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Optimal and Efficient Probabilistic 
Distributed Diagnosis Schemes 

Sunggu Lee and Kang G. Shin 

Abstract-The distributed self-diagnosis of a multiprocessor/multicom- 
puter system based on interprocessor tests with imperfect fault cover- 
age (thus also permitting intermittently faulty processors) is addressed. 
Focusing on probabilistic diagnosis methods, we define several different 
categories of probabilistic diagnosis based on the type of fault syndrome 
information used in the diagnosis. Rigorous probabilistic analysis is 
then used to derive optimal diagnosis algorithms (optimal in terms of 
diagnostic accuracy) for the diagnosis categories introduced. Analysis 
and simulations are used to evaluate the performance of the diagnosis 
algorithms introduced. 

Index Term- Distributed diagnosis, fault-tolerant computing, inter- 
mittent fault, multicomputer, multiprocessor, probabilistic diagnosis, 
system-level diagnosis. 

I. INTRODUCTION 
The progress made in the design of powerful single-chip computers 

(and even single-chip multiprocessors) have led to the construction 
of increasingly sophisticated multiprocessor/multicomputer systems 
with literally tens of thousands of processing nodes. In order to 
maintain a highly reliable system, faulty processing nodes must 
be identified and periodically removed (either physically or by 
reconfiguration) from the system. 

This correspondence addresses the general problem of the dis- 
tributed on-line self-diagnosis of processing nodes in a multiproces- 
sor/multicomputer system. The diagnosis will be done on the basis 
of a fault syndrome consisting of a collection of binary pass-fail 
interprocessor test results. Diagnosis using this type of fault syndrome 
has its origins in the PMC model [8]. However, unlike most of the 
system-level diagnosis methods based on the PMC model [4], [7], 
we do not place an upper bound on the number of permitted faulty 
processors nor do we assume inter-processor tests with perfect fault 
coverage. Instead, we focus on probabilistic diagnosis algorithms 
which can achieve correct diagnosis with high probability given 
intermittently faulty processing nodes. 

Three arguments used to support probabilistic diagnosis algorithms 
are: 1) using analysis to show that high diagnostic accuracy, defined 
as the percentage of diagnoses which are correct, is achieved in 
certain situations [5], 2) guaranteeing that the set of nodes most likely 
to have caused the syndrome is found [3], and 3) showing that as the 
number of nodes in the system grows to infinity, diagnostic accuracy 
approaches 100% [l], [9]. While argument 2bguaranteeing the 
most probable diagnosis-is the most appealing, it has been shown 
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that finding the most probable diagnosis given the global syndrome 
information is an NP-hard problem [2], [6]. 

There exist probabilistic diagnosis methods [ 11, [5] that have 
the property of asymptotically correct diagnosis and produce good 
diagnosis results for the example network configurations and prob- 
ability parameters considered by the respective papers.’ However, 
it is claimed that this is insufficient for the following reason. The 
property of asymptotically correct diagnosis simply states that 100% 
correct diagnosis is achieved as the system size grows to infinity, 
given certain restrictions on the interconnection network structure. 
However, under these same restrictions, there are many possible 
probabilistic diagnosis algorithms that achieve 100% correct diag- 
nosis as the system size grows to infinity [6]. Among these diagnosis 
algorithms, claiming that a specific diagnosis algorithm performs well 
given certain network configurations and probability parameters does 
not provide an adequate comparison to other diagnosis algorithms. In 
fact, for the networks and probability parameters used in the simu- 
lations presented in Section IV of this correspondence, the diagnosis 
algorithms in [l] and [5] are shown to perform significantly worse (in 
terms of diagnostic accuracy) than some of the probabilistic diagnosis 
algorithms introduced here. As a general rule, interprocessor tests 
with higher fault coverage result in higher diagnostic accuracy. Thus, 
diagnosis algorithms with higher diagnostic accuracy are desirable 
not only because of the higher diagnostic accuracy but because, for 
a given level of diagnostic accuracy, interprocessor tests with lower 
fault coverage, and thus shorter testing times, are required. 

In terms of diagnostic accuracy, the most desirable probabilistic 
diagnosis algorithm is the optimal diagnosis algorithm, which has 
been shown to be the algorithm that solves the NP-hard problem of 
producing the most probable diagnosis given the global syndrome 
information [2]. However, it is noted that in many previous proba- 
bilistic diagnosis algorithms with quadratic or lower computational 
complexity [l], [5], [9], the diagnosis of each processing node is 
based on only limited partial syndrome information. Given that only 
partial syndrome information is used in the diagnosis of each node, it 
is possible to design a diagnosis algorithm that has polynomial com- 
putational complexity and is optimal among all diagnosis algorithms 
that use the same type of partial syndrome information. In this corre- 
spondence, diagnosis algorithms are categorized based on the type of 
syndrome information used in the diagnosis and probability analysis 
is used to derive an optimal diagnosis algorithm for each category. 

11. PRELIMINARIES 

A. Notation and Testing Model 
A system S is composed of N nodes, denoted by the set IT = 

{ U O ,  . . . , U N - ~ } ,  where each node ut  E V is assigned a particular 
subset of the nodes in V to test. The set of testing assignments in S is 
represented by a directed graph G = (V, E), called the testinggraph, 
where vertex u, E V represents a processing node and edge etJ E E 
represents the fact that ut  tests u j .  The testing graph is assumed to 
be a subgraph of the graph representing the interconnection structure 
of the system. Test outcomes are represented by binary variables ut3 
such that u Z j  = 1 if uJ fails ut’s  test and a,, = 0 if u3 passes uZ’s  

Although IS] does not claim that their algorithm produces asymptotically 
correct diagnosis, it has been proven in [6] that this is the case. 
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test. at, is undefined if ut does not test u,. A (fault) syndrome S D  
is a function from E to {0,1}. The function S D  is defined such that 
for all e z 3  E E ,  SD(e,,) = at,. Given a syndrome S D ,  a diagnosis 
is said to be correct if the set of nodes diagnosed to be faulty is the 
same as the actual fault set. 

The set of nodes that a given node ut  tests will be denoted by 
I'(ut). Likewise, the set of nodes that test u z  will be denoted by 
r - ' ( u z )  and rP1(ut) = r;'(uz) u rg1(uZ), where l?L1(uz) = 
{u,  E rpl(ut) : = k } ,  k = 0 , l .  The one-condensation of G, 
denoted by G1 = (Vl ,El ) ,  is the subgraph of G with E1 = { e t J  E 
E : ut,  = 11 and Vl = { u ,  E V : u t  is the endpoint of an edge in 
E l } .  Given a node ut E V, d(u, )  = I {u,  E rP1(ut) : = 1}1. 
In discussing probabilities of events where the set of basic events 
is clear, we will use the notation P ( z )  to denote the probability of 
the event 2. 

In our testing model, the result of a nonfaulty node testing another 
nonfaulty node is the only completely reliable test result. ft  will 
denote the prior fault probability of ut .  The probability parameters 
that describe the possible values of ut,  given different fault statuses 
of u,  and u., are given in Table I. The fault status of U k  ( f s k )  is 
denoted by 6 k  (for uk is faulty) and S k  (for U k  is nonfaulty). AS an 
example, p , ,  is the probability that a nonfaulty node ut will correctly 
diagnose a faulty node u, . Average values of probability parameters 
will be denoted by the corresponding letters without subscripts. Thus, 
for example, f and p will refer to the average fZ and p,,  values, 
respectively. 

B. Categorization of Probabilistic Diagnosis Algorithms 
We can classify methods for probabilistic diagnosis based on the 

amount of information used to identify faulty nodes. Looking at the 
diagnosis algorithm executed on each node, the maximum amount of 
information that can be used by each node is the entire syndrome. 
A probabilistic diagnosis method which uses the entire syndrome is 
defined as a category 1 probabilistic diagnosis method. The optimal 
diagnosis algorithm in this category is the algorithm which finds the 
most probable fault set given the syndrome. This diagnosis algorithm 
was used in [3]. This category of diagnosis is inherently inefficient 
because the entire syndrome must be reliably communicated to each 
node. 

Suppose I istead that each node is aware of only the part of the 
syndrome that directly implicates it as faulty or nonfaulty, i.e., each 
node ut is only aware of the a J 2  values such that u, E l T 1 ( u t ) .  
This is referred to as local syndrome information. It is possible 
to summarize this local syndrome information as the ordered pair 
(d(u2),Ir-'(uz)l). where d(u , )  is as defined above. In category 
2 probabilistic diagnosis, faulty nodes are identified one at a time, 
using local syndrome information and the identity of the nodes 
diagnosed as faulty in previous steps. Thus, since the calculations 
of all of the nodes have to be examined to determine the order in 
which faulty nodes are identified, a summarized form of the global 

TABLE I1 
CATEGORIES OF PROBABILISTIC DIAGNOSIS AND SYNDROME INFORMATION USED 

Category Syndrome Information Used 

Local and nodes previously 
diagnosed as faulty 

Summarized local and 

as faulty 

1 All 

2 

2A nodes previously diagnosed 

3 Local 
3A Summarized local 

syndrome is effectively being used in the diagnosis. This method 
approximates the category 1 method by looking at individual nodes 
instead of subsets of nodes. Category 2A probabilistic diagnosis is 
similar to category 2 probabilistic diagnosis except that summarized 
local syndrome information is used. The diagnosis method of [l], [5] 
fall into this latter category. In category 3 probabilistic diagnosis , 
local syndrome information is used to identify each node as faulty 
or nonfaulty independently of the other nodes in the system. In 
category 3A probabilistic diagnosis, summarized local information 
is used to diagnose each node. The diagnosis method of [l] can be 
easily modified to fall into this category. Table I1 summarizes this 
categorization. 

C. Probability Model and Previous Methods 
To define a probability model, we need to define a probability 

space, which is a triple (R, 0. P ) ,  where R is the sample space, 
0 is the event space, and P is a probabiality measure. However, 
for each category of probabilistic diagnosis, the type of syndrome 
information used in the diagnosis is different. Thus, for each category 
of probabilistic diagnosis, we use a different probability space in 
talking about the probability of certain types of syndromes and fault 
sets being present. 

Let us consider category z probabilistic diagnosis, where T can 
be any of the categories defined above. Suppose the syndrome 
information used in diagnosing node ut E V is denoted by SD,.  SD,  
is a restricted form of the information present in the syndrome SD.  
For a given node u,, its fault status set is defined as Status-Set, = 
{ S,, st}. Let us consider an arbitrary category z probabilistic diag- 
nosis algorithm A. In order for the diagnosis by A to be correct, A's 
diagnosis of each node ut E V must be correct. Let A, denote 
the part of A which diagnoses the fault status of node u t ,  and 
define as basic events the pairs (SD, ,  fs,), where SD,  is a "partial 
syndrome" and fs, E Status-Set,. The set of all possible SD,'s 
will be denoted by SDP". The diagnosis of u,  by A when executed 
on a syndrome containing the partial syndrome SD,  is denoted by 
DzagA, ( S D , )  E StatusSet , .  

For category I probabilistic diagnosis on node ut ,  the sample space 
0: = { ( S D , , f s , )  : SD,  E SDP",fs,  E Status-Set,}, the event 
space 0: is all possible subsets of 0;. and the probability measure 
P: is defined for category z probabilistic diagnosis such that it is a 
legitimate probability measure. Although not explicit in our notation, 
the probability measure P: is also dependent on the testing graph 
G = (V, E ) .  Given a testing graph G and a diagnosis algorithm A, 
let CorrectG(A,) = { ( S O , ,  fs,) : DaagA, ( S D , )  = fs,}. For a 
testing graph G, the probability of correct diagnosis of u t  by -4 is 

cz(Cm-rectG(Az))  = P:(sD,, Dzags,  ( SD, ) ) .  (1) 
S D ,  t S D y  

There are a few diagnosis algorithms in the current literature which 
are closely related to the diagnosis algorithms that we present in 
this correspondence. The diagnosis algorithm that always finds the 
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most probable fault set given a syndrome is referred to as the most 
probable diagnosis (MPD) algorithm [3]. Since the MPD algorithm 
results in the highest achievable level of diagnostic accuracy, it 
is used to evaluate the performance of other diagnosis algorithms. 
Blough et d ’ s  (BSM) diagnosis algorithm [l] and Dahbura et Q I . ’ ~  
(DSK) diagnosis algorithm [5]  are category 2A probabilistic diagnosis 
algorithms. The DSK* algorithm is an improved version of the 
DSK algorithm presented in [6]. The MPD, BSM, DSK, DSK* 
diagnosis algorithms will be compared to the diagnosis algorithms 
presented in this correspondence and to each other. Although the 
algorithm presented in [9] is also an interesting probabilistic diagnosis 
algorithm, it is based on the use of “multiple syndromes” and is not 
directly comparable to the above algorithms. 

The BSM algorithm [l] is an approximation algorithm for the 
method used to diagnose mixtures of permanent and intermittent 
faults in [4]. This algorithm compares ~ ( u L ; )  to a threshold value K ; ,  

which is the assumed maximum number of faulty nodes testing u;. 
All nodes with d(u ; )  > ~i are diagnosed to be faulty. Converting the 
formula for K ;  in [l] into our testing model and using our notation: 

In the DSK algorithm [5], the one-condensation of the testing graph 
G is first copied into a graph G’. d‘(ut)  is set to the value of d(u , )  in 
the new graph G’. The DSK algorithm repeatedly selects and removes 
from the graph G’ a node with the greatest number of incident one- 
links (d ‘ (uL)  value) until no one-links remain in G’. Ties in &(ut )  
values are broken arbitrarily. 

The DSK* algorithm improves on the DSK algorithm by selecting 
the node u k  with the highest fk (prior fault probability) value 
from among the nodes um with the maximum value of d’(u,). A 
total ordering is imposed on the nodes to break any ties that exist 
after comparing fi values. In [6], we showed that DSK* performs 
significantly better than DSK when the relative magnitudes of ft 

values are known. DSK is O(lE1) and DSK* is O ( N z ) .  

111. OPTIMAL PROBABILISTIC DIAGNOSIS ALGORITHMS 
In this section we use probability analysis to derive optimal 

diagnosis algorithms for category 2, 2A, 3, and 3A probabilistic 
diagnosis. Each category of probabilistic diagnosis is defined by the 
type of syndrome information used in the diagnosis. Given a certain 
type of syndrome information, the optimal diagnosis algorithm is 
to make the most probable diagnosis at each node. This was shown 
formally for category 1 probabilistic diagnosis by Blough [2]. We now 
show this for general categories of probabilistic diagnosis. Suppose 
we are working with category x probabilistic diagnosis. Let OPTx  
denote the algorithm which makes the most probable diagnosis for 
each node uz given SD,. 

Theorem I :  For any category x probabilistic diagnosis algorithm 
A,  P (  { A produces correct diagnosis}) 5 P( { OPTz produces cor- 
rect diagnosis}). 

Pmofi Consider a testing graph G and an arbitrary category x 
probabilistic diagnosis algorithm A. A produces correct diagnosis if 
and only if the diagnosis of each node is correct. Let A,  denote the 

diagnosis of node u t  by A. For an arbitrary node u t  E V, 

ez (Correctc (AE))  

S D , E . S D ~ ~ ~  

= P,”(DzagA% (SD,)lSD,) P;(SD,) 

5 c ~=(Dzagoplr , , (SD,)(SD,)  P;“(SD,) 

= p,” (Correctc(OPTx,)) .  

S D , E S D ; ~ ~  

S D ,  ESD;” 

Since P,”(Correctc(A,)) 5 P:(Correctc(OPTz,)) for all uz E 
V, the theorem follows. Q.E.D. 

The strategy used for deriving an optimal diagnosis algorithm is 
based on the calculation of the posterior fault probability for each 
node given the syndrome information for that category of probabilistic 
diagnosis. For diagnosis category x, each node ut is diagnosed as 
faulty or nonfaulty depending on the fault status that results in a 
higher probability measure P,”. As shown in the proof of Theorem 
1, the probability of correct diagnosis of node u z  is the sum of 
P,”(SD,, DiagA,(SD,)), where the sum is over all possible partial 
syndromes SD,  and-DiagA%(SD,) is the diagnosis of ut by an 
algorithm A (one of 6 ,  or 6%). Thus, if algorithm A’s diagnosis for 
partial syndrome SD, is the one that results in the highest value of 
P,” for all syndromes SD,,  then the probability of correct diagnosis 
of node ut is maximized. 

Several assumptions are made in our probability analysis. It is 
assumed that the probability parameter values of different nodes are 
independent. fc, p ,  ,, r ,  , , and sS3 probability parameter values are 
assumed to be greater than 0 and less than 1. The probability of a 
faulty node having a one-link incident on it is assumed to be greater 
than the probability of a nonfaulty node having a one-link incident 
on it. This last assumption is required for any probabilistic diagnosis 
method to work. 

A. Diagnosis Using Purely Local Syndrome Information 
Given an arbitrary node u t  E V and a node u, E r-’(ut) ,  let 

A,, = P(a,, = 116,) and B,, = P(a,, = lib,). It is assumed that 
A,, > E l J t .  Using the parameters of our testing model 

= (l - fJ)PJt + f J s . 1 2  

BJt = f J ( l  - ‘ 3 % ) .  

Let the local syndrome information used by node ut E V be denoted 
by LS,. Then we can define our probability measure P,” as 

U3cr;l(uC) ulEr;’(uI) 

It can be checked that e3 is a legitimate probability measure. It 
follows that 

P,” (6, I LS,)  
- P,” (LS ,  3 5 , )  - 

P,”(LS,,G,) + P,”(LS,,S,) 
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To make the most probable diagnosis for u ,  based on u,'s local 
syndrome information, u ,  must be diagnosed to be faulty if and 
only if (3) > 0.5. This follows from the fact that P:(ErlLS,) = 
1 - P,"(&ILS,). The most probable diagnosis for us is the diagnosis 
that results in a higher value of P,". Thus, the optimal category 3 
probabilistic diagnosis algorithm is given as follows. 

For all nodes ut  E V,  do 

Algorithm OPT3A: 

1 .  calculate Zth, using (5); 
2. if d ( u , )  > Zth, ,  then label as faulty; 

otherwise, labelu, as nonfaulty. 

For all nodes u, E V ,  do 

B. Category 2 and 2A Probabilistic Diagnosis 
The first node that is identified to be faulty should be the one 

with the highest posterior fault probability. Once the first node is 
identified to be faulty on the basis of (3), we must identify the 
node with the next highest posterior fault probability. However, 
we can use the fact that one node has alreadv been identified 

Algorithm OPT3: 

1 .  calculate posterior fault probability for uI using (3); 
2. if P(S,ILS,) > 0.5, then label ut  as faulty; 

In category 3A probabilistic diagnosis, the strategy is to determine 
otherwise, label u ,  as nonfaulty; 

the fault status of each node based on summarized local syndrome 
information, i.e., the number of neighbors of the node that test 
it to be faulty. The main advantages of using summarized local 
syndrome information (instead of local syndrome information) are 
that the resulting diagnosis algorithms are simpler, less dependent on 
the accuracy of probability parameter values, and implementable as 
constant-time distributed algorithms. In the probability analysis for 
the category 3A probabilistic diagnosis on an arbitrary node ut E V,  
we shall assume that the testing graph is regular (has constant node- 
degree) and that the average probability parameter values of nodes 
in I'-l (ut) are being used. Then, going through a similar process as 
the previous analysis, we can write the posterior fault probability of 
ut given z = d(u,)  one-links directed into u ,  out of a maximum of 
y = lI'-'(uz)1 (denoted by z one-links: y) as 

P;jA(6,(z one-links : y) 

where A = (1 - f)p+ f s  and B = f(1 - r ) .  
Implicit in the above analysis is the fact that the partial syndrome 

information used in category 3A probabilistic diagnosis is denoted 
by z one-links: y (note that z = d(u,)). Also, although we have 
not yet formally defined the probability measure P;"" it is easy to 
see what P;j4(20ne-links : y ,&)  and P:A(zone-links : ? ,E , )  
must be by referring to the analysis for P," and (4). A similar 
procedure will be used in describing category 2 and 2A probabilistic 
diagnosis (the notation for the partial syndrome information used and 
the definition of the formal probability measure will be obvious from 
the discussion). 

Equation (4) is an increasing function of z since A > B. By setting 
(4) equal to $ and solving for z ,  we can determine a threshold value 
Z t h , .  When 2 > Z t h ,  ( z  < Zth,), node u t  is likely to be faulty (fault- 
free) since P(& ) z  one-links : y) > 0.5 ( P  (& 12 one-linksly) > 
0.5). Solving for Zth, ,  

Z t h ,  = ( 5 )  

This results in the following optimal category 3A probabilistic 
diagnosis algorithm. The optimality of this algorithm follows from 
the monotonically increasing property of (4) and Theorem 1 .  

to be faulty to update the posterior fault probability of adjacent 
nodes. Suppose U k  has previously been identified to be faulty. 
Let uZ E I'(uk) be an arbitrary as-yet undiagnosed node. Then, 
from Table I, we know that Akz = P(uk, = 116,) = S k 2  and 
B k l  = P ( U k ,  = l l E t )  = 1 - r k l .  In general, if the nodes in 
Htl C I?;' (u t )  and H Z o  2 r;'(u,) have previously been identified 
to be faulty, then the result is (6), which is shown at the bottom of 
the page. 

Relying purely on probabilistic information, the process of iden- 
tifying faulty nodes should stop when there does not exist any 
node with a posterior fault probability greater than 0.5. This can 
result in a fault set F which is not a vertex cover of GI,  the 
one-condensation of the testing graph G. A fault set which is not 
a vertex cover of G1 can not have produced the syndrome for 
which the diagnosis is made. Thus, a better stopping condition is 
to continue identifying faulty nodes until the resulting fault set is a 
vertex cover of GI.  (In effect, we are using a little bit more syndrome 
information.) By careful analysis [6], it can be shown that except 
under extremely extraordinary circumstances, the most probable fault 
set is a subset of VI, the node set of GI. The fault set found by 
using (6) and this stopping condition is also typically a subset of 
Vl . The following is the optimal category 2 probabilistic diagnosis 
algorithm. 

Algorithm OPT2. 
0. Let F c 0 be the set of diagnosed faulty nodes; 

1 .  For all u t  E V  do 

probabilities; 
2. While E2 # 0, do 

let Gz = (V2, E2) be a copy of GI;  

-use (6) with Htl = HCo = 0 to calculate posterior fault 

2a. Let U k  be the node with highest posterior fault probability; 

2c. For all nodes u3 E r ( u k )  do 
-update posterior fault probability of u3 using (6); 

2d. Update E2 by removing all links to and from U k ;  

2b. F + F U { U k } ;  

The main advantage in going from a category 2 to a category 2A 
probabilistic diagnosis method is that the resulting diagnosis is less 
susceptible to inaccurate probability parameter values. In category 2A 
probabilistic diagnosis, the first node to be identified as faulty is the 
node with the highest posterior fault probability as calculated using 
(4). But then, the equation for updating the posterior fault probability 
of nodes adjacent to previously identified faulty becomes similar 
to (6). If the nodes in H,1 c r;'(ut) and H,o c r g ' ( u z )  have 
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previously been identified to be faulty, then the result is (7), shown 
at the bottom of the page. Thus, Algorithm OEyT2A is the same as 
Algorithm OPT2 with (6) replaced by (7). 

IV. SIMULATION RESULTS 
Simulations were conducted to evaluate the performance of the 

diagnosis algorithms studied. However, since the diagnosis algorithms 
introduced in this correspondence were designed to be optimal (in 
diagnostic accuracy) for each category of probabilistic diagnosis 
studied, the results of simulations are not as important as they would 
be for heuristic diagnosis algorithms. Detailed analysis presented 
in [6] also shows that the diagnosis algorithms presented in this 
correspondence perform well even with highly inaccurate probability 
parameter value estimates. 

Numerous simulations were conducted on a Sun 3/280 for hyper- 
cubes of dimension six through ten using various sets of probability 
parameter values. Each node in the hypercube was assigned to test 
each of its immediate neighbors. Let Qp denote a hypercube of 
dimension T .  The diagnosis algorithm MPD was only executed on 
hypercubes Q6 through Q8 with MIITF = 50000 hours because 
of its high computational cost. Fig. l(a) and (b) shows the results 
of the simulations on a QS and Qlo with M’ITF = 50000 hours. 

TABLE 111 
DIAGNOSTIC ACCURACY WITH RE SPEC^ TO 

MPD FOR QS WITH MTTF = 50000 HOURS 
p 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
DSK -11.4% -3.6% -2.1% -0.6% -0.2% 0.0% 0.0% 
DSK* -0.1% -0.6% -0.2% 0.0% 0.0% 0.0% 0.0% 
OIT2A -0.2% -0.4% -0.5% 0.0% 0.0% 0.0% 0.0% 
OPT2 +0.1% +0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 

Similar results were obtained for all hypercube dimensions and 
MIITF values used. Table 111 shows the relative performance of 
the DSK, DSK’, O m A ,  and OPT2 algorithms with respect to the 
globally optimal algorithm MPD for a Q S  with MTII: = 50000 
hours. 

V. CONCLUSION 

The main contributions of this correspondence are the cat- 
egorization of probabilistic diagnosis algorithms according to 
the type of syndrome information used in the diagnosis of 
each node and the development of optimal diagnosis algorithms 
for each category. This categorization is significant because 
the communication requirements for distributed self diagnosis 
are different for each category and because existing diagnosis 
algorithms fit well into the categories defined. For all categories 
except category 1 (which uses global syndrome information), 
these optimal diagnosis algorithms are computationally effi- 
cient algorithms with O( N 2 )  or lower computational complex- 
ity. 
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