
Software Fault Injection and its Application in Distributed Systems *

Harold A. Rosenberg and Kang G. Shin

Real-Time Computing Laboratory
Department of Electrical Engineering and Computer Science

The University of Michigan
Ann Arbor, Michigan 48109-2122.

email: { rosen) kgs hin } @alps. eecs . umich. edu

Abstract

Thas paper describes a software fault injector (SFI)
developed t o facilitate the validation of dependability
mechanisms on an experimental distributed real-time
system called HARTS [l]. SFI introduces a number
of extensions t o previous work done on fault injection
tools. In particular, it allows combinations of fault
types to be injected in the nodes of a distributed sys-
tem. It also allows control of all timing parameters of
.the injection ad each node. A description is given of
the features and implementation of SFI. As a demon-
stration of the utility of SFI, the results of some sample
experiments are presented.

1 Introduction

Computing systems employed in life- and mission-
critical applications must be highly dependable. In
practice, the dependability requirements of these sys-
tems are met by employing a variety of fault-tolerance
and fault-recovery mechanisms, both in software and
in hardware. In a dependable distributed computer
system, applications must be designed to tolerate
faults in the nodes of the system. Reliable distrib-
uted applications may use mechanisms such as nes-
ted transactions [2] or process groups [3] to deal with
faults in different nodes of the system. Any such mech-
anisms used must be rigorously validated to verify that
the system meets its dependability requirements.

* The work reported here is supported in part by the Of-
fice of Naval Research under Contract N00014-91-J-1115, and
the National Aeronautic and Space Administrationunder Grant
NAG-1220, and the National Science Foundation under Grant
MIP-9012549. Any opinions, findings, and conclusions or re-
commendations expressed in this paper are those of the authors
and do not necessarily reflect the views of the funding agencies.

Verification and evaluation of dependability mech-
anisms can be performed either statically by proof-of-
correctness and probabilistic modeling, or dynamically
by experimentation 141. Complete static verification
of large systems can be very difficult due to the com-
plexity of the models. When models are used, their
accuracy often depends on the dependability paramet-
ers used for the components of the system. These
parameters may be difficult to estimate, and it is de-
sirable to use parameters obtained from experimental
testing of the system. As a result, dynamic verific-
ation is an important part of the validation process
for dependable systems. However, dynamic verifica-
tion can also be very difficult due to the large mean-
time-between-failure (MTBF) of highly dependable
systems. In order to measure or verify the dependab-
ility of fault-tolerant distributed systems experiment-
ally, there must be some way to accelerate the occur-
rence of faults, errors, or failures in the nodes of the
system.

Fault injection is the general name given to a num-
ber of techniques used to accelerat8e the occurrence of
faults, errors, or failures in a system during dynamic
verification. A fault injector is a tool which imple-
ments these techniques. Previously used fault injec-
tion techniques include hardware fault injection, soft-
ware fault injection, and simulated fault injection. In
hardware fault injection, faults are typically injected
at the pin level [5, 6, 7, 8, 91. One exception is [lo],
in which the faults were injected by exposing the sys-
tem to heavy-ion radiation. In software fault injection
experiments, errors have been injected by altering the
content of registers or memory [11, 12, 131, or by alter-
ing sequences of instructions to emulate the behavior
of hardware faults [14]. In simulated fault injection,
faults or errors are injected into simulation models of
the system [15, 161.

208
0731-3071193 $3.00 0 1993 IEEE

Faalt injection can be used to experimentally de-
termine the dependability parameters of the system,
such (as detection latency or fault coverage, and can aid
in the measurement of other aspects of the system’s
behavior. Fault injection can also be used to test the
operation of fault-tolerance mechanisms as part of the
system design process. Methodologies useful in de-
termining the locations that should be faulted in order
to fully test fault-tolerance mechanisms are discussed
in [17, 181.

In previously implemented fault injectors, the
classes of faults and errors available to the user are
either physical faults, or are chosen for their ability
to represent some underlying physical fault model. In
addition, the user’s control over the timing of the in-
jection is typically limited to specifying either per-
manent or transient faults. Even when intermittent
faults can be injected (e.g., [9]), the available timing
parameters are limited. These restrictions can com-
plicate the testing of distributed dependability mech-
anisms, which are often designed to tolerate the oc-
currence of certain failure modes in the nodes of the
system, without regard for the underlying causes of
those failures [19]. For example, a reliable broadcast
protocol may be designed to tolerate omission failures
in the network, without regard to the type of fault
that caused the failure. In order to validate the prop-
erties of such distributed dependability mechanisms,
the user needs to be able to recreate the desired fail-
ure mo’des in the nodes of the system.

This paper presents SFI (Software Fault-Injector),
a fault injection tool designed to facilitate the test-
ing of diistributed dependability mechanisms. SFI sup-
ports low-level fault injection for testing dependability
mechanisms on single nodes. SFI also provides higher
level injection methods that can be combined to emu-
late different failure modes in the nodes of a distrib-
uted system. This allows the user to cause the nodes
of the system to exhibit the desired failure modes
without having to determine the lower level faults
that would cause those failures. With SFI, faults can
be injected as transient, intermittent, and permanent
faults, and the timing parameters of all fault types
can be completely specified by the user. SFI has been
implemented on HARTS, an experimental distributed
real-timesystem [l], and it integrates quickly with any
application developed for HARTS, without requiring
any change in the application. Section 2 gives a brief
description of the HARTS hardware and software en-
vironment. Section 3 describes the capabilities and
implementation of SFI.

One important issue in the design of dependable

209

distributed systems is detecting the occurrence of
faults, either in nodes or connecting network links,
and then using that information to correctly recover
and maintain correct system operation. When faults
only occur intermittently, the problem of detecting
and correcting those faults becomes even more diffi-
cult. In Section 4 we present a sample experiment
that demonstrates SFI by using it to explore the effect
of intermittent communication failures on the commu-
nications between two nodes. Finally, Section 5 gives
a conclusion and a discussion of future work.

2 HARTS environment

HARTS is an experimenhl distributed real-time
system, which is being built in the Real-time Com-
puting Laboratory at The University of Michigan [l].
It is comprised of multiprocessor nodes connected
by a point-to-point interconnection network. Each
HARTS node consists of several Application Pro-
cessors (APs) which are used for running application
tasks, a.nd a Network Processor (NP). The N P con-
tains the interface to the network, buffer memory, and
a general-purpose processor which handles most of the
processing rela.ted to communica.tion.

In the current configura.tion, the nodes of the
HARTS are VMEbus-based systems. Each node 1ia.s
1-3 A P cards, a. System Cont,roller card, a Net-
work Processor card, and an Ethernet processor card
(ENP). The Ethernet serves as a link to the worksta-
tions used for software development. A custom NP
boa,rd is currently under development.

Each of the nodes of HARTS runs the HARTOS op-
erating system [20]. The first version of HARTOS is
primarily an extension of the functionality of the uni-
processor pSOS1[21] red-time operating system kernel
to work in a multiprocessor and dist,ributed environ-
ment. pSOS services are enhanced to provide inter-
processor communica.tion (both unreliable datagram
and RPC) and a distributed name service. While the
custom NP is under development, the ENP is being
used to execute the HARTOS communication soft-
ware. Once the custom NP is completed, the HAR-
TOS software will be ported t,o i t .

Software for HARTS is developed on Sun worksta-
tions. A Sun 3/150 serves as the main connection to
HARTS. HARTS applications a.nd system software are
downloaded from this workstation through the local
HARTS Ethernet. The workst(a.tion is also connected
to the campus computing fxilities by a sepazate Eth-

IpSOS is a trademark of Software Components Group, Inc.

Memory faults
Fault types I Interarrival I Injection I

_.

Adder

Heap

Table 1: Memory error options

time effect
Deterministic User defined

ernet connection. In this way, programs developed and
compiled on other workstations may be downloaded to
HARTS, but HARTS executes with a dedicated local
Ethernet. The workstation also serves as the console
for the HARTS nodes.

Communi
Fault types

Lose outgoing messages
Lose incoming messages
Lose all messages

, Alter messages
Delay messages

ation faults
Inter arrival
time
Deterministic
Exponential
Permanent

Header

Table 2: Communication failure options

Processor faults
Fault types 1 Interarrival I Injection

11 Multidier I Permanent I 11
Table 3: Processor fa.ilure options

3 Software Fault Injector

The Software Fault Injector (SFI) provides a suite
of tools that simplify and automate the design and
execution of dependability experiments. It simplifies
the measurement of dependability parameters and the
validation of dependability mechanisms in distributed
systems, and provides lower-level injection methods to
support testing of dependability mechanisms on single
nodes.

SFI consists of two main components: the SFI Ex-
periment Generator (SEG) and the SFI Control Mod-
ules (SCM). The SEG takes a user-supplied experi-
ment description file to create the executable files and
script files used to run the fault injection experiments.
The SCM consists of the routines that provide the ac-
tual fault injection and behavior modification capab-
ilities. The SEG compiles the appropriate portions of
the SCM with the workload for each node. The rela-
tionship between these components is shown in Fig-
ure 1.

The types of faults, errors, and failures that can be
injected with SFI are discussed in Section 3.1. Sec-
tion 3.2 discusses how SFI is used to perform fault
injection experiments. Section 3.3 describes how the
injection is performed and how the SFI is implemen-
ted.

3.1 SFI fault models

Dependable distributed applications and operating
systems must be designed to function in the presence
of a variety of possible failure modes at the processing
nodes and in the communication links between nodes.
In order to simplify testing of such applica.tions or

other dependability mechanisms on HARTS, SFI has
been designed to allow the injectmion of a variety of er-
rors and failure types. The user can choose any com-
bination of these necessary to create the errors or fail-
ure modes that are appropriate for the experiments to
be run. The possible errors and failures are:

0 Memory errors: Transient, intermittent, or
(pseudo-)permanent errors in memory.

0 Communication failures: Lost, altered, or delayed
messages.

0 Processor failures: Failures in functional units of
the CPU.

Each error or failure has a number of possible vari-
ations that can be specified by the user in the ex-
periment description file (see Tables 1, 2, and 3). A
memory error can be injected as a single bit, two-
bit compensating, or burst (byte) error. In addi-
tion, the duration of a memory error can be selec-
ted to emulate transient, intermittent or (pseudo-
)permanent memory faults. A transient fault is only
injected once, at a given time after the start of an
experiment run. An intermitt,ent fault is injected re-
peatedly at the same location. For an intermittent
fault, the user can specify the distribution of the in-
terarrival time between injections. The interarrival
time can be deterministic, with a set time between in-
jections, or can follow an exponential distribution with
a given mean. Other interarrival distributions can be
added if needed. If the interarrival time between in-
jections is small, the injected fault, will behave like a

210

Modified Hartos

Figure 1: Relationship of SFI files.

permanent fault. Note that this is not a true perman-
ent fault, as it is possible for the faulted location to
be overwritten between injections.

The location a t which a memory error is to be injec-
ted can either be explicitly specified, or can be chosen
at randlom from a list of target locations generated
by SFI. This list of target locations is created using
the syrribol table generated by the compiler, and can
be anywhere in the memory space of the processor.
If desired, the errors can be explicitly placed in data
registers, global variables, code locations, or dynam-
ically allocated memory. The user can specify which
types of locations should be used. SFI can also create
script files to perform multiple run experiments, each
injecting a different location. For example, if the user
wanted to test the effect of stuck-at faults occurring in
the progiram code on the program’s behavior, he would
specify memory faults as active, with the fault type as
a single bit stuck-at-zero (or stuck-at-one) fault, and
the location as all program code locations. SEG would
then generate script files that would run the experi-
ment once for each memory location, injecting faults
in a different location on each run.

Communication failures are specified in a manner
similar to memory errors, except with some additional

21 1

options. Messages can be lost, altered, or delayed. If
the node has multiple incoming and outgoing links, as
in a point-to-point architecture such as HARTS [l],
different fault types can be specified separately for
each link. Lost messages are simply not delivered to
the recipient. The user can specify whether outgoing,
incoming, or all messages are lost a t the faulty link.
Messages can be lost intermittently, with a probability
specified by the user, or alternatively, every message
can be lost. Messages may be altered in the same
manner as memory locations, i.e., by inserting single
bit, two-bit compensating, or burst errors. The user
can specify whether the error is to be injected into the
body of the message or into the header, which contains
routing information. As before, the injection can be
intermittent or permanent. For delayed messages, a
method must be specified to determine how long each
message will be delayed. The delay time can be either
deterministic or can follow an exponential distribution
with a user supplied mean. This variety of communic-
ation failures, and the ability to combine failure types,
allows the injection of a variety of failure semantics,
including Byzantine failures.

Processor failures emulate the effect of faults in-
ternal to the CPU, either in functional units such as

ALU, or in internal CPU data paths. These failures
are implemented by allowing the user to specify al-
ternate code sequences for any given operation or set
of operations. Currently SFI implements failures in
the arithmetic unit as built-in failure modes. For ex-
ample, the result of all ALU operations can have any
bit stuck-at a particular value. Additional fault loca-
tions can be added as needed.

In addition to the parameters that can be specified
for each error or failure type, the user can specify
global experiment timing parameters. These allow the
user to specify the start and stop time of injection on
each node. This allows experiments to be run in which
a node runs correctly for some time, exhibits faulty be-
havior for another period of time, and then resumes
correct operation. This can be used to model tempor-
ary conditions or cycles of failure and repair.

3.2 Running SFI experiments

In order t o create and run an experiment using SFI,
the user creates an experiment description file that
provides SFI with the names of the HARTS nodes to
be used, the location of the workload to be run on each
node, and a description of the types of errors and/or
failures to be inserted on each node. The workload
can be any application that runs on HARTS. It can be
a real application, or a synthetic workload generated
with SWG, a synthetic workload generator developed
for HARTS [22].

The experiment description file is used by the SEG
to create all of the necessary files for an experiment.
Based on the fault description in the experiment de-
scription file, the SEG compiles the workload together
with appropriate SCM modules. In some cases the
modules are versions of HARTOS system calls that
have been modified so that their behavior represents
the operation of the system in the presence of some un-
derlying fault. In other cases a module may represent
an injection task to be run concurrently with the work-
load. SEG uses the fault description and symbol table
information from the compiler t o create experiment
parameter files that are used to initialize the injec-
tion processes. One parameter file is created for each
run of the experiment. The parameters describe the
fault types and locations to be used in the correspond-
ing run. These parameter files are downloaded to the
HARTS node with the executable files. By download-
ing the experiment parameters separately, we elim-
inate the need for the application to be recompiled
for each experiment. Finally, SEG creates script files
that are used to run the experiments. The script files
download the executable and parameter files to the

HARTOS nodes and run the experiments.
One important issue when running dependability

experiments is the ability to collect relevant data from
the experiment. SFI implements data collection by
two methods. Data can be logged by writing to the
console device directly, or by storing the data on the
HARTS nodes, and downloading it after the experi-
ment has completed. The data collection can be per-
formed under the control of the executing workload, or
can be done by using HMON, a monitor for distributed
real-time systems being developed for HARTS [23].

3.3 SFI implementation

Due to the nature of computer systems, the access-
ibility of the various components in which we would
like to inject faults varies considera.bly. As a result,
a variety of methods must be used to inject different
types of faults. In some ca.ses it is possible to ac-
cess the location to be fa.ulted directly, while in other
cases it is necessary to emula.t,e t(he effect of a fault by
causing a corresponding erroneous behavior. In im-
plementing SFI we have used three different methods
of fault injection. These are a.ctive injection, control
flow alteration, and code repla.cement.

Active injection is performed by a process that runs
concurrently with the executing workload. SFI uses
a.ctive injection to inject memory errors. Control flow
alteration is a technique tha.t, ca,n be used when the
functional behavior of the system is to be altered.
When fault injection is activated, a, running program
executes an alternate instruction sequence, so that the
intended function is performed incorrectly. This is
particularly useful at the level of t,he operating sys-
tem or communication protocols, where the services
available to programs can be alt,ered so that their func-
tionality differs when fault iiijection is activated. SFI
uses control flow a.lteration t.o inject communication
failures. Code alteration can be used to inject faults
in areas that are not otherwise accessible to executing
programs. With this technique, faults in a functiona.1
unit can be emulated by altering program instructions
that use that unit. SFI uses code alteration to emulate
faults in the processor’s functional units.

The iiijection of memory errors and communication
failures is controlled by the SFI Control Process (The
SCP is one of the SCM modules that is compiled to-
gether with the work1oa.d. The SCP is the first task to
run, replacing the workload’s startup process. When
SCP starts, it checks the experiment parameters that
are downloaded with the executable code. If the para-
meters indica.t,e that the current, experiment requires
a. memory error, SCP sta,rts a high priority process,

212

called the memory fault injection process, to perform
the injection. This process injects the error at the se-
lected address by reading, altering, and then writing
back the contents of that location. Once the error has
been injected, the memory fault injection process will
pause itself for a time period determined by the user-
defined interarrival time. This will repeat until the
experiment is completed, or until a user-specified stop
time.

If the current experiment requires a communication
failure, SCP sets flags that are checked by the com-
munications protocols to determine the desired beha-
vior. When an experiment is created using the SEG,
it will, based on the type of faults to be injected, be
compiled with modules from the SCM that represent
altered versions of some of the HARTOS system calls.
The altered system calls check the flags set by the
SCP, atnd change their operation based on those flags.
When no communication failure is to be injected, the
altered1 versions of the system calls behave identically
to the original versions.

Once SCP has set up the fault injection mechan-
isms, it starts the workload. The workload then runs
normally, with no knowledge of the fault injection pro-
cesses ithat have been started.

The processor failures are not injected at run time.
Instead they are emulated by changing all references
to the faulty unit at the assembly language level. If a
processor failure is to be injected, the compilation of
the experiment is done in two steps. In the first step,
all of the required files are compiled to the assembly
language level. The SEG then searches for all instruc-
tions or instruction sequences that use the faulty func-
tional unit, and replaces them with instructions that
performi an appropriate incorrect operation. After the
search-atnd-replace, compilation is completed using the
altered files. Currently, processor failures can be in-
jected to emulate adder and multiplier faults.

4 Experiments

One important issue in the design of dependable
distributed systems is detecting the occurrence of
faults/fa.ilures in the system, either in nodes or com-
munication links. Once a failure is detected, the in-
formation can be used to recover and maintain correct
system operation. When failures can occur intermit-
tently, the problem of detecting and correcting those
failures becomes even more difficult.

In this section, we present an example application
of SFI to demonstrate how it might be used as an aid

in both the modeling and development of fault toler-
ant distributed systems. We demonstrate SFI by using
it to explore the effect of int.ermittent failures on the
communication between two nodes. In Section 4.1 we
develop and test a model of the effect of intermittent
failures on the message delivery time between two ad-
jacent HARTS nodes. In Section 4.2 we use SFI to test
some alternate routing algorithms that use informa-
tion gathered about intermittent faults.

4.1 Effect of intermittent message losses

In this section, we first develop a model t o predict
the effect of intermittent communication failures on
message delivery times between two adjacent HARTS
nodes, and then verify the a.ccuracy of the model us-
ing SFI. For this experiment, we a,ssume omission fail-
ure sema.ntics, in which messages can be lost but not
a,lt4ered. This might represent a syst,em operating in
an environment t,liat is outsside it,s normal operating
pa.rameters. The poor operating conditions may cause
messages to be intermittently corrupted, and thus dis-
carded at the data link level. At higher layers of the
communication subsystem, the messages would ap-
pear to be lost. We assume t1~a.t since failures can
be intermittent,, the communicat,ion subsystem will re-
send a message until either a. correct acknowledgment
is received, or it is determined that the link has failed.
We also a,ssuine t1ia.t the communication subsystem
has a predetermined timeout period during which it
waits for an acknowledgement before resending. This
timeout period is based on the transmission delay and
maximum expected queuing delay at. the destination
node. Both the initia.1 message or the acknowledge-
ment can be lost.

When there a.re no failures, the total time required
to send a messa.ge to a.n a.dja.cent node and receive an
acknowledgement (i,e., the round-trip time) depends
only on the trmsmission time, t,he propagation delay,
aad the computa.tion over1iea.d mid queueing delay at
both nodes. Ea.ch time a messa.ge is lost, the round-
trip time will be increased by one timeout period.
When message loss is intermittent, the number of at-
tempts required until a messa.ge is sent and acknow-
ledged correctly ca.n be expressed by a geometric ra.n-
dom varia.ble.

Let N be the random varia.ble that represents the
number of times a. message is sent over a link until it
is received and acknowledged correctly. Then N is a
geometric random variable t,hat gives the number of
attempts until a. success, where a. success is the event
tha.t neither the messa.ge nor its a.cknowledgement is
lost. If p represents the prohabilit0y that any given

Probability
of loss

0%
1%
2%
3%
5%
10%
20%
30%
50%
75%

of loss I mean attempts
1% 1.02

Predicted
mean time

7.60
8.12
8.64
9.16
10.46
13.58
22.16
34.64
85.60

397.60

average attempts
1.02

Observed
average time

7.60
8.18
8.43
8.45
10.93
14.15
21.70
36.80
94.94
427.18

1.04
1.06
1.11
1.23
1.56
2.04
4.00
16.00

Table 4: Predicted and observed average round-trip
delay in milliseconds.

1.04
1.07
1.11
1.26
1.50
2.08
4.02
15.95

message is corrupted, then Prob[szlccess] = (1 - P) ~ .
Therefore,

2 x-1 Prob{N = z} = (1 - P) ~ * (1 - (1 - p))

and the expected number of attempts will be:

1 2812.5
2 1230.5
3 538.5
4 235.5
5 103.0
6 45.0
7 19.5
8 8.5

9+ 7.0

We can use the probability function and mean for
N to determine the expected round-trip time. The
total time required to send a message and receive an
acknowledgement will be the round-trip time with no
failures, plus the time spent waiting for a reply every
time a message is lost (i.e., the timeout period). Let
RT represent the average round-trip time with no fail-
ures, and let T O represent the timeout period. If X
is a random variable representing the total round-trip
time in the presence of intermittent message loss, then
the expected value of X will be:

-
X = RT + (TO * (x - 1)).

In order to verify this simple model, we ran exper-
iments on HARTS using SFI. We used one node to
send messages to an adjacent node. In order to match
the failure semantics of the model, we chose to inject
the faults at the sending node. We used SFI to in-
ject communication faults such that messages would
be lost with a given probability. We ran the experi-
ment multiple times, each time changing the probab-
ility of losing a message.

In each run of the experiment, the sending node
sent 5000 messages to the destination. We collec-
ted data on the average round-trip time, the average
number of timeouts, and the number of attempts re-
quired by each message before successful transmission.

2818
1259
52 1
234
87
43
22
6
9

11 Probability I Predicted I Observed

Table 5: Predicted and observed average number of
attempts per message.

Table 6: Predicted and observed frequency of number
of attempts for 5000 iteration with the probability of
message loss = 25%.

214

Table 4 shows the predicted mean and observed aver-
age round-trip delay for different message loss prob-
abilities. The predicted values are calculated from the
equation for x by using the measured value of 7.6ms
for RT, and with the timeout value TO set to 26ms.
Tablle 5 shows the predicted mean and observed aver-
age inumber of attempts required for different message
loss probabilities. Table 6 shows, both the predicted
and observed number of messages requiring a given
number of attempts for a probability of message loss
of 25%.

The tables show that the observed data matches
the results predicted by the model quite closely. This
is not unexpected, given the simplicity of the model
and the close modeling of the failure assumptions by
the injected failures. To test the hypothesis that the
observed number of attempts does1 follow a geometric
distribution, we use a Chi-squared goodness-of-fit test
on one of the data sets. The results from the other
data sets are similar.

Table 6 shows the predicted and observed frequency
of the number of attempts for 5000 messages sent with
a probability of message loss of 25%. From this data,
we can calculate the x2 value:

x 2 =
9

(oi - Pi)2 = 6.12.
Pi

For a confidence level of 0.05, xg,os = 15.507 with v =
8 degrees of freedom. Since x2 < the observed
data does come from a geometric (distribution. This
means that the experimental results we obtained using
SFI validate the model.

i=l

4.2 Routing using failure data

In this section we present an example application
of SFI to the system development process, and also
demonstrate a few of its fault injection capabilities. In
the example application, we use SFI to determine the
effect of lost messages on different routing algorithms.
This example also demonstrates the utility of SFI in
testing distributed systems.

In many routing algorithms for point-to-point net-
works, routing decisions are made by determining the
shortest path between two nodes. The length of a link
in the path may be based on the transmission delay or
congestion on that link. If a link is operating in an en-
vironment in which there is a high paobability of mes-
sage loss:, it may be desirable to increase the length on
the link to account for the lost messages. In this sec-
tion, we present two simple algorithms for adding the
effect of lost messages to the link length. We then test

Figure 2: System configura.tion for routing experi-
ments.

these algorithms using SFI, and compare the results
of these tests with the results obt,ained when the effect
of the message loss was not considered. The scenario
we present is a simple one, but it demonstrates how
SFI might be used in a.n a.ctua1 application.

In the base algorithm we use for comparison, the
length of a link is taken to be the transmission time
of a message on that link. Ea.ch node calculates the
shortest path to every other node based on this data.
Messa.ges are routed as datagmms, with each node
choosing the best outgoing link for a message based on
the shortest path calculations. This simple algorithm
does not consider congestion or flow control.

We tested two alterations t,o this a.lgorithm. The
alterations employ different met.hods to add the effect
of lost messages on a link to the length of that link. In
the first method, each node keeps track of the average
number of timeouts per messa.ge on each outgoing link.
The avera.ge number of timeout,s on a link multiplied
by the timeout period gives t,he average incremental
de1a.y ca.used by lost messa.ges for that link. This in-
cremental delay is added to the transmission delay to
calculate the current length of the link. The second
method is to have each node periodically send out test
messa.ges to all of its neighbors. The delivery time for
the test messa.ges is used as t,he link length.

In order to test the algorithm and its modifications,
we ra.n experiments on HARTS using SFI. The test
system we used was a three node subset of HARTS,
with each node connected to the other two. The test
system arrangement is shown in Figure 2. Node 1
wa3 designated the source node, a i d Node 3 was the

21 5

destination node. Node 2 was an intermediate node
that provided an alternate path from Node 1 to Node
3.

As in Section 4.1, we assumed omission failure se-
mantics for the network. SFI was used to inject omis-
sion failures on the link connecting Node 1 to Node
3. We sent 5000 messages from Node 1 to Node 3,
and measured the average delivery time. In order to
determine the effect of different conditions on the al-
gorithms, we ran two sets of experiments. In the first
set of experiments, we set SFI to inject a 60 second
burst of intermittent failures between two periods of
fault-free operation. This represents a cycle of cor-
rect operation, followed by a failure and subsequent
repair. When fault injection was active, the message
loss probability was set to 20%. In the second set of
experiments, fault injection was always active with a
message loss probability of 20%. On each node, the
link lengths in the routing table were initialized to the
fault-free single link delivery time, which we meas-
ured to be 7.6 milliseconds in Section 4.1. The results
of the experiments are summarized in Table 7. The
times shown include both the message transmission
times and the processing overheads.

In the base algorithm, the transmission times for
fault-free operation are used as link costs. As a result
Node 1 will always choose to send messages to Node
3 via link13. This is because the link lengths are not
affected by message loss, and so the direct route is
always shorter. Thus the average delivery time from
Node 1 to Node 3 is the same as the delivery time
without routing. When the link cost is augmented
by the average time spent waiting for lost messages,
which is the average number of timeouts per message
multiplied by the timeout period, Node 1 will continue
to send messages directly to Node 3 until the number
of lost messages causes the length of link13 to exceed
the length of link12 + link28. Once the route through
Node 2 becomes shorter, Node 1 will send all messages
to Node 3 through Node 2, even when the link is no
longer faulty. This is because it has no way of detect-
ing a repair of the link. As a result, this algorithm
does not adapt well to changing conditions.

When the link length is determined by the use of
test messages, the system will adapt better to chan-
ging conditions. However, this method still has a num-
ber of flaws. If the test message is not affected by the
intermittent fault, then the effect of that fault will not
be considered. In addition, the ftequency of the test
messages will affect the correctness of the link length.
If the test messages are sent frequently, the link length
will better represent current conditions, but the test

messages will add more overhead to the system. In
this case, we sent test messages at a frequency of one
test message for every hundred regular messages.

The results show that, given our assumptions about
the system and its failure semantics, none of these
methods is the best in all cases. To improve on these
results, further refinements could be developed and
then tested using SFI. This experiment demonstrates
the usefulness of SFI for comparing different depend-
ability mechanisms and testing distributed systems.

5 Conclusion

This paper has presented first an overview of SFI,
a software fault injection tool developed for HARTS,
a distributed real-time system. SFI improves upon
previous fault injectors by allowing a wider range of
injected fault types and injection options. I t not only
allows the injection of low-level faults, but also allows
the direct injection of failures or faulty behaviors in or-
der to simplify the validation of higher level depend-
ability mechanisms in distributed systems. We also
demonstrated the usefulness of SFI by presenting two
experiments. These experiments show the application
of SFI to both model validation and system testing.
In the future, we intend to continue to extend the cap-
abilities of SFI. We are working on developing fault in-
jection methodologies for real-time systems, in which
the fault injection mechanisms do not affect the tim-
ing characteristics of the system under test. SFI is
currently being used as a tool in the development and
testing of dependability mechanisms for HARTS.

References

[l] Kang G. Shin, “HARTS: A distributed real-time
architecture”, IEEE Compvler, vol. 24, pp. 25-
35, May 1991.

[2] E. Moss, “Nested Tra,nsa.ctions: An Introduc-
tion”, in Concurrency Control and Reliability in
Disfributed Systems, cha.pter 14, pp. 395-425. Ad-
dison Wesley, 1987.

[3] IC. P. Birman and T. A . Joseph, “Reliable com-
munica.tion in the presence of fa.ilures” , ACM
Trans. Computer Systems, vol. 5 , pp. 47-76, 2
1987.

[4] 3 . C. La.prie, “Dependability: Basic concepts and
terminology”, IFIP WG 10.4, October 1990.

21 6

1 Link length I Average delay with 1 Avera.ge delay with 11

Tkansmission delay plus average timeout

I failure and repair 1 no repair U
I 14.74 I 20.63

II
1 Transmission delaly

14.23 15.16
13.74 18.43

[5] K. G. Shin and Y . H. Lee, “Measurement and
application of fault latency”, IEEE Trans. Com-
puters, vol. C-35, pp. 370-375, April 1986.

[6] G. Finelli, “Characterizatitm of fault recovery
through fault injection on Atmp”, IEEE Trans.
Reliability, vol. 36, pp. 164-1 70, June 1987.

[7] J. Arlat, Y . Crouzet, and J.-C. Laprie, “Fault
injection for dependability validation of fault-
tolerant computing systems.”, in Proc. Int ’1
Symp. on Fault- Tolerant Computing, pp. 348-
355, June 1989.

[8] .I. Arlat et al., “Experimental evaluation of the
fault tolerance of an atomic multicast system”,
JEEE Trans. Reliability, vol. 39, pp. 455-467, Oc-
t’ober 1990.

[9] J. Arlat et al., “Fault injection for dependabil-
i ty validation, a methodology and some applica-
tions”, IEEE Trans. Software Engineering, vol.
16, pp. 166-182, February 1990.

[lo] U. Gunneflo, J. Karlsson, and J . Torin, “Evalu-
ation of error detection schemes using fault injec-
tion by heavy-ion radiation”, in Proc. Int ’I Symp.
on Fault- Tolerant Computing, pp, 340-347, June
1989.

[ll] 2. Segall et al., “Fiat - fault injection based auto-
an FTCS-18, pp. mated testing environment”,

102-107, 1988.

[12] J. Barton, E. Czeck, Z. Segall, and D. Siewiorek,
“Fault injection experiments uuing fiat” , IEEE
Trans. Computers, vol. 39, pp. 575-581, April
1990.

[13] R. Chillarege and N. S. Bowen, “Understanding
large system failures - a fault injection exper-
iment”, in Proc. lilt ’I Symp. (oil Fault- Tolerant
Computing, pp. 356-363, June 1989.

[14] G..A Kanawati, N.A. Kanawati, and J.A. Abra-
ham, “FERRARI: A tool for the validation of

system dependability properties”, in Proc. Int ’I
Symp. on Fault- To1eran.t Computing, pp. 336-
344. IEEE, 1992.

[15] G. Choi, R. Iyer, and V. Carreno, “Simulated
fault injection: A methodology to evaluate fault
tolerant microprocessor archit,ectures”, IEEE
Trans. Reliability, vol. 39, pp. 486-490, October
1990.

[I61 R. Chillarege and R. Iyer, “Measurement-based
a.na1ysis of eqror lat.eiicy”, IEEE Trans. Com.-
puters, vol. 36, pp. 529-537, May 1987.

[17] D. Avresky, J . A r k , J.C. Laprie, and Yves
Crouzet, “Fault inject,ion for t,he formal testing
of fa.ult tolerance”, in Proc. Ini’l Symp. on Fault-
Tolerant Coni.puting, pp. 345-354. IEEE, 1992.

[18] K. Eclitle and Y . Clien, “Evaluation of determ-
inistic fa.ult injection for fa.ult-tolerant protocol
testing” , in Proc. Int ’1 Synap. on Fault- Tolerant
Computing, pp. 418-425. IEEE, 1991.

[19] F. Cristian, “Understanding fault tolerant dis-
tributed syst,ems”, Commvnicadions of the ACAJ,
vol. 34, pp. 56-78, Febrmry 1991.

[20] D. D. Ih id lur , D. L. Kiskis, a.nd I<. G. Shin,
“HARTOS: A distributed real-time operating
system”, ACM SIGOPS Operating Systems Re-
view, vol. 23, pp, 72-89, July 1989.

[21] Software Components Group, Santa Clara, CA,
pSOS User’s Guide, 1986.

[22] D. L. Kiskis and I<. G . Shill, “Generating syn-
thetic workloads for rea.1-hie systems” , in Proc.
IEEE Workshop on Real- Time Operating Sys-
tems and Software, pp. 109-113, May 1991.

[23) P. S. Dodd and C. V. Ra.vishankar, “Monitoring
and debugging distributed real-time programs”,
Soficvare- Pra dice a n d E.rpe rie n ce , vol. 22, p p .
863-877, October 1992.

21 7

