
198

Design of a General-Purpose MIMO Predictor
with Neural Networks*

XIANZHONG CUI AND KANG G. SHIN**

Real-Time Computing Laboratory
Department of Electrical Engineering and Computer Science

The University of Michigan
Ann Arbor, MI 48109-2122

ABSTRACT: A new multi-step predictor for multiple-input, multiple-output (MIMO) systems is
proposed. The output prediction of such a system is represented as a mapping from its historical data
and future inputs to future outputs. A neural network is designed to learn the mapping without re-
quiring a priori knowledge of the parameters and structure of the system. The major problem in de-
veloping such a predictor is how to train the neural network. In case of the back propagation
algorithm, the network is trained by using the network’s output error which is not known due to the
unknown predicted future system outputs. To overcome this problem, the concept of updating, in-
stead of training, a neural network is introduced and verified with simulations. The predictor then
uses only the system’s historical data to update the configuration of the neural network and always
works in a closed loop.

If each node can only handle scalar operations, emulation of an MIMO mapping requires the
neural network to be excessively large, and it is difficult to specify some known coupling effects of
the predicted system. So, we propose a vector-structured, multilayer perceptron for the predictor
design. MIMO linear, nonlinear, time-invariant, and time-varying systems are tested via simulation,
and all showed very promising performances.

INTRODUCTION

m HERE
are numerous industrial applications that requireon-line prediction of the system output. For example,

load forecasting in an electric power system is essential for
an economical dispatch of electricity being generated. Auto-
matic tracking of a flying object is the first step for fire con-
trol. In a power plant, prediction of the temperature and
pressure at the outlet of a boiler is very useful to operators,
especially during the period of startup and shutdown. More-
over, output prediction plays a vital role in predictive
control.

It is not difficult to design a predictor for linear single-
input single-output (SISO) systems; for example, a self-

tuning predictor is designed to predict the Si-content of pig
iron for a blast furnace (Keyser and Cauvenberghe, 1981).
However, it is a difficult task to design a multi-step predictor
for a multiple-input multiple-output (MIMO) system. This
is especially true for those systems with nonlinear, time-
varying dynamics and/or long system time delays. The
dynamic equation of such a system is in general very

*The work reported in this paper was supported m part by the National Science
Foundation under Grant No DMC-8721492 Any opinions, findings, and recom-
mendations expressed m this publication are those of the authors and do not
necessanly reflect the view of the NSF

**Author to whom correspondence should be addressed

difficult to derive, since the dynamic parameters are usually
unknown, and/or even the internal structure of the system
dynamics is sometimes unknown. No general method is
known to exist for the design of a predictor for such systems.

Fortunately, neural networks (NNs) seem to shed light on
solving this problem. Weigend et al. presented a good exam-
ple of using NNs for time series prediction in which the NN
was trained to predict the time series of the sunspot and a
computational ecosystem (Weigend, Huberman and Rumel-
hart, 1990). A major advantage of using an NN is that it can
represent any specified mapping with a learned configura-
tion. A multilayer perceptron with sufficiently many nodes
is known to be able to approximate any continuous mapping
(Lippmann, 1987; Barron, 1989). As a result, many NN ap-
plications have been focusing on optimization and retrieval/
classification problems (Kung and Hwang, 1989). The out-
put prediction of a system can be viewed as the mapping
from the system’s historical data and future inputs to future
outputs, though it cannot be represented in an analytical
form. The main intent of this paper is to design a general-
purpose MIMO predictor for such systems using NNs.
One of the well-developed NNs is a multilayer perceptron

with the back propagation (BP) training algorithm (Rumel-
hart and McCelland, 1986; Werbos, 1988). However, most
NN applications are in the mode of train-first-and-then-

operate ; that is, the NN is trained with a set of training data
before putting it in operation. After the NN becomes &dquo;well-

JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, Vol. 5- March 1994

1045-389X/94/02 0198-13 $6.00/0
~ 1994 Technomic Publishing Co., Inc.

199

trained&dquo;, the weights of the NN will no longer be changed.
This working mode is called the &dquo;training-operation&dquo; mode.
For example, a multilayer perceptron was used in Bhat and
McAvoy (1989) as an SISO predictor to predict the pH value
of a stirred tank reactor and this was then used as a basis for
the design of a predictive controller. The moving-window
concept was adopted and the weights of the NN would no
longer be adjusted after the training period. The predictor
proposed in Weigend, Huberman and Rumelhart (1990) also
worked in the training-operation mode. However, thil, mode
may not be suitable for the control or prediction of some
time-varying industrial processes. If adjusting NN’s weights
is viewed as a feedback from the NN’s output error, then this
feedback loop would be broken when the NN becomes
&dquo;well-trained’: (Obviously, this mode cannot be applied to
time-varying systems.) To remedy this problem, an NN
should be updated, rather than trained, that is, the weights
of the NN should be adjusted on-line in order to keep track
of the variation of a system. We call such a working mode as
the &dquo;updating&dquo; mode. Updating an NN is essential to the
design of an MIMO predictor for time-varying systems.

In the standard BP algorithm, the weights of the NN are
adjusted by minimizing the network’s output error. How-
ever, when an NN is used as a predictor, its output error is
unknown since the future outputs of the predicted system are
not known. We have designed a predictor which is updated
only by using the historical data of the predicted system and
does not require the knowledge of the dynamic parameters
nor the structure of the predicted system. Weights of the NN
are dynamically adjusted to deal with the effects of non-
linear, time-varying properties, and/or long system time
delays. Because the NN-based predictor will always work in
a closed loop, component failures in the NN will be learned
and the NN will subsequently be re-configured, improving
system reliability. Furthermore, the parallel processing
structure of the NN makes it suitable for high-dimensional
systems.
Each node of an NN is usually designed to perform only

scalar operations. However, for an MIMO system, if each
node can only handle scalar operations, the size of NN may
become too large to manage. We therefore propose to equip
each node of the NN with the ability of vector operations in
order to easily specify some known coupling relations
within the predicted system and to get an easier (thus more
intuitive) form of the training algorithm. This vector struc-
tured multilayer perceptron will form the backbone of the
proposed MIMO predictor.

This paper is organized as follows. In the second section,
the basic structure of the NN-based predictor is described
and the input-output mapping of an MIMO system is ana-
lyzed. The third section focuses on the problem of tracking
time-varying systems by updating the NN. The scaling prob-
lem and error analysis of the NN-based predictor are also
addressed in this section. A multi-dimensional back propa-

gation algorithm is developed in the fourth section; it is an

extension of the scalar version presented in Rumelhart and

Figure 1. Basic structure of a three-layer perceptron.

McCelland (1986). Simulation results are presented in the
fifth section for various systems: MIMO linear, nonlinear,
time-invariant, and time-varying. Finally, the sixth section
concludes the paper.

BASIC STRUCTURE OF AN MIMO
NN-BASED PREDICTOR

The standard structure of a three-layer perceptron (with
one hidden layer) is shown in Figure 1. With the ability of
learning from examples of a mathematical mapping, an NN
can be trained to attain the dynamical property of the map-
ping. Typically, a set of input-output pairs { (u, , y,) ~ y, =
G(u,), i = 1,2,...} are used as training data, where G is
the input-output mapping. These training data are used to
adjust the weights of the NN that represents the input-output
mapping. One of the popular training algorithms is BP,
which attempts to approximate a mapping in the sense of
least mean squares (Lippmann, 1987). The computation of
an NN with the BP algorithm consists of two steps: comput-
ing the output of the NN forward from the INPUT layer to
the OUTPUT layer, and adjusting the weights backward
from the OUTPUT layer to INPUT layer. The computation
at each node is shown in Figure 2 with X, = /(Ef=i W,,X, +
0)), where X, is the output of node j, X, the input from node
i, W,, the weight on the arc from node i to node j, 6, the

Figure 2. Basic structure of a neuron.

200

threshold at node j, and f(.) is a sigmoid function. Once a
new output at the OUTPUT layer is ready and denoted by
X2k’ the network-output error is computed as Ek = X1k -
X2k , where X1k is the desired output of the NN. The weights
of each layer are then modified according to the network-
output error Ek ; in other words, this training process is

driven by the NN’s output error. It is proven in Cybenko
(1989) that a muitilayer perceptron with two hidden layers
and sufficient many hidden nodes can approximate any
input-output mapping.

If the predicted system is causal, then the dynamic rela-
tionship between input and output can be conceptually
represented as

where Y E Rp is the output vector, U E R&dquo; the input vec-
tor, k E Z the discrete time index, and h:R~ x R&dquo; x

Z - Rp. Y(k - i), i = 1,2.,... is the historical data of

the system output. U(k - j), j = 0,1,2,... is the system
inputs at and before time k. If the mapping h in Equation (1)
were known, the future output of the system could be com-
puted step-by-step by predicting the future inputs U(k + d),
d = 1,2,.... However, it is usually very difficult, if not
impossible, to derive a closed-form expression for Equation
(1) (even if such a closed-form expression exists). The d-step
ahead prediction of Y(k) at time k can be represented as

where

where i, ii and i2 are positive integers. The parameters
and/or structure of this mapping are not known either. It is
therefore practically impossible to design a general-purpose
predictor with mathematical synthesis alone, though a

closed-form expression for such an MIMO mapping may
sometimes exist. So, we propose to design an NN which
will learn the mapping Equation (2). A three-layer percep-
tron is used for this purpose, where the inputs are Y and U,
and the output is Ý(k + dlk), d = 1,2,.... There are two
major problems in implementing this scheme.
The first problem is related to the training process. In the

standard BP algorithm, the NN should be trained by mini-
mizing the NN’s output errors. For our case, however, the
desired values of the NN’s output are the system outputs,
Y(k + d), d = 1,2,.... The network-output errors are
then the system prediction errors which are computed as

This implies that the network should be trained by using the

system’s unknown future outputs Y(k + d). A set of train-
ing data can be acquired beforehand, and used to train the
NN. After the NN is &dquo;well trained&dquo;, the NN will no longer
modify its weights and produce the output, while the inputs
are present at the INPUT nodes. For time-varying map-
pings, however, it is meaningless to say that an NN is &dquo;well

trained&dquo;. Moreover, as pointed out in the previous section,
this training-operation mode implies that the NN work in an
open loop after the training, which is not acceptable in a
real-time control or prediction system. Therefore, our

MIMO predictor needs an NN that is updated on-line in
order to keep track of a time-varying mapping and to work
always in a closed loop. More on this will be discussed in
the next section.
The second problem is how to efficiently and clearly rep-

resent the training algorithm for an MIMO system. Note
that Equation (2) is an MIMO mapping. If each node of the
NN can only handle scalar operations, then we need a fully-
connected multilayer mesh. Each node at the INPUT or
OUTPUT layer of this mesh corresponds to an element of
the input or output vector of the mapping. By using the
standard BP algorithm, it is difficult to express some known
coupling relations within the mapping and obtain a set of
succinct formulas for the training algorithm. Therefore, we
need an NN which can handle vector operations in order to
reduce the total number of the nodes required. Such an NN
will be discussed in the fourth section.

TRACKING A TIME-VARYING SYSTEM
AND ERROR ANALYSIS

Training Algorithm for the Updating Mode

Suppose the predicted system is an SISO system with out-
put y(t) and its d-step ahead prediction ;(t + dlt) at time t
(t is the continuous-time index). Let X2k(t) and 2 (t) be re-
spectively the actual output of the NN-based predictor and
its desired value at time t. Then the network-output error is
computed by

In the standard BP algorithm, we must use this network-
output error to train the NN. However, when the NN is used
as a predictor, the network’s output is the prediction of the
system output, and the network-output error is the predic-
tion error:

tIn fact, the network’s output X2k is a scaled value of the system’s output prediction y
At this stage, it is assumed that y is within the range of (0,1) The scaling problem
will be discussed later

201

Figure 3. Basic structures of the NN-based multi-step predictor.

Ek(t) is unavailable since the system’s future output y(t +
d) is not available at time t. Hence, we must use the system’s
historical data to update the NN-based predictor on-line in
order to maintain the closed-loop operation by keeping track
of a time-varying system. To update the NN-based predictor,
instead of using Equation (3), we propose to use a posterior
prediction error:

This arrangement is equivalent to cascading the NN with
delay elements, as shown in Figure 3. In what follows, a
modified BP algorithm is derived to handle these delay ele-
ments. The formulas are given for SISO systems, which will
be extended to the MIMO case in the next section.

1. Compute the Output of the HIDDEN Layer, X ,, J
The HIDDEN layer’s outputs are

where

X, is the input at INPUT node i, W,, is the weight from IN-
PUT node i to HIDDEN node j, and 01~ is the threshold at
HIDDEN node j.

2. Compute the Output of the OUTPUT Layer, X2k k
The outputs of the OUTPUT layer are

where

W1)k is the weight from HIDDEN node j to OUTPUT node
k, and ()2k is the threshold at OUTPUT node k.

3. Update the Weights from the HIDDEN to
OU7PUT LayerWl,k
We want to use the delayed data X2k (t - d) to update the

network. The cost function of the network is defined by

Let the updated weights be W1)k(t + A t) = W1)k(t) +
OW,,k . Using the gradient algorithm,

From Equation (4), we have

and

Then, we get

Because

202

Let

then Equation (7) becomes

Now, the problem is how to compute [c7X2k (t - d)]l
aX,,(t). Because X2k(t) = y(t + dlt) is the d-step ahead
prediction and X2k (t - d) = y(tlt - d) is the same value
of ;(t + dlt) delayed by d, we conclude

and

In Equation (6), we set AW,,,, = -~il[aE(t)laW,,k],
711 > 0 is a gain factor. Therefore, using the results of

Equations (9) and (10), we get

where 81k is given by Equation (8). This has the same form
as the standard BP algorithm, but the definition of the cost
function in Equation (5) is different. Similarly to the above
process, other formulas are listed below without any de-

tailed account.

4. Update the Weights from the INPUT to
HIDDEN Layer, W,,

where O W,, _ q6~X, (t)

where 11 > 0 is a gain factor.

5. Update the Thresholds ()2 k and 6,, J

where qio > 0 and ?7o > 0 are gain factors, and 6~,, 6, are
given by Equations (8) and (11), respectively.

Scaling Problem and Error Analysis

In the NN, the output of each node passes through a sig-
moid function (Figure 2) which forces the output of each
node to be within the range of (0,1). Suppose the output of
a predicted system is y (k) E (y,&dquo;~n , ymax) and a linear scal-
ing formula is used, then the scaled value of y(k) is given as

The output of the NN-based predictor is the scaled value of
d-step ahead prediction X2k (k) = ys (k + dlk). Then the
unscaled values are

From Equations (13) and (14), we get the absolute prediction
error

where eps (k) = 3’S (k) - YS (k lk - d) = X Zk (k - d) -
X2k (k - d) is the absolute output error of the NN-based

predictor.
The relative prediction error is defined as

Similarly, the relative output error of the NN is defined as

Substituting the scaling formula Equation (12) into Equation
(16), we get

From Equations (15) and (17), we can observe that the
unscaled absolute prediction error may be much larger than
the scaled one, but the unscaled relative prediction error is
the same as the scaled one. This indicates that the accuracy
of the NN-based predictor depends only on the accuracy of
the NN’s approximation to the actual mapping. Finally, y,.,
and ym,n should be determined as

203

such that the range of the scaled value approaches (0,1) in
order to excite the network.

MULTI-DIMENSIONAL BACK
PROPAGATION ALGORITHM

Each node within a conventional NN is designed only to
handle scalar operations, and the number of the nodes or
layers is increased to deal with a more complex I/O map-
ping. However, the NN’s size required for a complex MIMO
mapping, may become too large to manage. Alternatively,
one can equip each node of an NN with the ability of vector
operations, because this is easier to express some known

coupling relations and will result in a set of succinct formu-
las. So, all inputs and outputs of this NN are vectors. Refer-
ring to Figure 1, let X, E Rn, X,, E R’^, and X2k E RP be
the output of the INPUT, HIDDEN and OUTPUT layer, re-
spectively, for 1 :5 i :5 N, 1 :5 j :5 N,, and 1 :5 k :5

N,. Extension of the BP algorithm to a vector form is pre-
sented below.

1. Compute the Output of the HIDDEN Layer, X,,
The output of the HIDDEN layer is computed by

where W,, E R’&dquo;Xn is the weight matrix from node i of the
INPUT layer to node j of the HIDDEN layer, f : :R m - R
is defined as a sigmoid function of each component of a vec-
tor, and 81) --- [01~i, ... ,01~~]~ is the threshold vector at
node j of the HIDDEN layer.

2. Co~M~ ~ CM/pM~ o/~ O~TP~/r~ycr, ~2~2. Compute the Output of the OUTPUT Layer, XZk
The output of the OUTPUT layer is

where W1)k E Rpxm is the weight matrix from node j of the
HIDDEN layer to node k of the OUTPUT layer, ~:R&dquo; ―
RP, is defined as a sigmoid function of each component of
a vector, and e2k * [92k1,...,V2kp~T is the threshold vector
at node k of the OUTPUT layer. Note that if m = p = n,
W,~ = diag[wll,...,W&dquo;n~,, and W1)k = diag[wl1h’ ..,
wlnnlb then the system is uncoupled.

3. Update the Weights from the HIDDEN to
OUTPUT Layer, W1Jk
Let the desired output of the network be X Zk = [x ik, ,

... x 6~~]~, and let the output error of node k be defined as
Ek - X 2k - X2k and the cost function be defined as

We want to update Wl,k and W,~ by minimizing E and taking
the form of

where t is the continuous-time index.

By using the gradient algorithm, we should set

where (aElaO2k) E R~~P, and T1 = (ao2klaw,,k) E
RP&dquo;’&dquo;&dquo;p is a three-dimensional tensor since 0,.~ E Rp&dquo;1 and

Wl,k E Rpxm.
To compute 3E/3<?2t, referring to Equation (22), we get

From Equation (20), we obtain

Because xZkr = 1/[1 + exp (- oZk, - 02kl)] and c3x2kr /
c7o2kl = X2kl (1 - x2kr), Equation (27) can be written in the
form

204

Therefore, substituting Equation (28) into Equation (26)
and using the notation 8,k, we get

To compute T1, from Equation (21), we have the lth com-
ponent of 02k as

where (W,),,k is the lth row of W1)k. Then, the lth matrix
of T1, T&dquo; - ao,,:,IaW,,,, E R~,/ l = 1,2,...,p, has the
form of

In Equation (25), we set A W1)k = - r~, [c3Ela WI,k]T
where 17, > 0 is the gain factor of the OUTPUT layer.
Therefore, from Equations (29) and (30), we get

4. Update the Weights from the INPUT to
HIDDEN Layer, W,
According to the gradient algorithm, we should set

where aEla0l, E R lxm, and T - aO,, la W, E Rmxnxm is
a three-dimensional tensor, since O,, E R-11 and W,, E
Rmx^. .
To compute c7Ela01, , we have

using Equations (19) and (18) leads to

Because

substituting Equations (21) and (29) into Equation (35)
leads to:

Therefore, substituting Equations (34) and (36) into Equa-
tion (33), and using the notation B,, we get

To compute T, from Equation (19), we have the lth com-
ponent of O,, as

where (W,),, is the l th row of W,~. Then, the l th matrix of
T, T, l - ao,,, ~a w,, E Rnxm, l = 1,2,...,m, has the
form of

205

In Equation (32), we set AW., = -~[3E/3W.,f, where
q > 0 is the gain factor of the HIDDEN layer. Therefore,
from Equations (37) and (38), we conclude

5. Update the Thresholds of the OUTPUT Layer, 82k
We want to update the thresholds 82k and 81) by:

By the gradient algorithm, we should set

Using Equations (22), (21) and (20), we get

In Equation (42), we set A82k = -rilB[aEla6zk]T, where
1’/10 > 0 is the gain factor of the thresholds at the OUTPUT
layer. Therefore, from Equations (43) and (29), we get

6. Update the Thresholds of the HIDDEN Layer, 01,
Using the gradient algorithm, we should set

Because aEla6,, _ (3E/~)(~/3ei,), using Equa-
tions (36), (19) and (18) we get

In Equation (45), we set AOi~ == ―~[~E/~OiJ~, where
1]9 > 0 is the gain factor of the thresholds at the HIDDEN
layer. Therefore, from Equations (46) and (37), we get

To summarize what we have developed so far, the compu-
tation of the multi-dimensional BP algorithm is done as

listed below.

1. Compute the output of the HIDDEN layer X,, by Equa-
tions (19) and (18).

2. Compute the output of the OUTPUT layer X2k by Equa-
tions (21) and (20).

3. Update the weights from the HIDDEN to OUTPUT
layer W1)k by Equations (23), (31), (29) and (30).

4. Update the weights from the INPUT to HIDDEN layer
W,, by Equations (24), (39), (37) and (38).

5. Update the thresholds of the OUTPUT layer 8lk by
Equations (40), (44) and (29).

6. Update the thresholds of the HIDDEN layer 0,, by
Equations (41), (47) and (37).

Extending the BP algorithm to a vector form shifted

the complexity from the network level to the node level.
Though the overall computation requirement is not reduced,
it results in a set of succinct formulas and is easier to specify
the I/O nodes of the NN for an MIMO mapping and to ex-
press some known coupling relations. Moreover, if the NN
is implemented in software and instructions of vector opera-
tions are provided, then the programming is more efficient
with this vector form of BP algorithm.

SIMULATION RESULTS

To test the capability of the proposed predictor, a series of
simulation experiments are conducted and the main results

206

Table 1. The relative RMS prediction errors of the linear system.

are summarized below. First, a two-input, two-output,
linear, time-invariant system

is simulated with the sampling interval TS = 0.01 sec.

The inputs u1(t) and u2(t) are set to be sinusoidal waves
of frequency 10 Hz and magnitude 10.0. Let Y(k) ---

[Yl(k)’Y2(k)Y, U(k) * [ul(k),u2(k)]T, and Y(k + dlk) -
[y,(k + dlk), ;2(k + d/k)Y, an NN-based predictor is de-
signed with ten input nodes, five hidden nodes, and five out-
put nodes. The inputs of the network are

The outputs are the d-step ahead predictions Y(k + d/k),
d = 1,...,5. The network is trained with the actual system
outputs Y(k + d). The training period is 4000 sample in-
tervals, and the relative RMS (root-mean-square) prediction
errors are tabulated in Table 1. The network is shown to be
&dquo;well trained&dquo; after 4000 sample intervals.

Using the same structure of the NN-based predictor as
above, the following nonlinear, time-invariant system is
tested

The inputs ul(t) and u2(t) are set to be sinusoidal waves of
frequency 10 Hz and magnitude 10.0. The sampling interval
is 7~ = 0.01 sec. The network is trained with the actual

system outputs Y(k + d). The training period is 4000 sam-
ple intervals. The actual values of y,(k), y2(k) and their
2-step ahead prediction errors are plotted in Figures 4 and
5, which have shown that the NN-based predictor works
well for the nonlinear, time-invariant system.
Both Equations (48) and (49) are time-invariant for which

the &dquo;training-operation&dquo; mode works well. However, this is
not the case for time-varying systems. To test such a system,
we simulated a two-link robotic manipulator, whose dy-
namic equation is given as

where q --- [ql, q2]T is the vector of joint positions, T W
[T¡,T2Y joint torques, H (q) is the inertial matrix, C (q, q) q
represents the centrifugal and Coriolis forces, and G (q) is
the gravitational force (Asada and Slotine, 1986). It is a

nonlinear, two-input two-output, time-varying system. The
joint torques T are set to be sinusoidal waves of 10 Hz and
magnitude 2.0 for Tl and 0.1 for T2. The sampling interval is
chosen to be TS = 0.01 sec. With an initial configuration as
shown in Figure 6, and dynamic and kinematic parameters
are presented in Table 2.
The joint positions vary due to gravitational force and

joint torques. The NN-based predictor has ten input nodes,
five hidden nodes, and five output nodes. The inputs of the
network are

207

Figure 4. yi(k) of the nonlinear, time-invariant system and its prediction error.

Figure 5. y2(k) of the nonlinear, time-invariant system and its prediction error.

Figure 6. A 2-link robot manipulator.

208

Figure 7. q i(k) and its prediction errors with &dquo;training-operation&dquo; mode.

Figure 8. q2(k) and its prediction errors with &dquo;training-operation&dquo; mode.

Figure 9. ql(k) and Its prediction errors with &dquo;updating&dquo; mode.

209

Figure 10. q2(k) and its prediction errors with &dquo;updating&dquo; mode.

The outputs are the d-step ahead prediction of the joint posi-
tion q (k + d/k), d = 1,...,5. The simulation results are
plotted in Figures 7 and 8 for ql(k), q2(k), and their 2-step
ahead prediction errors, respectively. The training period is
4000 sampling intervals. As soon as the training is stopped
after this period, the prediction error increased dramati-
cally, indicating that the &dquo;training-operation&dquo; mode does not
work for time-varying systems.

So, we keep track of the variation of this time-varying
system by using the updating mode described in the third
section. The results are plotted in Figures 9 and 10. When
compared with Figures 7 and 8, only the predictor with the
updating mode is shown to work well. For this NN-based
predictor, we evaluated the convergent process of the

system-output prediction and the convergent process of
the NN’s weights. When the NN’s weights are no longer
changed, the NN becomes &dquo;well-trained&dquo;. The simulation
results have indicated that the system-output prediction con-
verges to its true value within 200 sampling intervals. How-
ever, the NN becomes &dquo;well-trained&dquo; only after 3000-4000
sampling intervals. That is, the system-output prediction
converges much faster than the well-training of an NN. This
again supports the idea that the NN-based predictor should
be updated, but not trained. Certainly, for a time-varying
system, it is meaningless to say that an NN is &dquo;well-trained&dquo;.

mapping from its historical data and future inputs to future
outputs. Even if the parameters and/or structure of the

system dynamics were unknown, an NN can be designed to
approximate this mapping. Using these facts, an MIMO
NN-based predictor is proposed and tested for various

systems. The basic structure of the predictor is determined,
and the following two major problems are solved. First, in
order to track a time-varying mapping, the concept that an
NN should be updated, rather than trained, is introduced
and verified. By this concept and its corresponding algo-
rithm, the proposed predictor uses only the system’s histori-
cal data to adjust the weights of the NN. This also makes the
network always work in a closed loop so that the reliability
of the NN-based predictor is improved. Second, the BP
algorithm is extended to a vector form so that an NN can be
used to represent an MIMO mapping more efficiently and
express some known coupling relations within the mapping
more easily. This requires the nodes of the network to be
capable of vector operations. Furthermore, the prediction
error is analyzed and is shown to depend only on the net-
work’s error in approximating the actual mapping.
The proposed NN-based predictor has been tested for

MIMO linear, nonlinear, time-invariant, and time-varying
systems. All of them have shown promising results, in-

dicating the potential use of the proposed predictor for many
industrial applications.

CONCLUSION

The output prediction of a system can be represented as a

Table 2. Kinematic and dynamic parameters
of the simulated robot.

REFERENCES

Asada, H. and J.-J. E. Slotine. 1986. Robot Analysis and Control. John
Wiley and Sons, Inc.

Barron, A. R. 1989. "Statistical Properties of Artificial Neural Networks",
Proc. of the 28th Conference on Decision and Control, Vol. 1, pp. 280-
285

Bhat, N. and T. J. McAvoy. 1989. "Use of Neural Nets for Dynamjc Model-
ing and Control of Chemical Process Systems", Proc. of 1989 American
Control Conference, pp. 1342-1347.

Cybenko, G. 1989. ’Approximation by Superpositions of a Sigmoidal Func-
tion", Mathematics of Control, Signals and Systems, 2(4):303-314.

De Keyser, R. M. C. and A. R. Van Cauvenberghe. 1981. ’A Self-Tuning
Multi-Step Predictor Application, Automatica, 17(1):167-174.

210

Kung, S. Y and J. N. Hwang. 1989. "Neural Network Architectures for
Robotic Applications", IEEE Trans. on Robotics and Automation,
5(5):641-657.

Lippmann, R. P. 1987. ’An Introduction to Computing with Neural Net-
works", IEEE ASSP Magazine, pp. 4-22.

Rumelhart, D. E. and J. L. McCelland. 1986. "Learning Internal Represen-
tations by Error Propagation", Parallel Distributed Processing: Explora-

tions in the Microstructure of Cognition, Vol. l: Foundations. MIT
Press.

Weigend, A. S., B. A. Huberman and D. E. Rumelhart. 1990. "Predicting
the Future: A Connectionist Approach", Int’l. Journal of Neural Systems,
1(3) :193-209.

Werbos, P. J. 1988. "Backpropagation: Past and Future", Proc. of Int. Conf
on Neural Networks, 1:I343-I353.

