the high-
speed implementation of a deadline scheduler. The
scheduler must be fast enough not to make itself a
bottleneck of packet transmissions. Otherwise, all the
advantages of using deadline scheduling will be lost.

In this section we will discuss the feasibility of hard-
ware support for buffered transmission and deadline
scheduling in high-speed local area ring networks. The
proposed architecture of the ring interface is given in
Fig. 2.

Because of the small number of incoming and out-
going links, one can use a high-speed time division
bus to interconnect all components within each sta-
tion. The bus cycles are interleaved into Receiver
Write (RW), Transmitter Read (TR), and Host Write
(HW) cycles. In other words, the bus cycles are com-
posed of RW, TR, HW, RW, TR, HW, and so on. RW
cycles are used to transfer packets from the receiver
to the transmitter, the buffer, or the local host. HW
cycles are used to transfer packets from the host to
the transmitter or the buffer. Packets queued in the
buffer are transferred to the transmitter using TR cy-
cles. The operations of this interface are described
below.

When a packet arrives at the receiver: The
receiver does the serial-to—parallel conversion of the
incoming packet. It buffers the packet until the desti-
nation address of the packet is received. Then,

o If the destination address matches the local host
address, then the packet is written into the local
host memory using the RW bus cycles.

o If the destination address does not match the lo-
cal host address, then

— if the outgoing link is idle, then the packet
is directly forwarded to the transmitter us-
ing the RW cycles. In this case, packet cut-
through is said to have occurred and a packet
experiences the minimum switching delay.

— if the outgoing link is busy, the packet is
forwarded to the local buffer where it waits
for later transmission.

e If the destination address indicates that the
packet is being broadcast, the packet is forwarded
simultaneously to both the host and the trans-
mitter/buffer using the RW cycles. The receiver
discards the packet if the source address of the
packet matches the local host address.

When the local host wants to send a packet:
The host sends out packets using the HW cycles. Sim-
ilar to a packet from the receiver, if the transmitter is
idle, the packet is directly forwarded to the transmit-
ter. Otherwise, the packet is forwarded to the buffer
for later transmission. In either case, the host is al-
ways able to output packets to the ring interface unless
the buffer is full. Flow control can be easily imple-
mented by requiring the host to check the status of
the buffer before writing a packet into the ring inter-
face.

When the transmitter finishes transmitting a

packet: If the buffer is empty, the transmitter marks
itself idle and waits for packets from the receiver or the
host. Otherwise, it signals the buffer, and a waiting
packet with the earliest deadline is transferred to the
transmitter using the TR cycles. Notice that a packet
can be forwarded to the transmitter before it is com-
pletely buffered. This reduces the packet buffering
delay when cut-through was impossible initially but
becomes possible later (before its complete buffering).

To make the above operations feasible, the buffer
must be sufficiently fast. In the worst case, the buffer
needs to accept packets from both the receiver and the
host (using RW and HW cycles, respectively), and at
the same time send packets to the transmitter (using
the TR cycles). So the buffer bandwidth must be at
least three times as high as that of the transmission

421

SIGNAL FROM TRANBMITTER
TOSROM BUFFER
TOMACGM TIME DIVIEION BUS - oy
< > BUFFER ACCESS UNIT
GAY) -
»Us2 »UB1
\
SCHEDULER
™ & OUT

Figure 3: Architecture of the buffer management unit.

link, or 300 Mbps with the FDDI’s 100 Mbps link
transmission rate.

A key component of the buffer system is the Buffer
Management Unit (BMU). The BMU provides two ba-
sic functions: (1) finding a free space in the buffer to
accommodate an incoming packet, and (2) locating a
packet with the earliest deadline in the buffer when
the BMU is signaled by the transmitter.

The first function is basically a buffer bookkeep-
ing function which can be implemented with several
linked lists manipulated by dedicated hardware as dis-
cussed in [5, 13]. The hardware implementation of the
second function, i.e., deadline scheduling, is relatively
new. Thus, we will give a detailed account of scheduler
design in the rest of this section.

The architecture of the BMU is shown in Fig. 3.
When a packet arrives from the time-division bus,
the Buffer Access Unit (BAU) will find a free space
and store the packet in this space. A packet identi-
fier which contains the starting address, the deadline,
and the real-time channel ID of the packet is also sent
to the scheduler if the incoming packet is a real-time
packet. The scheduler maintains a priority queue for
the identifiers of the real-time packets in the increasing
order of their deadlines. When the transmitter signals
the BAU to get a packet to transmit, the BAU simply
reads the first item of the priority queue in the sched-
uler and fetches a packet from the buffer accordingly.
If the priority queue is empty, a non real-time packet
is transmitted on a FIFO basis.

The main function of the scheduler is the manage-
ment of the priority queue. The packet-departure op-
eration is quite simple. When the first item is read
by the BAU, a single shift operation is enough to up-
date the queue. The operation needed when a packet
arrives, however, is more complex. The deadline of
the incoming packet needs to be compared with those
in the priority queue to find a position to insert the
identifier of this new packet.

As mentioned before, a key design objective of the
buffer system is its speed. So, the priority queue in-

DATA 1

PACKET DEADLINE J

CHANNEL ID
0 6 31
DATA2
[PACKET ADDRESS l
0 31

Figure 4: Data format

sertion must be implemented very efficiently. This can
be realized by assigning a comparator to each stor-
age cell and comparing all items stored in the priority
queue with the new one simultaneously (e.g., associa-
tive memory). Needless to say, such an implementa-
tion is very expensive and the size of the priority queue
must be kept under a certain limit.

Our design keeps the queue size equal to the max-
imum number of real-time channels to be accommo-
dated by the ring interface. This is possible since the
packets of a single real-time channel are always trans-
mitted on a FIFO basis. Hence, the priority queue
needs to hold at most one packet identifier for each
channel. When this packet is transmitted, the iden-
tifier of the second packet of the channel (if there is
one waiting in the buffer) gets inserted in the priority
queue.

Given below is an example implementation of the
above ideas. The details of its design and evaluation
are presented in [14]. Suppose the interface of the
scheduler to the BAU is composed of two buses, BUS 1
of width 32 and BUS 2 of width 33, and two signaling
lines IN and OUT (see Fig. 3). When a real-time
packet arrives at the BAU, the BAU will find a free
buffer space for the packet and then assert the IN line
to notify the scheduler of the arrival of a new packet.
During the next two clock cycles, the BAU sends two
data units DATA1 and DATA2 over BUS1 and then
resets line IN. The formats of DATA1 and DATA2 are
shown in Fig. 4. They contain the channel ID, the
deadline of the packet, and the address in the buffer
at which the packet is stored. The scheduler ignores
all the following data transmitted over the bus (i.e.,
the packet itself to be stored in the buffer) until the
IN line is asserted again.

The BAU reads the first item of the priority queue
from BUS2. The last (33rd) bit of BUS2 is a valid bit
which serves as a READY signal indicating if there are
packets waiting to be transmitted. When the BAU is

422

s 1

- o

™ ™
N m] .

- os

=2 /
- b - .
D2

* w

A 'l. “a4u
xS M2 po—q R| 3 &1
- 3 DRI
m|
1]
 — {]::
P
n }++1D v
s 10 as
LA
ouUT
- S

BUS 2

Figure 5: Scheduler data path

signaled by the transmitter and detects the READY
signal, it reads the packet address from BUS2 and
fetches the packet from the buffer to transmit. The
BAU also asserts the OUT line for a couple of clock
cycles to start the packet-departure operation of the
scheduler.

The internal data path is shown in Fig. 5. PQ stores
the priority queue. The arriving packet identifiers of
a channel which already has a packet identifier in the
priority queue are stored in M2. M1 stores the status
of the channels. Its content in address i contains the
head address (bits 0 - 5), tail address (bits 6 - 11) of
channel i’s FIFO queue in M2, and the 12th bit is set
to 1 if the priority queue has a packet identifier of the
channel, and the 13th bit is set to 1 if M2 has a packet
identifier of the channel.

On arrival of a packet (see Fig. 6) the scheduler first
stores the identifier of the packet, i.e., DATAl and
DATAZ2, in a register R1, it then checks if the priority
queue (PQ) has a packet identifier of the same channel
(this information is stored in memory M1). If not, the
identifier is inserted in PQ. Otherwise, they are stored
in memory M2.

On departure of a packet (see Fig. 7) the scheduler
checks if M2 has a packet identifier of the same channel
as that of the one just read by the BAU (again, this in-
formation is stored in M1). If yes, the packet identifier
is fetched from M2 and inserted into PQ. Otherwise,
it changes the contents of M1 to indicate that PQ no
longer contains the ID of a packet belonging to the

OUT=0 ouT=1
PQ(0) ==> PDO
1 == SHIFT
=
FLAG=0
Otharwise FLAG =0
BUS 1 == R1[32:63]
MI[PDO{0:5}]] ==>DR1
1 ==> FLAG; 0 ==> SHIFT
FLAG=0 & OUT=0 Shift PQ
Get a packat ID from M2 l No more packats of the channel
MI(R1{0:S]) ==> DR1 [pi=o - l
1 =2 FLAG
R1[6:63) m> DR2 DR1{0:5] =e> AR2{6:11]
Packet ID 10 PQ ! T Packet ID 0 M2 PDOI0:S] > AR2(0S] 0 =>DR1[12}
l DRI2)=0 DR1pz) =1] l l
DR2[0:2S] ==> PAR R1[0:5] ==> AR1{0:5] M2(AR2)] ==>DR2
1 ==> DR1([12] DR1{6:11] ==> AR2[6:11] M2{AR2}{025] ==> PAR ?R.L:Amom”l)
DR1(0:5}+1 me> DR1{0:5)
I l 1 == DR1{12) I
DRI ==> MIR1[0:5]) 1 ==> DR1{13] l
{R1(05], DR2} ==c> DR1[6:11}+1 me> DR1[6:11} PDO(05], DR2,
PQ(PAR) phase 1 DR2 ==> M2(AR2) (PQO’M]l') rh::
l l P DR1[05] = DR1(6:11]
0 ==> DR1[13]
{R1[05), DR2} ==>
1
FQEAR) pham2 om_;» MIRI[0:S]) l
1= FLAG {PDO{05), DR2) ==>
[I PQPAR) phase 1
DR1 meo M1(PDO{0:5])
0 = FLAG
Figure 6: Flowgraph of scheduling an incoming packet l

Figure 7: Flowgraph of outputing a packet

423

R DR o

T T

channel.

Insertion of a packet identifier into PQ is composed
of two phases (thus needing two clock cycles): com-
parison and insertion. In the first phase, the deadline
of the new packet (stored in the register PAR) is com-
pared with the deadlines of all packets stored in PQ,
and the position where the new packet should be in-
serted is found. The new packet is inserted in PQ in
the second phase. The output of PQ is simply a shift
right operation.

Since the arrival and departure of packets can hap-
pen simultaneously, care must be taken to avoid si-
multaneous requests for the memories and registers in
the scheduler. This is achieved by adding two control
bits FLAG and SHIFT.

As shown in Figs. 6 and 7, the FLAG bit allows only
one operation (packet arrival or packet departure) to
access the critical section. When the two operations
try to enter the critical section at the same time, the
access right is given to the packet departure operation
by having the packet arrival operation check the OUT
signal. The SHIFT bit controls the shift operation of
PQ. As discussed above, when PQ outputs a packet,
it shifts right. However, this shift operation cannot
be performed when the packet arrival operation is in
the critical section. Thus, the SHIFT bit tells PQ not
to insert the new packet at the head of the queue;
otherwise, it will be incorrectly shifted out.

The maximum scheduling time of the scheduler —
defined as the time period between the arrival of a
packet identifier at BUS1 and its insertion in PQ or
M2 — is 12 clock cycles. With a not-so-high 12 MHz
clock frequency, the scheduler is able to schedule 1
million packets per second. This speed is high enough
to ensure the scheduler not to become a bottleneck in
a 100 Mbps ring network.

4 Conclusion

We have discussed in this paper the advantages
of using buffered transmission in local area ring net-
works. When it is equipped with real-time channels,
the buffered transmission is shown to be superior to
the usual token-controlled MAC protocols in both net-
work throughput and the network’s ability to support
heterogeneous real-time traffic.

We have also shown the feasibility of hardware sup-
port for buffered transmission and real-time channels
in high-speed local area networks. With the advances
in VLSI technology, use of hardware to implement the
switching and scheduling functions for buffered packet
transmissions has become a reality.

Acknowledgment

The design of a fast deadline scheduler presented in
the paper is a collaborative effort with A. Indiresan of
RTCL. The authors also wish to thank S. Abraham
of University of Michigan for his suggestions on the
initial design of the scheduler.

References

[1] F. E. Ross, “An overview of FDDI: The fiber
distributed data interface,” IEEE Journal on Se-
lected Areas in Communications, vol. 7, no. 7, pp.
1043 — 1051, September 1989.

[2] M. Teener and R. Gvozdanovic, “FDDI-II opera-
tion and architectures,” in proceedings of the 1{th
conference on local computer networks, pp. 49-61,
1989.

[3] D. Dykeman and W. Bux, “Analysis and tun-
ing of the FDDI media-access control protocol,”
IEEE Journal on Selected Areas in Communica-
tions, pp. 997 — 1010, July 1988.

[4] K. G. Shin and Q. Zheng, “Mixed time-
constrained and non-time-constrained communi-
cations in local area networks,” IEEE Transac-
tions on Commaunication (in press), 1992.

[5] D. A. Reed and R. M. Fujimoto, Multicom-
puler Networks: Message-Based Parallel Process-
ing, M. L. T. Press, Cambridge, Massachusetts,
1987.

[6] R. Suaya and G. Birtwistle, VLSI and Paral-
lel Computation, Morgan Kaufmann Publishers,
Inc., San Mateo, California, 1990.

[7) D. Ferrari and D. C. Verma, “A scheme for
real-time channel establishment in wide-area net-
works,” IEEE Journal on Selected Areas in Com-
maunications, vol. SAC-8, no. 3, pp. 368-379,
April 1990.

(8] D. D. Kandlur, K. G. Shin, and D. Ferrari, “Real-
time communication in multi-hop networks,” in
Proc. 11th Int. Conf. on Distributed Computer
Systems, pp. 300-307. IEEE, May 1991.

[9] Q. Zheng and K. G. Shin, “On the ability of es-
tablishing real-time channels in point-to—point
packet-switched networks,” IEEE Transactions
on Communication (in press), 1992.

424

{10) Q. Zheng and K. G. Shin, “Fault-tolerant real-
time communication in distributed computing
systems,” in Proc. 22nd Annual International
Symposium on Fault-tolerant Computing, 1992.

[11] C. L. Liu and J. W. Layland, “Scheduling algo-
rithms for multiprogramming in a hard real-time
environment,” Journal of the ACM, vol. 20, no.
1, pp. 4661, January 1973.

[12] K. C. Sevicik and M. J. Johnson, “Analysis and
tuning of the FDDI media access control proto-
col,” IEEE Journal on Selected Areas in Com-
munications, vol. 6, no. 6, pp. 997 — 1010, July
1987.

[13]) Intel, LAN Components User’s Manual, 1984.

[14] A. Indiresan and Q. Zheng, “Design and evalua-
tion of a fast deadline scheduling switch for multi-
computers,” RTCL working document, December
1991.

Appendix

This appendix gives an algorithm for the calcu-
lation of the minimum guaranteed dalay bound of a
real-time channel over a link. A real-time channel 7;
running through a link can be described as a 3-tuple
(T:, Ci, di), where T; is the minimum packet inter-
arrival time at the link, C; is the maximum packet-
transmission time over the link, and d; is the packet
delivery delay bound assigned to the link.

A set of channels ©; = (T;,C;, d;), i =1,2,...,n,is
said to be schedulable over a link if for all 1 < i < n,
the maximum queueing delay experienced by channel
i’s packets over the link is not greater than the re-
quested delay bound d;. The minimum guaranteed
delay problem is stateed as follows:

Minimum Guaranteed Delay Problem:

Suppose n — 1 channels, ; = (T;,C;, d;), i =
1,2,...,n—1, are schedulable over a link. Given a
new channel 7, with the minimum packet inter-
arrival time T,, and the maximum packet trans-
mission time C,,, what is the minimum value of
d, such that all = (T;,C;, di), i = 1,2,...,n,
are still schedulable?

Define S = UL,S;, Si = {di+nT; : n =
0) l) vy l_(tmaz - dl)/:rl_l}: tmaz = ma'x{dla ---)dm
[ohs(1 - d/T)C /(1 — S0, C/Ty)), and [2]+ =
nifn—-1<z<n,n=12 .., and [z[t=0forz < 0.

425

We have the following Theorem giving the solution to
the minimum guaranteed delay problem:

Theorem : Let f(t,d,) = Sie [(t — &i)/T:]7Ci
and S be the set defined above with d, = C,. Then,
d, = C, is the solution to the minimum guaranteed
delay problem if ¥t € S, f(t,Ca) < t. Otherwise,
the solution is d, = max{d' : t € G}, where G =
SN {t: f(t,Cn) > t} and d' is computed as d' =
Cn + KT, + €} + ¢, with k} = [(f(t,Cn) —1)/Cn] -
1, e} = f(t,Cn) —t — k}Ch, €& =t—Cn—kiTh, ki =
l.(t - Cn)/TnJ .

Interested readers are referred to [9] for the proof
and more discussions about the theorem.

