JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 19, 11-26 {1993)

A New Performance Measure for Scheduling Independent
Real-Time Tasks*

DAR-TzZEN PENG AND KANG G. SHIN

Real-Time Computing Laboratory, Department of Electrical Engineering and Computer Science, The University of Michigan,
Ann Arbor, Michigan 48109-2122

A new performance measure for scheduling tasks in hard real-
time systems is proposed and analyzed. The proposed measure is
the maximum normalized task flowtime over all tasks, called the
system hazard, where the normalized flowtime of a real-time task
is the flowtime of the task divided by the period between its arrival
time and deadline. The system hazard is a better measure than
simply meeting task deadlines because it also indicates how early
tasks as a whole can be completed before their deadlines. For a
single processor with only independent periodic tasks, optimal
scheduling algorithms with respect to the system hazard are de-
rived for both static and dynamic cases. Two best bounds of pro-
cessor utilization for these optimal algorithms are also compu-
ted. © 1993 Academic Press, Inc.

1. INTRODUCTION

The workload in a real-time system is composed of
periodic and aperiodic tasks. Periodic tasks are the *‘base
load”’ and invoked at fixed time intervals while aperiodic
tasks are the ‘‘transient load,” arriving randomly in re-
sponse to environmental stimuli. In hard real-time sys-
tems such as missile navigation or robot control, execu-
tion of both periodic and aperiodic tasks must be not only
logically correct but also completed in time. Specifically,
there exists an associated deadline for each task before
which the task must be completed.

Using different assumptions on the set of tasks to be
scheduled and the set of processors to execute them,
various scheduling algorithms have been proposed. (See
[3] for an extensive survey.) It is important to note that
all of these scheduling algorithms are concerned with one
and only one objective: meeting task deadlines. A sched-
uling algorithm is said to be optimal if it generates a

* The work reported in this paper was supported in part by the Office
of Naval Research under Contract N00014-92-J-1080 and the National
Science Foundation under Grant DMC-8721492. Any opinions, find-
ings, and conclusions or recommendations expressed in this publication
are those of the authors and do not necessarily reflect the view of the
funding agencies. Dar-Tzen Peng is now with Microelectronics and
Technology Center, AlliedSignal Aerospace Company, 9140 Old An-
napolis Road, Columbia, MD 21045-1998.

schedule in which every task can be completed before its
deadline provided such a schedule exists. However,
scheduling tasks with this objective alone has the follow-
ing drawbacks:

* Prior knowledge of the task system based on which
conventional scheduling algorithms were derived is not
always available or accurate. For instance, the exact exe-
cution time of a task is difficult to obtain because of the
uncertain behavior of loops and conditional branches in
the task.

+ It is impossible to evaluate the goodness of a sched-
ule in terms of how early a task can be completed before
its deadline. This information is important especially in
scheduling periodic tasks in the presence of randomly
arriving aperiodic tasks which must also be completed
before their deadlines.

To remedy the above drawbacks, we propose a new per-
formance measure, called the system hazard, as the ob-
jective function for scheduling real-time tasks. Specifi-
cally, the system hazard, denoted by @, is the maximum
normalized task flowtime, where the flowtime (response
time or turn-around time) of a task 7; is defined as the
time period between the arrival (a;) and the completion
(¢;) of T;. That is, ® & max{c; — a))/(d; — a;). where d; is
the deadline of 7;. A schedule is said to be optimal with
respect to (w.r.t.}) @ if it achieves the smallest possible
value of ®, denoted by ®@*. Obviously, ® depends only
on the execution of tasks and can be used not only on a
single processor but also on a multiprocessor/distributed
system. Several insights can be drawn from @ and ©* as
follows. First, under the assumption that all task execu-
tion times are fixed (as with most existing scheduling
algorithms), ®* = 1 if and only if there exists at least one
schedule under which all tasks can be completed before
their deadlines. Thus, if ®* =< 1, an optimal schedule
w.r.t. ® is also optimal in terms of the ability to meet
deadlines. Second, if task execution times are random
rather than fixed, then ®* is a good measure for the sys-
tem’s inability of meeting task deadlines. Third, ©* can
also be used to evaluate the goodness of task assignments
in distributed real-time systems [10]. An assignment with

0743-7315/93 $5.00
Copyright © 1993 by Academic Press. Inc.
All rights of reproduction in any form reserved.

12 PENG AND SHIN

lower @* is superior to the one with higher @* because
the former results in a lower probability of each assigned
task missing its deadline.

In this paper, we shall study the optimal preemptive
resume scheduling algorithms and their associated pro-
cessor utilizations for both periodic and aperiodic tasks
by minimizing ®. As was done in [7], this derivation is
based on the assumption that (A1) tasks are to be sched-
uled on a single processor, and (A2) periodic and aperi-
odic tasks are independent of each other. A2 means that
no precedence constraints exist between any two tasks
except for those among periodic tasks implied by their
invocation times.

For periodic tasks, both static and dynamic scheduling
algorithms are considered. According to the definitions
used in [7], a scheduling algorithm is said to be static
(dynamic) if all invocations of a task are (may be) as-
signed the same priority (different priorities). Thus in a
static scheduling algorithm, if task 7; is given priority
over task T, then an invocation of 7; has priority over all
invocations of 7;. In a dynamic scheduling algorithm, on
the other hand, two invocations of the same task may be
assigned different priorities. We shall prove that the rate-
monotonic scheduling (RMS) algorithm—which was
proven to be optimal in meeting deadlines [7]—is also an
optimal static algorithm w.r.t. © for periodic tasks. For
the dynamic case however, the earliest due date (EDD)
scheduling algorithm—which is optimal w.r.t. many
other performance measures—is shown to be not optimal
w.r.t. ®. That is, an optimal schedule derived by mini-
mizing @ not only meets all the deadlines that can be met
by the EDD algorithm, but also offers additional benefits.
For aperiodic tasks, we shall show that optimal on-line
scheduling algorithms are non-existent except for some
special cases.

The rest of the paper is organized as follows. In Sec-
tion 2, we consider the optimal static scheduling algo-
rithms for periodic tasks as well as achievable processor
utilization bounds. The dynamic version of the subject in
Section 2 is dealt with in Section 3. On-line scheduling
algorithms for aperiodic tasks are treated in Section 4,
where, rather than deriving processor utilization bounds,
simple mechanisms are proposed to check whether or not
a randomly arriving aperiodic task can be completed with
not greater than the prespecified system hazard. Finally,
the paper concludes with Section 5.

2. OPTIMAL STATIC SCHEDULING OF PERIODIC TASKS

Let T={T;: 1 < i< m)} be the set of m periodic tasks to
be scheduled on a processor, where each task T; repeats
itself with period p; during the entire mission. Let I = [0,
L) be a planning cycle, where L is the least common
multiple (LCM) of all p/’s. For simplicity, we assume

throughout the paper that all tasks are invoked simulta-
neously at the beginning of a planning cycle. The vth
invocation of T;, denoted by T;,, is triggered at time (v —
1)p; and has to be completed before its next invocation
time vp;. We want to derive a scheduling algorithm that
minimizes

® = max

l=vs=slip
T,eT

(civ — aw)lp;,
where c;, and a,, are the completion time and invocation
time of T;,, respectively.

2.1. Optimal Static Scheduling Algorithm

Liu and Layland [7] showed that the rate-monotonic
scheduling (RMS) algorithm—which simply assigns task
priorities inversely proportional to task invocation peri-
ods—is optimal in the sense that it generates a feasible
schedule provided such a schedule exists.! One might
conjecture that the RMS algorithm is also optimal w.r.t.
® provided at least a feasible schedule exists. In what
follows, we shall prove this conjecture using two useful
results. The first result follows directly from [7] and is
stated below without proof.

LEMMA 1. [In afeasible schedule, the maximum flow-
time of a task occurs when the task is invoked simulta-
neously with all other higher-priority tasks.

Lemma 1 is obvious because, in a feasible schedule,
the completion of a task will be delayed most if all other
higher-priority tasks are invoked at the same time when
the task is invoked. Further, note that this time of simul-
taneous task invocations is assumed to be the beginning
of each planning cycle. Lemma 1 is very useful for the
analysis of the performance of a static scheduling algo-
rithm. Specifically, to check if all task (invocation) dead-
lines are met under a particular algorithm, all we need to
do is to check whether or not the task deadlines are met
only for the first invocations of all tasks.

Lemma 2 [1, 6] stated below is the other result to be
used for proving the optimality of the RMS algorithm.
Consider a set of tasks to be scheduled on a single pro-
cessor, where each task with a fixed execution time must
be completed before its deadline. The earliest due date
(EDD) scheduling algorithm is one that always selects the
unscheduled task with the nearest deadline.

LEMMA 2. If there exists a schedule where all® tasks
meet their deadlines, then so can the EDD scheduling
algorithm.

! A schedule is said to be feasible if all invocations of every task in the
schedule can be compieted in time.

2 [n fact, the same conclusion holds as long as the number of tasks
missing deadlines is at most 1.

NEW PERFORMANCE MEASURE FOR SCHEDULING REAL-TIME TASKS 13

Lemma 2 can be proved easily by using pairwise ex-
change of tasks [1]. Lemmas 1 and 2 lead to the following
theorem, which assures the optimality of the RMS algo-
rithm w.r.t. ©.

THEOREM 1. If a feasible schedule exists for m > 0
tasks, then the RMS algorithm is optimal w.r.t. ©.

Proof. From Lemma 1, we need to consider the first
invocation T, of task T;, i = 1, 2, --- , m, only. For
notational simplicity in the proof, T} is simply denoted as
the task 7; with arrival time ¢; = 0 and deadline d; = p;.
Let ®* be the minimum of © obtainable with any static
scheduling algorithm. To prove the theorem, we need to
show that the RMS algorithm achieves 0*.

From our definition of ® above, a schedule with sys-
tem hazard ©* is one where each task 7; meets its ‘‘re-
vised’' deadline ®* p;. However, from Lemma 2, the
EDD scheduling algorithm also generates such a sched-
ule as long as the task selection criterion is based on
these revised deadlines. In other words, ©* is also
achieved by this revised EDD algorithm, which is exactly
the same as the RMS algorithm because each revised
deadline is a constant (i.e., ®*) proportion of its task
invocation period. Q.E.D.

Note that the existence of a feasible schedule is neces-
sary for Lemma 1 and Theorem 1. For example, consider
T={T,,)} withp, =2, p,=3,¢ = 1,and ¢; = 2, where
Lemma 1 is no longer true and ®* is not even existent.

2.2. Achievable Processor Utilization Bounds

As was done in [7], the utilization U of a single proces-
sor system with m periodic tasks 7;'s is defined as U =
>, ei/p;. Obviously, a higher U means a better proces-
sor utilization and {/ < | must hold provided every invo-
cation of a task can be completed before its deadline. It
was shown in (7] that for ® = 1 there exist two bounds of
U:U = m@2"" — 1)and U, = 1. Specifically, given any m
tasks with U = U, there always exists a feasible sched-
ule for these tasks. On the other hand, if U/ > U,,, then no
feasible schedule exists for these tasks. If U, < U = U,,,
then a feasible schedule may, or may not, exist depend-
ing on p;’s and e;’s. In what follows, we shall generalize
these results under the condition of ® = 1. That is, for
any given value of 0 < ® = 1, we want to derive the
corresponding values of U, and Uy,. (The results of [7] are
thus a special case of ours since theirs were derived for
the case of ® = 1.) For any m tasks with U =< Uy, there
always exists a feasible schedule with the maximum nor-
malized flowtime (of all invocations of all tasks) not ex-
ceeding ©. On the other hand, if U > U}, then no such
feasible schedule exists for these tasks. If U, < U = U,
then such a feasible schedule may, or may not, exist
depending on the values of p;’s and ¢;’s.

Notice that for any ® € (0, 1], U, and U, should be
derived under the RMS algorithm-—which is optimal
w.r.t. ® by Theorem 1—because the RMS algorithm
yields the maximal values of U, and U}, among all static
scheduling algorithms. Also, the values of U; and U, cor-
responding to any 0 < @ < 1 will be shown to be smaller
than those in [7], which were derived for the case of ® =
1. Throughout the rest of the paper, a schedule is said to
be feasible for a given © € (0, 1] if it results in a system
hazard not exceeding ©.

2.2.1. Deriving U;. U, is first derived for two tasks 7,
and 7, with p, = p,. This result will then be extended for
an arbitrary number of tasks. To derive U, two cases
need to be considered:?

ChH [%%JP] =0p; < l%‘?‘zJPI + Op,,
where

[%LI’EJ = | (Fig. 1a),
and
(C2) [—IZJIN +0Op, =0p, < [G;)?Z]Pl.
where

[%"’ij = 0 (Fig. Ib).

As was done in [7], U, and U, are derived with the
processor fully utilized. A processor is said to be fully
utilized by a set T of tasks for a given ® under a feasible
schedule if increasing the execution time of any one task
in T makes the schedule infeasible.

C1. In order for T,'s normalized flowtime not to ex-
ceed the given value of ®, ¢, = @p,, but ¢, may or may
not exceed

£ 0p, - [%’]’—Jp

When ¢; =< ¢, the largest ¢, that allows for at least one
feasible schedule is

GPZ]
€y,

O - (D1

3 |x| represents the largest integer <x, whereas [x] the smallest inte-
ger =x. Thus, [x] = |x] if x is an integer. Otherwise, [x] = |x] + 1.

14 PENG AND SHIN

& p1+Spy

T

T

1+8
0 * p'n it Q?‘; [_?E,i_'pl > {pl (QT)P,
992
i i
(@ Qp < 8R < Qp +0p,
ep, pi+Op, Qp1+ ©py
IR SR S SR o5
or,
f } [y_Jn'

(b) Qp, + ©p, < B8 < (Q+D) p,

FIG. 1.
and the corresponding utilization is
p=8.,a_a @_ﬁ[gﬁz]
Dy P2 D P2 P
=@+e,{i_i[9£z”_ (1)
Dy P2l Py
On the other hand, when e; > £, e; must be no larger than
®P2j
-],
(P 1) 3

and the corresponding utilization becomes

2enza|on)ajo

U=—+
P P2 P P2l Dy

alt-Ale))

The U in Eq. (2) is a nondecreasing function of e, be-
cause

2

LZL[@&J_
Pr p2L D

Thus, the behavior of U in Eq. (1) as a function of e,
determines U,. Specifically, if the U in Eq. (1) is also a
nondecreasing function of ¢;, then U, occurs at e; = 0. If

Different relations between @p, and Op,.

U is a nonincreasing function of e, then U occurs at

er=§=0p; - [%%JP:-

C2. Similarly to the case of ¢; = £ in C1, the largest
allowable e; is

‘Q&] €1,

Op: - [P

and the corresponding utilization is

Um0+l Loz
Py D2V Dy

which is a nondecreasing function of e, for the following
reason. Since, by assumption,

[’@fﬂpl + @p, = Op,, [_@_PEJ - @(‘2 _

) =2
P 4

P
implying that

1 L[Q&

- P

]20.
P D2

Thus, U, = ® occurs at e = 0.
More formally, we have the following theorem.

NEW PERFORMANCE MEASURE FOR SCHEDULING REAL-TIME TASKS 15

THEOREM 2. For a given @ < 1 and two tasks T, and
T27
0 if ® =< 0.5
T lavIe -+ 1-0 if05<O =1

Proof. We prove this theorem by deriving U, under
both C1 and C2, and choosing the smaller of the two. To
find U, under C1, it is necessary to examine the behavior
of Uin Eq. (1). First, consider the case of ® = 0.5. Since

Op: _ |Op2| £2, L1OP2)
pi LpiTp T ®Lp
=22 =1+ | S2) = [2F]
Thus,
L. 1[0
pr plp IV

indicating that the U of Eq. (1) is a nondecreasing func-
tion of ¢, € [0, ®p,;]. Thus under Cl, U; = O occurs at
e; = 0. The theorem follows for @ < 0.5 because U, = ©
also holds under C2.

Next, consider the case of ® > 0.5. It can be easily
shown that there always exists at least a (p,, p») pair such
that

In other words, the U of Eq. (1) could be nonincreasing
(nondecreasing) in e,, depending on the values of p, and
p>. To derive U, under C1 for ® > 0.5, one has to find
Uys for these two possibilities and then choose the
smaller of them as U, under Cl as follows. Since U, = @ if
U in Eq. (1) is nondecreasing in ¢;, we now consider the
possibility of Eq. (1) being nonincreasing in e;. If Eq. (1)
is nonincreasing, then U, = U|,,-, or, from Eq. (1) or (2),

a=21%2] for - 2212 - 122

p2 L py P pi prbtop “
SRR A IS

For a given ®, Eq. (3) is an expression for U; under C1 for
a given (p,, p) pair. To find U, under C1, one must find
the minimum of the above U, among all possible (p,, p2)
pairs. To find a special (p,, p,) pair which minimizes U},
let ®p,/p, = Q@ + R, where Q is a positive integer repre-
senting the quotient and 0 =< R < | representing the re-

mainder of ®p,/p;. Then, U, in Eq. (3) becomes

o 0
M=Q+RwaQ+R—®~QQ+@+R)

_00°+ 00+ (R-0O0)Q +R)

O+R
_(R+O-RO)Q + R @
B O +R
_ _ _ R(® - RO)
=(R+ 0 - RO) TOTR

Given © and R, U, in Eq. (4) is nondecreasing in Q be-
cause ® — R ® = 0. Therefore, the minimum of U, must
occur at @ = 1. Substituting Q = 1 into Eq. (4), U, be-
comes (R? + (1 — ®)R + ©)/(R + 1). To further minimize
U, w.r.t. R, we take the derivative of U, w.r.t. R and find
R = R* such that dU\/dR|g-g- = 0. It turns out that R* =
V20 — 1 and the corresponding minimum of U, is 2(V26
-1+ 1 —@.ToprovethatZ(\/Z@—)+1—-0is
acceptable, we have to show that (Q, R) = (1, R*)is in
the domain where Eq. (1) is indeed nonincreasing. In
other words, for any given ® = 0.5, we want to show that

1 _1yee]
P P2

at (@, R) = (1, R*). Note that

TR AR

-—{ge+R -+l

2

Substituting (1, V20 — 1) for (Q, R), the above becomes

gﬂ%a+\66—1y—u+1ﬁ=ﬁi$x@@—ﬂ

provided ® > 0.5. Thus, the U, for ® > 0.5 under C1 is
min {20V20 -) + 1 - 0,0} =220 - 1) + | — O.
Choosing the smaller of this U, and that under C2, the U,
in case of @ > 0.5 becomes min {2(V20 — 1) + 1 — @, 0}
=220 - 1) +1 - @. Q.E.D.

Notice that the results presented in {7] can be obtained
from Theorem 2 by letting ® = 1. The results of Theorem
2 are extended below for m = 2 tasks. Theorem 3 estab-
lishes the results for @ =< 0.5, whereas Lemmas 3-4,
Theorems 4-5 establishes those for 0.5 < @ < 1.

16

THEOREM 3. Form =2 periodic tasks {T;} and a given
0=<05U=6.

Proof. This theorem can also be proved by pairwise
exchanges. Let p, < p, < - < p,,. To derive U,, we
again assume that the RMS algorithm is used and the
processor is fully utilized.

Construct new task execution times, ¢; = 0, ¢/ = ¢,
i=2,3,---,m— 1, and a particular ¢,, = ¢,,, such that the
processor is fully utilized. We want to show that U’
2moellpi= U= 2", eilp;. Specifically, we need to prove
that e,./pn, < ei/p; + en/pm. Since

' ®p'
em = €, t [—PTH] €|

must hold,

€
Pm

&
Pi

€y €m

Pm DPm

< &m

el =5

14

because, as shown in Theorem 2,

221

1 1
-_—

P

14

provided ® = 0.5. In other words, U, must occur at ¢; =

0. The above arguments can be applied repeatedly be-

tween e, and ¢,,, between ¢; and e,,, and so on. Finally,

PENG AND SHIN

we conclude that U, must occur when e; = e, = -+
em-1 = 0, e, = Op,, and thus, U, = Op,./p, = 6.
Q.E.D.

Before extending Theorem 3 to the case of ® > 0.5, it
is necessary to prove the following important lemma,
which identifies a case where the U, can be found in
Theorem 4.

LEMMA 3. Foraset Tof m = 2 tasks and a given © >
0.5, if pu-1 = Op,, and p,, < 2p,, then the minimum
processor utilization occurs when (see Fig. 2),

Pi+1 — Pi izlv.“’m‘—z
e',:gl*: Gpm_pmAl i=m-—1 (5)
m—)
Op, —2 Ze,» i=m.
i=1

Proof. Assume p, < p, < --- < p,,. (As will be clear in
the following steps of proof, the lemma is also true when
Pi = Dis1», 1 = i < m.) Let {e;} be an arbitrary set of
execution times for which the processor is fully utilized
(with utilization U). We want to show that U must be
greater than that corresponding to the set of ¢* values in
Eq. (5). This is done by considering each task sequen-
tially as follows.

First, consider T;. If ¢; < p, — p;, then construct new
task execution times {¢{} such that ¢{ = p, — p;, e/ = ¢;,

ep, Pl+8 Pl
f’l zpl
T = {
el ls
i ep, B+ep,
P, 2
’]'2 i—f :{\: l/\’ Il:.2
82 l ez
L] L]
° p] [3
» .
' Pm-2
6P m-1
lem-l i I em2)
‘ Pm-1
Tt + f =cmane l/ﬂ‘]
m-1 | 'em-l ! Pm_l II L
apm
Pm
T | e — | Ij)m
I | em

FIG. 2.

e;’s which minimize U.

NEW PERFORMANCE MEASURE FOR SCHEDULING REAL-TIME TASKS 17

i=2,3, -, m— 1. In order to let {¢/} fully utilize the
processor, ¢, = e, — 2[(p; — py) — e;] > 0 (Fig. 2). We
need to show that the processor utilization U’ corre-
sponding to {e/} is smaller than U, i.e., e{/p; + e, /p, <
e//py + en/p,. This inequality holds because

(pr — p1) — e < 2(p2 — p1) — &)
P Dm

since, by assumption, p, > p,/2. On the other hand, if
e, > p» — pi, then the new execution times {¢/} must be
constructed such that ej = p; ~ py, e =e, + [e) — (p2 —
p)l, and e =e;, i =3, 4, ---, m to again fully utilize the
processor (Fig. 2). Likewise, to show that the new utili-
zation U’ is less than U, we have to show that [e, — (p> —
plp; > ley — (p2 — p))/p2, which is true since p; < pa.
For the case where ¢, = p; — p, or after constructing {e/}
as above, we move on to consider 75 based on the newly
constructed {e;}. While considering 7>, we likewise in-
crease (decrease) e; to €5 = p; — p; and decrease e,
(increase ¢3) twice the (the same) amount that 3 has been
increased (decreased) if e; <(>) p; — p,. For the same
reason as the case of 7;, U" < U’ must hold, where U"
represents this newly generated utilization with 7> con-
sidered. This process can be repeatedly applied to T, 7,
--- and up to T, such that the utilization is reduced each
time. Finally, we consider T,,-; and conclude that given
€ = Pir1 — Pi, 1 = 1,2, -, m-2, €m-| = G‘)pm ~ Pm-1
must hold to minimize U, Since the utilization for any set
of task execution times can be reduced with the above
procedure until Eq. (5) is satisfied, the lemma follows.
Q.E.D.

Under the conditions of lemma 3, U, can be derived as
in the following theorem.

THEOREM 4. For m = 2 tasks and a given @ > 0.5, if
Pm-1 = Op, and p,, = 2py, then Uy, = m{(20)!" - 1] +
1 - 6.

Proof. FromLemma3,ifp,-,=®p,,p,=2p,,and
¢;’s satisfy Eq. (5), then the resuiting utilization will be
minimized. We now derive U, by searching for the mini-
mal utilization among all possible p;’s in the domain
where p,,-; < Op,, and p,, = 2p, hold. That is, we want to
find the minimum of U = 2, e,/p; while varying p;'s and
yet satisfying Eq. (5).

To derive U,, we use the idea in [7] and define variables
gi=©®p, —p)p;,i=1,2,--, m~—1, and thus, p; =
Op,, — gip:i = Op,, /(1 + g). Expressing ¢;’s in terms of
gi'sandp;'sase; = pi,| — pi=giPi — Li+1Pix1,i = 1,2, -,
m-—2, €m-1 = ®pm “Pm-1 = Em-1Pm-1, and €m = ®pm -

2 E:'Zl—] e = ®pm - 2(®pm -p) = —®pm + 2(®pm -
g1p1) = Op, — 2g1p1, we get

P

— e Di
U—;;: ; (gi—gmj_—') +gm~1+@—281£-]
=’§j(g'—g<+| 1+g,.)+g (6)
=1 ' T+ gisg m-l
+0-20--5_
1 + gl

Notethatif g =gy = =g, =0(.e.,Op, =p;,i=1,
2, . m — 1), then U = ©. To derive U,, Eq. (6) is
minimized w.r.t. all g/’s. this is done by setting 9U/dg; =
0, V i and solving the resulting simultaneous difference
equations:

| - 20 - _ &
1+g) 1+g
1~ (lli-i:)lz =3 fi;"m' i=2,3,,m=2, (7
1 + g
1 - (TT};—,,T = 0.
It can be shown that
gi = Qe)mm — 1 =12, m-1, (8)

solve Eq. (7) and minimize U of Eq. (6). Replacing g;’s of
Eq. (6) with those of Eq. (8), one can get

U=m[20)" - 11+ 1 - 0. 9)

Similarly to the proof of Theorem 2, we still need to
check if p;’s (or g/’s) in Eq. (8) are in the domain where p,,
< 2p; holds. This can be easily done as follows. Since
gi = (®p,, — p)/p; by definition, Op,,/p; = (20)"~"" from
Eq. (8). It follows that p,/p; = (1/0) 20) 20) " =
2(2@)-#m < 2, since, by assumption, ® > 0.5 Q.E.D.

Note that for a given ® > 0.5, the above U, is a decreas-
ing function of m, and for m = 2, Eq. (9) gives the same
U, as in Theorem 2. Also, Eq. (9) becomes the same
result in [7] when ® = 1. It is interesting to see that U, —
log (20) + 1 — ©® as m — =.

Theorem 4 was proved under the restriction that p,,_,
< Op, and p,, = 2p,. In Lemma 4 and Theorem 5 below,
we relax this restriction step-by-step and then present the
general results on U).

18 PENG AND SHIN

LemMMa 4. ForasetTof m =2 tasks and a given © >
0.5, if pm-1 = Op,, = p; + Op,, then* U, = m[20)V~ —
11+1 - 8.

Proof. Suppose p,, > 2p;, i = 1,2, -+, n, and p,, <

2pi,i=n+1,n+ 2, -, m. Construct {e/} such that
0 i=1,2,-,n
Piv1 — Pi i=n+1,n+2,---,m—2
e = ®pm—pm—l i=m-—1

m—|
Op, —2 zei i=m.
i=1

Then, from previous discussions and Lemma 3, the new
utilization associated with {e/} will not be greater than the
original utilization. Further, by Theorem 4, the minimum
utilization resulting from the m — n remaining tasks be-
comes

(m ~ mIQROn-" — 1] +1 -0
=m0V — 1] + 1 ~ ©

because the U, of Eq. (9) is nonincreasing in m.
Q.E.D.

THEOREM 5. For a set T of m = 2 tasks and a given © >
0.5, Uy = m[C&)V" — 1]+ 1~ 0.

Proof. The theorem is proved by showing that the U
obtained in Lemma 4 under the restriction p,,— =< @p,, =
p1 + Op; is the same as that obtained for the general case.
Note that pn_y < Op,, < p; + Op, if and only if p; =
Opn=p;+0p;,i=1,2,--,m— 1(see Fig. 2). Thus, for
any {p;} we want to show the existence of {p/} such that
pi = 0Op, <p/ + Opj, Vi+ m, and the resulting utiliza-
tion is not greater than the original utilization. This is
done by the following three sequential steps. Steps 1 and
2 construct new periods and execution times such that p;
= Opn = p; + Op;, Yi+ mwhile reducing the processor
utilization. Because of the way these new periods are
constructed, the scheduling algorithm used to derive the
utilization with the new periods may not be the RMS
algorithm. Step 3 remedies this subtlety and completes
the proof.

For any p; that does not satisfy p; = @p, = p, + Op;,
let ®p,/p; = Q + R, where Q = |®p,,/p;] is the quotient
and 0 = R < 1 the remainder. Step | constructs p/ (if any)
such that pj = @p,, = 2p/. Using the p/s, Step 2 con-

¢ Note that the conditions p,,-; < Op,, and p,, < 2p, of Theorem 4
together imply p,,_; = Op,, = p; + Op,. But the converse is not true.
Thus, the domain described by conditions p,,-; < Op,,and p, = 2p,is a
subset of that described by p,,-; < Op,, = p, + Op,.

structs p;, if any, such that p/ = ®p,, < p/ + Op/. Note
that 0 = 1 if p; = Op,, < 2p;.

S1: The case of @ = 0 and Q = 2 are dealt with in this
step. For Q@ = 0 or ®p,, < p;, construct {p/} such that
p; = p;/2and p/ = p;, Vi # j. Also construct {¢/} such that
e =0ande/ =¢;,Vi#+j i+ mande, = e, + ¢tofully
utilize the processor. We show that @' = 1 and the utili-
zation is reduced by using {p;} and {e/} as follows. By the
assumption that ®p; < @p,, < p,; or 20p,/2 = Op,, <
2p;/2, the relation p; = 20p/ = Op,, < 2p;, and thus,
Q' = 1 must hold because ® = 0.5. Moreover, because
ei/p; = €j/pn, the new utilization is not greater than the
original utilization. Next for the case of 0 = 2, construct
the new periods {p/} such that p/ = Qp;and p/ = p;,, Vi #
J. Also, construct the new execution times {e/} such that
el =¢,Yi¥ mande), = e, + (Q — 1) to fully utilize
the processor. For these new periods and execution
times, Q' = 1. Again, the original utilization is reduced
by these e;’s since

U_U,z(ﬁ+fﬂ)_(ej +e,,,+(Q—1)eJ-)

pi P’ \Op P
30°p-z
=(Q - l)ej(alb;—;{;) =0

because Op; < Op,, = pn,.

In this step, p/’s are constructed such that Q' = 1 or p/
= Op,, < 2p; for each p;. However, there may still exist
some p;’s such that p/ + @p; < Op,, < 2p/, which is
undesirable for Theorem 4. Therefore in Step 2, new peri-
ods and execution times are constructed from these p;’s
such that the utilization is reduced further.

S2: Suppose p/ + Op; < Op,,, | =j=m — 1, where
p;’s are the new periods constructed in S1. Construct {p}
such that p/ = p/, Vi # jand pj < Op,, = p/ + Op]. Also,
construct {¢/} such that ¢] = 0, ¢/ = ¢/, Vi # j,i # m,and
€m = e, + 2¢/ to fully utilize the processor. Then

U'_Uﬂsz__*.f"ﬂ_gfj_ii”ﬂ
pi Pm Pm

because by assumption, ®@p,, = Op;, = Op/ + p/, and
thus, p,, = 2p/.

U" is obtained under the RMS algorithm based on the
original set of periods {p;}. In other words, the scheduling
algorithm which we used to obtain U” in Step 2 may not
be the RMS algorithm based on {p;"} except that p, < p,
implies p! = p}. In Step 3 below, the utilization V result-

NEW PERFORMANCE MEASURE FOR SCHEDULING REAL-TIME TASKS 19

ing from the RMS algorithm based on {p}} is shown to be
less than or equal to the utilization U resulting from the
RMS algorithm based on {p}.

S3: Let W be the utilization associated with {p;} and {e;}
under the RMS algorithm based on {p}}, i.e., the same
priority assignment as V. Then, from the discussions of
Steps 1 and 2, V = W. On the other hand, U = W because
from Theorem 1, the RMS algorithm is optimal. Thus,
Uz=zWwW=YV.

Based on the above discussions, we conclude that for
any {p;}, there always exists a new set {p/} such that p{/ <
Op. < p! + Op!, ¥ i+ m, and the original utilization is
reduced. Since p,,-y = Op,, <p, + Op,ifand only if p; =
Op,. =< p; + Op,;, Vi # m, the theorem directly folows
from Lemma 4. Q.E.D.

2.2.2. Deriving U,. Given @ < 1, U, is the limit of
maximum processor utilization achievable among all task
periods and their associated execution times. As was
done for U,, U, is first derived for the case of only two
tasks, and then extended for an arbitrary number of
tasks.

We need to consider the same two cases Cl and C2
used for deriving U,. Further, the properties of the utili-
zation in Eqgs. (1) and (2) need to be used in the following
theorem.

THEOREM 6, For any two tasks and a given © < 1,
Un =1 — (1 — ©) occurs when ®Op, is a multiple of p,.

Proof. The theorem is proved by considering both C1
and C2. For Cl, U is expressed as either Eq. (1) or (2),
depending on whether e, < £ or ¢) > £. Moreover, Eq. (2)
is monotonically nondecreasing in ¢, while Eq. (1) could
be monotonically nondecreasing or nonincreasing in e,.
Therefore, given p, and p,, the maximum of U/ must oc-
cur at either e; = 0 or ¢; = Bp,, the two extreme points of
e,. It can be easily derived from Eq. (1) that if ¢; = 0 then
U = 0, and from Eq. (2) that if e, = @p, then

=g 2RI s on (1122
P P2 P2y IR R 4

(10)

=®+(1—®>”%[%—p]3j2®

That is, given p, and p,, the maximum U occurs at e; =
®p,. To derive U}, under C1, the largest value of U in Eq.
(10) over all possible p,’s and p;’s is determined as fol-
lows. The U in Eq. (10) will be maximized when

vl

i1s maximized, i.e.,

15

- 9p
P ’

P

or equivalently, ®p; is a multiple of p,. Under ClI,

p1 Op, -

Uy=0+ (1 -0)= 1 — (1 - 0)2.
P2 P

For C2, the achievable utilization U is again expressed
as Eq. (1), which, unlike that of Cl, is a monotonically
nondecreasing function of e,. Therefore, for given p, and
P2, the maximum of U occurs at e; = ®@p,, and

U=®+@p,{})p,—;};[®:2”

0
]

(an

=2®—®’[—j§[

To derive Uy, under C2, we likewise identify the largest
value of U in Eq. (11) over all possible p;’s and p,’s as
follows. The U in Eq. (11) will be maximized when

2o

1s minimized, i.e.,

or equivalently, ®p, is a multiple of p;. Under C2,

U, = 20 — @ 21 022
P2 P
=1~ (- 6y,

which is the same as that under CI. Q.E.D.

Before deriving Uy, for an arbitrary number of tasks,
consider a set {p;} of periods such that both Op;andp;,j =
2,3,-,m— l,are multiples of p;, i = 1,2, -+, j — 1, and
Op,, is a multipie of p;, ¥V i # m (see Fig. 3). Thus, let
Op; = a;,p; and Op,, = a,;p;, where o;;’s and a,,;’s are
positive integers, Then we have the following lemma,
which identifies a case where U}, can be derived in Theo-
rem 7.

20 PENG AND SHIN

op; P +OP;
T, } ‘ b 2?‘ ‘ Slfi l 4?" * 5?" ‘ P (f |
ep; P 0P
T | P { T
I T
FIG. 3. Both Op; and p; are multiples of p;.

LEMMA 5. For m = 2 tasks with periods given above
and given ©® = 1, the maximum U occurs at

ey = Op,

i1 (12)
€ = @pj e Z‘ Q; i€, j=2

Proof. Consider tasks in the orderof T\, 1>, -, T,,.
Suppose there exists T; such that e; does not satisfy (12)
while all ¢;, 1 =i <, satisfy (12). In particular, ¢; < Op; if
Jj=1,and ¢; < @p;, — T/Z|a, e; if j = 2. Then, construct
{e/} such that (i) Eq. (12) is now satisfied for ¢;, Vi < j,
and (ii) the completion times of all invocations of other
T’s, ¥i > j, remain unchanged within the interval [0,

Op,.). Specifically,

e;=e, i=12.j—1,
ejr = & + Aj,
€j'+1 = €jy — Ajs1 = €u1 — ®iry Aj'
6’,{ =e; — A
i~j—1
= e — {a,;j A - Az:l QG j+k Aju},

i=j+2,5+3, -, m,

where A; > 0 is the increase in e; to satisfy Eq. (12), and
A= 0,i=j+ 1, is the corresponding net decrease® in ¢;
to keep the completion times of all 7;’s unchanged within
[0, ®p,,). A simple algebraic manipulation leads to A; =
(pi/p;) AB(1 — O)Y~1 ¥i = j + 1. It follows that

A; - A
U -U=-- =
Dj i%;zﬂ Di

= ~A—"(l -)"/ =0,
i
where U and U’ are the processor utilizations associated
with {e} and {e;}, respectively. If the above arguments
are applied repeatedly over all ¢;’s until Eq. (12) is satis-

5 A temporary negative ¢, will not affect the proof of the theorem.

fied, then one can increase the processor utilization
monotonically until the maximum U is reached. Q.E.D.

With the above lemma, the following theorem can be
easily proved.

THEOREM 7. Let T be a set of m = 2 tasks with peri-
ods py < py < - < py. Ifboth®p;andp;,j = 2,3, -,
m — 1, are multiples of p;, Vi <Jj, and ®p,, is a multiple of
pi.Vi<m, thenU,=1- (1 —)",

Proof. From the results of Lemma 5 and Eq. (12), the
maximum achievable utilization U can be derived as

U=mﬁ=®+m®@—ﬂﬁ)
=t Pi j=2 i=1 Pi
=01+ (1 -0)+(-0)y
+ o+ (1 =0y (13)
=1-({-e Q.E.D.

Let U be the utilization for a given ® < 1. Then, it is
not difficult to see that a new period p; of 7, can always be
constructed such that both @p; and p; are multiples of
pi,» Vi < j, provided each of such p;’s and ® are rational
numbers. Using this observation, we have the following
lemma-—which is necessary to show in Theorem 8 that
the U, obtained in Theorem 7 is indeed the U, for arbi-
trary m tasks.

LEMMA 6. If p,, is modified to p,, such that Op,, is a
multiple of p;, Vi < m, then the utilization corresponding
to the new periods is greater than that to the original
periods.

Proof. Consider T,, and a particular T;, i # m, while
ignoring all the other tasks. From Theorem 6, for any ¢; <
®p;, the maximum utilization occurs when Op,, is a mul-
tiple of p;. Thus, the function

ft@py) = L2t < g (i - £),

where E(Bp,,) represents the total execution time of 7;
within {0, ®p,,) and the RHS of the above inequality is
the part of utilization contributed by T,, as Op,, is a multi-

(14)

NEW PERFORMANCE MEASURE FOR SCHEDULING REAL-TIME TASKS 21

ple of p;. Considering each (T;, T,) pair will lead to
m—1 m{l®m—'El®m
S fOp) = >, Opm — E{Opn)
i=1 i=1 Pm
Opn — Z71'EdOp,)

m

m=1 "
s(m-2)®+®<1— Zﬁ).

i1 Di

(m—2)0 +

It follows that

m_zlr’:lE‘i® m e
Op p; (p)SQ(l_Z_@)‘

(15)

i=1 3

Notice that the LHS of inequality (15) represents the part
of U contributed by T,, with the original period p,,,
whereas the RHS denotes that contributed by 7, as Op,,
is a multiple of p;, Vi < m. Since the part of utilization
contributed by other tasks are the same, the lemma fol-
lows. Q.E.D.

Now, for a general {p;}, we want to show the existence
of a new set of periods which satisfies the property in
Theorem 7 and increases processor utilization.

THEOREM 8. For a set T of m = 2 tasks and a given
O=1,U,=1-(1~-6)

Proof. Consider tasks in order of 7,,, 7,4, ..., and
7,. Without loss of generality, ®p,, can be assumed to be
a multiple of p;, Vi < m. (If not, from Lemma 6 a new p,,
can always be constructed such that ®p,, is a multiple of
all other p;’s while increasing the processor utilization.)

Let T; € T be the first task where both Op; and p;, 2 =
Jj=m — 1, are not multiples of p;, ¥i <j. Then, construct
a new p; such that both ©p/ and p; are multiples of p;,
Vi < j. Assume that p; = op,, where o is a positive real
number and p; the original period of 7;. For all the other
tasks, set

i=1,2, -1,

g pf’
pj { i=j+1’...,m.

api,
It is worth pointing out that after the above modification,
Op,,,Opiandp;,i=j+ 1, -, m — 1, are still multiples of
pi, k=12, -,j—-1
On the other hand, each e, is constructed as follows.
First, set e[= e;, Vi < j, to keep the part of utilization
contributed by such 7;'s unchanged. Second, e/ is con-
structed such that e/ and ¢/, i = 1, 2, -+, j — 1, fully
utilize the processor. From Lemma 6, U/ = © — OZ/21U}
= U;, where U; is the new utilization contributed by T;
and U, the old utilization by 7. Finally, constructed e¢;,
i=j+1,j+2,,m,suchthate; andp;, k=1,2, -, i —
1, fully utilize the processor. Likewise, U = @ —

02\ U;. Let A = Uj — U; = 0, then a simple algebraic
manipulation leads to U’ — U = A(l — ©)"/ = 0, where
U= Ef’llU, and U' = Efl[U,l

The above procedure can be repeatedly applied to p;-,,
pj-2 and so on, until each ®p;and p;, 2 = j = m — 1, are
multiples of p;, Vi < j, so as to increase the utilization
monotonically. Thus, this theorem follows from Theo-
rem 7. Q.E.D.

In Theorem 8, each of {p;} and ® must be rational num-
bers such that both @p; and p; can be multiples of p;, i =
1,2, ---,j— 1. Otherwise, p; must be constructed to make
Op; and p; as close to multiples of p;’s as possible. This is
the reason why U, is termed ‘‘the limit of the maximum”’
of U. U, and U, are shown in Fig. 4a.

3. OPTIMAL DYNAMIC SCHEDULING OF
PERIODIC TASKS

For the static scheduling algorithms discussed in the
last section, priorities assigned to all invocations of a task
are the same. For the dynamic algorithms to be ad-
dressed in this section however, different priorities may
be assigned to different invocations of the same task. An
optimal dynamic algorithm can naturally outperform its

4 U= 1- 1-8)"

(b) -dynamic case

FIG. 4. U, and U, as functions of .

22 PENG AND SHIN

static counterpart because it requires less stringent con-
straints in scheduling tasks.

3.1. Optimal Dynamic Scheduling Algorithm

To develop an optimal dynamic scheduling algorithm
w.r.t. @, it is necessary to introduce an optimal single-
machine scheduling algorithm developed in [2]. A set of
independent® jobs with arbitrary release times is to be
scheduled on a single machine so as to minimize the max-
imum job completion cost, where the cost associated
with each job can be any monotone nondecreasing func-
tion of its competition time. As can be seen from the
following steps, the computational complexity of the al-
gorithm is O(N?), where N is the number of jobs to be
scheduled.

SAIl. Arrange the jobs in nondecreasing order of their
release times to create a set of disjoint blocks of jobs. For
example, suppose jobs X, Y and Z are released at t = 0,
2, 15, respectively, and 5 units of time are required to
complete each of X and Y. Then, two blocks of jobs
{X,Y} and {Z} will be created.

SA2. Consider a block B with block completion time
t(B). Let B’ be the set of jobs in B which do not precede
any other job in B. Select a job / from B’ such that f;(¢(B))
is the minimum, where fi(7) is the nondecreasing cost
function of job [if it is completed at ¢. This implies that /
be the last job to be completed in B.

SA3. Create subblocks of jobs in the set B — {/} by
arranging the jobs in nondecreasing order of release times
as in SA1. The time interval(s) allotted to [is (are) then
the difference between the interval of B and the inter-
val(s) allotted to these subblocks.

SA4. For each subblock, repeat SA2 and SA3 until
time slot(s) is (are) allotted to every job.

By setting the cost function f,(¢) of T;,, the vth invoca-
tion of T;, as f;,(t) := (¢t — a,)/p;, the above algorithm can
be simplified to schedule periodic tasks while minimizing
the system hazard as follows. Because T;, must be com-
pleted before Ty,), only one invocation from each of the
m tasks needs to be considered in Step SA2 in order to
determine the last invocation to be completed in each
block. Therefore, the computational complexity can be
reduced to O(mn), where n is the total number of invoca-
tions for the m tasks in T within a planning cycle.

For example, consider two tasks, 7, and 7;, with p; =
10, ¢, = 3, p, = 30 and ¢, = 8. That is, a total of four
invocations, Ty, Ti2, Tj3 and T3, need to be scheduled
within the planning cycle I = [0, 30). As the above algo-
rithm is applied to this example, two blocks B, = {T;,
T>;, Ti2} in the interval [0, 14], and B, = {T3} in [20, 23]
are created from Step SA1. From SA2, {20, 23] is trivially

¢ The algorithm in [2] also schedules dependent jobs.

allotted to T,;. For B, however, since T, must be com-
pleted before T},, only T; and T, need to be considered
as to which of them should be completed last in B;. From
SA2, it turns out that fi,(14) = (14 — 10)/10 = 0.4 < 14/30
= f,(14). Therefore, Ty, must be completed last in B;.
Deleting Ty, from B, and arranging 7, and 7, as de-
scribed in SA3, a subblock B, = {T};, T»} in [0, 11} is
created, meaning that the slot [11, 14] is allotted to 7).
Repeating the above steps on By, it follows that T}, must
be completed before T,,, and the resulting system hazard
® = 0.4, which is the normalized flowtime of T},. Notice
that if the EDD algorithm {1]—which simply schedules
the “‘ready’” invocations in the nondecreasing order of
their deadlines—is used in the example, then the result-
ing ® becomes 14/30 (the normalized flowtime of T»;).
Therefore, the EDD scheduling algorithm is not’ an opti-
mal algorithm in the sense of minimizing ©.

3.2. Achievable Processor Utilization Bounds

As in the static case, we are also interested in deriving
the two utilization bounds, U/; and U,,. Recall that both €
and U, must be derived with the processor fully utilized
under the above optimal dynamic scheduling algorithm.
However, it is not always easy to derive U, and U, based
on this optimal dynamic scheduling algorithm. The fol-
lowing theorem remedies this difficulty by showing that
U, and Uy, can also be derived under the EDD scheduling
algorithm after properly modifying the deadlines of the
task invocations to be scheduled.

THEOREM 9. Given any ® =< 1, U, and U, derived
under the optimal dynamic scheduling algorithm are the
same as those derived under the EDD scheduling algo-
rithm with (v — 1)p; + Op; as T;,’s deadline, ¥i and v.

Proof. Given 0, let Ui and U}, denote the two bounds
obtainable under the above EDD algorithm. Then, we
want to show that U, = U} and Uy, = Uy. Let {p;} and {e;}
be the sets of periods and execution times where U = U,
is obtained under the optimal dynamic scheduling algo-
rithm. That is, given ® = 1, each T;, can be completed by
the time (v — 1)p;, + Op;, Vi and v. However, by using
(v — Dp; + Op; as the deadline of T;,, the EDD algorithm
must also be able to generate a schedule under which 7},
can be completed before (v — 1)p; + ©p;, meaning that U}
= U,. By switching the roles of U; and U, in the above
argument, we can show that Uj < U,. Thus, U, = U.
Similarly, Uy = U}. Q.E.D.

By using Theorem 9, U and U}, are derived in the next
two subsections.

7 One might argue that for each T, if we use the revised deadline
(v — 1p; + ©*p; instead of the original deadline vp,, then the EDD
algorithm is optimal. However, this is true (see Theorem 9) only had we
known 8*, which, unfortunately, is yet to be found.

NEW PERFORMANCE MEASURE FOR SCHEDULING REAL-TIME TASKS 23

3.2.1. Deriving U,.
rectly from [7].

The following lemma follows di-

LEMMA 7. Let T be a set of m tasks with periods {p}
and execution times {e;}. Then, using vp; as T,’s dead-
line, the EDD scheduling algorithm is feasible w.r.t. the
deadline if and only if the processor utilization

m

2

i=1

o

< 1.

U

Il

=

LeMMA 8. Given ® < 1, the EDD scheduling algo-
rithm with (v — Dp; + Op; as T,'s deadline is feasible
w.r.t. ®if

U= —=<0.
ZP.'

Proof. For any set T of m tasks with U = 2% e/p; <
®, we want to prove that there always exists at least a
schedule in which each T}, can be completed by its dead-
line, (v — 1)p; + Op;. Consider a modified task set 7" of T
where 7" is the same as T except that the execution time
e in T’ is ¢;/® instead of the original ¢; in T. Since U’ =
U/® =< 1, where U’ is the processor utilization for 7',
there always exists a schedule S’ in which each T, of T
can be completed before vp;. However, since ¢; = ¢/,
there must exist a schedule in which each T, of T can be
completed by its deadline (v — 1)p; + Op;. Since the EDD
scheduling algorithm is optimal in meeting deadlines, the
theorem follows. Q.E.D.

U, can now be derived as in the following theorem.

THEOREM 10. For a set T of m = | tasks and a given

e=<1,U=0.

Proof. The theorem can be proved from the following
three facts. First, from Lemma 8, a feasible schedule for
the given ©® can always be derived from the EDD algo-
rithm as long as the processor utilization does not exceed
®. Second, consider a particular set of execution times
such that e; = 0, Vi # m; for this particular instance of
{e}, no feasible schedule with a system hazard not ex-
ceeding ® may exist if ¢,, > @p,,. That is, given @ < 1,
there exists an instance of T where no feasible schedule
with a system hazard not exceeding ® may exist should
the processor utilization exceed ®. Based on the above
two facts, ® = U, where U is the U, under the EDD
scheduling algorithm with (v — 1)p; = Op,; as T,,’s dead-
line. Finally, from Theorem 9, Uj—which must be ob-
tained under the optimal dynamic scheduling algorithm—
is the same as U]. Q.E.D.

Notice that for ® = (.5, the same U, is obtained under
either the optimal dynamic or optimal static scheduling
algorithm. If 0.5 < ® =< 1 however, the U, associated with

the optimal dynamic algorithm is greater than that associ-
ated with the optimal static algorithm.

3.2.2. Deriving U,,. Consider atask T; € T. Since T,
arrives at time (v — 1)p; and must be completed by its
deadline (v — 1)p; + Op;, T; can only be executed during
the set of intervals E; = ULPE,,, where E;, = [(v — p;,
(v — Dp; + Op)). E = UL E;is the executable time zone
(ETZ) of T, which represents the set of time intervals
within [0, L) during which tasks of T can be executed. Let
|E| represent the total length of E. Then the executable
time ratio (ETR) of T is defined as |E|)/L. Several insights
can be drawn from the notion of ETR as follows. First,
ETR = 1. Second, if U > ETR, then no feasible schedule
exists for the given ©. Finally, it was also shown in Theo-
rem 8 that for any ® = [, the maximum ETR occurs when
both ®@p, and p;, j = 2, 3, ---, m — 1, are multiples of p;,
Vi < j, and Op,, is a multiple of p;, Vi < m. Or, the
supremum of ETR among all instances of T with m tasks
is1 — (1 — o),

U, can now be obtained as in the following theorem.

THEOREM 11. Foraset T of m = 1 tasks and a given
O==1U,=1-(1-06).

Proof. From the definition of U}, we need to show
that (i) if U > 1 — (1 —)", then T is never schedulable
w.r.t. ®, and (ii) there exists at least a feasible instance of
Tif U<1-(1-0)" Theclaim in (i) is obvious because
1 — (1 — Oy is the supremum of £ETR among all instances
of T. Thus, no feasible instance of T may existif U > 1 —
(1 — ®)". On the other hand, the claim in (ii) has already
been shown to be true in Theorem 8. In particular, given
U<1-(1- 0) the feasible instance of T is the same
as that for the static scheduling algorithm as derived in
Theorem 8. Q.E.D.

Note that U, for the optimal dynamic scheduling algo-
rithm happens to be the same as that for its static coun-
terpart. U} and U, are shown in Fig. 4b.

4. ON-LINE SCHEDULING ALGORITHMS

So far, we have derived optimal scheduling algorithms
under the assumptions that the arrival times, execution
times and deadlines of all tasks (invocations) are known
in advance. Both the optimal static algorithm derived in
Section 2 and the optimal dynamic algorithm in Section 3
are thus off-line algorithms. When the above information
on each task is not known until it actually arrives, an on-
line algorithm must be found.

An on-line scheduling algorithm, if any, is said to be
optimal if it always generates a schedule which is as good
as that generated by its off-line dynamic counterpart.
Note that the existence of an optimal on-line algorithm
depends not only on the scheduling objective but also on

24 PENG AND SHIN

the characteristics of the randomly arriving tasks. For
example, in case of a single processor, it has been shown
in [4, 9] that the on-line EDD scheduling algorithm is
always optimal in meeting task deadlines.

In this section, we consider a system in which, in addi-
tion to periodic tasks, aperiodic tasks arrive randomly.
While the information of all periodic tasks is assumed
known a priori to the scheduler, the information of each
aperiodic task is unknown until its actual arrival. We
shall prove that, except for some extremely simple cases,
no optimal on-line scheduling algorithms w.r.t. ® in such
a system exist. Thus, instead of deriving the two proces-
sor utilization bounds U, and U, , we shall describe sim-
ple on-line mechanisms which are useful to determine
whether or not an arriving aperiodic task can be com-
pleted with a system hazard not exceeding ® without
disturbing the execution of periodic tasks. These mecha-
nisms can be used to implement load-sharing strategies
[11, 14]) where tasks are transferred from over-loaded
processing nodes (PNs) to under-loaded PNs. A PN may
use the mechanisms proposed here to decide on whether
to execute an arriving task locally or transfer it to another
PN for execution.

4.1. Unavailability of Optimal On-Line
Scheduling Algorithms

The following theorem shows that an optimal on-line
scheduling algorithm w.r.t. the system hazard does not
always exist.

THEOREM 12. No optimal on-line scheduling algo-
rithms w.r.t. © exist in a system where aperiodic tasks
arrive randomly with general execution times and dead-
lines.

Proof. First, considering a system in which there ex-
ists no periodic tasks, we shall prove the theorem by
contradiction. Suppose there is an optimal on-line sched-
uler and consider the following scenario. At time ¢, there
exist two aperiodic tasks 7y and T,. T, arrived at the time
t — 20 with deadline 7 + 20 and remaining execution time
3, while T arrived at ¢ with deadline ¢ + 10 and execution
time 3. Starting from ¢, the optimal scheduler will sched-
ule these two tasks on a single processor. Assume no
tasks arrive in [¢, ¢ + 3) and consider the following two
cases depending on which of T and T; is executed in [¢,
t + 3).

Case 1. T is executed in [z, t + 3). In this case, T is
completed at ¢ + 3 and the remaining execution time of 7
is 3. Now, consider the scenario where T3 arrives at t + 3
with execution time 4 and deadline ¢ + 8, and T3 is the
only task that will ever arrive at, or after, ¢t + 3. Then, @
= max{0.575, 1.0, 0.8} = 1.0, which is achieved by exe-
cuting Tyin [t + 3, ¢t + DDand T in [t + 7. ¢ + 10).

However, if we have had at ¢ the knowledge of task arriv-
als at, or after, t + 3, the minimum system hazard would
become ® = max{0.75, 0.3, 0.8} = 0.8, which is achieved
by executing these three tasks in order of T, T; and T,.

Case 2. T,isexecutedin [z, 1 + 3). In this case, T is
completed at ¢ + 3 and the remaining execution time of T
is 3. Now, consider the scenario where no task will ever
arrive at, or after, + + 3. Then, the minimum system
hazard is ® = max{0.65, 0.3} = 0.65. However, if at t we
have known that no task will ever arrive at, or after, r +
3, the minimum system hazard would become © =
max{0.575, 0.6} = 0.6, which is achieved by executing
these two tasks in the order of T, and 7.

From the above discussion, we conclude that the as-
sumed optimal on-line scheduler cannot always generate
a schedule as good as that generated by an optimal off-
line scheduler. The theorem follows since a system with
only aperiodic tasks is a special case of the general sys-
tem in which both periodic and aperiodic tasks exist.

Q.E.D.

Even though an optimal on-line scheduling algorithm
does not exist, there are special cases where such an
algorithm exists. For example, in a system where each
(periodic or aperiodic) task has the same deadline since
its arrival, the on-line EDD scheduler described above is
optimal.

4.2. On-Line Determination of the Schedulability for an
Arriving Aperiodic Task

Scheduling aperiodic tasks in the presence of periodic
ones is important in real-time applications because of the
unpredictable and time-critical nature of aperiodic tasks.
A solution approach which is most commonly seen in the
open literature [8, 12, 13] suggests the following. First,
some minimal interarrival time is assumed to exist for all
aperiodic tasks. Second, treat the aperiodic task stream
as a periodic task with a period of the minimal interarrival
time. Third, use the RMS algorithm or variations thereof
to determine whether or not the resulting schedule is fea-
sible with ® = 1. Despite its simplicity, this approach has
the following drawbacks:

D1. Since there may exist different types of aperiodic
tasks, it may not be realistic to assume a minimal interar-
rival time between an aperiodic task of one type and that
of another.

D2. As pointed out and analyzed in {5], a system with
very low processor utilization might result from the con-
servative nature of this approach.

In what follows, simple on-line mechanisms which are
more realistic and could result in better processor utiliza-
tion are described. They are presented only under the
following three different scheduling algorithms for the

NEW PERFORMANCE MEASURE FOR SCHEDULING REAL-TIME TASKS 25

tasks involved: (Al) static scheduling of periodic tasks
with the lowest priority given to aperiodic tasks, (A2)
static scheduling of periodic tasks with the highest prior-
ity given to aperiodic tasks, and (A3) dynamic scheduling
of all tasks. For all three algorithms, consider the current
time instant when an aperiodic task with execution time
¢ and deadline ¢t + d arrives. Also, assume that all tasks
(the periodic tasks and the aperiodic ones already ac-
cepted) residing in the processor before ¢ are guaranteed
to be completed in time with a system hazard not exceed-
ing ©.

For A1, the RMS algorithm is used for periodic tasks,
and aperiodic tasks are assigned the lowest priority (the
FCEFS rule is used among aperiodic tasks). Let R(¢) = ¢
denote the cumulated processor idle time in [0,] if there
are only periodic tasks in the processor. Also, let CET(r)
be the total cumulated remaining execution time of all
aperiodic tasks accepted by time ¢. Then, the processor
may accept the arriving aperiodic task only if R(1 + ©d)
- R(t) = e + CET(2).

A2 is similar to Al except that the highest priority is
assigned to the aperiodic tasks. The arriving aperiodic
task would be accepted only if (i) it can be completed by
t + ©d and (ii) the resulting normalized flowtime is not
greater than @ for each unfinished periodic task invoca-
tion within the planning cycle. Specifically, the planning
cycle involved is the current planning cycie if at time ¢
there exists at least an unfinished invocation within the
cycle. Then, the processor may accept the arriving task
only if ®d = CET(t) + e and maxs (¢, — aw)p; = O,
where ¢;,, a;, and p; are the completion time, arrival times
and period, respectively, of T;, for all unfinished 7;’s
within the planning cycle.

A3 uses the on-line EDD algorithm for both periodic
and aperiodic tasks. Upon arrival of an aperiodic task at
time ¢, A3 uses the on-line EDD algorithm to check if all
tasks can be completed with a system hazard not exceed-
ing the pre-specified ©. If they can, the arriving task is
accepted. In addition to the unfinished aperiodic tasks

already accepted, the tasks involved in this check in-
cludes the arriving aperiodic task and all unfinished peri-
odic tasks.

Note that whether to accept an arriving task w.r.t. ® is
equivalent to treating 1 + Od as the deadline of the arriv-
ing task. Depending on the specific need of the system, a
different deadline such as t+ + 4 may also be used in the
above algorithms for an arriving task.

5. CONCLUSION

Scheduling tasks to complete before their deadlines is
an important design issue in hard real-time systems. In
this paper, we have proposed and analyzed a new perfor-
mance measure, called the system hazard, for scheduling
real-time tasks. The system hazard can be used not only
for meeting deadlines but also for measuring how early
each task can be completed. Further, since © depends
only on the execution of tasks, it can be used on a single
processor or a multiprocessor/distributed system.

For a single processor with only periodic tasks, opti-
mal static and dynamic scheduling algorithms are de-
rived. In the static case, the RMS algorithm is shown to
be optimal w.r.t. the system hazard. In the dynamic case
however, the EDD scheduling algorithm is shown to be
not optimal w.r.t. the system hazard. More importantly,
two best bounds of processor utilization are derived for
these two cases.

Since optimal on-line algorithms w.r.t. the system haz-
ard are non-existent for all but some special cases, simple
mechanisms are derived to check whether or not an arriv-
ing aperiodic task can be completed with a system hazard
not exceeding the prespecified value. These mechanisms
are useful in a system where load-sharing strategies are
adopted to improve system performance. An over-loaded
PN may use the mechanisms to determine whether or not
to transfer the arriving task to an under-loaded PN for
execution.

APPENDIX: SUMMARY OF NOTATION AND SYMBOLS

ai(ci) The arrival (completion) time of T;,.
ap, = (v — Dp.
CET(1) The total cumulated remaining execution time of all aperiodic tasks accepted
by time ¢.
E The executable time zone (ETZ) of T representing the set of time intervals
during which tasks in 7 can be executed.
E; The set of time intervals during which 7; can be executed.

Ey,=[v— Dp;, (v~ p; + Op;]

The time interval during which 7;,, the vth invocation of 7;, can be executed.

e The execution time of 7;.

ETR = |E|/L

The executable time ratio of 7.

26 PENG AND SHIN

I'=1[0, L) A planning cycle of T, where L is the LCM of all task periods in T.
m The number of tasks in 7.
pi The invocation period of T;.
R R(#) = ¢ is the cumulated processor idle time in [0, 7] when there are only
periodic tasks on the processor.
T={T} The set of periodic tasks to be scheduled.
U The processor utilization of 7. "
U= E €i/p,‘.

i=1
Un(U) The high (low) processor utilization bound of T.
OO*) The (minimum obtainable) system hazard of T.

REFERENCES

1. K. R. Baker, Introduction to Sequencing and Scheduling. Wiley,
New York, 1974.

2. K. R. Baker, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy
Kan, Preemptive scheduling of a single machine to minimize maxi-
mum cost subject to release dates and precedence constraints.
Oper. Res. 31, 2 (Mar-Apr 1983), 381-386.

3. C. C. Cheng, J. A. Stankovic, and K. Ramamritham, Scheduling
algorithms for hard real-time systems—A brief survey. Real-Time
Systems Newsletter 3, 2 (Summer 1987), pp. 1-24.

4. M. Dertouzos, Control robotics: The procedural control of physical
processes. Proc. of the IFIP Congress, 1974, pp. 807-813.

5. K. D. Gordon, L. W. Dowdy, J. Baldo, Jr., and K. J. Rappoport,
Scheduling aperiodic tasks with hard deadlines in a rate monotonic
framework. Proc. Sixth IEEE Workshop on Real-Time Operating
Systems and Software, 1989, pp. [-5.

6. J. Y.-T. Leung, and J. Whitehead, On the complexity of fixed-
priority scheduling of periodic, real-time tasks. Performance Evalu-
ation 2, (1982), 237-250.

7. C. L. Liu and J. W. Layland, Scheduling algorithms for multipro-
gramming in a hard real-time environment. J. Assoc. Comput.
Mach. 20, 1 (1973), 46-61.

8. J. P. Lehoczky, L. Sha, and J. K. Strosnider, Enhanced aperiodic
responsiveness in hard real-time environments. /EEE Real-Time
Systems Symposium, Dec. 1987, pp. 271-270.

9. A. K.-L. Mok, Fundamental Design Problems of Distributed Sys-
tems for the Hard Real-Time Environment, Ph. D. Dissertation,
M.LT., Cambridge, 1983.

10. D. Peng and K. G. Shin, Static allocation of periodic tasks with
precedence constraints in distributed real-time systems. Proc.
[EEE, 9th Int. Conf. Distrib. Compu. Syst. June 1989, pp. 190-198.

11. K. G. Shin and Y.-C. Chang, Load sharing in distributed real-time
systems with state-change broadcasts, IEEE Trans. Comput. C-
38, 8 (Aug. 1989), 1124-1142.

12. L. Sha, J. P. Lehoczky and R. Rajkumar, Solutions for some practi-
cal problems in prioritized preemptive scheduling. /EFE Real-Time
Systems Symposium, Dec. 1986, pp. 181-191.

13. B. Sprunt, L. Sha, and J. P. Lehoczky, Aperiodic task scheduling
for real-time systems. The Journal of Real-Time Systems, Kluwer,
Dordrecht, 1989, pp. 27-60.

14. Y. T. Wang and R. J. T. Morris, Load sharing in distributed sys-
tems, IEEE Trans. Comput. C-34, 3 (Mar. 1985), pp. 329-336.

Received March 1992; revised June 1992; accepted June 18, 1992

0= max (cy — a)/pi.
I<vu=Lip;

TeT

DAR-TZEN PENG received his BSEE from National Cheng-Kung
University in 1974, his M.S. degree in Management Science from Na-
tional Chiao-Tung University in 1976, and his Ph.D. degree in computer
science and engineering from the University of Michigan in 1989. Since
1989, he has been with the AlliedSignal Microelectronics and Technol-
ogy Center as a member of technical staff. Currently, he is involved in
the research and design of distributed fault-tolerant real-time computing
systems. His research interests include fault-tolerant real-time comput-
ing and computer networks. Dr. Peng is a member of the ACM and
IEEE Computer Society.

KANG G. SHIN is Professor and Chair of Computer Science and
Engineering Division, Department of Electrical Engineering and Com-
puter Science, The University of Michigan, Ann Arbor, Michigan. He
has authored/coauthored over 190 technical papers (about 90 of these in
archival journals) and several book chapters in the areas of distributed
real-time computing and control, fault-tolerant computing, computer
architecture, and robotics and automation. In 1987, he received the
Outstanding IEEE Transactions on Automatic Control Paper Award for
a paper on robot trajectory planning. In 1989, he also received the
Research Excellence Award from The University of Michigan. In 1985,
he founded the Real-Time Computing Laboratory, where he and his
colleagues are currently building a 19-node hexagonal mesh multicom-
puter, called HARTS, to validate various architectures and analytic
results in the area of distributed real-time computing. He received the
B.S. degree in electronics engineering from Seoul National University,
Seoul, Korea in 1970, and both the M.S. and Ph.D. degrees in electrical
engineering from Cornell University, Ithaca, New York in 1976 and
1978, respectively. From 1978 to 1982 he was on the faculty of Rensse-
laer Polytechnic Institute, Troy, New York. He has held visiting posi-
tions at the U.S. Air Force Flight Dynamics Laboratory, AT&T Bell
Laboratories, Computer Science Division within the Department of
Electrical Engineering and Computer Science at UC Berkeley, and In-
ternational Computer Science Institute, Berkeley, CA. He is an IEEE
fellow, was the Program Chairman of the 1986 IEEE Real-Time Sys-
tems Symposium (RTSS), the General Chairman of the 1987 RTSS, the
Guest Editor of the 1987 August special issue of I[EEE Transactions
on Computers on Real-Time Systems, and is a program co-chair for
the 1992 International Conference on Parallel Processing. He cur-
rently chairs the IEEE Technical Committee on Real-Time Systems,
is a distinguished visitor of the Computer Society of the IEEE, an
Editor of IEEE Trans. on Parallel and Distributed Computing, and
an area editor of International Journal of Time-Critical Computing
Systems.

