
740 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 7, JULY 1993

Analytic Models of Adaptive Load Sharing
Schemes in Distributed Real-Time Systems

Kang G. Shin, Fellow, IEEE, and Chao-Ju Hou, Student Member, IEEE

Abstract-In a distributed real-time system, nonuniform task
arrivals may temporarily overload some nodes while leaving
some other nodes idle. As a result, some of the tasks on an
overloaded node may miss their deadlines even if the overall
system has the capacity to meet the deadlines of all tasks. In
a companion paper [l], we proposed, without any modeling
analysis, a decentralized, dynamic load sharing (LS) scheme as
a solution to this problem. In this paper, we develop analytic
queueing models to comparatively evaluate the proposed LS
scheme as well as three other schemes: no LS, LS with random
selection of a receiver node, and LS with perfect information.

The evolution of a node’s load state is modeled as a continuous-
time semi-Markov process, where cumulative execution time
(CET), rather than the commonly-used queue length (QL), is em-
ployed to describe the workload of a node. Not only fundamental
differences among the different LS schemes are addressed in the
analytic models, but also implementation overheads are taken
into account. Several metrics relevant to real-time performance
are derived from these models: in particular, we evaluate the
probability of a task missing its deadline, called the probability of
dynamic failure. The proposed scheme is compared against other
LS schemes using these performance metrics.

The validity of analytic models is checked with simulations.
Both analytic and simulation results indicate that by using ju-
dicious exchange/use of state information and Bayesian decision
mechanism, the proposed scheme makes a significant improve-
ment over other existing LS schemes in minimizing the probabil-
ity of dynamic failure.

Index Terms- Bayesian analysis, continuous-time Markov
chains, deadlines, distributed real-time systems, load sharing,
location and transfer policies, performance evaluation, random
probing and selection.

I. INTRODUCTION
ISTRIBUTED computing systems have long received D considerable attention mainly due to their potential for

high-performance and high-reliability, and the availability of
inexpensive, powerful processors/memory chips. The central
issue in realizing this potential is how to schedule the use of
various resources in the system. Load sharing (LS) is known
to be an essential element of scheduling tasks in a distributed
system [2], [3], enabling underloadedhdle nodes to share the
loads of overloaded ones so as to improve system performance.

Manuscript received January 15, 1991; revised August 20, 1992. This work
was supported in part by the Office of Naval Research (ONR) under Contract
NOOOl14-85-K-0122 and the National Science Foundation (NSF) under Grant
DMC-8721492. Any opinions, findings, and conclusions or recommendations
expressed in this paper are those of the authors and do not necessarily reflect
the views of the funding agencies.

The authors are with the Real-Time Computing Laboratory, Department of
Electrical Engineering and Computer Science, The University of Michigan,
Ann Arbor, MI 48109-2122.

IEEE Log Number 9209552.

The main goal of Ls in a distributed real-time system is
to minimize the probability of a task failing to complete ex-
ecution before its deadline, which was termed the probability
ofdynamic failure (Pdyn) in [4]-[6]. Upon arrival of a real-
time task, each node determines first whether or not it can
complete this task in time. If it can, the task is executed
locally; otherwise, some other “capable node” will be chosen
to execute the task [3], [7]-[ll]. By “capable node,” we
mean a node which has sufficient resource surplus to complete
transferred-in task(s) in time.

To determine when and where to transfer a task, all dy-
namidadaptive Ls approaches need to use information on the
workload of other nodes. If the cumulative execution time
(CET) of a node is less than, or equal to, the laxity’ of a newly
arrived task, then the node can guarantee the task. Each node
makes a decision on where to send a locally unguaranteed
task using the state information collected by either periodic
exchange of states [101-[14], biddingktate probing at the
time of making a LS decision [2], [15]-[23], or state-change
broadcasts [l], [24]-[26]. No matter which strategy is used
for collecting state information, the information may become
out-of-date at the time of using it due to the delays in
collecting it. That is, what a node observes about other
nodes’ states might be different from their true states at the
time of making LS decisions. This inconsistency may cause
performance degradation which is often ignored or assumed
tolerable in previous research except for [22], [27], where the
authors analyzed the effects of communication delays on the
mean response time of dynamic LS, but did not propose how
to deal with it.

To alleviate the negative effects of the delay in collecting
state information and transferring tasks, Shin and Chang
proposed a LS method based on state-change broadcasts in
which each node needs to maintain state information of only
a small set of nodes in its physical proximity, called a buddy
set [25]. The buddy sets are systematically set up so as to
overlap among some of them, thus allowing for system-wide
(as opposed to only local) load sharing while significantly
reducing the overhead in collecting state information. Three
thresholds-based on queue length (QL) and denoted by TH,,
T H f , and T H , -are used to define the load state of a node. A
node is said to be underloaded if Q L 5 TH,, medium-loaded
if T H , < QL 5 T H f , fully-loaded if T H f < Q L 5 TH,,
and overloaded if QL > TH,. Whenever a node becomes
fully-loaded (underloaded) due to the arrival and/or transfer

‘The laxity of a task is defined as the latest time a task must start execution
in order to meet its deadline.

1045-9219/93$03.00 0 1993 IEEE

SHIN AND HOU: ADAPTIVE LOAD SHARING SCHEMES 741

(completion) of tasks, it will broadcast its change of state to all
the other nodes in its buddy set. Every node that receives this
broadcast will update its state information by eliminating the
fully-loaded node from, or adding the underloaded node to, its
ordered list (called a preferred fisf) of available receivers. An
overloaded node can then select, without probing other nodes,
the first available node from its preferred list. The main focus
in (251 was to develop the basic concepts of buddy sets and
preferred lists, and derive an approximate performance figure
using QL as the measure of each node’s workload.

In a companion paper [l] , we proposed, without any mod-
eling analysis, a new decentralized, dynamic LS scheme that
uses the CET of each node and combines the preferred
lists, region-change broadcasts, and Bayesian analysis both to
minimize the probability of dynamic failure and to alleviate
the performance degradation caused by communication delays.
In this paper, we shall develop analytic models for this
scheme as well as three other schemes: no LS, LS with
random selection, and LS with perfect information. Not only
the fundamental differences among the transfer and location
policies used by different schemes are addressed, but also
the computatiodcommunication overheads in implementing
these schemes are included in the analytic models. By taking
into account these overheads, the analytic models provide
a means of assessing the absolute real-time performance of
the schemes considered. We shall derive several performance
metrics, such as Pdyn, task transfer-out ratio, and maximum
system utilization. These metrics are then used to assess the
proposed LS scheme against the other schemes.

The first step in developing the analytic LS models is
to define the (load) state of a node. For ease of analysis,
the number of tasks queued at each node, or QL, is often
used as the node’s state [3], [7], [8], [lo], [17], [25], [28].
Performance analysis based on QL would be accurate only if
all tasks have an identical, or identically-distributed, execution
time, and the mean task response time is used as the perfor-
mance metric. If task execution times are neither identical nor
identically-distributed, , QL is no longer an adequate measure
to characterize the load of a node. For real-time applications
it is the CET, not QL, of a node that determines whether
the node can guarantee a task or not. For example, a node
with only a few tasks queued may not be able to guarantee
a newly arrived task if a large amount of time is required to
complete each queued task. On the other hand, a node with a
large QL may still guarantee an arrived task as long as the
total CET of that node does not exceed the laxity of this
task.

Most LS schemes known to date are concerned with min-
imizing the mean response time (MRT) for general-purpose
distributed systems, except for those in [13], [HI, [21], [25],
and [29], where the LS algorithms were evaluated with respect
to either the percentage of tasks lost or the probability of
dynamic failure. The performance of real-time LS algorithms
is usually evaluated via simulations except for a few cases. For
example, Shin and Chang [25] proposed an embedded Markov
chain model, where QL, instead of CET, is used as the state
of a node, but the exact solution to this model is very difficult

CET as a node’s state, but all tasks are assumed to have an
identical deadline.

By contrast, we shall in this paper use Pdyn as the per-
formance metric, and CET as the load state, and allow both
task laxity and task execution time to be drawn from different
probability distributions.

Most previous work has shown that simple LS algorithms
can significantly reduce MRT for general-purpose systems,
and the incremental benefits of employing complex LS
algorithms become insignificant due to their communica-
tion/computation overheads. Using the fraction of tasks lost
as the performance metric, Kurose et al. [18] extended
this result to soft real-time systems. However, as both
the analytic and simulation results indicate, this extension
does not necessarily hold when Pdyn is used as the
performance metric. By making judicious exchangehe of
state information, complex schemes-though they incur more
computation/communication overheads-achieve notable im-
provement in reducing Pdyn over those simple LS schemes.

The rest of this paper is organized as follows. Section I1
describes the system model used and details the operations of
the proposed LS scheme and five other schemes, particularly
focusing on the transfer policies that a node uses to handle
locally unguaranteed tasks. Section 111 presents a mathematical
model based on continuous-time semi-Markov chains that
describes the state evolution of a node under different LS
schemes. A two-step iterative algorithm used to solve the
queueing model for different schemes is also given in Section
111. The computation and communication overheads incurred
in implementing the proposed LS scheme are dealt with in
Section IV. In Section V, we derive several performance
metrics, such as CET distributions, task transfer-out ratios, and
Pdyn for the schemes under consideration, and comparatively
evaluate the performance of the proposed LS scheme with
these derived metrics and simulations. The paper concludes
with Section VI.

11. SYSTEM MODEL AND LS SCHEMES

A. System Model
The nodes of a distributed system are assumed to be

“homogeneous” in the sense that all nodes have the same
arrival rate of external tasks2 and are identical in processing
capability and speed. Consequently, the task arrivalhransfer
activities experienced by each node are stochastically iden-
tical over a long term. Thus, we can adopt the general
methodology-introduced in [3], and also used in [18], [25],
and [30]-of first modeling the state (CET) evolution of
a single node in isolation and then combining the node-
level models into a system-level model. This decomposition
was first verified (through simulation) in [3] to be valid for
homogeneous systems of reasonably large size. We will also
check its validity in Section V by comparing the analytic
results with the results obtained from event-driven simulations.

External tasks (excluding transferred-in tasks) are assumed
to arrive locally at node IC according to a Poisson process with

to obtain. In [18], performance models were developed using ’These exclude transfer-in tasks.

742 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 7, JULY 1993

rate x k = Vk. A task requires z units of time to execute and
has j units of laxity time with probability q i j , 1 5 i 5 m,
0 5 j 5 T,, where m and T, (measured in number of
time units) are the largest task execution time and the largest
task laxity in the system, respectively. {q i = q i j , 1 5
i 5 m} and { q j = q i j , 0 5 j 5 T,} are the
probability distributions of task execution time and task laxity,
respectively. All tasks are assumed to be independent of one
another, so they do not communicate during their execution
and thus have no precedence constraints among themselves.
Note that aperiodic tasks in a real-time system are usually
independent of each other. By contrast, periodic tasks often
communicate with each other but their invocation, execution,
and communication behaviors are usually known a priori and
thus scheduled off-line.

B. LS Schemes Under Consideration

We shall develop models for the proposed LS scheme
as well as three other schemes: no LS, LS with random
selection, and LS with perfect information. Besides, LS with
state probing and LS with focused addressing [17], [21] will
be comparatively assessed in Section V using simulations. We
shall describe first the operations of these schemes.

As was discussed in [3], a LS approach can be characterized
by its transfer policy which determines when a task cannot be
locally guaranteed, and its location policy which determines
where a locally unguaranteed task should be transferred to.
All LS schemes studied here employ the same transfer policy:
a task with laxity d is transferred from node i if and only
if node i’s CET is greater than d. This transfer policy is of
the threshold type as in [3], [8], [27], and [31], except that the
threshold may change dynamically with the current state of the
node and the time constraints of queued tasks. However, the
location policies with which a node treats locally unguaranteed
tasks are different as follows:

The noncooperative scheme: does not have LS capability
and is used as a baseline in our analysis.

The quasi-perfect LS scheme: is used as another baseline
where each node uses the same transfer policy but has com-
plete information on the workload of other nodes without any
overheads in collecting it.3

The random selection scheme: each locally unguaranteed
task is sent to a randomly selected node. LS with random
selection is simple to implement, requires no information
exchange, and incurs little communication overhead. However,
excessive task transfers may result since each unguaranteed
task is sent blindly, without using any state information, to an
arbitrarily chosen node.

The state probing scheme: a node with an unguaranteed
task randomly probes up to some predetermined number
of nodes and transfers the task to the first capable node
found during the probing. LS with state probing gathers and
uses the state information as needed, and thus may have
the most up-to-date observation about other nodes. However,

3This, however, cannot be modeled as an M/G/n queue, as compared to the
perfect load sharing in [3]. This is because of the transfer policy used which
incorporates the consideration of task laxities/deadlines into the LS decision.
Hence, we label this scheme as quasi-perfect.

at least two additional messages are generated per probing,
introducing time and communication overheads to the task
to be transferred, and may thus be undesirable to the timely
completion of real-time tasks. (Note that these overheads do
occur when a task needs to be transferred.) Moreover, as was
analyzed in [27] and [22], the performance of state probing is
sensitive to the variation of communication delays.

The focused addressing scheme: each node exchanges state
information periodically. A node sends its unguaranteed task
to a node (called the focused node) which is randomly selected
among those nodes “seen” to be capable of guaranteeing the
task. (If such a capable node does not exist, the focused node
is the node itself.) Meanwhile, the node also sends request-
for-bid (RFB) messages to all the other nodes in the system,
indicating that bids (which contains the CET of the bidding
node) should be returned to the designated focused node. If
the focused node cannot guarantee the task, it chooses, based
on the bids received, a capable node for transferring the task
(ties are broken randomly); otherwise, the task is queued on
the focused node. The bids received at the focused node are
also used to update the observation of other nodes’ states. If
neither the focused node nor the bidding nodes can guarantee
the task, the task is declared to be lost and thrown out.

To avoid poor CPU utilization, RFB messages do not require
nodes to reserve CPU cycles or any other resources needed to
execute the task to be transferred. When a task arrives at a
node whose bid has been accepted, the node will check again
whether or not the task can be guaranteed. Note that this is a
simplified version of the scheme proposed in [21] and [17]. It
also differs slightly from that of [21] and [17] in the way a node
chooses the focused node. The authors of [21] and [17] used
the percentage of free time during the next window (which is
a design parameter) and many other estimated parameters to
determine the focused node or the node to which the task must
be transferred again. However, we use the observed CET of
other nodes to determine the nodes for transferring tasks.

The proposed scheme: a node transfers each locally un-
guaranteed task to one of the nodes in its buddy set by
combining the preferred lists, state-region change broadcasts,
and Bayesian analysis. This scheme was proposed in [l],
without any performance modeling analysis, to i) minimize
Pdyn, and ii) alleviate the performance degradation caused by
communication delays.

The operation of the proposed LS scheme is outlined below
for completeness. (See [l] for a detailed account.) Under
this scheme, the task scheduler at each node is modeled
as a Bayesian decision maker [32]: upon arrival of a real-
time task, the scheduler first determines whether the node
can guarantee the task or not. If it cannot, the scheduler on
that node looks up the list of loss-minimizing decisiom, and
choose-based on the current observation about other nodes’
states, X-the best candidate receiver in a small set of n
nodes in its physical p r~x imi ty ,~ i.e., a buddy set. The list
of loss-minimizing decisions is computedhpdated periodically
to minimize the expected Bayesian loss with respect to the
posterior distribution of system state given the observation.

4For example, those nodes one or two hops away from the node of interest.

SHIN AND HOU: ADAPTIVE LOAD SHARING SCHEMES 743

Each node performs the following four operations:

(a): When a task with execution time T, and laxity D, arrives:
if current-time + CET 2 D, then
begin

receivernode = tablelookup(g:observation)t;
transfer the task to receivermode;

end
else
begin

CET := CET + T,;
if CET crosses TR2b, 1 5 k 5 - 1 then

/* TIT,, . . ., T R K - , are thresholds $1
broadcast the stateregion change to all nodes in its buddy set;

queue the task locally;
end

(b): When a message broadcast by node i , 1 5 i 5 n, arrives:
update observation 2,;
record the (observation, true state) pair needed for constructing probability

distributions;

(c) : At every dock tick,
CET := CET - 1;
if CET crosses TRZr, 1 5 k 5 (41 - 1 then

broadcast the state-region change to all nodes in its buddy set;

(d): At every Tp clock ticks,
update the probability distributions and the table of loss-minimizing

decisions;

tIf a node antidpato, bued on the corrent observation 8, that no other nodes con guuonte the t-k, thls
task U declared to be lost and thrown away.

Fig. 1. Operations of the task scheduler on each node.

Fig. 1 summarizes the four (4) main operations of the task
scheduler on each node.

Both the posterior distribution of system state given the
node’s observation and the list of loss-minimizing decisions
are constructed/updated as follows. Each node communicates
with, maintains the state information of, and/or transfers
unguaranteed tasks to, the nodes in its buddy set only. K
state regions defined by (K - 1) thresholds, TH1, TH2, ...,
T H K - ~ , are used to characterize the workload of each node.
Each node will broadcast a time-stamped message, informing
all the other nodes in its buddy set of a state-region change
whenever its load crosses TH2k for some k, where 1 5 k 5
[1(/21 - 1.’ This time-stamped message contains node number
i , state w;, and the time t o when this message is sent. When the
message broadcast by node i arrives at node j, node i ’ s state at
t o , denoted by wit can be recovered by node j . Node j can also
trace back to find its observation about node i , xi, at time t o .
This observation xi is what node j thought (observed) about
node i when node i was actually in state wt . xz’s along with
w;’s (1 5 i 5 n) are used by node j to compute/update the
posterior distribution, Pw, IS,, of node i ’ s state W, given node
j’s observation xi periodically. Any inconsistency between

5The reason for not broadcasting the change of state region whenever a
node’s load crosses an odd-numbered threshold is to reduce the network
traffic resulting from region-change broadcasts. On the other hand, the reason
for not combining two adjacent state regions into one and then broadcasting
the change of state region whenever a node’s CET crosses any threshold is
to include finer state information in each broadcast and thus construct more
accurate posterior distributions needed for Bayesian decisions.

the true state, W,, and the state observed by node j , X,,
is characterized by this probability distribution. Besides, w,
sent by node i at time t o is transformed to node j ’ s new
observation,6 x,, about node i at the time node i receives this
message by the rule that x, = if THk 5 w, < THk+I,
k 2 0, and T H O = 0.

For each possible X = 2, and for each possible T d E
(O.T,,,]-where T,,, is the largest task laxity in the sys-
tem-node j computes P w , ~ ~ , (W , > Td),’ i = 1 , . . . , n
every time the posterior distribution is updated, and the node
k which results in the smallest value is chosen as the receiver
node, and recorded in the list of loss-minimizing decisions.
When node 3 cannot guarantee locally a real-time task with
laxity Td, it decides to which other node this task will be
transferred by looking up the list using Is. and T d as the
indexes.

A tie will be broken by using the preferred list: each node
orders the nodes in its buddy set into a preferred list such
that a node is the lcth preferred node of one and only one
other node, where k is some integer [25], [33], and a node
chooses from the preferred list the first d, with Bayesian
risk. The preferred list thus provides an effective way of
selecting a receiver among several possible candidate nodes

A

hThe reason for transforming w ’ ~ into s, is to reduce the size of the

’which was shown in [l] to be the expected loss in the Bayesian decision

observation space.

model.

744 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 7, JULY 1993

while minimizing the possibility of more than one node
simultaneously sending unguaranteed tasks to the same node.
The set of loss-minimizing decisions is a list of decisions
indexed by each possible observation 2 and each possible
task laxity Td. Once these calculations are completed, the task
scheduler needs only to perform a table lookup with both
- x and Td as indexes to determine to which node a locally
unguaranteed task should be transferred.

111. ANALYTIC MODELS

Queueing models are developed to evaluate the performance
of the proposed LS scheme as well as three other schemes: no
LS, LS with random selection, LS with perfect information.
We first model the state evolution of a node by a continuous
time semi-Markov chain [34], [35] which will serve as the
underlying model. The parameters of this model are derived
for different LS schemes to characterize task arrival/transfer
processes in the system level. A two-step iterative approach is
then taken to obtain a numerical solution to the semi-Markov
model.

A. The Underlying Model

The state of a node is defined as the CET of that node,
and each node is modeled as an M["I /D/ l queue with bulk
arrivals. (Arrival of a task with i units of execution time is
viewed as the simultaneous arrival of i tasks, each requiring
one unit of execution time.) The case in which all tasks require
an identical execution time-and thus the state is QL-is a
special case of this model.

The composite (both external and transferred) task arrival
rate at a node is X(T) , which depends on the node's CET,
T , and the location/transfer policies used. Execution of a task
requires i units of time with probability qa, and such a task is
called a type-i task, 1 5 i 5 m. Since at any time a node is
either idle or busy executing a task, the node occupancy (by
tasks) is divided into busy slots (measured in terms of system
clock cycles) which are numbered as Bl ,&, . . ., relative to
any reference point of time (see Fig. 2). Note that two adjacent
busy slots of a node may be either contiguous or separated by
idle periods. Let Tk denote a node's remaining CET at the
end of Bk, and X i represent the number of type-i arrivals
during Bk, then

where R is the number of clock cycles required for the node
to complete a task which finds the node idle upon its arrival,
and has the distribution { q a , 1 I i I m}. If Tk-1 = 0, then
the node remains idle until a task with the required execution
time, R, arrives. iXi is the CET accrued during Bk with
each type-i task contributing i units of time for execution.
Equation (1) describes a semi-Markov chain because i) Tk
depends only on Tk-1, and not on T p Vk' < k - 1, and ii) the
state residence times-the length of Bk -are deterministic
with value 1, rather than exponentially-distributed.

Equation (1) can be used to get the z-transform of the CET
distribution. Let T+ and T denote the CET on a node at

some embedding time instant and at some random time instant,
respectively. Because of the embedding points (i.e., at the end
of each busy slot) chosen for the embedded Markov chain,
the distribution of T , denoted by p ~ (.) , is not necessarily the
same as that of T + , denoted by p : (.) [35], [36]. However,
p ~ (.) can be derived from p $ (.) as described in [36]. So, let
us derive &(.) first.

Let a+(.) denote the z-transform of CET distribution at
the embedding time points, then

Note that for mathematical tractability of (2) , iXf-the
CET arrival process during Bk-is approximated to be in-
dependent of Tk-1, which is unrealistic for the location
and transfer policies of the proposed LS scheme as well as
others. As will be discussed in Section V-B, this deficiency
is remedied by figuring the dependency of the task arrival
process on CET into task arrival rate. In other words, the task
arrival rate X on a node is determined by the node's CET, T ,
i.e., A(.) is a function of T .

The second factor of (2) , E (z ~ T = ~ a x ;) , is computed as
follows. Since state residence times are all 1, we have

m

p(' I-' eqt (qi A) ~ Z X - zn) =
n!

and

otherwise
where 1 I i 5 m, and N is the set of natural numbers. In the
above equation we used the fact that if each event of a Poisson
process is classified independently of others to be any of type
1 ,2 , m with probability qz, then the number of type-i
arrivals is independent of others, and is Poisson-distributed
with Xqt. Let U; E iX;, then

10

P=O
30

SHIN AND HOW: ADAPTIVE LOAD SHARING SCHEMES 745

CET on a node 1

arrival departure of deputure
of a task the first task of &e
with R=2 second task

Where Bi is the node's i-th busy cycle

Fig. 2. A sample path for the evolution of remaining CET on a node.

Assuming independent arrivals of different types of tasks, we
then have

& (O) can be obtained from

1 = @+(1)
ni

m

2=1

(4) - - c A (* R (z) - 1)

where @ R (z) is the z-transform of the required task execution
time.

We now compute the first factor of (2) . The event, (Tk-1 -
1 + (1 - S (T k - 1)) R = i}, contains two mutually exclusive
subevents: 1) Tk-1 = 0 and R = i + 1, and 2) Tk-1 = i + 1:

P(Tk-1 - 1 + (1 - S (T k - 1)) R = 2) = q 2 + 1 p T + (0) + p $ (i + I),

and thus,

1 E (~ T ~ - 1 - 1+(1 -6 (T~)) R

oc,

= P(Tk--1 - 1 + (1 - S (T k - 1)) R = n) Z n
n = O
oc,

= C (S n + I P ; (o) + P $ b + 1))z"
n = O

Substituting (4) and (5) into (2) , and rearranging the terms,
we get

where we have used L'Hopital's rule in evaluating the limit.
Consequently,

= (l / E (R)) - X (7)

where E (R) is the expected execution time, i.e., E (R) =
x i = , i q i . Note that for the system to be stable (or for the
CET at a node not to grow unboundedly), we must have
C z l iXq i 5 1, or X 5 (l / E (R)) , which is the necessary
and sufficient condition for p$(O) 2 0. Thus,

m

(1 - X)(@.,(z) - l) e A (@ R (L) - ')

. (8) E (R)
- eV@R(z)-l) a+(.) =

The above results for the embedded Markov chain do not
directly apply to the total general-time stochastic process.
However, the relation between the general-time steady-state
distribution, p~ (.), and the distribution at embedding points,
p $ (.) , is shown in [36] to be

for M["] /G/l systems, where @ (z) is the z-transform of the
general-time CET distribution. Thus, we have

746 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 7, JULY 1993

and

p T (0) = 1 - XE(R). (11)

If all tasks require an identical execution time, i.e., P (R =
1) = 1, then the state reduces to QL, and (11) reduces to

p T (0) = 1 -

which is exactly the utilization U = X since the service time
is 1, and (10) [and also (S)] reduces to

Computing the inverse z-transform of (10) [(12)] numerically
yields the CET (QL) distribution, { p ~ (i) , i 2 O}. The discus-
sion of a rather subtle technique for the inversion of (10) can
be found in [36].

B. Derivation of X(T)
The semi-Markov chain model derived above can be used to

evaluate different LS schemes if X(T) characterizes both the
corresponding task arrivals and/or task transfers in the system
level. The following variables are necessary to facilitate the
derivation of X(T):

(YT: the rate of transferring tasks out of a node given
that the node’s remaining CET is T. Since the transfer
policy determines whether or not a task can be guaranteed
locally, this parameter characterizes the transfer policy
used.
PT: the rate of transferring tasks into a node given that the
node’s remaining CET is T. This parameter corresponds
to the location policy used, since the location policy
determines where to send each unguaranteed task.
~ j : the probability that the remaining CET on a node is
no less than j units of time, i.e., -y3 = P(T 2 j).
Kj: the number of nodes that can be chosen by a node,
excluding itself, for transferring a task with laxity j . The
distribution of K3 can be expressed in terms of y, as

P(Kj = a) = (c 1) (1 - e n-1-8
Y3+1) Y,+1 ’

As shown in Fig. 3, X(T) = X - (YT +OT. By appropriately
tailoring CIT and ,/3~ to describe the transfer and location
policies adopted and by approximating the combined (external
and transferred-in) task arrivals at each node to follow a
Poisson process, the above semi-Markov chain model can be
used to express the operations of different LS schemes. This
approximation is accurate only when 1) task-transfer out of
each node is a Poisson process, implying that the decision
on whether or not to transfer a task is independent of the
current workload [37], which is not true for our LS scheme,
and 2) task-transfer into each node-the superposition of
task transfers out of other nodes-is Poisson. However, this
approximation is shown by our simulation experiments to
provide very good results; when the task transfer-out ratio
is less than 40% of the task arrival rate, the combined task
arrival processes at each node have the coefficients of variation
of their interarrival times close to one, which is at least a

h

Tasks tmnskmd to
aT other nodes

Tasks tnnsferred fro m
other nodes

where a T is the rate of transferring tasks out of a node
given the remaining CET I T.

given the rematning CET - T.
andh(T)= X - U T + ~ T .

p T the rate Of tMk8 into a node

Fig. 3 . A generic queueing model for each node.

necessary condition for the combined task arrival processes to
be modeled as Poisson.

Moreover, for all LS schemes the following relationship
between (YT and / 3 ~ results from the law of task conservation,
cyz~ X (k) p T (k) =

Theorem 1: If task flow of the system is conserved, then

k=O k=l

The transfer policy used in real-time systems is of the
dynamic threshold type: a task is transferred to other nodes
only if it cannot be guaranteed locally. Thus, given a node’s
remaining CET = T , all the tasks arrived with laxities smaller
than T should be transferred, thus leading to

T-1

j = O

for all schemes except for no LS in which CYT = PT = 0,
and X(T) = X V T .

Unlike the transfer policy, the location policy depends
on each LS scheme. The random selection scheme selects
randomly a receiver node in the system for each unguaranteed
task without using any state information. Thus, we get PT for
this scheme as8

where Ny,+l is the average number of nodes that cannot
guarantee tasks with laxity j in an N-node system, X q J is
the arrival rate of tasks with laxity j on a node, and the
product of these two is the average rate of transferring tasks
with laxity j in the system. Since all unguaranteed tasks are
transferred randomly, each node shares 1/N of these tasks.
The randomness property is reflected in the independence of
/ 3 ~ from T. The correctness of (15) is verified in the Appendix.

* JT is derived under the assumption that the task-transfer into a node-the
superposition of task-transfers out of other nodes-is Poisson-distributed.

SHIN AND HOU: ADAPTIVE LOAD SHARING SCHEMES 747

Our proposed LS scheme uses the posterior distributions
derived from the state information gathered from time-stamped
region-change broadcasts to estimate the workload of other
nodes, and chooses probabilistically, from the preferred list,
the best candidate to which each unguaranteed task will be
transferred. If these distributions are properly constructed, then
PT can be expressed as

j=T

where n is the number of nodes in a buddy set. Note that 1)
a node i with CET = T can guarantee all tasks with laxity
greater than T , and thus, the summation is performed from T
to T,, and 2) the term X@yj+l is contributed by the node
whose most preferred node is node i, the term is
contributed by the node whose second preferred node is node
i and whose most preferred node cannot guarantee tasks with
laxity j , and the term Xqjyy+l accounts for the situation when
all nodes in a buddy set cannot guarantee tasks with laxity j .
The correctness of (16) is verified in the Appendix.

Recall that a node is the kth preferred node of one and
only one other node, and if node i is the kth preferred
node of j, then j is also the kth preferred node of i [25],
[33]. This property minimizes the possibility of multiple
nodes simultaneously sending tasks to the same “capable”
node, while ensuring unguaranteed tasks to be evenly shared
by “capable” nodes. More formally, we have the following
theorem:

Theorem 2: Using the preferred lists and proper prior/post-
erior distributions, our proposed scheme balances load in the
sense that all unguaranteed tasks are evenly shared by those
capable nodes.

Proof: This theorem is proved by deriving ,& based
on the idea of even sharing of unguaranteed tasks among
“capable” nodes and comparing the result with the ,LIT in (16).
Even sharing of unguaranteed tasks gives

where X q j is the arrival rate of tasks with laxity j, nyj+l is
the average number of nodes which cannot guarantee tasks
with laxity j . The product of these two is the average rate of
transferring tasks with laxity j , which will be shared evenly by
e other nodes (in addition to the node itself) with probability
P(Kj = e). PT can be simplified to

n-1

which is exactly the same as (16). 0

The location policy of the quasi-perfect LS scheme is similar
to that of our scheme except that i) accurate state information
is obtained without incurring any communication cost, ii) there
is no overhead associated with task transfers, and iii) the buddy
set size is N, the number of nodes in the entire system. That is,
unguaranteed tasks are transferred directly and instantaneously
to “capable” nodes. X(T) can be expressed as

The correctness of (18) is also verified in the Appendix.

C. An Iterative Algorithm

X(T) (QT and PT) must be known before solving the
Markov chain model for p ~ (.) . However, X(T) depends on
yj which in turn depends on p ~ (.) . An iterative approach is
taken to handle the difficulty associated with this recursion

(z) = eX(’R(Z)-l) [(4)] can be problem. Note that

interpreted as the pdf of the number of arrivals’ during one
unit of service time (execution time). Thus, we modify (4) as

EL

00

to account for the effect that the task arrival rate varies with the
current CET, T, of a node. Consequently, (10) is modified as

and (12) as

In the first step, the modified version of (10) [(12)] is solved for
p ~ (.) with both QT and PT set to 0, or equivalently, AT = X
VT. The resulting p ~ (.) is used to compute QT and PT in the
second step. Then p ~ (.) is recalculated with the new (YT and
PT [and thus a new X(T)] using the modified version of (4)
and (10). This result will, in turn, change QT and PT. This
procedure will repeat until p ~ (.) and X(T) converge to some
fixed values.

IV. COMPUTATION/COMMUNICATION OVERHEADS

To develop a practical model for assessing the performance
of different LS schemes, one should, in addition to addressing
the fundamental differences among the LS schemes, take
into account their implementation overheads: for example, the
computational overheads of our scheme due to probability
updates, and communication delays associated with state-
information collection and task transfers. The tradeoff between
the associated complexity and the resulting benefit can be

9As mentioned earlier, a type-z task arrival is viewed as z simultaneous
arrivals, each with one unit of execution time.

~

148 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 7 , JULY 1993

analyzed accurately only if implementation overheads are
included in the model. In this section, our model is extended
to include the overheads of the proposed scheme due to
time-stamped region-change broadcasts, periodic updates of
posterior distributions, and task transfers by:

Augmenting the original task set with a new type of tasks,
i.e., the probability updating tasks.
Modifying the underlying semi-Markov chain model to
include the effect of region-change broadcasts on the CET
of a node.
Considering the effect of communication delay by mod-
ifying (YT and &-.

A. Overheads of Probability Updates

As mentioned in Section 11, each node updates the posterior
distributions of other nodes' CET once every Tp units of time.
Let U be the time required for updating the distributions, then
we introduce a new type of task by modifying the parameters
A and q;j (which characterize the task set) as

1 1 1 ' - - A' = A + -, (A + -)quT, -
TP TP TP '

and

where qi j and q i j (A' and A) are the new and old values of the
probabilities (task arrival rates), respectively. That is, a new
type of tasks is added to the task set: the one with execution
time U and laxity T,. Moreover, qij's are scaled in accordance
with the new task arrival rate A'. Note that 1) the laxity of the
probability updating task is chosen to be T,, since this task
is not time-critical, and 2) for ease of analysis, this periodic
task is modeled to have exponential time-to-event distributions
with the rates equal to the reciprocal of the period. The error of
this approximation relative to the exact limit-equivalent rates
is bounded as indicated by Kitchin [38].

B. Overheads of Region-Change Broadcasts

Recall that each node broadcasts the change of state region
to all the other nodes in its buddy set. Let a be the time needed
for broadcasting a region-change. Since this broadcasting
process is state-dependent, the overheads of region-change
broadcasts can be included by modifying (l) , the expression
for state evolution as

Tk-1 + ELl ixh - 1 + a
if Tk-1 > 0 and Tk-1 E {TH2e, 1 5 c 5 [$I - 1)

if Tk-1 > 0 and Tk-1 @ {THze, 1 5 e 5 [$I - 1)
if Tk-1 = 0.

Tk = Tk-1 4- ixh - 1

ELl ZX; + R - 1 I (19)
In other words, whenever the remaining CET reaches THzk
(1 5 k 5 rK(/21 - l) , a units of time are added to the state to
account for the CET increase due to broadcasts. The property
of semi-Markov chain is retained, because whether or not to
increase by a units of time depends only on Tk-1. Similarly,

(2) should be rewritten as

where 6'(z) is the impulse function or the derivative of the unit
step function, 6(z). Following the same (but more complex)
derivation as in Section 111, one can get a modified version
of (10):

Note that the above equations reduce to (10) if a = 0 (no
broadcasting overhead). Before solving (20) for p ~ (.), one
has to know the values of pT(TH2f), 1 5 L 5 [1(/21 - 1,
which, in turn, depend on @(z) . This recursive dependency can
again be handled by using an iterative approach as follows.
@ (z) is first inverse z-transformed with p ~ (T H 2 f) set to 0.
The resulting p ~ (.) (in particular, p~(TH2e)'s) is then used
to compute the new @(z) from which new p ~ (.) can then be
calculated. This process will be repeated until p ~ (.) converges
to a fixed value.

C. Effect of Communication Delays

Communication delays are composed of three components
[39]: 1) the queueing delay, which is the time between
the queueing of a task and the start of its transfer, 2) the
transmission delay, which is the time between the first and
last bits of the task transferred, and 3) the propagation delay,
which is the time from the transmission of a bit at the sending
node to its receipt by the destination node. The transmission
delay depends on the size of the transferred task, and is thus
assumed to be proportional (with ratio 0 1) to the required
execution time of the task. The propagation delay depends
on the physical distance/characteristics of the communication
medium between the sender and receiver nodes, is indepen-
dent of traffic loads, and is thus assumed to be constant,
0 2 . The queueing delay depends heavily on traffic loads.
Since region-change broadcasts and task transfers introduce
additional traffic loads, the queueing delay under the proposed
scheme is expected to be larger than others. However, the
exact dependency of the queueing delay on these operations
is difficult to model, because 1) the delay also depends on the
capacity of the communication medium and the (contention)
protocols used, both of which are application-dependent, and
2) the effect of region-change broadcasts on this delay depends
on the state of the system, which changes dynamically with
time. We thus assume in our model that the queueing delay due
to task transfers and region-change broadcasts are proportional
to (with ratio 03 and 04) the task transfer-out ratio (7)

SHIN AND HOU: ADAPTIVE LOAD SHARING SCHEMES 749

and external task arrival rate (A), respectively.1° Let c ~ (i)
and cp(i) (TR and TP) denote the communication overheads
encountered by a task with i units of execution time (task
transfer-out ratios) in the random selection scheme and the
proposed scheme, respectively, then we have c ~ (i) = 01 . i +
02 + 03 . TR and cp(i) = 01 . i + 02 + 03 . rp + 04 + A.

Considering the effect of communication delays, CYT in (14)
should be modified as

m T-1

where c(z) is cp(i) or c ~ (i) , depending the scheme under
consideration. Note that for those tasks whose laxity is less
than the communication delay, there is no need to transfer
them. Similarly, PT is modified as

for the random selection scheme, and

for the proposed LS scheme. Correctness of these expressions
can be verified similarly to Corollaries 1-3 as shown in the
Appendix.

V. PERFORMANCE ANALYSIS

To demonstrate the effectiveness of the proposed LS scheme
and the validity of the analytic models, we present numerical
results for the case when inter-arrival times of external tasks
are exponentially distributed. Note, however, that the proposed
LS scheme is not restricted to exponential distributions. The
proposed scheme and four other LS schemes, i.e., no LS, LS
with random selection, LS with state probing," and LS with
perfect information, are comparatively evaluated with both
analytic models and simulation. Also, the simulation results
were compared against those obtained from the analytical
models.

A 16-node regular system12 is used as an example. For
convenience, the average task execution time, E (R) , is nor-
malized to 1 throughout our analysis, so that all time-related
parameters may be expressed in units of average task execution
time. The external task arrival rate is varied from 0.2 to 0.9.
The buddy set size is chosen to be 12, since the performance
improvement by increasing the buddy set size beyond 10 was
shown in [25] to be insignificant. The maximum number of
nodes to be probed randomly for each locally unguaranteed
task is restricted to 5 based on the finding in [3].

The computational overhead for each state probing, region-
change broadcast (b), and probability distribution update (U)

"The reasons for assuming this linear relationship is that we can easily
compute these coefficients using linear prediction and the data obtained from
simulations.

l 1 Only simulation results are shown for this scheme in our analysis.
''A system is said to be regular if all node degrees are identical.

is assumed to be 1, 1, and 2% of E (R) , respectively. The
transmission delay associated with each task transfer is as-
sumed to be 10% of E (R) , i.e., o1 = 0.1. The propagation
delay is assumed to be 1% of E(R) , i.e., 02 = 0.01. The
coefficients associated with the queueing delay due to task
transfers (03), region-change broadcasts (04), and state probes
(os) are set to 0.1, 0.05, and 0.01, re~pective1y.l~ These
parameter values will be used throughout our analysis, un-
less specified otherwise. Besides, for notational convenience,
{ e l , e2, * . . ,em}iq, ,q *,..., q m } is used to denote that a task
requires execution time ei with probability qi, 1 5 i 5 m.
If qi = qVi, then (41 , q 2 , . . . , q m } is condensed to q. Similar
notation is used to describe the distribution of task laxity.

For each combination of system configuration and external
task attributes, the simulation ran until it reached a confidence
level 95% in the results for a maximum error (e.g., one
half of the confidence interval) of 1) 2% of the specified
probability if Pdyn is the measure of interest, 2) 0.2% of
the specified response time value if mean response time is
the measure, 3) 5% of the task arrival rate if the maximum
system utilization is the measure, and 4) 5% of the ratio value
if task transfer-out ratio or frequency of task collision is the
measure. The number of simulation experiments needed to
achieve the above confidence interval is calculated based on
the assumption that the parameter to be estimated/measured
has a normal distribution with unknown mean and variance.

We will first describe how to determine the values of those
tunable parameters used in the proposed scheme. We will
then evaluate and compare different LS schemes with respect
to several important performance metrics derived from the
analytic models and simulation. In spite of a large number of
the parameters involved, the results are found to be quite robust
in the sense that the conclusion drawn from the performance
curves for a representative set of parameter values is valid
over a wide range of parameter values. We will also analyze
the effects of varying communication overheads and using
QL (instead of CET) as the measure of workload on the
performance of different schemes.

A. Determination of Tunable Parameters in
the Proposed Scheme

The accuracy of prior/posterior distributions depends on the
values of those tunable parameters, such as the probability
update interval Tp, the probability updating ratio a, and the
number (K) and values of thresholds of state regions. It is,
however, difficult to objectively determine an optimal combi-
nation of these parameters which gives accurate prior/posterior
distributions while incurring the least amount of overhead. The
main reasons for this difficulty are:

The choice of a and Tp depends on the variation of
workload characteristics, which is application-dependent.
The number and values of thresholds must be determined
by optimizing the tradeoff between the resolution of
state-space division and the overhead of the resulting
region-change broadcasts. It is impossible to determine

13All overhead-related parameters are based on the data obtained from
simulations.

750

(A = 0.8)
Task Attributes

ET = {0.4,0.8,

1.2, l.6}0.25,

L = {1,2,3}1/3

ET = {0.4,0.8,

1.2,1.6}0.25,
L = {0.4,0.8,

1.2,1.6}0.25,

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 7, JULY 1993

CET 5
0.0

0.8
1.6

2.4

3.2

4.0

4.8

5.6

6.4

7.2

0.0

0.8

1.6
2.4

3.2

4.0

4.8

5.6

6.4

7.2

Simulation

0.2133

0.5995
0.8547

0.9642

0.9929

0.9981

0.9996

0.9999

1.0000

1.0000

0.2094

0.6473

0.8890

0.9581

0.9857

0.9949

0.9980

0.9992

0.9997

0.9998

TABLE I
CET DISTRIBUTIONS FOR DIFFERENT TASK SETS UNDER DIFFERENT SCHEMES (LV = 16)

Analytic

0.2121

0.6216

0.8602

0.9611

0.9887

0.9961

0.9990

0.9998

1.0000

1.0000

0.2192

0.7380

0.9184

0.9662

0.9892

0.9923

0.9961

0.9984

0.9996

0.9999

No Sharinn
Analytic

0.2914

0.6474

0.8858
0.9820

0.9998

1.0000

1.0000

1.0000

1.0000

1.0000

Simulation

0.2810

0.6421

0.8897

0.9867

0.9998

1.0000

1.0000

1.0000

1.0000

1.0000

Analytic

0.2000

0.3867
0.5281

0.6316

0.7263

0.7816
0.8412

0.8824

0.9086

0.9293

the optimal number and values of thresh01

Simulation

0.2138

0.3710
0.5246

0.6362

0.7222

0.7874

0.8369

0.8751

0.9044

0.9259

State Prob. 1 Random Selection

0.2000

0.3867

0.5281

0.6316

0.7263

0.7816
0.8412

0.8824

0.9086

0.9293

0.2153

0.3749

0.5284

0.6406

0.7287

0.7902

0.8419

0.8803

0.9128

0.9301

simulation

0.2212

0.6202
0.8653

0.9665

0.9933

0.9979

0.9997

1.0000

1.0000

1.0000

0.2287

0.7210

0.9262

0.9741

0.9930

0.9980

0.9995

0.9998

1.0000

1.0000

Proposed Scheme

Analytic

0.2609

0.6920

0.9019

0.9811

0.9975

0.9982

0.9986
0.9992

0.9998

0.9999

0.2683

0.8614

0.9686

0.9860

0.9912

0.9930

0.9948

0.9978

0.9984

0.9990

jimulation

0.2568

0.6911

0.9080

0.9840

0.9987

0.9995
0.9998

0.9999

0.9999

0.9999

0.2853

0.8409

0.9770

0.9910

0.9957

0.9977

0.9988

0.9992

0.9995

0.9996

I without a S3. Since varying the order o
closed-form expression for this tradeoff. Moreover, the
optimal number and values of thresholds also depend on
both the laxity and the execution time distribution of the
task set.

Thus, we shall determine the tunable parameters for each task
set as follows.

S1. We fix all but one parameter of interest, and obtain
the performance curve as a function of this parameter
from which the optimal value for this parameter can be
determined. Next, we keep the first parameter of interest
fixed at its optimal value and vary another parameter of
interest (while keeping all the rest parameters fixed at
their originally chosen values). This process is repeated
until all the parameters are exhausted.

S2. We check whether or not the simulation result (with
P d y n as the performance metric) with those tunable
parameters chosen from S1 is consistent with, or close
to, that computed from the queueing model. If the
simulation result agrees with the analytic one, we tag
this set of parameters as one of candidate parameter
sets. Note that in the derivation of the performance
model, we assume that the prioriposterior distributions
be accurately constructed to obtain the analytic results.
Consequently, the performance curves obtained from
the queueing model serve as an upper bound. The set
of parameters which gives the same performance as
the analytic model is thus considered as a candidate
because it yields the correct prior/posterior distribution
given the computation/communication overheads.

parameters examined in
SI may give different values of parameters, we may
end up with more than one candidate parameter set
from which we choose the one with the smallest
P d y n and at the same time, reasonably small compu-
tation/communication overheads (e.g., the processing
power used, the frequency of region-change broadcasts,
or task transfer-out ratio) as an “optimal” parameter set.

Note that theoretically, the sets of parameters obtained
through the above three steps may not be globally optimal,
but our extensive simulations have shown them to yield
good results, as compared to other schemes. Moreover, our
simulation results indicate that the proposed scheme is robust
to the variation of the tunable parameters. The change in Pdyn
is shown to be less than for any given change in either
the threshold interval, the number of state regions, or the
values of thresholds. The interested readers are referred to [l]
for numerical examples and a detailed account of this. This
robustness is an important advantage coming from the use of
prior/posterior distributions and Bayesian analysis.

B. Evaluation of Important Performance Metrics

I) Distribution of CET, p ~ (.): The CET distribution can
be obtained by using either (10) or (20), depending on the
scheme under consideration. Table I gives some numerical
examples of the CET distribution with respect to different
distributions of task laxity for different LS schemes. The CET
distribution obtained via simulation is shown to be very close
to the analytic solution, with a 5% error in the cumulative
distribution, indicating the validity of the analytic models. So,

SHIN AND HOU: ADAlTIVE LOAD SHARING SCHEMES 75 1

0.9 l*O* - 1 -

0 . 8 t -

I I I I I I I

0.2 I I I I I 1 I
ao 1.0 2 0 3.0 4.0 5.0 6.0 7.0

A -.- A NoLS(analytic)
A A NoLS(simulation)
o - o Proposed scheme (analytic)
* Proposed scheme (simulation)
0 - - 0 Quasi-perfect (analytic)

1
Cumulative execution time (0

Fig. 4. Probability distribution of cumulative execution time for the task set with X = 0.8, ET = {0 .4 .0 .8 ,1 .2 ,1 .6}~ 2 5 , and L = { 1 , 2 , 3}1/3.

No LS (analytic)
No LS (simulation)
Proposed scheme (analytic)
Proposed scheme (simulation)
Quasi-perfect (analytic)

Cumulative execution time (CET)

Fig. 5. Probability distribution of cumulative execution time for the task set with X = 0.8, ET = {0.027.0.27, 2 . i } l / 3 , and L = { l r 2 , 3 } 1 / 3 .

we shall henceforth use the numerical results derived from
the analytic models in the subsequent discussion, unless stated
otherwise.

CET Distributions with respect to different distributions of
task execution time are plotted in Fig. 4 and Fig. 5 with
X = 0.8. The numerical results are so close to one another
among the state probing scheme, the random selection scheme,
and the proposed scheme that only one curve corresponding
to the proposed scheme is plotted. (Also, the results for no
LS obtained from analytic modeling and simulations are so
close to each other that they are almost indistinguishable
in Figs. 4-5.) The CET distributions under different LS
schemes approach unity much faster than those without U,

thus justifying the need of LS to handle bursty task arrivals
in distributed systems. Besides, the CET distributions vary
significantly as the distribution of task execution time varies;
QL is thus not adequate to measure the workload of a node.
More on this will be discussed later.

One interesting result is that the CET distribution associated
with the proposed scheme does not approach unity with the
fastest speed (Table I). However, the proposed LS scheme does
have a higher P(T 5 t) than others for Vt E (0, T,,], where
T,,, is the largest task laxity in the system. This is because the
proposed scheme, instead of trying to minimizing the average
CET on each node, aims to make each node's CET less than
the laxity of any arrived task, so that Pdyn can be minimized.

152 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 7, JULY 1993

A - - A NO LS (analytic)
A A No LS (simulation)
+ - - - . e - + Random selection (analytic) - - - State probing (simulation) - - * w Focused address. (simulation)
0- o Proposed scheme (analytic)
0 0 Proposedschemt(simulation)

% % Quasi-pedect(simulation)
U -. - O Quasi-perfect (analytic)

1.oboBal1 012 013 - L 0; 01s 0!7 018 0!9

/

Task anival rate

Fig. 6. Probability of dynamic failure (Pdyn) versus task arrival rate for a system with 16 nodes. (Task set: ET = {0.4,0.8, 1.2,1.6}0.25, ~5 = {1,2,3)1/3.)

Another interesting result is that CET distributions vary with
the distributions of task laxity even when the distributions of
task execution time are the same. This is because of the real-
time application-oriented transfer policy used, where the laxity
of an incoming task, rather than certain thresholds as in [3],
[25], and [40], is used to determine whether or not to transfer
a task. Consequently, we try to minimize Pdyn with respect to
the distributions of both task laxity and task execution time,
instead of balancing load only with respect to the distribution
of task execution time.

2) Probability of Dynamic Failure: A dynamic failure oc-
curs if the sum of the queueing-for-execution time and the
task-transfer (if any) time exceeds the laxity of a task. Let
PdynJd,e, Pdyn(d, and Pdyn denote the probability of missing
the deadline of a task with execution time e and laxity d,
the probability of missing the deadline of a task with laxity
d, and the probability of dynamic failure, respectively. Then,
Pdyn = z j = o P d y n l j q j , and, according to our queueing
model, the other two probabilities can be expressed in terms
of rj and q j as:

1) Noncooperative scheme (no LS): P d y n ~ d , e - Pdynld =
-yd+l, where yj is calculated from (10) with X(T) = X
V T .

T ,

-

2) LS scheme with random selection:

and
m

i = l

where cR(e) is the communication overhead associated
with a task with execution time e under the random

selection scheme, ns = Ld/cR(e)J, and ~j is obtained
from (10) using (YT in (21) and / 3 ~ in (22).

3) Perfect information scheme: Pdynld,e = Pdynld = Yd+l,

where y j is calculated from (10) using X(T) in (18).
4) The proposed scheme:

N

i = O

and
m

where cp(e) is the communication overheads associated
with a task with execution time e under the proposed LS
scheme, nz = Ld/cp (e)] , and rj is obtained from (20)
using (YT in (21) and PT in (23).

Figs. 6 and 7 are the plots of P d y n versus task arrival rate
(A), and P d y n p versus task laxity (d), obtained from both
the analytic models and simulation. Table I1 shows numerical
examples of Pdynld under different schemes. The random
selection scheme outperforms the state probing scheme when
the system load gets heavy or the task laxity gets tight, e.g.,
L = { 1 ,2 ,3} as compared to L = {I} in Table II(b). The
reasons for this are: 1) under heavy loads, most nodes are
likely to become unable to guarantee tasks, which will in
turn make state probing unsuccessful most of the time, and
2) probing other nodes before sending an unguaranteed task
introduces two communication messages (one for request and
the other for response), whereas the random selection scheme
does not require such message. This phenomenon becomes
more pronounced under stringent time constraints.

Our analytic and simulation studies have shown the pro-
posed LS scheme to be significantly better than both the
state probing scheme and the random selection scheme in

SHIN AND HOU: ADAPTIVE LOAD SHARING SCHEMES 753

I I I I I I

I I I I I

1.0 15 2.0 25 3.0 3.5 4.0 4.5 5.0

A - . - A NoLS
.+ .-..- + Randomselection
e - - -e State probing

...... H Focusedaddressing
o - o Proposed scheme

0 Quasi-perfect 0 -.-

-. Laxity d

Fig. 7. Probability of tasks with laxity d missing deadlines (Pdynld) versus task laxity d for a system with 16 nodes. (Task set: X = 0.8,
ET = {0.4,0.8,1.2.1.6}0 2 5 , L = 1 1 . 2 . 3 . 4 , 5)o 2 .)

meeting deadlines. This is in sharp contrast to the common
notion [3] that simple LS schemes perform nearly as well
as complex ones for general-purpose systems. By making
judicious exchangehse of state information, the proposed LS
scheme-though it incurs more computation/communication
overheads-achieves notable performance improvement over
those simple LS schemes.

The proposed LS scheme is also superior to the focused
addressing scheme, because in the latter

1) The focused node or its successor node-the node that
the focused node will re-transfer the task to-among
those “seen” capable is basically chosen randomly, thus

t

increasing the chance of two nodes sending their unguar-
anteed tasks to the same node.

2) Not many RFB messages are issued under light loads,
making a node unable to keep its observation of other
nodes up-to-date and thus increasing the chance of
transferring a task to an incapable focused node. This
becomes intolerable for tasks with tight laxities.

3) Requests and replies for bids become excessive under
heavy loads, thus increasing communication delays. The
state information collected via periodic state exchange or
the bids sent from other nodes may become out-of-date.

The proposed scheme performs, however, worse than the
quasi-perfect LS scheme because of the processing over-
head (introduced by the probability update process) and the
communication delays (in task transfers and region-change
broadcasts). See Table 111 for the case where all process-
inglcommunication overheads are set to zero except the task
transmission delay which remains 10% of the task execution
time. Without considering all the processingkommunication
overheads, the performance of the proposed scheme is very
close to that of the quasi-perfect LS scheme. This implies

that ignoring implementation overheads underestimates Pdyn,
which is unacceptable for critical real-time applications.

3) Maximum System Utilization, Amax: The system utiliza-
tion is defined as the ratio of external task arrival rate (A) to the
system service rate (l / E (R)) . The service rate is normalized
to 1 in our analysis, and thus, the system utilization is simply A.
Since Pdyn increases as system load gets heavier, there exists
an upper bound for A, termed as maximum system utilization
A,,,, below which Pdyn 5 6 can be guaranteed for some
t > 0. Fig. 8 shows some numerical examples of A,,, versus
t. Among all LS schemes, the proposed scheme offers the
performance closest to that of the quasi-perfect LS scheme,
and usually outperforms both the state probing scheme and
the random selection scheme by an order of magnitude.

4) Mean Response Time: Probabilistically, the mean re-
sponse time (MRT) is the sum of the average CET on a
node, CEO i p ~ (i) , and the average required execution time,
E (R) = 1, i.e., S = CzoiipT(i) + 1. It is conventionally
used as a global system performance index in general-
purpose distributed systems, and many approaches have been
developed under the goal of minimizing MRT. Table IV
gives MRT with respect to different task attributes under
different schemes. MRT increases as the system load increases
[Table IV(a)], or the variance of either the distribution of task
execution time or the distribution of task laxity gets large
[Table IV(b) and (c)].

MRT associated with the proposed scheme varies least
drastically with the change of distributions of task laxity and/or
task execution time as compared to those associated with other
LS schemes. This is due to the use of Bayesian analysis to
choose a receiver node for task transfer. Moreover, our LS
scheme outperforms others (except for the quasi-perfect LS
scheme) even when all the computational overheads are taken
into account and MRT is used to measure their performance.

754

(A = 0.8)
Task Attributes
ET = (0.4,0.8,

1.2,1.6}0.25,
L = {1,2,3}1/3
E T = (0.027,

0.27,2.703}1/3,
L = {1,2,3}1/3
ET = {0.4,0.8,

1.2, 1.6}0.25,
L = (1)

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 7, JULY 1993

Lax. No State
d Sharing Probing
1 0.6184 0.1515
2 0.4336 4.779 x

3 0.2894 3.514 x

1 0.7121 0.2476
2 0.5896 5.086 x lo-'
3 0.4923 4.994 x

1 0.5894 0.1293

TABLE I1
Pdynjd VERSUS TASK LAXITY d FOR DIFFERENT TASK SETS UNDER DIFFERENT SCHEMES (lv 16). (a) = 0.8. (b) = 0.4

Proposed
Scheme

2.438 x lo-'
3.034 x
7.156 x

4.342 x lo-'
6.432 x
3.617 x

2.094 x lo-'

Quasi-
Perfect

5.247 x 10W3
6.316 x
5.604 x lo-*
3.274 x lo-'
2.316 x

1.604 x

5.946 x

(a)

Arrival Rate
(4

0.8

0.4

Lax. No State Random Focused Proposed Quasi-
d Sharing Probing Selection Addressing Scheme Perfect
1 0.6184 3.027 x lo-' 4.325 x 2.878 x 1.862 x lo-' 5.247 x

2 0.4336 3.161 x 2.946 x 2.874 x 2.389 x 6.316 x
3 0.2894 2.763 x 8.846 x 5.323 x 1.024 x 5.604 x

1 0.1578 1.875 x 7.894 x 4.275 x lo-' 1.870 x 4.746 x
2 0.0479 8.764 x lo-' 3.376 x 9.619 x lo-' 3.678 x lo-' 1.042 x

3 0.0176 4.763 x lo-" 5.416 x lo-' 5.136 x lo-'" 0 0

This is due to the fact that, to minimize Pdyn, the proposed
scheme aims to share all the unguaranteed tasks among capable
nodes (as proven in Theorem 2), thus at the same time
balancing the load in the system.

5) Task Transfer-out Ratio, T: The task transfer ratio, T , is
defined as the fraction of arrived tasks (both external and
transferred-in tasks) that have to be transferred out, and can be
expressed as T = y3+1q3. T is a measure of the traffic
overheads due to task transfers.

Table V gives T for various task attributes under different
schemes. Generally, T increases as the system load gets heavier
and/or the task laxity gets tighter. Moreover, as the variance
of task execution time increases, the task transfer-out ratio
increases. This is because a node easily becomes incapable
of guaranteeing tasks upon the arrival of long tasks or tasks
with a short laxity, thus resulting in more task transfers under
these conditions.

Under light and medium loads, the task transfer ratios as-
sociated with different schemes are very close to one another.

occur, and thus the location policies employed by different
schemes have little influence on system performance. When
the system load gets heavier, the way of choosing a node
for task transferhetransfer becomes more important. The state
probing scheme has a task transfer ratio closest to that of the
quasi-perfect LS scheme since it always checks the capability
of a node before transferring a task. The proposed scheme
is slightly inferior to the state probing scheme due to the
use of imperfect observation to probabilistically decide on the
location of task transfer. However, the proposed scheme does
not require, at the time of decision, the additional round-trip
communication associated with state probing which may be
detrimental to critical-time applications.

The focused addressing scheme performs slightly better than
the proposed scheme under light loads. However, when the
system load gets heavier, the performance of the focused
addressing scheme deteriorates due to the increased proba-
bility of making incorrect LS decisions based on o~t-of-date '~
information.

This is because most Of the tasks can be guaranteed locally
or with at most one task transfer; not many task-retransfers

14as a result of the increased communication delay caused by an excessive
number of bidding messages.

SHIN AND

(A = 0.8)
Task Attributes

ET = {1}
ET = {0.4,0.8,1.2,1.6}o.p6 L = {1,2,3}1/3

HOU:

No State Random Focused
LS Prob. Selection Address.

3.024 1.796 1.782 1.763
3.521 1.872 1.836 1.789

ADARIVE LOAD SHARING SCHEMES

ET = (0.4,0.8,
1.2, ~ . ~ } o , z s

755

ET = (0.027,0.27,2.703}1/3 6.106 2.174 2.101 1.979
L = (1) 3.521 1.547 1.536 1.502
L = {1,2}0,5 3.521 1.688 1.629 1.679
L = {0.4,0.8,1.2,l.6}0.2~ 3.521 1.812 1.604 1.579

probpbility of dynamic failure

(A = 0.4)
Task Attributes
ET= (1)

L = {1,2,3}1/3 ET = {0.4,0.8, l.2,1.6}0.zs

L = (1)
L = { 1,2}0.5

1.2,1.6}0.2~ L = (0.4,0.8,1.2,1.6}0.~6

ET = {0.027,0.27,2.703}1/~

ET = {0.4,0.8,

Fig. 8. Maximum system utilization versus the probability of dynamic failure Pdyn for a system with 16 nodes.

TABLE IV
COMPARISON OF MEAN RESPONSE TIME AMONG DIFFERENT LS SCHEMES. (a) MRT VERSUS TASK ARRIVAL RATE FOR

A TASK SET WITH ET = {0.4.0.8.1.2,1.6}0 25 AND L = { 1,2.3}1,3. (b) MRT FOR DIFFERENT TASK SETS UNDER
DIFFERENT LS SCHEMES (A = 0.8). (c) MRT FOR DIFFERENT TASK SETS UNDER DIFFERENT LS SCHEMES (A = 0.4)

Prob. Selection Address. Scheme Perfect
1.154 1.117 1.115 1.117 1.118 1.108
1.406 1.302 1.268 1.265 1.257 1.236
1.868 1.498 1.483 1.466 1.446 1.439
3.521 1.872 1.836 1.789 1.720 1.668

(a)

No State Raodom Focused Proposed Quasi-
LS Prob. Selection Address. Scheme Perfect

1.348 1.267 1.264 1.259 1.248 1.240
1.406 1.302 1.268 1.265 1.257 1.236

1.406 1.198 1.184 1.165 1.167 1.154
1.406 1.250 1.242 1.233 1.228 1.214
1.406 1.211 1.190 1.162 1.163 1.148

1.806 1.350 1.335 1.314 1.316 1.301

1.822 1.804 &
1.576 1.547
1.418 I 1.386

6) Frequency of Task Collision, ftc: The frequency of task
collision is defined as the fraction of transferred tasks that are
not guaranteed on remote nodes after their transfer. This is
a measure for the capability of the LS algorithms in reducing
the probability of task re-transfers. Fig. 9 shows the simulation
results for different LS schemes.

Generally, ftc increases as the system load gets heavier,
the task laxity gets tighter, andlor as the variance of task
execution time increases for the same reason that leads to
the increase of T in Section V-B5. The state probing scheme
has the lowest frequency of task collision, because it always
checks the capability of a node (and thus maintainsluses the

756

0.4
0.6
0.8

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 7, JULY 1993

0.058 0.068 0.056 0.056 0.052
0.114 0.156 0.116 0.112 0.107
0.185 0.338 0.241 0.224 0.184

TABLE V
COMPARISON OF TASK TRANSFER-OUT RATIO AMONG DIFFERENT LS SCHEMES. (a) T VERSUS TASK ARRIVAL. RATE FOR THE TASK SET

WITH ET = {0.4,0.8,1.2,1.6}0.~~ AND L = {1,2,3}1/3 UNDER DIFFERENT LS SCHEMES. (b) X = 0.8 (c) X = 0.4

I Arrival Rate I State I Random I Focused I Prop. I Quasi- I
(A)
0.2 I 0.019 I 0.024 I 0.020 I 0.021 I 0.019

I Prob. I Selection I Address. I Scheme I Perfect

(c)

I I I I I / '

- l - - l - - l - - l - - l . c -
I I 1 I . f

I I I I I : I

- -7

+ .-..-+
- - --
.......

0-0

Random selection (simulation)
State probing (simulation)
Focusbd address. (simulation)
Proposed scheme (simulation)

Task d v a l rate

Frequency of task collision versus external task arrival rate for a 16-node system with a task set: ET = {0.4 .0 .8 .1 .2 .1 .6 }0 .~~ and L = {1,2,3}1/3. Fig. 9.

most up-to-date state information) before transferring a task.
The random selection scheme, on the other hand, does not use
any state information for LS decision, and thus necessarily has
the highest frequency of task collision. The ftc of the proposed
scheme lies between that of state probing and that of focused
addressing. The reason for the focused addressing scheme to
be inferior to the proposed scheme is that the state information

of other nodes is collected via periodic information exchanges
and/or in the bids received in previous RFB activities, and may
be obsolete at the time of choosing a focused node. That is, the
focused node is likely to be unable to guarantee the task and
needs to re-transfer the task based on the bids received in the
current RFB activity. The proposed LS scheme may also use
obsolete state information, but it neutralizes the undesirable

SHIN AND HOU: ADAPTIVE LOAD SHARING SCHEMES 7.57

Fig. 10. Prob, ility oi

0.10 1 1 I I /
I I 1 I /

+ .-..--+ Random selection
*---• stateprobing
m....... pocured.dQc*

0-0 pmpoecdschcmc
.O

' dynamic failure I'dyn versus task transfer costs for a system of 16 nodes. (Task set: A
L = {I, 2,3}1/3 .)

= 0.8, ET = {0.4,0.8,1.2,1.6}0.25,

effect of using out-of-date information with Bayesian decision
analysis.

7) Sensitivity to Communication Delays: There are two types
of communication delay needed to be considered in load
sharing: i) the state-collection delay incurred from region-
change broadcastsistate probes, where the queueing delay (or
the queueing-related costs, 03, 04, and 0 5) plays a dominat-
ing role; ii) the delay associated with task transfers, where
both the queueing delay and the transmission delay (or task
transmission cost 01) dominate. To study the impact of com-
munication delay on the performance, Pdyn was computed
for each scheme with 1) the task transmission costs being
5, 10, 15, and 20% of the task execution time (i.e. 01 =
0.05,0.10,0.15,0.20), and 2) the queueing-related costs ob-
tained from simulation (i.e. 0 2 , 03, 04, and 05) being halved,
doubled, and tripled.

As shown in Fig. 10 and Table VI(a), both the state probing
scheme and the random selection scheme are more sensitive
to the variation of transmission delay as compared to the
proposed scheme. The performance degradation of the state
probing scheme occurs, because, as the task transmission delay
increases, other tasks may arrive at the node probed between
the time it was probed and the time an unguaranteed task of
the probing node arrived at the probed node. Thus, there is
not much correlation between the state of the probed node
when it was probed and the state of that node when an
unguaranteed task arrived. (Similarly, one can reason about the
performance degradation of the focused addressing scheme.)
The performance of the random selection scheme degrades as
the transmission delay increases, due to the combined effect of
higher task transfer-out ratio (Table V) and larger transmission
cost.

Fig. 11 [Table VI(b)] shows the effect of varying queueing-
related costs on the performance of LS schemes. The state
probing scheme is most sensitive to the variation of the queue-

ing delay because, in addition to suffering the same effect
as varying the transmission delay, the state probing scheme
generates two additional messages per probe increasing the
possibility of a task missing its deadline, especially when the
queueing delay is large. Varying queueing-related costs have
the same effect as varying transmission delay on the random
selection scheme.

By contrast, the proposed scheme is made less susceptible
to both the queueing delay and the transmission delay by us-
ing prior/posterior distributions to characterize the correlation
between the observed state and the true state.

8) CET Versus QL as the Measure of Workload: All dynamic
LS schemes use information on the workload of each node to
determine when and where to transfer a task. As discussed
before, QL is not appropriate to describe the workload state
of a node for real-time applications. To show this, we ran
simulations with QL as the state and compared the result
with that obtained from the analytic solution with CET as the
state. As shown in Table VII, the performance of the proposed
scheme with QL as the state is close to (and sometimes
worse than) that of the random selection scheme. This is
because the proposed scheme essentially degenerates to the
random selection scheme with 1) improper QL information
which is correlated to CET in an unpredictable manner,
and 2) more overheads due to region-change broadcasts and
probability updates. The performance degradation becomes
more pronounced as the variance of the distribution of task
execution time gets larger.

VI. CONCLUDING REMARKS
Queueing models are developed to quantitatively assess the

proposed scheme as well as three other schemes. Instead of
the commonly-used QL, CET is used as the load state of each
node. Each node's workload most relevant to a real-time task

758

(A = 0.8)
Q-Delay Cafficienta

halved

values

simulation

doubled

from

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 7, JULY 1993

Lax. State Random
d Prob. Selection
1 4.091 x 8.415 x
2 3.758 x lo-' 1.362 x lo-'
3 2.813 x 7.145 x
1 0.1515 0.1286

3 3.514 x lo-' 1.447 x
1 0.2134 0.1823
2 2.801 x 7.216 x lo-$

2 4.779 x 10-3 2.302 x 10-3

(times queueing-related coefficients)

Fig. 11. Probability of dynamic failure P d y n versus queueing delay coefficients for a system of 16 nodes. (Task set: X = 0.8, ET = { O . ~,

tripled

0.8,1.2,
L = { l . 2 ,3} l , 3 .)

3 5.513 x 2.875 x 1.324 x lo-' 9.578 x
1 0.4194 0.2458 0.2173 4.245 x
2 7.475 x lo-' 1.675 x 1.267 x lo-' 7.213 x
3 3.842 x 2.334 x 1.726 x lo-' 2.046 x

TABLE VI

UNDER DIFFERENT SCHEMES. (a) EFFECI OF TASK TRANSFER COSTS ON Pd,,. (b) EFFECT OF QUEUEING DELAYS ON Pdyn
EFFECTS OF COMMUNICATION DELAY ON P d y n FOR A TASK S E T WITH ET = {0.4.0.8,1.2,1.6}0 25 AND L = {1,2,3},/3

Transfer Costa Prob.
0.1090 I 3 I 3.257 x 5%

1.167 x
0.1515 'I

20%

2596

4.779 x 10-3
3.514 x lo-'

0.1834
7.524 x lo-'

0.2068
5.851 x 10-5

1.878 10-4

3.869 x 10-4

1.154 x

0.2550
1.394 x lo-'

(a)

Prop.
Scheme

1.845 x
1.654 x lo-'
1.987 x
2.438 x
3.034 x l W 4
7.156 x
3.725 x
9.845 x
1.436 x lo-'
6.029 x
1.346 x

6.486 x lo-'
3.421 x
6.857 x

2.112 x 10-5

610.25,

can thus be accurately modeled. Moreover, by including all
computationlcommunication overheads, the proposed analytic
models provide a means of evaluating the absolute real-time

performance of LS schemes. The assumptions and approxi-
mations made in our analysis were checked with event-driven
simulations.

SHIN AND HOW: ADAPTIVE LOAD SHARING SCHEMES

Task Attributes
ET = {0.4,0.8,

1.2, 1.6}0.25,
L = {1,2,3}1/3
E T = (0.027.

759

d (state:CET) (state:QL) (state:CET)
1 0.1286 0.1085 2.438 x
2 2.302 x 1.625 x 3.034 x low4
3 1.447 x 9.604 x 7.156 x
1 0.1856 0.2492 4.342 x

TABLE VI1
PERFORMANCE COMPARISON OF USING CETiQL AS THE MEASURE OF WORKLOAD

0.27, 2.703}1/3,
L = {1,2,3}1/3
ET = {0.4,0.8,

I X = 0.8) I laxity I Random Selection I Proposed Scheme 1 Proposed Scheme

2 3.543 x 4.924 x lo-' 6.432 x

3 2.967 x 3.142 x 3.617 x

8.242 x lo-* 7.606 x 2.094 x

Task Arrival rate
Der node

1 = 0.8

System Laxity P d y n (d

Attribute d
Homogeneous System

1 5 i 5 64)
Inhomogeneous System

(X i = 0.8,

(X j = 0.65, X16+j = 0.95,
X s ~ + j = 0.65, X*+j = 0.95,

1 = 0.6

3.326 x
8.798 x
1.266 x lo-'
1.470 x

9.872 x lo-'
5.855 x 10-6

1 5 j 5 16)

(X i = 0.6, 2 2 . 5 6 2 ~ lo-'
3 6.745 x lo-' 1 5 i 5 64)

Inhomogeneous System 1 1.565 x lo-'

Xsa+j = 0.65, X,a+j = 0.95, 3 3.682 x lo-'

Homogeneous System 1 5 . 0 7 9 ~

(X j = 0.65, Xl6+j = 0.95, 2 9.782 X lo-'

1 5 j 5 16)

Both the analytic and simulation results indicate that by us-
ing judicious exchangehse of state information and Bayesian
decision mechanisms, the proposed LS scheme makes a signif-
icant improvement in minimizing Pdyn over those simple LS
algorithms. This is in sharp contrast to the common notion
that simple LS algorithms yield performance close to that
of complex algorithms for general-purpose systems where
minimizing the mean response time is the main concern. Since
missing a task deadline can cause a disastrous accident in a
real-time environment, a more complex, but intelligent, LS
scheme should be employed to minimize PdyTL.

We assumed a first-come-first-served policy on each node:
a newly-arrived task is inserted at the end of task queue if
it can be guaranteed on that node, and will otherwise be
considered for transfer. This policy is simple and ensures to
preserve the existing guarantees. However, to reduce I'dyn,

the minimum-laxity-first-served policy is shown to be better
[41] for queueing the incoming tasks at each node. That is, the
tasks on a node are ordered by their laxities, and a task with
the minimum laxity is always executed first by the node. If the
minimum-laxity-first-served policy is employed, the transfer
policy would not be simply of the threshold type. For example,
a newly-arrived task may be inserted somewhere in the task

queue, not necessarily at the end of the queue, thus possibly
violating some of existing guarantees. (Such tasks, if possible,
must be transferred to other capable nodes.) How to modify
the parameters CYT and ,& to account for this transfer policy
is currently under investigation.

Though we considered only homogeneous systems, the
proposed scheme can also be applied to heterogeneous systems
where different nodes may have different arrival rates of exter-
nal tasks. Our simulation results indicate that the performance
improvement is even more pronounced for heterogeneous
systems than homogeneous ones with the same average task
arrival rate (see Table VIII). This is because that increasing
the degree of heterogeneity increases the possibility that un-
even task arrivals temporarily make some nodes incapable of
guaranteeing tasks while leaving other nodes idlehnderloaded.
This situation can be effectively handled, and the processing
power of those idlehnderloaded nodes can be fully utilized
by using the proposed LS scheme. How to extend our analytic
models to include the case for heterogeneous systems is an
interesting, but difficult, matter.

APPENDIX
VERIFICATION OF FLOW CONSERVATION

To verify the correctness of (15), one has to show that flow
conservation holds for the system with the random LS scheme.

Corollary I : For the random LS scheme, a k p ~ (k) =
b k .

Proof:

x m k-1 53

k=O k=O i = l J = O
7n zc cx

= c Ari,Y,+l

760 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 7, JULY 1993

where the second equality follows from interchanging the
summation indexes while preserving the range of summation
appropriately, and the third equality follows from q i j = 0 for

To verify the correctness of (16), one has to show that
flow conservation holds for the system with the proposed LS
scheme, i.e.,

Corollary 2: When those tasks being rejected are not con-
sidered,

j ? T m + l . 0

k=O k=O

for the proposed scheme.
Proof:

j = 1

However, from Corollary 1,

k=O j=1

Inconsistency results from the nonzero probability of dynamic
failure, since the difference, ~ j ” + ~ , is the probability that a
task with laxity j will fail to complete in time. If these failed
tasks are not rejected or continuously transferred from node
to node, thus conserving task flow, and/or the probability of
dynamic failure is negligibly small, the summation in (16),
l+yj+l+y;+l+...+y;;: can be replaced by Cr=o$+l =
1/(1 - y j) , thus PT = A @ . j ~ j + 1 / (1 . - yj+l) , and

0
To verify the correctness of (18), one has to show that flow

conservation holds for the system with the quasi-perfect LS
LS scheme.

Corollary 3: Without considering those tasks being re-
jected and declared not to meet their deadlines, we have

cp=o P k p T (k) = Cr=r~ QkPT(k).

33

for the quasi-perfect LS scheme.

Proof:

T-

j = O

= A.

Inconsistency again results from the nonzero probability of
dynamic failure. If this probability (or 77) is negligibly small
and/or the failed tasks are continuously transferred among
nodes, task flow will be conserved. 0

ACKNOWLEDGMENT

The authors wish to thank Prof. M. Srinivasan at the
University of Michigan, and the anonymous reviewers for
their valuable comments on an early draft of this paper. Y-
C. Chang’s assistance in preparing event-driven simulation
programs is also gratefully acknowledged.

REFERENCES

K. G. Shin and C.-J. Hou, “Design and evaluation of effective load
sharing in distributed real-time systems,” in Proc. Third IEEE Symp.
Parallel and Distributed Processing, Dec. 1991, pp. 670-677. Also
IEEE Trans. Parallel Distributed Sysf., to be published.
M. Livny and M. Melman, “Load balancing in homogeneous broadcast
distributed systems,” in Proc. ACM Compuf. Network Performance
Symp., 1982, pp. 47-55.
D. L. Eager, E. D. Lazowska, and J. Zahojan, “Adaptive load sharing
in homogeneous distributed systems,’’ IEEE Trans. Software Eng., vol.
SE-12, no. 5, pp. 662-675, 1986.
C. M. Krishna and K. G. Shin, “Performance measures for multiproces-
sor controllers,” in Performance ’83, A. K. Agrawala and S. K. Tripathi,
Eds., North-Holland, 1983, pp. 229-250.
K. G. Shin, C. M. Krishna, and Y. H. Lee, “A unified method for
evaluating real-time computer controllers its application,” IEEE Trans.
Automat. Confr., vol. AC-30, pp. 357-366, Apr. 1985.
M. H. Woodbury and K. G. Shin, “Evaluation of the probability of
dynamic failure and processor utilization for real-time systems,” in Proc.
IEEE Real-Time Sysf. Symp., 1988, pp. 222-231.
T. P. Yum and H.-C. Lin, “Adaptive load balancing for parallel queues
with traffic constraints,” IEEE Trans. Commun., vol. COM-32, pp.
1339-1342, Dec. 1984.
Y. T. Wang and R. J. T. Morris, “Load sharing in distributed systems,”
IEEE Trans. Comput., vol. C-34, pp. 204-217, Mar. 1985.
T. C. K. Chou and J. A. Abraham, “Distributed control of computer
systems,” IEEE Trans. Compuf., vol. C-35, June 1986.
C.-Y. H. Hsu and J. W . 4 . Liu, “Dynamic load balancing algorithms
in homogeneous distributed systems,’’ in IEEE Proc. 6th Inf. Conf
Distributed Compuf. Sysf., 1986, pp. 216-223.
A. Weinrib and S. Shenker, “Greed is not enough: Adaptive load sharing
in large heterogeneous systems,” in IEEE INFOCOM’88-Conf Comput.
Commun. Proc., 1988, pp. 986-994.
J. A. Stankovic, “Simulation of three adaptive, decentralized controlled,
job scheduling algorithms,” Comput. Networks, vol. 8, pp. 199-217,
1984.
-, “An application of Bayesian decision theory to decentral-
ized control of job scheduling,” IEEE Trans. Comput., vol. C-34, pp.
117-130, Feb. 1985.

SHIN AND HOU: ADAPTIVE LOAD SHARING SCHEMES 761

A. B. Barak and A. Shiloh, “A distributed load-balancing policy for
a multicomputer,” Sofrware-Practice and Exper., vol. 15, no. 9, pp.
901-913, 1985.
R. G. Smith, “The contract net protocol: High-level communication and
control in a distributed problem solver,” IEEE Trans. Comput., vol. C-29,
pp. 1104-1113, Dec. 1980.
P. Krueger and R. Finkel, “An adaptive load balancing algorithm for
a multicomputer,” Tech. Rep. 539, Dep. Comput. Sci, Univ. Wiscon-
sin-Madison, Apr. 1984.
J. A. Stankovic, K. Ramamritham, and S . Chang, “Evaluation of a
flexible task scheduling algorithm for distributed hard real-systems,”
IEEE Trans. Comput., vol. C-34, pp. 1130-1141, Dec. 1985.
J. F. Kurose and R. Chipalkatti, “Load sharing in soft real-time
distributed computer systems,’’ IEEE Trans. Comput., vol. C-36, pp.
993-999, Aug. 1987.
T. L. Casavant and J. G. Kuhl, “Analysis of three dynamic distributed
load-balancing strategies with varying global information requirements,”
in IEEE Proc. 7th Int. Conf Distributed Comput. Syst., 1987, pp.
185- 192.
S. Zhou, “A trace-driven simulation study of dynamic load balancing,”
IEEE Trans. Software Eng., vol. SE-14, pp. 1327-1341, Sept. 1988.
K. Ramamritham, J . A. Stankovic, and W. Zhao, “Distributed sched-
uling of tasks with deadlines and resource requirements,” IEEE Trans.
Comput., vol. C-38, pp. 1110-1123, Aug. 1989.
R. Mirchandaney, D. Towsley, and J. A. Stankovic, “Analysis of the
effect of delays on load sharing,” IEEE Trans. Comput.. vol. C-38, pp.
1513-1525, Nov. 1989.
L. M. Ni, C. W. Xu, and T. B. Gendreau, “A distributed drafting
algorithm’ for load balancing,” IEEE Trans. Software Eng.. vol. SE-I 1,
no. 10, pp. 1153-1161, 1985.
A. Ha6 and X. Jin, “Dynamic load balancing in a distributed system
using a decentralized algorithm,” in IEEE Proc. 7th Int. Conf Distributed
Comput. Syst., Sept. 1987, pp. 170-184.
K. G. Shin and Y.-C. Chang, “Load sharing in distributed real-time
systems with state change broadcasts,” IEEE Trans. Comput., vol. C-38,
pp. 1124-1142, Aug. 1989.
-, “A coordinated location policy for load sharing in hypercube
multicomputers.” J. and Parallel Distributed Comwt., 1993, to be
published:
R. Mirchandanev. D. Towslev. and J. A. Stankovic, “Adaptive load shar-
ing in heterogeneous systems,” in IEEE Proc. 9th Int. Chf: Distributed
Comput. Syst., 1989, pp. 298-306.
L. M. Ni and K. Hwang, “Optimal load balancing in a multiple processor
system with many job classes,” IEEE Trans. Software Eng., vol. SE-1 1,
no. 5, pp. 491-496, 1985.
H.-Y. Chang and M. Livny, “Distributed scheduling under deadline
constraints: A comparison of sender-initiated and receiver-initiated
approaches,” in Proc. IEEE Real-time Syst. Symp., 1986, pp. 175- 181.
K. J. Lee and D. Towsley, “A comparison of priority-based decentralized
load balancing in distributed computer systems,” in Proc. Performance
’86, May 1986, pp. 70-78.
R. Alonso and L. L. Cova, “Sharing jobs among independently owned
processors,” in IEEE Proc. 8th Int. Conf Distributed Comput. Syst., - .
1988, pp. 282-288.
M. H. DeGroot, Optimal Statistical Decisions. New York: McGraw-
Hill, 1970.
K. G. Shin and Y.-C. Chang, “Load sharing in hypercube multicomput-
ers for real-time applications,” in Proc. 4th Conf Hypercube, Concurrent
Comput., and Appl., 1989, pp. 617-622.
S. Ross, Applied Probability Models with Optimization Applications.
San Francisco, CA: Holden-Day, 1970.
D. Gross and C. Harris, Fundamentals of Queueing Theory, second ed.
New York: Wiley, 1985.
M. L. Chaudhry and J. G. C. Templeton, A First Course in Bulk Queues.
New York: Wiley, 1983, ch. 2-3, pp. 58-61, 127-130.
L. Kleinrock, Queueing Systems, Volume 1: Theory. New York: Wiley,
1975.
J. F. Kitchin, “Practical Markov modeling for reliability analysis,” in
IEEE 1988 Proc. Annu. Reliability and Maintainability Symp., 1988, pp.

290-296.
[39] D. Bertsekas and R. Gallager, Data Networks. Englewood Cliffs, NJ:

Prentice-Hall, 1987.
[40] S. Pulidas, D. Towsley, and J. A. Stankovic, “Embedding gradient

estimators in load balancing algorithms,’’ in IEEE Proc. 8th Int. Conf
Distributed Comput. Syst., 1988, pp. 482-490.

(411 J. Hong, X. Tan, and D. Towsley, “A performance analysis of minimum
laxity and earliest deadline scheduling in a real-time system,” IEEE
Trans. Comput., vol. C-38, pp. 1736-1744, Dec. 1989.

Kang G. Shin (S’75-M’78-SM’83-F’92) re-
ceived the B.S. degree in electronics engineering
from Seoul National University, Seoul, Korea,
in 1970, and both the M.S. and Ph.D degrees
in electrical engineering from Come11 University,
Ithaca, NY, in 1976 and 1978, respectively.

From 1978 to 1982 he was on the faculty of
Rensselaer Polytechnic Institute, Troy, NY. He has
held visiting positions at the U.S. Airforce Flight
Dynamics Laboratory, AT&T Bell Laboratories,
Computer Science Division within the Department

of Electrical Engineering and Computer Science at U.C. Berkeley, and
International Computer Science Institute, Berkeley, CA. He is Professor and
Associate Chair of Electrical Engineering and Computer Science (EECS)
for Computer Science and Engineering, The University of Michigan, Ann
Arbor. He has authored/coauthored over 240 technical papers (more than
100 of these in archival journals) and several book chapters in the areas
of distributed real-time computing and control, fault-tolerant computing,
computer architecture, and robotics and automation. In 1985, he founded the
Real-Time Computing Laboratory, where he and his colleagues are currently
building a 19-node hexagonal mesh multicomputer, called HARTS, to validate
various architectures and analytic results in the area of distributed real-time
computing.

In 1987, Dr. Shin received the Outstanding IEEE TRANSACTIONS ON
AUTOMATIC CONTROL Paper Award for a paper on robot trajectory planning.
In 1989, he also received the Research Excellence Award from The University
of Michigan. He was the Program Chairman of the 1986 lEEE Real-Time
Systems Symposium (RTSS), the General Chairman of the 1987 RTSS, the
Guest Editor of the 1987 August special issue of IEEE TRANSACTIONS ON
COMPUTERS on Real-Time Systems, and is a Program Co-chair for the 1992
International Conference on Parallel Processing. He currently chairs the IEEE
Technical Committee on Real-Time Systems, is a Distinguished Visitor of
the Computer Society of the IEEE, an Editor of IEEE TRANSACTIONS ON
PARALLEL AND DISTRIBUTED SYSTEMS, and an Area Editor of International
Journal of Time-Critical Computing Systems.

Chao-Ju Hou (S’88) was born in Taipei, Taiwan,
Republic of China She received the B.S.E. de-
gree in electrical engineering from National Taiwan
University in 1987, the M.S.E. degree in electrical
engineering and computer science, and the M.S.E
degree in industrial and operations engineering both
from the University of Michigan, Ann Arbor, in
1989 and 1991, respectively.

She is now working as a Research Assistant in
the Real-Time Computing Laboratory, and expects
to receive the Ph.D. degree in electrical engineering

and computer science from the University of Michigan, Ann Arbor, in
1993 Her research interests are in the areas of distributed and fault-tolerant
computing systems, queueing systems, estimation and decision theory, and
performance modelingievaluation.

