Real-time Communication in Multi-hop Networks

Dilip D. Kandlur
Kang G. Shin

Real-Time Computing Laboratory
Department of EE & CS
The University of Michigan
Ann Arbor, Michigan 48109

Abstract

In this paper, we develop a scheme for providing pre-
dictable inter-process communication in real-time systems
with (partially connected) point—to—point interconnection
networks, which provides guarantees on the maximum de-
livery time for messages. This scheme is based on the con-
cept of a real-time channel, a unidirectional connection be-
tween source and destination. A real-time channel has pa-
rameters which describe the performance requirements of
the source-destination communication, e.g., from a sensor
station to a control site. We concentrate on methods to
compute guarantees for the delivery time of messages be-
longing to real-time channels. We also address problems
associated with allocating buffers for these messages and
develop a scheme which preserves delivery time guarantees.

1 Introduction

The problem of providing predictable inter-process com-
munication is of great significance in real-time systems be-
cause unpredictable delays in the delivery of messages can
affect the completion time of tasks participating in the mes-
sage communication. If these tasks have deadlines asso-
ciated with them, communication delays could cause the
tasks to miss their deadlines. In this paper, we will address
the issue of guaranteeing the delivery of messages with time
constraints in multicomputers with point-to-point inter-
connection networks.

This problem of time-constrained communication has
been studied by several researchers, since it plays an im-
portant role in video~ and voice~ data transmission over a
data network. Recently, it has also been studied in the con-
text of communication in embedded or real-time systems.
These efforts have been directed mainly towards design-
ing medium access protocols for multiple-access networks
which consider time constraints on messages. The survey
paper by Kurose et al. [1] discusses many of the proposed
techniques. Most of these schemes can be classified as best-
effort schemes, where the system tries to ensure that most
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messages meet their deadlines, but it cannot give any guar-
antees about the delivery times. On the other hand, when
the system has some information about the arrival pattern
of messages, it can try to give guarantees about their de-
livery times. For example, Strosnider and Marchok [2] use
a variation of the rate-monotonic scheduling algorithm to
control access to a token-ring network. They assign prior-
ities at design time to message sources based on the peri-
odicity of message generation and they can check for the
possibility of deadline overrun at that time. In their work,
the time-constraint on periodic messages is implicitly as-
sumed to be the beginning of the next period.

The network under consideration here is, however, not
a multiple-access network, but a point-to-point intercon-
nection structure which has potential for higher perfor-
mance and reliability than bus/ring structures. In this
case, the problem is more complicated than multiple-access
networks, because we have to consider delivery time con-
straints across multiple stages in the network. In this type
of network, there is only one source node for any network
link, so the issue to be addressed is not one of access to
the medium but that of message scheduling in the network
nodes. Although it is possible that messages which have
to traverse multiple links to reach the destination may suf-
fer from the problem of higher latency, the latency can be
made more predictable using message scheduling and net-
work flow control. There has not been much work reported
on the problem of providing time-constrained communica-
tion in a local-area point-to—point interconnection network.
However, the work by researchers in the DASH and Tenet
projects [3, 4] dealing with continaous-media communica-
tion in wide-area networks is closely related to the work
reported here.

In this paper, we will be concentrating on issues related
to the design of time-constrained communication in which
the system provides a priori gnarantees for message deliv-
ery. We will also briefly discuss how best-effort delivery
can easily be accommodated into the design. Section 2 de-
scribes the computing environment and defines the prob-
lems to be addressed. In Section 3 we present a solution
scheme which is general and works for messages of arbi-
trary size. Section 4 describes a buffer management scheme



which is consistent with the message handling scheme de-
scibed in Section 3. We discuss other related work in Sec-
tion 5 and draw our conclusions in Section 6.

2 Problem Statement

The intended application for this work is in embedded
real-time systems, and thus, we make assumptions appro-
priate for that environment. The system consists of proces-
sor nodes connected by point-to-point dual simplex links.
A node in the system can have several incoming and out-
going links connected to it, and these links can operate in
parallel. The nodes run a common distributed real-time
operating system which is responsible for control of the
network. The operating system also synchronizes clocks
and maintains a global time-base for the system, where the
maximum skew between clocks on different nodes is very
small compared to the end-to—end message delivery delay.
A scheme for achieving this synchronization is presented
in [5].

Communication between user-level entities in this system
can either be connection-oriented or connectionless. Like-
wise, in the connection-oriented case, it can be either mes-
sage stream or byte stream oriented. In the context of time-
constrained communication, the communication model has
to preserve message boundaries, and so a byte stream model
is not suitable. Connection-oriented service is considered
more suitable for applications which require guaranteed de-
livery time for communication [3]. In order to make a guar-
antee about delivery time for a message, the system requires
information about other message sources that can contend
for resources with this message. It is therefore necessary to
provide a mechanism for describing the characteristics of
communication, so that resources can be reserved for real-
time connections. The connection establishment procedure
gives the service provider, in this case the distributed oper-
ating system, the opportunity to reserve resources for the
connection, and for the user to specify its requirements.
Therefore, the abstraction that we use for guaranteed time-
constrained communication is one of connection-oriented
sequenced messages, which we call a real-time channel or
simply channel. In a bidirectional connection between a
pair of user entities, the message generation characteristics
may differ substantially for the two directions. Hence, it
is preferable to restrict the real-time channel to unidirec-
tional communication, and a bidirectional connection can
be composed from a pair of channels.

The resources required by a channel include network
bandwidth, buffer space, and message processing band-
width. The operating system can make resource reserva-
tions based on the communication requirements of the user,
as specified in the request for the connection. These re-
quirements consist of the source and destination end-points,
a description of the message generation process, and the
desired end-to-end guarantee for the delivery time. With-
out a description of the message generation process, the
service provider cannot compute the resource requirements
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and hence it cannot provide a guarantee.

It is perceived that a significant portion of the traffic
which requires guarantees will be periodic communication,
so the model for message generation is based on this percep-
tion. The message generation process is specified in terms
of a linear bounded arrival process, a model which was first
proposed by Cruz [6]. This model has also been adopted by
Anderson and others [4] for continuous media applications,
and some of the terminology given below is from [4]. The
arrival process has the following parameters:

marimum message size  Smaz  (bytes)
mazimum message rate Ry,  (messages/second)
mazimum burst size Brmaz  (messages)

The model includes the restriction that, in any time interval
of length t, the number of messages generated may not ex-
ceed Bmaz + 1+ Rmaz, and that the length of each message
may not exceed Spmaz. Rmaz i1s a bound on the message
generation rate and its reciprocal, Imin, is the minimum
(logical) inter-arrival time between messages. The burst
parameter Bpq: puts a bound on the allowed short-term
variation in the message generation rate, and partially de-
termines the buffer space requirement of the channel. Mes-
sage generation which is not periodic can be represented in
this model using an estimate of the worst-case inter-arrival
time and the average rate of generation.

The semantics of the end—to—end guarantee on delivery
time are also based on this model. The logical generation
time, £(m), for a message m can be defined as

£(mo)
{mi)

to
maz{€(mi—1) + Imin, &}

where t; denotes the actual generation time of m;. If d is
the end~to-end delay for the channel, the system guaran-
tees that any message m; will be delivered to the destina-
tion node by time £(m;) + d. In other words, when the
inter-arrival time between messages is at least Imin, the
system guarantees that each message in the channel incurs
a delay of at most d seconds. However, messages which
arrive in a burst, where the inter-arrival time is less than
Iinin, may suffer a larger delay since the guarantee is given
with respect to the logical arrival time. This possible in-
crease in delay is 2 consequence of regulation: arrivals at
each node have to be regulated in order to prevent burst
arrivals on one channel from affecting the guaranteed delay
of messages belonging to other channels.

This paper deals with problems connected with comput-
ing a guaranteed end-to—-end delay for messages belonging
to a channel, and the scheduling of messages to achieve
this goal. These two problems are related because it is nec-
essary to understand the scheduling environment in order
to compute a guarantee. In the next section, we will first
present a simple channel establishment procedure in which
the problem of computing an end-to-end guaranteed delay
is reduced to the problem of guaranteeing the worst-case
delay for a single station/node.



1. Select a source-destination route for the channel.

2. Compute the worst-case delay for a message on each
link on the route. In this computation, it is necessary
to ensure that the new channel does not affect the
guaranteed delivery times of existing channels. Also
compute the buffer requirement for this channel.

3. Compute the sum of the worst-case delays which were
determined in Step 2, and check whether it is less than
the user-specified delay. This is the channel establish-
ment test.

4. If the channel can be established, divide the user-
specified delay among the links on the route based
on their worst-case delay for the message. Adjust the
buffer requirements based on these allocated delays.

Figure 1: Channel Establishment Procedure

3 Basic Solution Approach

There are two distinct phases in handling real-time chan-
nels: channel establishment and run-time message schedul-
ing. The channel establishment phase is outlined in Fig-
ure 1, and begins with the selection of a route for the chan-
nel. There are two alternatives for routing packets in the
network: dynamic routing and static routing. Dynamic
routing offers the advantage that it can adapt to the net-
work load and can reduce the average delivery delay for
messages. However, it is very difficult to make any guar-
antees on message delivery for a channel based on dynamic
routing, in which a message can use one of several alter-
nate routes through the network. Therefore, we use static
routing for messages belonging to real-time channels. We
will assume that a route has been selected for the chan-
nel, possibly using a scheme like the one presented in [7],
and concentrate on the computation of guarantees and on
buffer management.

The worst-case delay for a message at a link depends
upon the other channels which use the link and upon the
scheduling algorithm. The link may also be used by mes-
sages without time constraints, but the effect of these mes-
sages on the worst-case delay is limited (i.e., restricted to a
single packet delay if packet transmission cannot be aborted
while in progress) because they would belong to a lower pri-
ority class. Hence, we can restrict our attention to messages
belonging to real-time channels while calculating the worst-
case delay. The scheduling environment that we encounter
in message scheduling is one of independent, possibly peri-
odic, message arrivals which have deadlines associated with
them. The message deadline may be related to its period,
but it is not necessarily the beginning of the next period.
There are several approaches to scheduling these messages,
which can be categorized as fixed priority or dynamic prior-
ity algorithms. For example, Earliest Due Date [8] is a dy-
namic priority algorithm, whereas rate monotonic schedul-
ing [9] is a fixed priority algorithm. We will now discuss
the problems associated with the use of these algorithms
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for message scheduling and channel establishment.

Deadline Scheduling: The Earliest Due Date (EDD)
algorithm schedules messages in the order of their dead-
lines, with higher priority given to messages which have
closer deadlines. Liu and Layland [9] have shown that EDD
is optimal for preemptive scheduling of periodic tasks when
the task deadline is equal to its period, and that a feasible
schedule exists whenever the total utilization is less than
one. However, there is no similar result (based on utiliza-
tion alone) available when the task deadlines are not related
to their periods. The main drawback of EDD scheduling
is that computation of guarantees is difficult, since the pri-
ority of a task depends upon the relative order of arrival
of the tasks. A multiclass version of the EDD algorithm
has been used for scheduling real-time messages by Ferrari
and Verma [3], who also present sufficient conditions for
the existence of feasible schedules. Their approach will be
discussed in greater detail in Section 5.

Fixed Priority Scheduling: Scheduling decisions can
be based on a fixed (static) priority scheduling algorithm
where messages are processed and transmitted in the order
of priority. For example, in rate-monotonic scheduling the
priority assigned to a channel is related to the frequency
of occurrence of messages on that channel. For any prior-
ity assignment scheme, if message arrivals on all the chan-
nels are assumed to be strictly periodic, we can determine
whether the set of channels is schedulable. This is done
by computing the worst-case response time for each mes-
sage using a critical time zone analysis similar to the one
used by Liu and Layland [9], and verifying that the worst-
case response time is less than the delay assigned to that
channel.

There are some problems with priority based scheduling
and the computation of guarantees when we consider mul-
tiple stage service, like service for a message which has to
traverse multiple links. The response time for the message
varies depending upon the arrival time of other messages
at a node. Therefore, even if messages are generated with
a fixed inter-arrival time at the source, the inter-arrival
time for the message at the next service point is not con-
stant. Early arrivals are also possible due to burstiness in
the message generation at the source. A message which
arrives early at a node can cause a lower priority message
to miss its deadline. Figure 2 shows the results of preemp-
tive priority scheduling for two message streams, M; and
M,, with service requirements C; and Cz, where M; has
higher priority than M2. The figure shows how the early
arrival of a message on M; can cause a message on M to
miss its deadline d2. Note that a similar effect can be ob-
served even when a non-preemptive discipline is used. One
solution for this problem is to “hold back” the early arrival
and not consider it for transmission until its scheduled ar-
rival time. However, this scheme involves the setting and
resetting of timers and is expensive to implement. Also,
it implies that the message cannot make the best progress
possible on lightly loaded links.



casly arrival

Figure 2: Effect of early arrivals.

3.1 Proposed Algorithm

The discussion on the problems of deadline and fixed
priority scheduling in a multi-hop communication system
suggests the use of a combination of deadline and fixed pri-
ority scheduling. Our channel establishment scheme uses
fixed priority scheduling for computing the delay, but we
use a form of EDD as the run-time message scheduling al-
gorithm. When a channel is to be established, for each link
on its route, we estimate the worst-case response time for
a message based on fixed-priority scheduling. The details
of this scheme have been omitted from this version due to
space limitations. The response time analysis is based on
an approximation of preemptive scheduling. Pure preemp-
tive scheduling cannot be used in the context of message
scheduling, because, if the transmission of a message is in-
terrupted, the message is lost and has to be retransmitted.
To achieve the benefits of preemptive scheduling, the mes-
sage has to be split into packets so that message transmis-
sion can be interrupted at the end of a packet transmission,
without loss. (This is analogous to allowing an interrupt
at the end of an instruction execution.) Therefore we con-
sider a message to be a set of one or more packets, where
the packet size is bounded. Packet transmission is non-
preemptive, but message transmission can be considered
to be preemptive.

The priority assigned to the new channel at a link de-
pends upon the characteristics of the other channels going
through the link. The total response time, which is the
sum of the response times over all the links on the route
of the channel, is checked against the maximum permissi-
ble message delay and the channel can be established only
if the latter is greater. In this case, the permissible mes-
sage delay is split proportionally among the different links.
While using this procedure, it is necessary to ensure that
the new channel does not affect the guaranteed delivery
times of existing channels. This is taken care of in the
priority assignment algorithm.

3.2 Priority Assignment

The worst-case response time computation for a new
channel at a link on the route requires an assignment of
priorities for existing channels that use this link. This pri-
ority assignment problem can be defined formally as fol-
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lows. Let {M; = (Ci,pi,di),i = 1,...,k} be the set of k
existing channels through a link ¢, where C; is the maxi-
mum service time required for messages of channel M; on
this link, p; = Ii,i, is the message inter-arrival time, and
d; is the permissible delay which has been assigned to the
channel for this link. The service time requirement C; is
proportional to the product, S¥ iz Rinaz, of the maximum
message size and the maximum message rate for the chan-
nel M;. Given a new channel My41 = (Cr41,Pr41) to be
established (the delay bound need not be specified on a
per-link basis), we have to find a priority assignment for
this augmented set of channels such that the response time
r! computed for a channel under this priority assignment
satisfies the constraint r; < di,i =1,...,k. An assignment
which satisfies this constraint is called a feasible priority as-
signment. Moreover, we would like to find a feasible priority
assignment which will minimize the response time rj,, for
the new channel Mi41. By finding the minimum feasible
response time on each link, we can improve the chances of
satisfying the channel establishment test.

Consider the procedure D_Order, shown in Figure 3,
which assigns priorities and computes the response time
for all channels, including the one to be established. This
procedure works under the condition that, for all channels,
d; < pi. That is, the worst-case delay at each link for any
channel does not exceed its inter-arrival time. Note that the
total end-to—end delay can exceed the inter-arrival time of
the channel.

We can prove that, when d; < p;, Vi, assignment proce-

dure D_Order is optimal in the sense that the computed
response time ry,, is the minimum possible for any feasi-
ble priority assignment. Lemma 1 states that the priority
assignment based on delays is optimal in the sense that
if there is any feasible priority assignment for the channel
set, there is a feasible priority assignment based on delays.
This is in fact a generalization of the optimality result for
rate-monotonic scheduling [9]. In their model, Liu and Lay-
land assumed that the deadline for an instance of a periodic
task is the release time of the next instance, that is, di = pi.
The rate-monotonic algorithm assigns priorities to periodic
tasks based on their periodicity, with high priority assigned
to tasks with high periodicity. The optimality result for this
scheduling algorithm can be derived from Lemma 1 by sub-
stituting d; = pi,Vi. It has been brought to our attention
that a result similar to Lemma 1 has also been proved by
Leung and Whitehead [10].
Lemma 1: Consider the set of channels {M; =
(Ciypiydi),i=1,...,k} through a link. Assume that there
exists a feasible fixed priority assignment for the channels
such that the computed response time for each channel sat-
isfies the constraint r; < di < pi,Vi. Then, the priority as-
signment PP, based on an increasing order of delays with
high priority assigned to channels with small delays, is also
a feasible priority assignment.

Proof: omitted from this version.



1. Arrange the channels in ascending order of their asso-
ciated delay d;.

2. Assign the highest priority to the new channel My4i.
Assign priorities to the other channels based on this
order, with high priority assigned to channels with
small delays.

3. Compute the new (worst-case) response times r; for
the existing channels based on this priority assign-
ment.

4. In the priority order, find the smallest position ¢ such
that r{ < d; for all channels with position greater than
q.

5. Assign priority ¢+ 1 to the new channel and compute
the response time rj;.

Figure 3: Assignment Procedure D_Order

Theorem 1: Assignment procedure D.Order yields the
smallest response time for the new channel, My41.

Proof:  Suppose there is some other feasible priority
assignment P which yields a smaller response time. If
rk4+1 is the response time for Mx41 under P, we can set
dk41 = ri41. Consider any channel M; which has lower
priority than Mi4i. Then, rk41 < r; < dj and hence
dr41 < d;. Now, by Lemma 1, the priority assignment PP
based on the channel delays is also a feasible assignment.
Under this assignment, dx+1 < d¢ implies that Mg, has
priority over M,. Therefore, any channel which has prior-
ity lower than My4; under P also has priority lower than
Mi41 under PP, Also, a channel which has priority higher
than My41 under P could have priority lower than Mx4:
under PP. This means that the response time for M4
under PP will be at most equal to the response time under
P. Contradiction. [ |

In the last stage of the channel establishment procedure,
delays will be assigned to the new channel, for each link
on the source-destination route. For any link, the assigned
delay for that link, das, has to be such that das > 74y, It
can be shown that if channels are allotted priorities based
on this assigned delay, the resulting priority order is still
feasible. The new priority order for the channels is not
necessarily the one used to compute the response time ry .,
because there may exist a channel with ri, < di < da,.

3.3 Run-time Scheduling

A node in the system can have several incoming and
outgoing links connected to it. These links can operate in
parallel, so each outgoing link is considered as a separate
entity for scheduling. Messages are composed of packets,
and packets carry information about the message, and the
channel, to which they belong. When a packet arrives at
a node, or is generated in the node, it is dispatched to the
appropriate outgoing link. Suppose the arriving packet be-
longs to the ith message on the channel M.. All packets
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belonging to the ith message would be assigned the same
logical arrival time, £.(m;), which is the logical arrival time
for the message. For the source node s of channel M.,
£c,s(m;) is defined exactly in the same way as the logical
generation time in Section 2, where ¢; denotes the genera-
tion time of message m;.

lc,a(mo)
lc,s(mi)

to
maz{(fc,.(mi-1) + Iviu‘n)! t:}.

For nodes other than the source node, the logical arrival
time at the node is based on the logical arrival time of
the message at the upstream node. Consider two adjacent
nodes a and b, sharing a link (a,b) which is a part of the
route for channel M.. The logical arrival time for m; at
node b, £.(m;), is defined as

Lep(mi) = Lea(mi) +dea

where d. q is the worst-case delay for messages on channel
M. at node a. It can be seen that the logical arrival time
of a message at any node is ultimately based on its logical
arrival time at the source node. This definition of the logi-
cal arrival time is feasible because the nodes in the system
have synchronized clocks and the maximuwm skew between
clocks on different nodes is small compared to the message
delivery delays [5].

The logical arrival time that is assigned to messages is
used by the message scheduler, which uses a variation of
the multiclass EDD algorithm. In the following description,
the second subscript has been dropped from the notation
for the logical arrival time, since we are dealing with a
single node. The scheduler maintains three queues for each
outgoing link, corresponding to three service classes.

Queue 1 Packets belonging to real-time channels with
£.(m;) < current_time, arranged in the order of in-
creasing deadlines.

Queue 2 Other packets arranged in the order of increasing
deadlines.

Queue 3 Packets belonging to real-time channels with
£c(m;) > current_time, arranged in the order of in-
creasing logical arrival time.

Queue 1 and Queue 3 contain packets which belong to real-
time channels, while Queue 2 contains all other types of
packets. Queue 1 contains current real-time packets, which
have to be scheduled in the order of their deadline, hence it
is organized by increasing packet deadlines. Current real-
time packets are those packets whose logical arrival time is
less than the current clock time at the node. Queue 2 con-
tains packets for which no guarantees are given, but which
can have deadlines associated with them. For example,
packets belonging to messages which request “best-effort”
type service would fall in this category. The service pro-
vided for this class of packets is improved by giving them
priority over real-time packets which are not current. Since
they are not pertinent to the current discussion, we will not



1. find £c(m;), the logical arrival time of the message to
which this packet belongs.
2. set £i(packet) = £c(m;).
3. set the deadline for this packet to £e(m:) + d..
4. if (£¢(packet) < current_time)
insert packet into Queue 1
else
insert packet into Queue 3

5. invoke the dispatcher.

Figure 4: Processing on Packet Arrival

elaborate on the treatment of this class any further. Pack-
ets in Queue 3 are those which have arrived early, either
because of burstiness in the message generation or because
they encountered delays which were smaller than the bud-
geted worst-case delays at some upstream service stations.
These packets are stored in the order of their logical arrival
time because they have to be transferred to Queue 1 as
they become current.

The actions taken when a real-time packet arrives are
shown in Figure 4, whereas non real-time packets are sim-
ply inserted into Queue 2. The logical arrival time is de-
termined based on the channel to which the packet belongs
and the sequence number of the message of which it is a
part. This is the logical time, £1(), of a packet. The dead-
line for the packet is set to £c(mi) + dc, where d. is the
worst-case delay guaranteed for channel M. at this node.
Since all packets in a message have the same £.(m;) and the
same d., they will all have the same deadline. The packet
is then inserted into Queue 1 or Queue 3, depending upon
whether it is current or early. Lastly, the dispatcher is in-
voked.

The dispatcher, which is shown in Figure 5, first checks
whether any real-time packets in Queue 3 have become cur-
rent and transfers such packets to Queue 1. If the link is
idle, it examines the queues in the order of priority looking
for a packet to transmit. Packets in Queue 3 are considered
for transmission only if their logical time is within the hori-
zon, Hy, for the link. The horizon is link-dependent and
is used for flow control, as explained in Section 4. These
packets are scheduled in the order of logical time, primar-
ily because they are queued in that order. Also, this or-
dering makes it easy to identify packets which are within
the horizon (and can be considered for transmission). The
dispatcher is also invoked upon completion of transmission
of a packet on the link. In some situations, it is possible
that Queues 1 and 2 are empty and Queue 3 only contains
packets which are ineligible for transmission. In such cases,
a timer can be used to trigger the dispatcher at the appro-
priate future instant.

Remarks on Correctness

We now have to establish that this run-time scheduling
scheme will conform with the guarantees computed using
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e

Examine Queue 3. Transfer those packets which have
£i(packet) < current.time, to Queue 1.
if (link idle)
if (Queue 1 nonempty)
start transmission of head(Queue 1)
else if (Queue 2 nonempty)
start transmission of head(Queue 2)
else if (Queue 3 nonempty)
if (¢t(head(Queue 3)) < current_time + Hy)
start transmission of head(Queue 3)
end
. end
11. end

BO®NS oW

o

Figure 5: Dispatcher

fixed message priorities. We approach this in two stages.
In the first stage, we show that if we use this scheduling
scheme on a channel set (which is schedulable) that satisfies
the inter-arrival time constraints, then no message will miss
its deadline. In the second stage we consider the effects of
early arrivals and show how our scheme can accommodate
them.

Stage 1: The system times for channels have been com-
puted based on priority scheduling, taking into account the
maximum rate of arrival of messages; and these times sat-
isfy the local deadlines for each channel. Hence, when ar-
rivals conform to the inter-arrival time constraints, a fea-
sible schedule based on priorities exists. Dertouzos [8] has
shown that this implies the existence of a feasible EDD
schedule for this message set, which is based on the dead-
lines assigned to the channels.

Stage 2: Consider a message m; belonging to channel M.,
which arrives at the source node before its logical arrival
time, that is, tarrm; < Le(m;) = Le(mja) + Inin. This
message would be assigned a deadline, D; = £.(m;) + d,
corresponding to its logical arrival time. By the argument
given above, we can assert that, if the message did come in
at its logical arrival time, a feasible EDD schedule exists by
which all messages will meet their deadline. Since schedul-
ing is based on deadlines, m; can affect only those messages
which have deadlines beyond D;. However, these messages
would be affected to the same extent even if m; arrived at
its logical arrival time, since D, is assigned based on the
logical arrival time. From this, it follows that a feasible
EDD schedule exists even in this case. The same argument
can be applied even when multiple messages arrive prior to
their logical arrival time.

If a message m; arrives late at the source node, that
is, tarrm; > £e(mi-1) + Iin, it will be assigned a log-
ical arrival time £.(mi) = tarrm; and a deadline, D; =
£c(m;) + dc. Also, future message arrivals on this channel
will be assigned logical times based on £c(m;). This mes-



sage cannot increase the maximum system time for any
other messages, since the system times for these messages
were computed by considering the maximum possible ar-
rival rate for messages on channel M.. Hence, a feasi-
ble priority-based schedule exists in this case, and conse-
quently, a feasible EDD schedule also exists. The logical
time assigned to messages at intermediate nodes is based
on the logical time at the source node, and similar argu-
ments apply.

4 Buffer Management

Buffer space has to be reserved for real-time channels
at the source, destination, and intermediate nodes in or-
der to prevent buffer overruns and consequent loss of mes-
sages. During channel establishment, the user has to spec-
ify the burstiness in message generation, Byaz, as part of
the channel specification. This burstiness determines the
buffer requirement at the source node of the channel. If
dc,s is the worst-case delay guaranteed for channel M. at
the source node, the buffer requirement can be expressed
as (Braz + de,s * Roaz)Shas, where the dc s - RE,q, term
accounts for new arrivals during the system (response) time
of a message on the channel. It is necessary for the source
node to provide this buffer space because the client can
legitimately produce messages at this rate, and, if buffer
space is not provided, messages could be lost due to non-
availability of buffers. Also, the source node is responsible
for making sure that message generation for M. adheres to
the channel specification. It can refuse to accept messages
belonging to M. when the actual generation rate exceeds
the specified bounds.

Intermediate nodes also have to provide buffer space
for M., but this need not depend upon BS,,, if a flow-
control mechanism is employed between nodes. The buffer
reservation scheme and the flow-control mechanism are in-
timately related, since flow-control can be used to regulate
the burstiness of message arrivals at intermediate nodes.
The flow-control mechanism considered here operates by
holding back some of the messages which arrive before their
logical arrival time. If flow-control were not used, mes-
sages could zip through lightly loaded nodes and back up
at heavily loaded nodes, thereby causing buffer space prob-
lems at the heavily loaded nodes. An extreme case of flow-
control is when all messages which arrive early are held
back, that is, a message is considered for transmission only
when £.(message) < current_time. In this extreme case,
an intermediate node, k, need only provide buffer space
proportional to dck + Riaz - SSaz and rely on flow-control
to eliminate the burstiness. However, this strict regulation
can result in unnecessary delays for messages when the net-
work is lightly loaded. By allocating more buffer space, we
make it possible for messages to go quickly through lightly
loaded nodes.

The logical arrival time assigned to a message depends
upon the burstiness in the arrival process. Hence, the
bound on burstiness can also be interpreted as a horizon
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for the logical arrival time. Burstiness can be measured by
the equation,

B = (£.(message) — current_time)/Iin

which can be rewritten as
£c(message) = current.time + B - I ;p.

A bound on the burstiness, B < By, can therefore be inter-
preted as {.(message) < current_time + Bm - I5,;,. Packets
belonging to messages with logical arrival time greater than
this horizon may be discarded by the node. In other words,
the horizon, By, - I, determines the buffer requirement
for a channel at an intermediate node.

A node can compute the horizon for a link, based on
the available buffer memory, whenever a new channel is to
be established with that link. This horizon is passed back
to the upstream node, since that node is responsible for
flow-control on the link. The upstream node has to make
sure that it transmits forward only those messages which
have logical time, at that node, within the horizon (packets
which belong to a single message all have the same logical
time). It is possible to use a different horizon for each chan-
nel, but this can create problems for the run-time sched-
uler because it is then forced to examine all the packets in
Queue 3 individually to check their eligibility for transmis-
sion. Use of a single horizon means less flexibility in buffer
management, but it is more suitable for run-time schedul-
ing. The buffer space required for a channel is computed
as follows.

Consider two adjacent nodes a and b, sharing a link (a, b)
which has a horizon H,p. Consider a message p arriving
at node b on channel M., using link (a,b). Since node
a uses Hqp for flow-control on link (a,b), we can deduce
that the logical time for the message at node @ must be
£c,a(p) < current_time + Hqp. The logical time assigned to
the message at node b is £c,5(p) = £c,o(p) + dc,a, Where dc o
is the assigned worst-case delay for M. at node a. Node b
will not contain any messages belonging to M. which have
£ p(m) < current_time — d. 5, where d. s is the worst-case
delay assigned to the channel at this node. This is because
messages on M. are guaranteed to leave b within d. s time
units from their logical arrival time. Hence, node b can
only contain messages belonging to M. which have logical
time in the range

current.time — dcp < & 5(p) < current_time + Hap + dc,a.

The buffer space required to hold these packets is then given
by:
[(Hn.b +dea+ dc,b)/mu‘n] “Spaz-

From this equation, it is clear that the minimum buffer
space required for a channel is Smaz - (dprev + dnode)/Imin.
The overall buffer space requirement of a node is the sum
of the buffer space required for all channels going through
the node. When a new channel is being established, the



node first tries to accommodate the new channel by com-
puting the buffer space based on the existing horizon. If
the available buffer space is less than the requirement, the
node then reduces the horizon for that link. Reducing the
horizon for a link has the effect of reducing the buffer space
requirement of all channels using the link, so the amount
of buffer space available increases.

5 Related Work

The concept of a unidirectional real-time channel was de-
veloped by the researchers of the DASH project. The real-
time channel considered in this paper is similar to the deter-
ministic real-time channel of [3]. That paper also considers
two other types of channels: statistical, where messages
are given a guarantee of successful delivery with a certain
probability, and best-effort (with no guarantees). We do
not consider statistical channels mainly because real-time
applications require hard guarantees. Comer and Yavatkar
have developed an abstraction called flows [11], which is
similar to a unidirectional channel, but they do not give
guarantees for the delivery time of messages. Flows can be
identified with best-effort channels.

The parameters used for the description of the message
arrival process are based on the linear bounded arrival pro-
cess model of Cruz [6], with small modifications. Although
the outline of our channel establishment scheme is similar
to the one presented in [3], it is different in several respects.
We have examined the problem of guarantee computation
in depth, and developed a scheme for computing worst-case
response times based on priorities. This corresponds to the
delay bound test of [3]. It can be shown that the delay
bound test of [3] is a special case of the priority-based re-
sponse time computation scheme presented here. Moreover,
we have presented an integrated solution to the problem of
buffer reservation and flow control, based on the horizon
model.

The problem of time-constrained communication in a
multi-hop network has also been addressed by Cidon et
al. in the PARIS system [12]. Their approach is based on
providing limited buffer space in the switching nodes and
using FIFO scheduling to obtain an upper bound on the
network delay in each node. Limited buffering can result
in packet loss, and so their efforts are aimed at maximiz-
ing throughput, while keeping the probability of packet loss
below a certain level.

6 Summary

In this paper, we have identified and solved problems
related to the establishment and management of real-time
channels. We have presented algorithms for computing the
worst-case delay for messages, and for scheduling these mes-
sages. The computation was based on priority scheduling,
and it was shown to be optimal under certain conditions.
We also presented mechanisms for buffer allocation and
flow control suitable for real-time channels, which would
preserve the guarantees on delivery time.
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