
686 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 23, NO. 3, MAYIJUNE 1993

Direct Control and Coordination Using Neural
Networks

Xianzhong Cui, Member, IEEE,

Abstract- The performance of an industrial process cootrol
system equipped with a conventional controller may be de-
graded severely by a long system-time delay, dead zone and/or
saturation of actuator mechanisms, model and/or parameter
uncertainties, and process noises. The coordinated control of
multiple robots is another challenging problem. In a multiple-
robot system, each robot is a stand-alone device equipped with
commercially designed servo controllers. When such robots hold
a solid object, failure of their effective coordination may damage
the object and/or the robots. To overcome these problems, we
propose to design a direct adaptive controller and a coordinator
using neural networks. One of the key problems in designing
such a controller/coordinator is to develop an efficient training
algorithm. A neural network is usually trained using the output
errors of the network, not controlled plant. However, when a
neural network is used to directly control a plant, the output
errors of the network are unknown, because the desired control
actions are unknown. A simple training algorithm is proposed
that enables the neural network to be trained with the output
errors of the controlled plant. The only a priori knowledge of
the controlled plant is the direction of its output response. A
detailed analysis of the algorithm is presented and the associated
theorems are proved. Due to its simple structure, algorithm and
good performance, the proposed scheme has high potential for
handling the difficult problems arising from industrial process
control and multiple--system coordination.

I. INTRODUCTION
HERE ARE MANY industrial control and coordination T systems for which one may have difficulty in achiev-

ing high performance with conventional control designs. For
example, the main problems in process control are negative
effects such as a long system-response delay, dead zone
and/or saturation of actuator mechanisms, and the nonlinear
response of control valves. Process and measurement noises
also degrade system performance. The dynamic property of
a controlled plant may not be very complex, even though
its detailed structure and parameters are unknown. However,
when such a plant is put in operation, the control system
is difficult to achieve high performance due mainly to the
negative effects mentioned above.

Contemporary industrial process control systems dominantly
rely on PID-type controllers, though the hardware to imple-
ment control algorithms has been improved significantly in
recent years. Despite the difficulty in achieving high control

Manuscript received February 2, 1991; revised September 22, 1992. This
work was supported in part by the National Science Foundation under Grant

X. Cui is with the Renaissance System Technology, Inc., 1135-1 Nielsen

K. G. Shin is with the Department of Electrical Engineering and Computer

IEEE Log Number 9207514.

NO. DMC-8721492.

Ct., Ann Arber, MI 48105.

Science, The University of Michigan, Ann Arbor, MI 48109-2122.

and Kang G. Shin, Fellow, IEEE

quality, the fine tuning of controller parameters is a tedious
task, requiring experts with knowledge both in control theory
and process dynamics. Similarly, in coordinated control of
multiple robots, each of the robot is a stand-alone device
equipped with commercially designed servo controllers. When
more than one robot must cooperate to accomplish a common
goal, in addition to the good behavior of each individual robot,
their effective coordination is crucial to achieve the desired
level of overall performance. This coordination problem is
usually organized hierarchically. The low level is the servo
controllers that are designed independently of, and separately
from, each other. Addition of a high-level coordinator should
not require the internal structure and/or parameters of the low-
level controllers to be altered. The main difficulties associated
with this coordination problem come from nonlinear sys-
tem dynamics, kinematic redundancy, multiple-input multiple-
output (MIMO), inaccurate system parameter values, and so
on. To cope with the above problems, we shall develop a
new controller (coordinator) using neural networks (NNs). We
shall

1)

2)

focus on:
industrial process control in the presence of the non-
linearity of dead zone and saturation, and the negative
effects of long response delays and process noises,
the coordinated control of two robots holding an object,
in which each robot is equipped with commercially
designed servo controllers.

The potential of NNs for control applications lies in that 1)
NNs could be used to approximate any continuous mapping
through learning, and 2) they can realize parallel processing
and fault tolerance. One of the most popular NN architectures
is a multilayer perceptron with the back propagation (BP)
algorithm. It is proved that a four-layer (with two hidden
layers) perceptron can be used to approximate any contin-
uous function with the desired accuracy [4]. BP has been
successfully used for pattern classification, though its original
development placed more emphasis on control applications
[18]. It is also proved that, in general, nonlinear control
systems can be stabilized using four-layer networks [15].

A controller is usually connected serially to the controlled
plant under consideration. For a multilayer perceptron, the
weights of the network need to be updated using the network’s
output error. For an NN-controller, the NN’s output is the
control command to the system. However, when the NN
is serially connected to a controlled plant, the network’s
output error is unknown, because the desired control action
is unknown. This implies that the BP algorithm for training an
NN cannot be applied to the control problems directly. Thus,

0018-9472/93$03.00 0 1993 IEEE

CUI AND SHIN: DIRECT CONTROL AND COORDINATION USING NEURAL NETWORKS 687

one of the key problems in designing a direct NN-controller
is to develop an efficient training algorithm.

Several related schemes have been proposed. One of them
is training an NN to learn the system’s inverse, and then
the desired system output is achieved using the control input
produced by the system’s inverse. Certainly, this requires the
system to be invertible. Examples can be found from [3], [12],
and [8]. In [3], the controlled plant was treated as an additional,
unmodifiable layer, and the output error of the network was
computed from the output error of the system. In [12], the
system’s output error was propagated back through the plant
using its partial derivatives at an operating point. In [8], a
set of actual system outputs are selected as training data and
fed into the NN during its training period. By comparing the
output of the NN with the desired system output, the network’s
output error is computed, which is then used to train the NN.
After the NN becomes well-trained, the input of the NN is
switched to the desired system output. Then, the NN acts as
the inverse of the plant, and its output will drive the system
to reach the desired value. However, in practice, even if the
system is invertible, the inverse control scheme may be not
acceptable. For example, if the system is a non-minimum
phase system, then the resulting design is not internally stable.
The invertibility of nonlinear systems was discussed in [5],
and a sufficient-input criterion for designing an NN to learn a
system’s inverse was established.

Narendra and Parthasarathy [lo] proposed a scheme of
indirect adaptive control using a multilayer perceptron with
the BP algorithm. The NN was trained first to attain the same
dynamic behavior as the controlled plant. Then a controller
was designed by using the NN’s output to cancel the nonlinear
part of the controlled plant and by including the same terms
of a reference model. Other examples of NN-controllers are
presented in [2], [6], which used reference models to train the
NN. Kraft and Miller designed controllers using a structure
similar to Ch4AC (cerebellar model articulation controller)
[7], [9]. Five dominant system architectures with NNs for
control applications were summarized in [18] and [19], and
the importance and applications of NNs to control and system
identification were also addressed there.

Most of the work mentioned above is in the form of indirect
adaptive control or has complex training methods and system
structures, and none of them was developed to coordinate
multiple systems. This fact was summarized in [lo] as: “At
present, methods for directly adjusting the control parameters
based on the output error (between the plant and the reference
model output) are not available. This is because the unknown
nonlinear plant lies between the controller and the output
error.” In contrast to the indirect adaptive control, we will de-
velop a direct adaptive controller and a coordinator. A simple
algorithm is proposed based on the BP for a class of nonlinear
systems typified by industrial process control applications, and
for a multiple-robot coordination problem. The proposed NN-
controller (coordinator) is trained by using the system’s output
errors directly with little apriori knowledge of the controlled
plant.

In Section 11, the control problem using NNs is stated
formally, and the basic structure of the proposed NN-controller

(coordinator) is analyzed. The training algorithm is developed
in Section 111, and the corresponding theorems are proved. Sec-
tion IV presents the procedures of designing the NN-controller
and addresses the problems related to its implementation.
Section V summarizes the simulation results of a temperature
control system in a thermal power plant to test the proposed
NN-controller. This is a typical system with a long response
delay, nonlinearity of dead zone and saturation, and process
noise. In Section VI, the coordinated control of two robots
holding an object is presented, including the dynamics of
the coordinated systems, specification of the desired forces,
force error analysis, and the system structure with an NN-
coordinator. The proposed NN-coordinator is evaluated for
two 2-link robots holding an object via simulation, and the
results are presented in Section VII. The paper concludes with
Section VIII.

11. PROBLEM STATEMENT AND THE “-CONTROLLER

A controlled plant can be viewed as a mapping from the
control input to the system output:

2 = f(z, u, t)

Y = dz, u7 t)

where z E Rm, y E R”, and u E RN2 are the state,
system output and input, respectively. If a controller exists
for such a system, then the controller can also be represented
as a mapping from system feedback and/or feedfonvard to the
control input:

= c(Y, Yd, t> (1)

where yd is the desired system output. As is usually the case,
only the system output is assumed to be measured.

We want to design an NN-controller as the replacement of
a conventional controller. In other words, the NN-controller
is cascaded with the controlled plant as shown in Fig. 1, and
trained to learn the mapping in (1). The desired control input
% d (t) is required to yield the desired output yd(t) . The system-
output error and the control-input error are then defined,
respectively, by

e y (t > = yd(t) - y (t)

and

e,(t) = ?4d(t) - u(t).

The control-input error e,(t) is also called the network-output
error, since u(t) is the output of the NN-controller. An NN is
usually trained by minimizing the network-output error e, (t).
However, when the NN controller is cascaded in series with the
controlled plant as shown in Fig. 1, e,(t) is not known, since
the desired control input U d (t) is unknown. so, the immediate
problem in designing such an NN-controller is how to train
the NN.

One of the well-developed NNs is a multilayer perceptron
with BP [13], [17]. The basic structure of a three-layer
perceptron is shown in Fig. 2. The BP algorithm is based on
the gradient algorithm to minimize the network-output error,

688 IEEE TRANSACllONS ON SYSTEMS, MAN, AM) CYBERNETICS, VOL. 23, NO. 3, MAY/JUNE 1993

I I

Fig. 1. A control system with an NN controller.

'2.k t t t

x i I I
Fig. 2. Basic structure of a multilayer perceptron.

and derived from the special structure of the networks. Let 01j
and 02k be the thresholds at the HIDDEN and the OUTPUT
layer, respectively, where 1 5 j 5 N1 and 1 5 lc 5 N2. Using
the structure in Fig. 2, computing the NN output and updating
the NN weights are summarized in the following five steps.

Compute the output of the HIDDEN layer-xlj:

1
1

1 + exp(-Olj - 01j X l j (t) =

where
N

0 1 j = W i j X i (t) , j = 1,2,. . . , N1.
i=l

Compute the output of the OUTPUT layer-X2k:

blk = (X2kd(t) - X2k(t))X2k(t)(l - X2k(t)) (4)

and X2kd is the desired value of X2k.

Update the weights from the INPUT to the HIDDEN
layer-Wij :

Wij(t + At) = Wij(t) + AWij

where
AWij = @jXi(t)

sj = & k W l j k (t -k At) x~j(t)(l - X i j (t)) .
[k:l 1

Update the thresholds: oak and O l j .

02k(t + At) = e 2 k (t) + 771Oalk

e l j (t + at) = e l j (t) + 7784
(5)

where 77, 771, 770, and 7710 > 0 are the gain factors.
In any control system design, it is desired to specify the

system performance in terms of system-output errors ey(t) =
y d (t) - y(t), rather than the unknown network-output error
eu(t) . To design such a controller with NNs, we adopt the
basic principle of multilayer perceptron with BP, because
of its ability of universal approximation and its convergent
property based on the gradient algorithm [16]. The major
obstacle in designing such an NN-controller is to train the NN
with the system-output errors ey (t), rather than the network-
output errors eu(t). The next section presents a solution to
this problem.

111. TRAINING AN NN-CONTROLLER WITH SYSTEM-OUTPUT
ERRORS

To derive the BP algorithm, the cost function of the network
is defined as:

1 Nz
&(t) = 5 E (euk(t))2

k=l

where euk(t) = U k d (t) - Uk(t) is the network-output error
at the lcth node of the OUTPUT layer. As mentioned earlier,
E,(t) is not available since ?&d(t) is unknown for all I C . Let
the Zth component of the system-output error be defined by

eyl(t) = Y l d (t) - Y l (t) , 1 = 1, . . . , n.

Then, the cost function in terms of the system-output error
is defined as:

n n

n

(6)

~ (t) = ~ (u (t)) , ~y(t) = [~ l (t) , . . . , ~ n (t > l ~ , and u(t> =

2
= (G l (U d) - Gl(u)) 7

1=1 2

where Gl(u) is the Zth component of the dynamic system

[UI (t) , , 7 1 ~ ~ (~)] . Equation (6) is computable from the
measurement of the system output. In other words, we know
a function of the network-output error, though the detailed
structure and parameters of the mapping G(.) may not be
known. We want to train the NN by minimizing the cost
function (6).

CUI AND SHIN: DIRECT CONTROL AND COORDINATION USING NEURAL NETWORKS 689

Using the gradient algorithm, the weights from the HIDDEN Proof: In the gradient algorithm, the solution converges
to a minimum of the cost function if and only if the search is
made along the negative direction of the gradient of the cost
function. BP is based on the gradient algorithm and listed in
(2) to (5). Because u k d (t) - U k (t) = X 2 4 t) - X2k(t), (4)

to the OUTPUT layer are modified by

wijk(t + At) = wijk(t) + Awijk,

and setting A W~jk 0: -

(7)

(8) becomes aE (t)
awl,, (t) '

Noting that u k (t) = X2k(t) in the "-controller,' we get

Substituting (10) into (8), one can get

where

where > 0 is a gain factor. The only unknown in (12) is
a y l (t) / a u k (t) , the (1 , lc)th component of the Jacobian matrix
of the controlled plant.

Recall that the network-output error at the lcth node of the
OUTPUT layer is defined as

Referring to (12), the component of system-output error con-
tributed by the lcth control input is defined by

To apply the gradient algorithm, we have the following the-
orem.

Theorem 1: Suppose the system response delay correspond-
ing to the lcth control input is d. To train the NN using the
system-output error and ensure the convergence of the training
algorithm, the necessary and sufficient condition is

sign (e , k (t)) = sign (e,k(t - d)) . (15)

'In fact, XZk(t) is the scaled value of u k (t) . At this stage, it is assumed
that the value of u k (t) is within the range of (0 , l) . The scaling problem will
be discussed later.

where X ~ k d is the desired value of x2k. Substituting (14) into
(12), we get

byk = e s k (t) X 2 k (t) (1 - X 2 k (t)) - (17)

Because both (16) and (17) are derived by applying the
gradient algorithm, in order to ensure the convergence of the
training algorithm given in (7) and (l l) , the necessary and
sufficient condition is (15), when the system response delay is
accounted for. 0

The accurate value of layl(t) /auk(t) l is not important,
because the step size can be adjusted by setting Q~
11: Idyl(t)/duk(t)l. Certainly, this requires layl(t)/duk(t)l <
co,Vt. Therefore, if the sign of a y l (t) / a u k (t) at each instant
is known, then we get a simple algorithm to train the NN
by using the system output error instead of the network output
error. However, for general nonlinear systems, it is not easy to
determine the sign of a y l (t) / a u k (t) at each instant. Therefore,
in what follows, we shall develop a training algorithm for a
class of systems in which the sign of output response is known
and lay l (t) /auk(t) l < co,Vt. Specifically, in the next section,
an NN-controller is designed for a class of SISO (single input,
single output) systems, and MIMO systems are treated in
Sections VI and VII.

Iv. DESIGN OF THE "-CONTROLLER

For a SISO system, the training algorithm presented in the
previous section can be simplified by using the following
definition of system direction.

Definition 1: If the system output monotonically increases
(decreases) as the control input to the controlled plant in-
creases, then the system is said to be positive-responded
(negative- responded). Both positive-responded and negative-
responded systems are said to be monotone-responded.

Definition 2: For a SISO system y(t) = G(u(t)) , if the
system is positive-responded (negative-responded), then the
system direction is written as D(G) = 1 (D(G) = -1).

Definition 1 characterizes a class of systems. For example,
a linear system is cascaded with an element of pure response
delay, dead zone andlor saturation. Fortunately, there are many
industrial process control systems that possess the property of
monotone-response. To train an NN-controller for such a class
of systems, we have the following theorem.

Theorem 2: For a SISO monotone-responded system, in
order to train the NN-controller in Fig. 2 using the system-
output error, the weights on the arcs from the HIDDEN to the
OUTPUT layer are updated by

wiji(t + At) = wiji(t) + Awiji (18)

690 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 23, NO. 3, MAYIJUNE 1993

where C) Update the weights from HIDDEN to OUTPUT layer:

Proof: For a SISO system, (13) and (14) are simplified to

From (15), we get the condition of convergence: sign (es(t)) =
sign (eu(t - d)). If the system response delay is d, then for a
positive-responded system we have

eu(t) = U d (t) - u(t) and es(t) = (Yd(t) - y (t)) & / (t) / W t) .

sign (u d (t - d) - u(t - d)) = sign (y d (t) - y(t)). (19)

Similarly, for a negative-responded system, we have

sign (ud(t - d) - u(t - d)) = -sign (yd(t) - y(t)). (20)

From (19) and (20), we conclude that the condition for
convergence is

sign (u d (t - d) - u(t - d)) = sign (y d (t) - y(t))D(G).

(21)

Equation (21) then implies that the corresponding training
0

Figs. 1 and 2 show the basic structures of the system and
the NN-controller, respectively. For a SISO system, there is
one node at the OUTPUT layer, that is, N2 = 1. The choice of
the "'s inputs should reflect the desired and actual status of
the controlled system. So, the inputs of the NN-controller are
usually the system's desired & actual outputs, and tracking
errors:

algorithm be based on (18).

Yd(t),Yd(t - At), . . ., Yd(t - m a t)
Y(t) , Y (t - At), * * * , Y (t - m2At)

e,(t),e,(t - A t) , . . - , e y (t - m3At)

where m1,ma and m3 > 0 are integer constants, and e,(t) =
yd(t) - y(t). The number of the HIDDEN nodes depends on
the controlled plant under consideration. However, selection
of a suitable number may require extensive experiments.

Based on Theorem 2, the formulas for updating the weights
from the INPUT to the HIDDEN layer and the thresholds are
derived using the same procedure given in Section 111. The
computation of the NN-controller for a SISO system is then
summarized as follows.

A) Compute the output of the HIDDEN layer: X l j (t).

N

where 01j = x W i j X i (t) , j = 1 , 2 , . - . , N 1 .
i=l

B) Compute the output of OUTPUT layer: X21(t).

Ni

j=1
where 0 2 1 = WljX,j(t).

where AWlj1 = 7$Sy1Xlj(t),

by1 = (~ (t) - ~(t))D(G)X21(t) (l - X21(t))-

D) Update the weights from INPUT to HIDDEN layer:
wij (t) .

Wij(t + At) = Wij(t) + AWij,
where AWij = qYSjYX;(t),

6; = q 1 w l j l x l j (t) (l - Xlj(t))

where T,I~ and > 0 are the gain factors.
E) Update the thresholds : 821 and 81j.

&1(t + At) = 421(t) + $e6:1,
81j(t + At) = 81j(t) + $SjY,

where and 0; > 0 are the gain factors of the thresholds at
the OUTPUT and the HIDDEN layer, respectively.

Another problem in designing such an NN-controller is
the choice of scaling factors. The sigmoid function in NN
computation forces the NN outputs to be within the range
of (0, l) , although the control input u(t) is limited by the
range of actuators, (Umin, U,,,). Therefore, the NN outputs
should coincide with, or little narrower than, the range of
the actuators' limits. The output of the NN-controller is then
computed by

u(t) = X21(t)(Umax - Urnin) + Umin.

Generally, an NN works in the mode of train-first-then-
operate. In other words, an NN is put in operation only after it
is "well-trained." By "well-trained," we mean that the weights
of the NN need not be modified any more. However, for a.
time-varying system, it is meaningless to say that an NN is
"well-trained," since the system always changes with time.
Thus, not updating the weights for a time-varying system
may result in the system going out of control. It is therefore
necessary to always update the weights of the NN-controller.
In other words, the weights of the NN-controller should be
updated instead of the train-first-then-operate mode, though
the weights may not have to be updated during every sampling
interval.

v. SIMULATION RESULTS OF A TEMPERATURE

CONTROL SYSTEM

Many industrial process control systems are characterized
by a linear system cascaded with a nonlinear element as a
result of dead zone and actuator limits, and/or a pure time
delay (due to transport and system response delays). To test
the capability of the proposed NN-controller, we conducted
simulations while emphasizing the ability to overcome the
negative effects of dead zone, saturation, long response delay,
and process noise. The simulated system is a simplified
temperature control system of a once-through boiler in a
thermal power plant. The input is the variation of feedwater

CUI AND SHIN DIRECT CONTROL AND COORDINATION USING NEURAL NETWORKS

~

691

Controlled plant

.f,

Fig. 3. The structure of "-based control system.

flow rate. The output is the variation of the temperature at
the middle point where water becomes steam. The system is
represented by an ARMAX model:

A(z-l)y(IC) = B(z-l)u(IC - d) + C(z-')[(k)
where A(z-') = 1 - 0 . 4 5 1 8 1 ~ - ~ - 0 .47546~-~ ,

(22)

B(2-l) = -0 .04560~-~ - 0 .00404~-~ ,
C(Z-') = 1 - 0.357402-1 - 0.O3392zp2,

d = 18 sampling intervals.

Here the sampling interval is chosen to be 8 seconds, y(IC) and
u (k) are the system output and control input at a discrete time
IC, respectively, and [(IC) is an uncorrelated random sequence
with zero mean and variance R that represents the process
noise. Note that this model is only for the pupose of simulation.
The NN-controller has no knowledge about this system except
its response direction.

To reflect the status of the controlled system, the inputs of
the NN-controller are chosen as the desired system outputs
and the output errors:

P d (k) , Yd(k - I) , Yd(k - 21, Yd(k) - Y(k),
Yd(k - 2) - y(k - 2). Yd(k - 1) - Y(k - I) ,

That is, there are six inputs at the INPUT layer of the NN-
controller (N = 6). The number of the HIDDEN nodes is
selected to be three, that is, N1 = 3. A nonlinear element of
dead zone and saturation is cascaded with the systerp (22) to
model an actuator, which is described by

0 if Iu(t)l < deadzone
ua(t) = u(t) if deadzone 5 lu(t)J < U,, { umax if Iu(t)l 2 urnax.

The overall system structure is given in Fig. 3. The dead
zone and saturation are treated as unknown properties of the
controlled plant. We want to show that the NN-controller
will overcome their negative effects by NN's learning ability.
Actually, since system response direction will not be changed
by dead zone and saturation, the proposed algorithm should
still work. Moreover, no special consideration for process
noise is given to the design of the NN-controller, like other
deterministic controller designs, though the controllers must
be tested for the ability of noise rejection.

The main simulation results are summarized below.
1) When deadzone = 5.0, U,, = 10.0, and no process

noise (R = O.O), the results are in Fig. 4. The initial

6 -
> 8; m 400 600 sm I& I& I& I& I& 2d,

time (X 8 xc.)

Fig. 4. System response with NN-controller when deadzone = 5.0, and
R = 0.0.

Fig. 5. System response with NN-controller when deadzone = 7.0, and
R = 0.0.

weights of the NN are selected randomly, and the NN
weights converge within 150 sampling intervals.
When deadzone = 7.0, U,,, = 10.0, and R =
0.0, Figs. 5 and 6 show the system response and the
corresponding control input, respectively. Obviously, a
large dead zone affects the system performance severely,
but the NN-controller still works well.
When deadzone = 5.0, U,,, = 10.0, and R = 0.5, we
evaluated the ability of noise rejection, and the desired
and actual system output responses are plotted in Fig. 7.
The corresponding control input and the process noise
are shown in Fig. 8, where

n (k) = [(k) - 0.35740[(IC - 1) - 0.03392[(k - 2).

Fig. 9 shows the results using NI = 6, deadzone =
5.0, U,, = 10.0 and R = 0.0. Comparing these results
with Fig. 4, one can see that adding more HIDDEN
nodes may not improve the system performance.

From the aforementioned simulation results, we conclude
that the proposed NN-controller performs well for this class
of nonlinear systems. In the NN-controller, the system-output
error is computed from the measurements. As a priori knowl-
edge, the system response direction is easily determined from
either a step response experiment or the physical property of
the controlled plant. To test the need of (18), -D(G) is used
in the training algorithm, which instantly leads to the NN's
divergence.

~

692 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 23, NO. 3, MAY/JUNE 1993

tim (x 8 xc.)

System control input with NN-controller when deadzone = 7.0, Fig. 6.
and R = 0.0.

10, I

0 200 400 600 800 1m lux) 1400 1600 1800 2 m
lime (x 8 sec.)

’ - 8 ’ ’ ’ ’ ’ ’ ’ ’ ’ . ’

Fig. 9. System response with NN4ontroller for six hidden nodes.

I object

J
330 lo00 1500 24mo 2500 3 m

-10‘
0

time (x 8 scc.)

7. System response with NN-controller when deadzone = 5.0, and
R = 0.5.

.”

5

0

-5p ,b+J vu 1
500 loo0 1500 Zoo0 2500 3000

-10
0

time (x 8 scc.)
8. System control input with NN-controller when deadzone = 5.0,

and R = 0.5.

VI. DESIGN OF THE “-COORDINATOR FOR TWO ROBOTS
HOLDING AN OBJECT

The proposed algorithm is also tested for multiple-
system coordination. As an example, in this section, an
NN-coordinator is designed to deal with the problem of
coordinating two 2-link robots holding an object. The purpose
of this example is to investigate the suitability of the proposed
method for MIMO systems, though controlling two 2-link
robots may be not a real problem in industrial applications.
With the NN-controller, the system forms a hierarchical

Fig. 10. Two 2-link robots holding an object

structure: the high level is the NN-coordinator, and the low-
level subsystems include two robots each with a separately
designed servo controllers.

A. Dynamics of the Coordinated Systems and Problem
Statement

The basic configuration of this example is given in Fig.
10. Let fi = [tiz, be the vector of forces and torques2
exerted by end-effector i on the object in Cartesian space,
z = 1,2. Then the motion of the object is described by

m P + m g = f , f = W F = [12,12]

where m is the mass of the object, P the position of the
object in Cartesian space, g the gravitational acceleration, f
the external force exerted on the object by the two robots,
and 1 2 is a 2 x 2 unit matrix. From (23), one can see that, to
achieve the object’s specified acceleration, the combination of
forces shared by the two robots is not unique.

Suppose two robots have an identical mechanical configu-
ration, then the force-constrained dynamic equation of robot i
in joint space is given by:

H i i + h(qi, 4i) + JT f = T;, i = 1 , 2 (24)

where qi is the vector of the robot’s joint positions; H the
inertia matrix; h the centrifugal, Coriolis, and gravitational

2The term “force” will henceforth mean “force and torque,” and “position”
will mean “position and orientation,” unless stated otherwise.

CUI AND SHIN: DIRECT CONTROL AND COORDINATION USING NEURAL NETWORKS

forces; J , the Jacobian matrix; and T , the vector of joint
torques [I. In the proposed NN-coordinator, the controlled joint
torques consist of two parts:

where T , , is contributed by the NN-coordinator and T , ~ is
given by a position controller

7 7 p = B (t , d - K D (G , - G l d) - K p (q , - q l d)) + (25)

where H and h are the estimated values of H and h, q,* is
the desired value of q7, K D and K , are the controllers' gains.

Suppose the object is a rigid body and there is no relative
motion between the end-effectors and the object. For (23), let
f a and Fd be the desired values of f and F , respectively.
Then, we have

F,i = F.ll<j + F I ~ E W* f d + (1 4 - W*W)y". (26)

where W* E R4x2 is the pseudo-inverse of W , 1 4 is a
4 x 4 unit matrix, and yo E R4 an arbitrary vector in the
null space of W . Therefore, the forces exerted by the end-

effectors consist of two parts: F J * ~ = E R4 is the

force to move the object and Fld = [F:::] E R4 is the

internal force. The following two problems arise: (1) sharing
the moving force by the two robots, and (2) changing the
internal force so as to satisfy a set of constraints, such as joint
torque limits or energy capacity.

In (26), f d can be specified by the desired trajectory.
F I ~ is given as the desired internal force, for example,
F I ~ = 0 for the least energy consumption. Because W* is
a constant matrix and both f,{ and Fld are specified, the
desired force F,i is determined uniquely. However, this ideal
situation of load sharing may not be achieved due to force
and trajectory tracking errors. These errors may be caused
by modelingiparameter errors, control performance tradeoff,
and/or disturbances. It is, therefore, necessary to share the load
by, or to reassign the load to, each robot dynamically. Our goal
is to design an NN-coordinator for coordinate the two robots
moving the object while minimizing the internal force.

Let the desired force sharing of the two robots be

FA'f1d [FIJ

f l d = f f f d + f b . a n d f 2 d = (1 2 - f f) f , i - f b . (27)

where o is a selection matrix, 0 = diag[o1. 021. 0 5 oJ 5 1,
j = 1.2; f b a bias force. Then, the desired external and
internal forces are

1 1
f d = f l d + f 2 d and f l d = j (f I d - f z d) = f b + p - W f d .

Therefore, the desired external force f d , the selection matrix
o and the desired bias force f ,, should be specified to compute
the desired force exerted by each robot: f 1(1 and f 2 d .

Suppose the measured forces are f l and f 2 , then the actual
external and internal forces exerted on the object are

Fig. 11. The basic structure of the NN+oordinator.

Then. the force errors are

If the external force reached its desired value, then f l e + f 2r -

0. So, these force errors do not contribute to moving the object,
that is, they result from internal force errors. This implies thoit
if we design a controller based on f l e to regulate the internd
force and if the controller is a linear controller with control
output f l : then the control action acted on robot 2 should b e
f i = - f l [l l] . Note that the force on the end-effector and
joint torques are related by 7, = JT f , . Therefore, when Be
control action is transformed into the joint space, we usuall!i
have T I # - 7 2 due to different Jacobian mat_rices.

Referring to (24) and (25), if H = H and h = h, then tke
closed-loop system can be written as

Since the desired external force is specified according to ti- I;
desired trajectory, the desired external force can be achieved
by a well-designed position controller. We can therefore design
a coordinator so as to regulate the internal force by changing
TTc.

B. Design of the "-Coordinator

The basic structure of a two-robot system equipped with a n
"-coordinator is shown in Fig. 11. From the coordinator i
point of view, the controlled plant is a mapping from the input
torque T , = [T:,. 7Tc] to the forces exerted on the object, 1'.
This is a time-varying MIMO mapping F = G(T,) . We want
to design an NN-coordinator to directly control such a system
using the results developed in Sections I11 and IV. For such
an MIMO system, we define the direction matrix as follows.

T

694 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 23, NO. 3, MAYDUNE 1993

Definition 3: The direction matrix of an MIMO system
F = G(T,) is defined by

D(G) = sign(dF/dT,)

where the sign of a matrix M is defined as the matrix formed
with the sign of the corresponding elements of M.

When such conditions as the range of joint motion are
imposed on the system, it is possible to determine this matrix
as shown in Section VII. From the force analysis, the following
variables may be used as the inputs of the NN-coordinator: the
measured forces F exerted on the object, its desired value Fd,
the measured joint positions of the two robots q = [qy , &] ,
and the actual torques r exerted on each joint of the two robots.
Obviously, all the inputs and outputs of this NN-coordinator
are vectors. For such a vector-structured multilayer perceptron,
a vector form of the BP algorithm has been derived in [14].
The main steps of the "-coordinator are summarized below.

All inputs and outputs of this NN are vectors, X, E
R",Xlj E R", and X21 E Rp are the output of INPUT,
HIDDEN and OUTPUT layer, respectively, with i nodes at
the INPUT layer, 1 5 i 5 N; j nodes at the HIDDEN
layer, 1 5 j 5 N1; and one node at the OUTPUT layer.
The computation includes five steps:

T

Compute the output of the HIDDEN layer Xlj:

X l j = f j (0 l j)

where
N

Olj = WijXi, j = 1 , 2 , . . . , Nl
i=l

and
T

fj(01j) = [Zljl,. . * , Zljml

. . . 1
= [l+exp(-o1jl-Rljl)' '

1 T .

1
1 + exp (-01jm - 01,")

where Wij E Rmx" is the weights from the INPUT
to the HIDDEN layer, Olj = [Oljl,. . . , OljmlT the
threshold at the HIDDEN layer.
Compute the output of the OUTPUT layer X21:

X2l = fl(O21)

where

and

where Wljl E RPXm is the weights from the HIDDEN
to the OUTPUT layer, 0 2 1 = [0 2 1 1 , . . - , 0 2 1 p] T the
threshold at the OUTPUT layer.
Update the weights from the HIDDEN to the OUTPUT
layer Wljl:

Wiji(t + At) = Wiji(t) + AWiji

where

AWiji = ~ i [6 i i T i] ~ ,
T

Si1 = [X& - X21] D(G)diag[~211(1- ~ 2 1 1) ,

Z212(1 - 2212), * . . , Z2lp(l - Z21p)l,

and T1 is a p x m x p tensor with the Eth matrix as

1 0 1

T11 = XI^)^ t- at the Zth row, Z = 1 , 2 , . . , p .

i o 1

D) Update the weights from the INPUT to the HIDDEN
layer W;j:

Wij (t + At) = Wij (t) + AWij

where

and T2 is an m x n x m tensor with the Zth matrix as

r o i

E) Update the thresholds at the OUTPUT and the HIDDEN
layer 021, and Olj:

0 2 1 (t + At) = O21(t) + AO21

where

(A021)T = ~ i d i i

Olj(t + At) 1 Olj(t) + AO1j

T where (AOlj)

the gain factors.
= VeSj and 771, q, 7710 and Ve > 0 are

The problems of scaling input and output and updating
weights have been discussed in Section IV. In what follows,
the design procedures are detailed for the example and tested
via simulation.

CUI AND SHIN: DIRECT CONTROL AND COORDINATION USING NEURAL NETWORKS 695

Link 1
Link 2

Length Mass center I Mass 1 Moment of inertia
1 m 0.5 m I 20 kg [0.8 kg m sz
1 m 0.5 m I 10 kg I 0.2 kg m 5' -

. 4 4 . , . , . , . * . , . , . , . t
0 500 1000 1500 2000 2500 3000 3500 4 0 0 0

time (x 0.01 see.)

Fig. 12. The internal force error in X direction withoutthe NNxoordinator.

+1 +1 +1 +1
D = s i g n (E)= 1 -1 -1 +1 +1 VII. SIMULATION RESULTS OF TWO %LINK ROBOTS

HOLDING AN OBJECT

Referring to Fig. 10, the Cartesian frame is fixed at the
base of robot 1, and the desired trajectories of the object
and the robots' end-effectors are specified relative to this
frame. The dynamic and kinematic parameters of the robots
are presented in Table I. The task is to move the object forward
and backward in X direction while keeping the height in Y
direction constant. The desired trajectory that is selected by a
high-level planner is to move the object in X direction from
an initial position to a final position (for one meter distance)
in five seconds, and then move back to the initial position.
The desired velocity and acceleration of the object are zero
at both initial and final positions. The sampling interval is
10 ms. The selection matrix is set to 0 = diag[0.5,0.5] and
the bias force f = 0. Each robot is position controlled with
the controller in (25). Note that the NN-coordinator has no
knowledge about the dynamics given by (23) and (24), except
the direction matrix that is determined as follows.

Let F = [fil, f ly, f22, f2y]T be the forces exerted on
the object by each robot in X and Y directions, and rc =
[71 lC , ~ 1 2 ~ , T2lC, T22c]T be the torque exerted on each joint of
the two robots by the NN-coordinator. Then the direction
matrix is defined as:

.

1- D = sign (s) = sign

From the configuration shown in Fig. 10, we can assume that

1 4

- 4 1 1 . * , , . , . , . . . , . I . 4
0 500 1000 1500 2000 2500 3000 3500 4000

time (x 0.01 see.)

Fig. 13. The internal force error in X direction with the NN-coordinator.

the limitation of the joint angles are

0' < 411 < 180°,
0' < 421 < 180°,

-180' < 412 < O',
0' < 422 < 180'.

Then the direction matrix can be determined as

r-1 -1 +1 +I1

. .
L+i +I +I +1J

This will be used in the computation of the NN-coordinator.
For this example, a three-layer perceptron is used. There are
four INPUT nodes with inputs

which reflect the desired and actual status of the coordinated
system. The OUTPUT layer has one node with output

T T
T c = [qc, = [T l l c , 712c, 721c, 722Cl

The proposed NN-coordinator is evaluated via simulation and
the results are summarized below.

Suppose the mass of the object is 5 kg, without the NN-
coordinator, the internal force error in X direction is plotted
in Fig. 12. By adding the NN-coordinator with 15 hidden
nodes, the performance is greatly improved as shown in Fig.
13. The RMS (root-mean-square) error of the internal force in
X direction is reduced by 94.6%. In Y direction, the RMS
internal force error is reduced by 46.2%, though the internal
force error is small enough due to no motion in this direction.
Moreover, both the external force error and the position
tracking error are kept almost the same as those without the
coordinator. The detailed results are summarized in Table 11.

If the mass of the object is increased to 10 kg, the NN-
coordinator also works well with 20 hidden nodes. The internal
force error in X direction is reduced by 89.8%, as shown in
Figs. 14 and 15, and Table 111.

696

Sample interval

0 - 1000

1001 - 2000

2001 - 3000

at X direction
at Y direction
at X direction
at Y direction
at X direction
at Y direction

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 23, NO. 3, MAY/JUNE 1993

RMS errors of internal force (N)
' without the coordinator with the coordinator

9.58411 2.01236
0.93142 0.51720
9.57103 0.51404
0.92337 0.49638
9.57048 0.51248
0.92337 0.49629

TABLE I1
RMS ERRORS OF INTERNAL FORCES, EXTERNAL FORCES

AND OBJECT'S POSITIONS, WITH MASS = 5 kg

.~

1001 - 2000

2001 - 3000

"
at Y direction 2.54845 3.53886
at X direction 0.34370 0.36121
at Y direction 0.01436 0.01104
at X direction 0.34370 0.36120
at Y direction 0.01436 0.01105

I at Y dirwtion n 2.54845 1 3.53886
1001 - 2000

2nn1 - 3000

_ . ~ . . ~

at X direction 0.34370 0.36121
at Y direction 0.01436 0.01104
at X direction I 0.34370 I 0.36120 _...

I at Y direction H 0.01436 I 0.01105 -. . __ -. ~~ ..

Sample interval RMS tracking errors of object's position (m)
without the eoordinator I with the coordinator

Sample interval

VIII. CONCLUSION
To handle difficult control and coordination problems, we

developed a direct controller and a coordinator with neural net-
works. Particularly, the NN-controller aims to handle indus-
trial process control systems, in which the negative effects of a
long system response delay, nonlinear elements with dead zone
and/or saturation, and process noises are the main obstacles
in achieving high performance. The proposed NN-controller
can replace conventional controllers, and has overcome all
of the problems mentioned above. The NN-coordinator is
applied to the coordinated control of two robots holding an
object. Such a coordinated system is organized hierarchically,
where the high level is the NN-coordinator and the low level
is the coordinated robots. It is assumed that each robot is a

RMS tracking errors of object's position (m)
without the eoordinator I with the coordinator

-104 . . . , . , . , . , . , * , . c
0 500 1000 1500 2000 2500 3000 3500 4000

time (x 0.01 sec.)

and mass = 10 kg.
Fig. 14. The internal force error in X direction without the NN-coordinator,

1001 - 2000

2001 - 3000

30 t at Y direction 0.05733 0.00692
at X direction 0.03694 0.03773
at Y direction 0.05759 0.00312
at X direction 0.03694 0.03773

2 5.

5 20.

E 10.

15:

P - 5.

5 o...
e - 5. .-

time (x 0.01 sec.)

and mass = 10 kg.
Fig. 15. The internal force error in X direction with the NN-coordinator,

w u-% bsLc'v * - V'

- l o + . , . , . , . , . , . . . , . r

stand-alone device equipped with a commercially designed
(perhaps by different vendors) servo controller. The internal
structure and/or parameters of the low-level subsystems are
not affected by adding the NN-coordinator. This implies that
some industrial robots could be coordinated to perform more
sophisticated tasks than originally intended..

In contrast to the scheme of indirect adaptive control [lo],
the proposed scheme enables the NN to be trained with
system-output errors, rather than the network-output errors.
The training algorithm is derived based on BP. However,
in the BP algorithm, it is required to modify the weights
by network4utput error that is not known when a multi-
layer perceptron is cascaded in series to the controlled plant.
Therefore, the proposed algorithm enhances the NN's ability
to handle a wider range of control applications. A detailed
analysis of the algorithm is presented and the associated
theorems are proved. The only a priori knowledge about the
controlled plant is the direction of its response, which is
usually easy to determine for a SISO system. The direction
matrix of an MIMO system can be determined, if some system
constraints are imposed. Extensive simulations have been
carried out and the results are shown to be quite promising.
Good performance, a simple structure and algorithm, and the
potential for fault tolerance make the proposed NN-controller
and the NN-coordinator attractive to industrial applications.

The remaining problems include:

Choice of the number of HIDDEN-layer nodes: there
is no systematic way to choose the number of the

at Y direction ' 0.05759 0.00312

Sample interval

0 - 1000 at X direction
at Y direction

1001 - 2000 I at X direction I

RMS errors of internal force (N)

15.96137 3.75179
1.12425 1.11996
16.08066 1.89737

without the coordinator with the coordinator

2001 - 3000
at Y direction r 1.10789 1.11099
at X direction 16.07986 1.84620
at Y direction 1.10790 1.10275

Sample interval

n - 1000 I at X direction I

RMS errors of external force (N)
without the coordinator I with the coordinator

1.40957 I 1.84460 .~

1001 - 2000

2001 - 3000

Y
at Y direction 6.67420 9.57597
at X direction 0.67540 0.88516
at Y direction 0.06293 0.26797
at X direction 0.67540 0.85093
at Y direction 0.06294 0.13169

Sample interval RMS tracking errors of
without the coordinator

0 - 1000 at X direction 0.03696
at Y direction 0.11624

1001 - 2000 at X direction 0.03696
at Y direction 0.11669

2001 - 3000 at X direction 0.03696
at Y direction 0.11669

object's position (m)
with the coordinator

0.03903
0.01390
0.03896
0.00657
0.03882
0.00652

CUI AND SHIN: DIRECT CONTROL AND COORDINATION USING NEURAL NETWORKS 697

nodes at the HIDDEN layer(s) to approximate a
given mapping. As shown in Section V, adding more
HIDDEN-layer nodes may not always improve the
system performance.
Starting the “-controller (coordinator): since the
initial values of the weights are random numbers,
the learning period may result in a large oscillation
of the system output. This may be unacceptable for a
certain controlled plant even for an open-loop stable
system.

These problems will be treated in our forthcoming papers.

REFERENCES

[l] H. Asada and J.-J. E. Slotine, RobotAnalysis and Control. New York
Wiley, 1986.

[2] I. Bar-Kana and A. Guez, “Neuromorphic adaptive control,” in Proc.
1989 IEEE Int. Con$ Decision and Contr., vol. 2, Dec. 1989, pp.
1739-1743.

[3] V. C. Chen and Y. H. Pao, “Learning control with neural networks,” in
Proc. 1989 IEEE ConJ Robotics Automation, Apr. 1989, pp. 1448-1453.

[4] G. Cybenko, “Approximation by superpositions of a sigmoidal func-
tion”, Mathematics of Control, Signals and Systems, vol. 2, no. 4, pp.
303-314, 1989.

[5] Y. L. Gu, “On nonlinear system invertibility and learning approaches by
neural networks,” in Proc. 1990Amer. Contr. Conk, vol. 3, May 1990,
pp. 3013-3017.

[6] A. Guez and J. Selinsky, “A neuromorphic controller with a hu-
man teacher,” in Proc. 1988 Int. Conk Neural Networks, vol. 2, pp.
II595-IIf502, 1988.

[7] L. G. Kraft and D. P. Campagna, “A comparison of CMAC neural
network and traditional adaptive control,” in Proc. 1989 American
Control Conf, vol. 1, pp. 884-889, 1989.

[SI E. Levin, R. Gewirtzman, and G. F. Inbar, “Neural network architecture
for adaptive system modeling and control,” in Proc. 1989 lnt. Joint Conk
NeuraI Networks, vol. 2, pp. 311-316, 1989.

[9] W. T. Miller, R. P. Hewes, F. H. Glanz, and L. G. Kraft, “Real-time
dynamic control of an industrial manipulator using a neural-network-
based learning controller,” IEEE Trans. Robotics Automat., vol. 6, no.
1, pp. 1-9, Feb. 1990.

[lo] K. S. Narendra and K. Parthasarathy, “Identification and control of dy-
namical systems using neural networks,” IEEE Trans. Neural Networks,
vol. 1, pp. 4-27, Mar. 1990.

[l l] M. E. Pittelkau, “Adaptive load-sharing force control for two-arm
manipulators,” in Proc. IEEE Int. Conk Robotics Automat., Apr. 1988,
pp. 498-503.

[12] D. Psaltis, A. Sideris, and A. A. Yamamura, “A multilayered neural
network controller,” IEEE Contr. Syst. Mag., pp. 17-21, Apr. 1988.

[13] D. E. Rumelhart and J. L. McCelland, Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, vol. 1: Foundations.
Cambridge, MA: MIT Press, 1986.

[14] K. G. Shin and X. Cui, “Design of a general-purpose MIMO pre-
dictor with neural networks,” Proc. 13th 1MACS World Congress on
Computation and Applied Mathematics, Dublin, Ireland, July 7, 1991.

[151 E. D. Sontag, “Feedback stabilization using two-hidden-layer nets,”
Tech. Rep. Rutgers Center for Syst. Contr., No. SYCON-90-11, Oct.
1990.

[16] J. Wang and B. Malakooti, “On training of artificial neural networks,” in
Proc. 1989 Int. Joint Conk Neural Networks, vol. 2, 1989, pp. 387-393.

[17] P. J. Werbos, “Back propagation: Past and future,’’ in Proc. I988 lnt.
Conk Neural Networks, vol. 1, 1989, pp. 1343-1353.

[18] P. J. Werbos, “Back propagation and neurocontrol: A review and
prospectus,” in Proc. 1989 Int. Joint Cdnf Neural Networks, vol. 1,
pp. 1209-1216, 1989.

[19] P. J. Werbos, “Neural networks for control and system identification,”
in Proc. 1989 IEEE Int. Conk Decision and Contr., vol. 1, pp. 260-265,
Dec. 1989.

Xianzhong Cui (S’89-M’92) graduated from North
China Institute of Electric Power, Baoding, China,
in 1976. He received the M.S. degree in power plant
engineering and automation from Electric Power
Research Institute (EPRI), Beijing, China, in De-
cember 1982. He received another M.S. degree and
Ph.D degree, both in electrical engineering systems,
in 1989 and 1992, respectively, from the University
of Michigan, Ann Arbor, MI.

Currently, he is with the Renaissance System
Technology, Inc., Southfdd, MI, as a System An-

alyst working for the Powertrain Electronics Division of the Ford Motor
Company. He was also an Adjunct Assistant Professor at the Department
of Electrical Engineering and Computer Science, the University of Michigan
in 1992. From 1976 to 1980, he served Tainjin Power Plant Construction
Company as a Technician of control and instrumentation. From 1982 to 1986,
he worked for EPRI as a process control engineer for power plants. He
spent the 1986-1987 academic year as a Wsiting Researcher in the Real-Time
Computing Laboratory and Robot Systems Division, the University of Michi-
gan. His research interests include applications of neural networks, intelligent
control, industrial process control, automobile control and microprocessor-
based systems, and intelligent decision support systems.

Kang G. Shin (S’75-M’7%SM’83-F‘92) received
the B.S. degree in electronics engineering from
Seoul National University, Seoul, Korea, in 1970,
and both the M.S. and Ph.D. degrees in electrical
engineering from Cornell University, Ithaca, NY, in
1976 and 1978, respectively.

He is a Professor of Electrical Engineering and
Computer Science at the University of Michigan,
Ann Arbor, which he joined in 1982. He also chairs
the Computer Science and Engineering Division,
EECS Department. He has authored and coauthored

more than 240 technical papers (more than 100 of these are in archival
journals) in the areas of fault-tolerant computing, distributed real-time com-
puting, computer architecture, and robotics and automation. From 1978 to
1982, he was on the faculty of Rensselaer Polytechnic Institute, Troy,
NY. He has held visiting positions at the U.S. Air Force Flight Dynamics
Laboratory, AT&T Bell Laboratories, Computer Science Division, within the
Department of Electrical Engineering and Computer Science at UC Berkeley,
and International Computer Science Institute, Berkeley, CA.

Dr. Shin received the Outstanding IEEE TRANSACTIONS ON ALITOMATIC
CONTROL Paper Award in 1987 for a paper on robot trajectory planning. In
1989, he also received the Research Excellence Award from the University of
Michigan, in 1985, he founded the Real-Time Computing Laboratory, where
he and his colleagues are building a 19-node hexagonally mesh multicomputer
a called HARTS, to validate various architectures and analytic results in
the area of distributed real-time computing. He was the Program Chair of
the 1986 Real-Time Systems Symposium (RTSS), the General Chairman of
the 1987 RTSS and the Guest Editor of the Special Issue on Real-Time
Systems of the IEEE TRANSACTIONS ON COMPUTERS in Aug. 1987. He is a
Distinguished Visitor of the Computer Society of the IEEE, an Editor for
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, and an k e d

Editor of International Journal of Time-Critical Computing Systems.

