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The main goal of this paper is to derive an approximate, closed-
form solution for the decentralized, dynamic load sharing (LS)
problem treated in an earlier paper. In that paper, whenever the
load state of a node changes from underloaded to fully loaded and
vice versa, the node broadcasts this change to a set of nodes in its
physical proximity, called a buddy set. An overloaded node can
select, without probing other nodes, the first available node from
its preferred list, an ordered buddy set. Preferred lists are so con-
structed that the probability of more than one overloaded node
sending tasks to an underloaded node may be made very small. In
hard real-time systems, the problem of scheduling periodic tasks
to meet their deadlines has been studied extensively, but schedul-
ing aperiodic tasks has been addressed far less, due mainly to their
random arrivals. We show that the proposed LS method can be
used to effectively handle aperiodic tasks in distributed real-time
systems. The probability of missing task deadlines can be kept
below a specified level by choosing appropriate threshold patterns
and buddy set sizes which are derived from the approximate
closed-form solution. Specifically, “optimal” threshold patterns
and buddy set sizes are derived for different system loads by mini-
mizing the communication overhead subject to a constraint of
keeping the probability of missing task deadlines below any given
level. (One can also derive optimal solutions by minimizing the
probability of missing deadlines while keeping the communication
overhead below a specified level.) Several examples are presented
to demonstrate the power and utility of the proposed LS ap-
proach. © 1993 Academic Press, Inc.

1. INTRODUCTION

Failure to complete a real-time task before its deadline
could cause a disastrous accident [2-4]. Real-time appli-
cations are composed of periodic and aperiodic tasks.
Liu and Layland proved that scheduling tasks based on
rate-monotonic priority assignment is optimal for inde-
pendent periodic tasks in a single processor system [5].
They also derived an upper bound of processor utiliza-
tion, below which all periodic tasks can be guaranteed to
meet their deadlines. The problem of scheduling real-

* The work reported in this paper was supported in part by the Office
of Naval Research under Grants N00014-85-K-0122 and N00014-92-]-
1080, and the NSF under Grant DMC-8721492. Any opinions, findings,
and recommendations expressed in this publication are those of the
authors and do not necessarily reflect the view of the funding agencies.

time tasks on multiprocessor/distributed systems is
shown to be NP-hard [6], thereby leading to the develop-
ment of many heuristic approaches [7-12]. Although
some of these approaches, such as those in {8, 12], con-
sidered the possible arrival of aperiodic tasks, they as-
sumed/implied that periodic tasks form the major portion
of the task system.

Since aperiodic tasks arrive randomly, it is in general
impossible to guarantee the completion of aperiodic tasks
before their deadlines. As was pointed out in {13, 14],
using the same scheduling algorithm for both periodic
and aperiodic tasks can meet the deadlines of all periodic
tasks but cannot always meet the deadlines of aperiodic
tasks. Keeping the probability of missing deadlines,
called the probability of dynamic failure, Pg,, [2], below a
certain required level while minimizing the ensuing over-
head is the only meaningful course to take for scheduling
aperiodic tasks.

Scheduling both periodic and aperiodic tasks in real-
time systems has not been treated extensively until re-
cently. Ramamritham et al. proposed combining local
and global scheduling approaches in distributed systems
for both periodic and aperiodic tasks [12]. In their ap-
proach, periodic tasks are assumed to be known a priori
and can always be scheduled locally. On the other hand,
an aperiodic task may arrive at a node at any time and
will be scheduled locally on the node if its deadline can be
met there; otherwise, the task will be transferred to a
remote node, which was called global scheduling in {12].
If none of the remote nodes can guarantee the deadline of
this aperiodic task, it will be rejected and may seriously
affect the system performance. Hence, the main effort in
[12] was to design a heuristic, global scheduling policy so
as to reduce the number of rejected aperiodic tasks.
Three algorithms, call bidding, focused addressing, and
fexible algorithms, were used to select a remote node for
each aperiodic task which cannot be guaranteed locally.
The basic idea of these algorithms is to collect state infor-
mation, such as the surplus processing power, from other
nodes such that, when a node cannot guarantee an aperi-
odic task locally, it will attempt to locate a remote node
which can guarantee the task. However, the impact of
the rejected tasks on the system performance was not
analyzed by the authors of [12]. It is also worth noting
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that these algorithms are variations of the bidding algo-
rithm originally proposed for load balancing in general-
purpose distributed systems [15-18], where the primary
goal is to reduce the average task response time. The
bidding algorithm is not efficient for real-time applica-
tions due to the long delay of the bidding process [1, 19].

In an early paper [1], we proposed a new load sharing
method with state-change broadcast (LSMSCB) for dis-
tributed real-time systems, in which each node maintains
state information of only a small set of nodes in its physi-
cal proximity, called a buddy set. The load state of a node
is defined by three thresholds: TH,, TH;, and TH,. A
node is said to be underloaded if its queue length (QL) is
less than or equal to TH,,, medium-loaded if TH, < QL <
THy, fully loaded if TH; < QL = TH,, and overloaded if
QL > TH,. Whenever a node becomes fully loaded (un-
derloaded) due to the arrival and/or transfer (completion)
of tasks, it will broadcast its change of state to all the
other nodes in its buddy set. Every node that receives
this information will update its state information by elimi-
nating the fully loaded node from, or adding the under-
loaded node 1o, its ordered list (called a preferred list) of
available receivers. An overloaded node can select, with-
out probing other nodes, the first underloaded node in its
preferred list and transfer a task to that node. Moreover,
the buddy sets of the nodes in one buddy set are different
but are not disjoint, thus allowing the surplus tasks in a
buddy set to be transferred to many different buddy sets,
i.e., system-wide (not local) load sharing. As a result, our
method is shown to enable (aperiodic) tasks to be com-
pleted before their deadlines with much higher probabil-
ity than other known methods.

The design of hard real-time systems with a large num-
ber of aperiodic tasks by using LSMSCB is quite different
from most of the existing LS methods for the following
reason. External or transferred-in tasks at each node are
processed on a FCFS basis.! If the deadline of an arrived
task cannot be met locally, it will be transferred to some
other node that can complete the task before its deadline.
As mentioned earlier, keeping P4y, below a given re-
quired level while minimizing the resultant overhead is
the only course to take for scheduling aperiodic tasks.
Particularly, we will show that even the requirement of
Py, to be as low as 107 can be met by employing the
LSMSCB in a system of 16 nodes with a medium work-
load, buddy set size 10, and deadlines equal to six times
of the average task execution time. Note, however, that
the numerical solutions for QL used in [1] showed only a
few examples, and it is practically too tedious and time-
consuming to derive the numerical results for all possible

! As discussed in [20], more complex local scheduling algorithms like
the minimum-laxity-first policy can be used and analyzed. But use of
such a complex local scheduling algorithm will obscure the main point
of this paper, i.e., global scheduling.

threshold patterns and buddy set sizes. It is therefore
important to derive a closed-form distribution of QL to
characterize the behavior of a real-time system. Based on
this closed-form distribution, ‘‘optimal’’ threshold pat-
terns and buddy set sizes can be determined either by
minimizing the communication overhead—such as the
frequency of collecting state information and the number
of task transfers—incurred by the LSMSCB while keep-
ing Payn below a specified level, or by minimizing Pgy,
while keeping the communication cost below a given
level. An upper bound of processor utilization can also be
derived while reducing Py, to any given level, and more
important, the processor utilization is significantly im-
proved as compared to the one derived from the upper
bound model in [1].

The rest of this paper is organized as follows. For the
purpose of completeness, Section 2 reviews some rele-
vant aspects of the LSMSCB [1]. The distribution of QL
is described as a function of threshold patterns and buddy
set sizes in Section 3. Optimal threshold patterns and
buddy set sizes are derived in Section 4. Finally, the
paper concludes with Section 5.

2. DESCRIPTION OF LSMSCB

Since Pq,, (communication cost) must be kept below a
given required level while minimizing the resultant over-
head (Pg,n), the main issues of LSMCB are how to define
the state of each node, how to collect state information,
and how to redistribute loads among the nodes in the
system, such that overloaded nodes will locate under-
loaded nodes to share their loads with a very high proba-
bility. Buddy sets, preferred lists, and threshold patterns
are the most important features proposed in [1] to resolve
these issues, and they are discussed briefly here for com-
pleteness.

The buddy set of a node is a set of nodes in its physical
proximity. Since state information is exchanged only
within a buddy set and since a constant buddy set size of
10 to 15 nodes is shown to work well regardless of the
system size [1],? the communication overhead is reduced
to a constant from O(N?), as compared to the case when
state information is exchanged in the entire system of N
nodes. In order to avoid more than one overloaded node
“*dumping’’ their loads on one underloaded node (coordi-
nation problem) or surplus tasks being confined in a cer-
tain region (congestion problem), the nodes in a buddy
set are ordered into a preferred list such that each node
will be selected as the kth preferred node by one and only
one other node. It has been shown that the preferred lists
proposed in [1] can effectively solve both the coordina-
tion and congestion problems [21, 19], thus meeting task
deadlines with a high probability.

? So, there is no need to increase the buddy set size even if the system
gets larger.
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Three thresholds, denoted as TH,,, THy, and TH,, are
used to determine the load state of each node. Since only
underloaded nodes can share surplus tasks, TH, dictates
the probability of an overloaded node finding an under-
loaded node. The difference between TH, and TH, deter-
mines the frequency of state change, and hence the fre-
quency of state-change broadcasts. Those tasks arriving
at a node whose QL > TH, will be transferred to other
underloaded nodes.

An embedded Markov chain is used to model the per-
formance of LSMSCB. Since (average) QL is used to
measure each node’s workload, without loss of general-
ity, one can assume (average) task execution time to be
one unit of time. Here we will use the same notation as in

(1}

* )\, external task arrival rate (Poisson process)

Transition of states can be described [1] as

[k,
TH, with prob 6,_ry_, or (TH, + 1) with prob
EL—TH,~1y +++y OF k; with prob EA)

x, + k —1

Ex+k~TH,~2+ -+-» OF (x; + &k, — 1) with prob g,

CHANG AND SHIN

« 7, task transfer-in rate

* w, arrival rate of combined external and transferred-
in tasks (=A+7)

* k,, the number of task arrivals during the interval [¢,
t+ 1

* ay,, the probability of &, arrivals during the interval [¢,
t + 1) when there are A arrivals per unit time

» af, the probability of k, arrivals during the interval
(¢, t + 1) when there are w arrivals of combined external
and transferred-in tasks per unit time

* x,, QL at time ¢

* g, the probability of having exactly ¢ underloaded
nodes availabie to share the surplus tasks within a buddy
set

* 6;, the probability of having at least i underloaded
nodes available to share the surplus tasks within a buddy
set.

ifx,=0and k, = TH,

if x, = 0 and &k, > TH,

. 2.1
ifx,>0and x, + k, — 1 = TH,

TH, with prob 8, ;7.\, or (TH, + 1) with prob

ifx,>0and x, + k, — | > TH,.

For notational convenience, let « = TH,, f = TH;, and v = TH,. The exact state equations are

et 01’1"61“ + ooGu+i

afqo+ afq + afigat+ -+ af i qu v o Gusr T+ angr + aogr

qo = afqo + afq

g1 = afq + afq + afqg:

g, = afqgot+ afg + af g2 +

Guii = @¥igo + afaqy + afgr + o oG T aoque2

qr =
> “u x

qy = (043< + > 9.-013‘“) (qo + q) + <04i'f+|~f =y Gj()t}'fwﬂ-i) qi
21 i=2 ey
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v+l

+ 2

(=u+tl

Z gialiilqo + qi) + Z

x

+ i (Zem k- 109) qg; fork =

i=k+2

Note that in [1] we did not address how to derive a
closed-form solution to the above equations; only numer-
ical solutions for a few specific threshold patterns are
derived there. However, we need a closed-form solution

4]

(alﬂ—l { + Z ajaj+L+l l) qi + Z ( 2 Bjaj~i+u+l) qi

i=u+2 j=i-uv—-)

k+1 *

(E CHETYS :ﬂ) a+ 2 (E €ﬂ/+k—i+1) qi

i=u+l j=0

v+ 1, ., e (2.2)

transfer-in rate, =, which in turn depends on ¢,’s. Second,
since ¢;’s for k > v depend on those g,’s for £ =< v, it is
impossible to obtain the distribution of queue length in
one step. Since the probability of QL > v is very small,

Eq. (2.2) can be divided into two parts which are
then solved separately: g,’s for 0 = k& = v and ¢,’s for
k> v.

to Eq. (2.2) in order to determine optimal threshold pat-
terns and buddy set sizes and to check whether or not
Py, can be kept below a prespecified value.

3. DISTRIBUTION OF QUEUE LENGTH

Equation (2.2) cannot be solved in one step for two 3.1. Solving g, for0 = k < v

reasons. First, a *’s in these equations depend on the task  Equation (2.2) can be rewritten as

I —af
ql a(;)k qO
af — 1 t o= af
al q1 T q2 o 9o
af af — 1 _ af
al di + a(’{‘ q> + qs = -&-;q()
Ay -2 af af — 1 ay
aak 75} + * q: + + Eg; qu-2 + a(’)" qu-1 + Gy = — a(:)k qo
ak ok ak a; -1 ak
“Sg S g et Go-r + Gy = — =gy (.1)
0 (221]

Equation (3.1) can also be expressed in vector form as A;Q = Cqo, where A, is a v X v lower triangular matrix,
Qi =99 qu " q]", and
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Note that there are v + 1 variables in Q, and only v
equations in Eq. (3.1). The normalization equation is
needed to solve Eq. (3.1) for Q,:

Kmax

=1-¢ whereé = z .

k=v+1

qo + q; + (3.2)

Since £ is usually very small (<107%), Eq. (3.1) will give a
good approximate solution even if £ is set to zero.

We now want to compute Q; = A;'C. Since A, is a
lower triangular matrix, A;' will also be a lower triangu-
lar matrix. For convenience, let b; ; and c; ; be the non-
zero elements of A7' and A,, respectively, and let C; be
the elements of C. Thenfori,j =1, ..., v,

1
bk = 0

Solving Eqgs. (3.1) and (3.2) for b, ;, we obtain

i=j
i #.

e

bij=0, j>i
b,‘v,‘=1, 1=i=vy,
1 - af .
bi,il— Cii-1 = ak 1 =i=su,
l - a .
bii-y = —€Cii1 = ik, utl=si=sy,
0
1 —af Hoaf
bi; = - - - bijrks
af k=2 ¢
Il=i=su l=j=i-1
3 af
b ;= Z&—",ﬁk,

u+l=si=sv 1=j=i-1

Substituting b; ; into Eq. (3.1), we have

[Z bsC] @, 1=k=v. (3.3)

Substituting ¢;’s in Eq. (3.3) into Eq. (3.2),

1 - ¢
1+ [Z}-, 2,"‘:1 bk,jcj].

go = (3.4)

Then, g:’s for 1 = &k < v can be determined by substitut-
ing Eq. (3.4) into Eq. (3.3).

For example, when u = 1, f = 2, v = 3, the distribution
of queue length becomes

_ A — Hagad
P —ar + (1 +a— a)l — af — abaf
1)
q, — a()k 4o
_ (I = 8)1 — af)af
af —a¥F + (A + a — a)l — af — aP)a¥
I —af - af
q2 ='—‘m—"—qo
_ (1 =&Yl ~ af — afaf
T aglad —af + (1 + ag — a)l — af — abal)
_ 1 Jd-—a)l —af —af)
= aoa(T [ [ 53] a?] do-

3.2, Solving g, for k > v

We now want to derive g;’s for k£ > v. The last formula
in Eq. (2.2) was

a = 2 eakulgo + q) + 2 (2 s/*af”‘"”) %
i=0 =2 =

k+1

+ 2 (2 Ej'aj+k~i+l) qi

i=u+l j=0

+ 2 (zejﬂ-kflaj) qg fork=v=1,..,=

=k+2 J=1i

To simplify this expression, define

de(
Z gtivi, 0 =1 = kpax

u

n x
d *
Bk =cf 2 8jaj+u+kq0 z ( ejav+k+j ;+l) g

=0 i=1 V=0

+ E (Z £ty f+j— :+1> G, 1 =k = kpax

i=u+l j=0

Since g, <1 for k > v, the terms related to g+, k > v,
in Eq. (2.2) can be set to zero, yielding approximate
equations,

(1 — v)gqu+1  —Voqu+z = B

—V2qu+1 + (1 = v)gus2 —vogur3s = By
k-2

- 2' Vi-iquri + (1 — vi)qurk—i —Voqu+k = Bi-y

4 < k = kpax, wWhere g4, € Payn-
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The above equations can be rewritten as A,Q> = B,
where O = [qur1Gu+2 =" Qurkn) s B = [B1By - By 17,
and A, is a (kpax — 1) X (kmax — 1) lower triangular matrix
of vy is set to zero. The inverse of A; is calculated using
the perturbation approach as shown below.

3.2.1. Calculation of A3’

Let A§ be the original matrix and A, be the matrix after
setting vy to zero. Since A, is a lower triangular matrix,
A 7' can be easily computed as follows. Let g, ; denote the
nonzero (i, j)th element of A7, then

—J
a = 3 ! l=j=i- 1.

= 1 =i = kpax,
k=1 v

i j+ks

A few examples of a;;’s are

1

1 =i =< kpax

a,i = 1 - Vl’
1 43 .
a; iy = =y 2 <0< kpax
v3 v
2 3 .
= + , 3=i<k
i i-2 a1 - Vl)3 (- V|)2 3 ! max

Finally, the distribution of queue length can be calculated
as

k
Qork = 2, kB, 1= k< knax. (3.5)
j=1

3.2.2. Successive Approximation

The perturbation approach is applied to account for the
effect of vo # 0. The basic idea of perturbation theory
works as follows. Suppose the solution of a linear system
AX = Bis known. When A and B change to A + ¢A and
B + ¢B, respectively, the new solution X + £X can be
derived from A and X instead of inverting A + eAifeisa
small number [22].

Let Q% and 8A; be the exact distribution of queue
length and the matrix that contains v, respectively. The
solution to A$Q5 = B can be successively approximated
as follows. Let Q5 = 0, + 8Q%. Since A;' has already
been calculated, Q, can be computed first. Then, (4, -
8A;)80Q5 = 8A,0Q,, where 84, is a matrix of the same size
as A, with v, at element (i, i+1), 1 < i < kyax, and zero
otherwise. The same method can be used to solve for
805. Let Q% = 804 + 805, then (A; — 84,) (0% +
807 = 8A.0@,. This equation can be divided into two
parts which are then solved separately. The first part is

A80% = 84,0, and the second part is (A, — 84,)8Q% =
8A,0%. Since we have already found A;', 8QY’ can be
calculated by 804 = A;'8A4,0,. This method is applied
again to solve for 8Q5 in the second part. Let 805 =
805 + 805, then there are two equations similar to the
previous iteration:

A80% = 84,04
(A2 — 8A,)8Q5 = 8A,07.

Again, 30¥ is calculated first (=A7'84,04"), and 805 is
decomposed into Q%" and 8Q%. Eventually, §Q% can be
approximated as the sum of an infinite series of 5Q%, k =
{,...,%, as

50 = A;'84,0;
S0P = A7'84,0 = (A7 84,20,

SQg() — A{'SAng"” — (AZ_ISAZ)‘(QZ

e — s n, . _ (A7'84y
805 = 80Y" + 80% + =T A%4;

. _ . (A;'84,)
g5=0, + 0605 = Q2+1—A5'8A3Q2

- Tanmy ~ U AT 0,

(3.6)

In most calculations, Q5 converges to a fixed constant
after two to three iterations, it is not necessary to invert
(I — A7'8A;) in Eq. (3.6). Combining Egs. (3.3) to (3.6),
the distribution of queue length can be derived for any
threshold patterns.

3.3. Deriving the Combined Task Arrival Rate w

Two unknown parameters, w and &’s in Egs. (3.3)-
{3.6), need to be derived before solving these equations.
Derivation of the combined task arrival rate w is dis-
cussed in this section. In the proposed LSMSCB, a node
is overloaded when its queue length is greater than v.
Only an overloaded node can transfer tasks to other un-
derloaded nodes in its buddy set. The task transfer-out
rate (8) is shown as

B=|3 &~ vat| @+

k=p+1

v+l 2

53

w2 “k=pt2-i

k-v-—-1+ i)ak] q (3.7
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Note that 8 is the rate of task-transfer out of a node. If all
nodes’ external task arrival rates are identical, then 7 =
B. Otherwise, 7 must be calculated by using Eq. (4.11) in
{1].

Combining 7 and A, the distribution of g;’s for £ < v can
be calculated by Eqs. (3.3) and (3.4). Substituting the
newly calculated ¢,’s into Eq. (3.7), one can obtain a new
t. The same procedure is applied again to adjust g,’s.
This procedure will repeat until ¢,'s and o converge to a
fixed number. We have proved in [1] that this procedure
will always converge in a few iterations.

3.4. Relating g, to Buddy Set Size

The size (o) of a buddy set will influence the probabil-
ity of an overloaded node finding an underloaded node
from its buddy set. This is reflected in deriving &;’s. From
the definition, g; is the probability of having exactly i
underloaded nodes available to share the surplus tasks
within a buddy set. Let P™h be the probability of a node
not in sharing mode, i.e., the probability when a node’s
queue length is greater than f. Then

g

g0 = flo) = [[ PR = (P™)°

g = (?)(P“Sh)""' (1 — P, where P™h =1 - g¢,.

i=0

(3.8)

Since g;’s appear only in g;'s for k > v, the size of a
buddy set is closely related to Pgyyy,.

The approximation in Eq. (3.8) is needed to simplify
the derivation of ¢’s for the following reasons. Consider
the case of gg; the probability that every node in a buddy
set is not available to accept transferred tasks and can be
expressed as

80=P(X|2f,xzzf,"',quf), (3.9)
where x; is the queue length of the nodes in the buddy set.
Since the nodes in a buddy set depend on each other, the
combined task arrival rate, w, will be changed for the
nodes in a sharing mode when some nodes are not in a
sharing mode, because the nodes in a sharing mode are
very likely to receive more transferred tasks. Equation
(3.9) can only be solved step-by-step due to the depen-
dence among nodes. Given x; = f, the first step is to
recalculate ¢,’s and « for the range of x, to x,. Then, g,
and w for x3 to x, can be recalculated under the condiiton
that x, = fand x; = f. The same procedure will apply as
long as all but one node in a buddy set are in a nonsharing
mode. This procedure translates the node dependence
within a buddy set to an independent state, with each

node having a different combined task arrival rate. Then,
we have
g0 = Plxi =2 f)P(xa=f) -+ Px, = f). (3.10)

Note that in Eq. (3.10) the distribution of queue length
at a node is different from that at other nodes, because
the w value of node i is adjusted, given that nodes one to
i — 1 are not in a sharing mode.

Since there are 27 patterns to be considered to derive
the exact value of &,’s, each of these patterns needs to be
treated similarly to the procedure of deriving g. It is
practically too tedious to use this approach. We have

shown in [1] that the following approximation can sim-
plify the derivation of &’s,

n!

S ——— nshyn—k( ps
& ~ T (PP,

3.1

where P™" is the probability of a node not in sharing
mode, given that all other nodes in its buddy set are
already in a nonsharing mode.

3.5. Approximation Accuracy

Due to the complexity of Eq. (3.1), the closed~form
solution is derived by separating it into two parts and
solving them approximately. It is desirable to analyze the
accuracy of the derived solution.

The task transfer-in rate 7 is approximated by Eq.
(3.7). Since £ cannot be determined before deriving 7,
only gi’s for kK < v are used in Eq. (3.7). Let 67 be the
difference between the derived results and the actual
value; then

o= S k- vat| G + 89)

%

+§j[ > (k—v—l+i)ak]8q,~

k=v+2~;

i=v+2 “k=0
where
—¢
3qy =
CTH (2 2R by Gl

«
oq, = [Z by ; Cj] 8qy, 1 =k=u,

=
Oqr = qx, k>, (3.12)
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TABLE I
Variation of ¢,’s and 7 By Omitting £
Variation in
£=0 £ =49 x 10 Variation percentage
B8 0.59 0.65 0.06 10.17
o 0.2352 0.2327 -0.0025 —1.08
qi 0.3203 0.3200 —-0.0003 —-0.1
q2 0.2630 0.2641 0.0011 0.44
9 0.1816 0.1828 0.0012 0.66
q4 4.03 x 104 4.06 x 1074 3.08 x 10°¢ 0.76
gs 7.26 x 10-* 7.30 x 107} 5.6 x 1077 0.77
g 1.10 x 10°¢ 1.12 x 10-° 8.72 x 108 0.78
q7 1.48 x 10-¢ 1.49 x 10°® 1.17 x 1073 0.79
gs 1.70 x 1077 1.72 x 1077 1.4 x 107° 0.82

The variation of 7 will in turn affect the distribution of
queue length. As an example, the changes of 7 and queue
length are studied for the threshold pattern u = 1, f = 2,
v = 3 with buddy set size 10 and system load p = 0.8. As
shown in Table 1, the transfer-in task rate is 0.059 (0.065)
when ¢ is omitted (considered); the difference is about
109. The change of g.’s is around 1% due to the variation
of 7. The beauty of the proposed approximate method in
deriving 7 is that omission of ¢ increases q;’s for k = v
only by a small amount while g;’s for ¥ > v are com-
pletely ignored to compensate for the omission of £. So, 7
can be derived quite accurately.

The variation of g,’s versus the change of distribution
of queue length is given in Table 11. The variation of &,’s
is found to be significantly larger than the change of gi’s
for k = 3. The variation of g;’s for k > 3 due to the change
of s is found to be about 10%. Note that the variation
of g.’s for k > 3 given in Table 1 is derived by considering
only the variation of 7 (and assuming g;’s unchanged). It
is clear that &;’s dominate the variation of g;’s for & > 3.

Summarizing the above analysis, we found that the
first part of g;’s (for k =< v) is not sensitive to the second
part of g;’s (for £ > v) as long as £ is small. However, the
second part of ¢;'s is very sensitive to the accuracy of the

TABLE II
Variation of g,’s versus the Change of €,

Variation in

£E=0 £=49 x 10°* Variation percentage
£ 0.001749 0.001932 0.000183 10.46
£ 0.015509 0.016771 0.001262 8.14
£ 0.061889 0.065514 0.003625 5.86
€3 0.146354 0.151663 0.005309 3.63
‘A 4.03 x 10 4.35 x 10~* 3.2 x 105 7.9
gs 7.26 x 10-3 7.87 x 10°F 6.1 x 107 8.4
Ge 1.10 x 10° ¢ 1.21 x 1079 I.1 x 107 10.0
47 1.48 x 1076 1.62 x 106 1.4 x 1077 9.46
Qs 1.70 x 10°7 1.87 x 1077 1.7 x 1078 10.0

first part of g,’s. Since the approximate closed—form so-
lutions determine the first part of g.'s very accurately,
the inaccuracy of the second part of gi’s and Py, is
within 10% of the corresponding true value when ¢ <
1074

4. DESIGN OF AN OPTIMAL LSMSCB

The QL derived from Egs. (3.3) to (3.6) is verified/
compared against our early results in [1]. As shown in
Fig. 1, in most cases, the QL derived from the closed-
form equations is closer to the true (i.e., simulation)
result and is also consistent with the results calculated
numerically. The QL derived from the numerical method
is always smaller than the closed-form result, because
some of the high-order coefficients were ignored in the
numerical method due to the use of restricted matrix size.

Since Py, depends on the system utilization and task
deadlines, there are upper bounds of system utilization
and deadlines for any given value of Py,,, denoted by
P3... For example, as shown in Fig. 2, both threshold
patterns *‘12 3"’ and “*2 4 5’ failed to meet the specifica-
tion if P3,, = 107® and deadline D < S with system load
higher than 0.5. On the other hand, to ensure Py, < PJ,,
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FIG. 1. Comparison of Py, derived from different solution methods.
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FIG. 2. P, versus deadlines in different system loads and thresh-
old patterns.

even with system load =0.9, the task deadlines must be
greater than 12, Due to the nature of LSMSCB, minimiz-
ing Pgy, will increase the communication overhead. The
communication cost, denoted as C.on, includes the over-
heads associated with task transfers and state-informa-
tion collection. The cost of collecting state information is
determined by the product of the frequency of state
change (f,.) and the size of buddy set (). The task trans-
fer cost (8) can be controlled by adjusting TH,; a higher
TH, will lower 8. For example, minimizing Cg,, can be
achieved by reducing the frequency of state change, the
buddy set size, or the task transfer rate. The frequency of
state change can be reduced by increasing the difference
between TH, and TH,. A small buddy set size will reduce
the cost for collecting state information, but will increase
Payn. The task transfer rate can be reduced by increasing
TH,. However, Py, will generally increase with any at-
tempt to reduce C.om- Thus, the primary goal in the de-
sign of an optimal LSMSCB is either to ensure the sys-
tems’ Pg, to be lower than P, while minimizing the
communication cost, or to minimize Py,, While keeping

the communication cost below a pre-specified level,

*
com-

The problem of optimizing LSMSCB is formally stated
as follows:

Optimal LSMSCB1. Minimize Ceom = 0fic + 8 subject
10 Pyyn = Plyn.
Optimal LSMSCB2. Minimize Payn subject t0 Ceom <

*
Ccom .

From [1], we know that £ is equal to the total number,
T, of arriving tasks times the probability, P,., of state
change. P4y, can be computed as > fmgy qx, where D is the
given task deadline {1]. The closed—form equations can
be used to derive the optimal threshold patterns and
buddy set sizes for both the minimization problems.

Since Pgyys and Ceon are determined by the threshold
pattern and buddy set size used, the optimal threshold
pattern and buddy set size can be found by an exhaustive
search. In such a case, the search complexity is O(D? N},
where N is the total number of nodes and D is the given
deadline. This complexity can be greatly reduced by uti-
lizing the resuits in [1] as follows. First, the frequency of
state change is 100% if TH,; = TH,,, and f,. can be greatly
reduced if THy — TH, = 1, or TH; = TH, + 1.

Second, the number of unnecessary task transfers will
increase if THyis close to TH,, thus increasing the proba-
bility of missing task deadlines. This effect can be ex-
plained by the following example. Let P{), and P$), de-
note the probability of missing task deadlines under two
threshold patterns with the same TH, and TH,,, but TH}"
and THP, respectively. If TH{" < TH? < TH, and
P, < PP, then it is impossible to find a threshold pat-
tern with the same TH, and TH,, but a TH, greater than
THP that results in a lower Py, than PY),. In other
words, the search for an optimal solution can skip all of
the threshold patterns with such a THj.

Third, the effect of changing buddy set size on Pgy, is
quite complicated due to the interaction between the
nodes in a buddy set. As shown in Fig. 3, Py, continues
to decrease with the increase of buddy set size when
system load is 0.5, and Py, approaches a constant when
system load is 0.7, but it may even increase with the
increase of buddy set size when system load is higher
than 0.9. Nevertheless, buddy sets of larger than 20
nodes will only reduce Py, infinitesimally and cannot
offset the increasing cost of state-change braodcasts.

Based on the above observations, one can find the opti-
mal threshold pattern and optimal buddy set size subject
to the given D, PJ,,, and C&n by the following proce-
dure. The first phase is to find a threshold pattern that
satisfies the constraint. The search starts at TH, = 0,
TH;=TH,+ 1, TH, = TH;+ |, and o = 20 (or any other
large number). If the resulting Pyyn > Py, increase TH,
until it becomes equal to D. Then, increment THyor TH,
and restart the search until a pattern that satisfies the
constraint is found. The next phase is either to minimize
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FIG. 3. Py, versus buddy set sizes (D = 6).

C.om for the optimal LSMSCBI, or to minimize Py,, for
the optimal LSMSCB2. The former is done by increasing
the difference between TH, and THy, or increasing TH,,
or reducing o. Since any of these attempts will increase
P4yn, once the constraint cannot be satisfied, the minimiz-
ing procedure should stop. The optimal LSMSCB2 is
solved by increasing TH, and buddy set sizes until the
constraint cannot be satisfied.

Many important and useful results are drawn from the
above optimization process. First, the minimum achiev-
able Py, with no constraint on Ceon is given in Fig. 4. The
results show that Py, can be reduced to below 1071*
when D > 7 and A = 0.8. In most cases, Pq,, can be easily
reduced to below 107, The next figure shows the mini-
mum achievable Py, subject to the constraint Ceom =

* m. The cost shown in Fig. 5. is normalized to the total
number of arrived tasks on a node, so0 Co, = 1.0 means
that one control message will be generated per task ar-
rival. Figure 6 shows the minimum achievable Ccom while
keeping Pg,, < Piyn. When A = 0.5 nd D > 6, LSMSCB
can reduce C.om to below 1% while keeping Pay, = 1076.
Even when A = 0.8 and PJ,, = 10719, C.om can still be
reduced to below 0.1 if D > 10.

Another important result found in the derived optimal
threshold pattern and buddy set is that the system utiliza-

tion is significantly increased, as compared to the results
calculated based on the upper bound model in (1]. For
example, as shown in Fig. 7, the external task arrival rate
is increased from 0.3, 0.06, 0.03 (from Fig. 9 of [1]) to
0.88, 0.7, 0.57 when D = 4 and Pyy, = 1074, 1075, 1075,
respectively.

Some optimal solutions found for the various values of
D and P, are given in Table III. This table is useful in
the design of real-time systems for the following reasons.
First, the system can be easily checked if it can meet a
given specification. The empty entries indicate the non-
existence of such a system. Second, a solution can al-
ways be found under any given D and PJ,, if such a
solution exists. Third, any solution found from this table
is optimal in the sense that the system constraint is satis-
fied and the communication cost is minimized.

5. CONCLUSION

Two main problems associated with load sharing in
distributed real-time systems are addressed. First, an ap-
proximate closed—form expression for the distribution of
queue length in the LSMSCB is derived. Second, using
this distribution, optimal threshold patterns and optimal
buddy set sizes, if any, can be found for any given dead-
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TABLE III
Optimal Threshold Patterns and Buddy Set Sizes under Given
D and P},
0.5 0.7 0.9
Load (A) -
P}, Deadline TH,TH;TH,,c TH,TH;TH, c TH,TH;TH, o
=2 —_ — —
3 012,10 —_— _
4 123,5 234,9 —
10-¢ 5 123,5 2347 234,15
6 245,3 245,6 345,13
7 256,3 356,6 356,13
8 4672 467,5 456,11
=3 — — —
4 123,9 123,14 —_
S 134,8 234,12 —
10°# 6 245,6 245,9 345,17
7 156,5 456,7 345,14
8 467,95 467,7 567,14
9 578,4 578, 6 578,13
=3 _— — —
4 123,13 —_ —
S 134,8 234,16 —
10-10 6 2457 245,10 —
7 456,6 456,9 —
8 467,6 567,8 —
9 578,5 578,8 678,16




OPTIMAL LOAD SHARING 49

line and PJ,,. In most cases Py, can be reduced to below
10~° at a reasonable cost for a wide range of system
loads. hence, the LSMSCB enables a distributed real-
time system to execute a large number of aperiodic tasks
before their deadlines.

The LSMSCB reveals an interesting but contrary idea
to many existing approaches which attempt to modify/
generalize a scheduling algorithm for periodic tasks to the
case of aperiodic tasks. Instead of trying to design a com-
plex scheduling algorithm to guarantee aperiodic tasks,
task arrivals at each node are processed on a FCFS basis
in the LSMSCB, thus making the problem of local sched-
uling trivial. However, if a node cannot guarantee some
tasks, the node will transfer these tasks to the nodes in its
buddy set; task deadlines can thus be met by using the
“*combined’’ processing power of all nodes in the system,
as opposed to using only local nodes. Both simulation
and analytical results show that the LSMSCB is very
efficient for meeting the deadlines of aperiodic tasks in
distributed real-time systems.
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