A Hybrid Reconfiguration Scheme for Real-Time

Fault-Tolerant Systems

Jong Kim, Heejo Lee

Dept. of CSE
POSTECH
Pohang 790-784, KOREA

Abstract

Non-stop operation, despite the occurrence of faults,
is @ key requirement for highly-reliable, real-time sys-
tems, such as atrcraft and nuclear reactor controller
computers. Reconfiguration is commonly used to
mean the process of transforming the ezecution struc-
ture of @ system from one state to another when a
fault occurs. We identified two types of reconfigura-
tion: fault-tolerating reconfiguration (upon occurrence
of each fault) and performability-enhancing reconfigu-
ration (independently of fault occurrences).

This paper proposes a hybrid reconfiguration scheme
for real-time fault-tolerant systems. The proposed
scheme not only meets the timing constraints or dead-
lines of hard real-time jobs, but also maintains high
performability. In this scheme, a system reconfigures
itself either when a fault occurs or when @ job arrives
or completes its execution.

1 Introduction

The development of high-performance micropro-
cessors & memory chips and new parallel processing
techniques has increased significantly the computation
speed of today’s computer systems. In addition to this
performance enhancement, there is a strong need to
devise techniques for tolerating component failures in
a computer system, especially for such safety-critical
applications as defense systems, avionics, and process
controls. One must consider two important require-
ments when designing a reliable and stable computer
system for these applications. First, the system must
satisfy the timing requirements of the underlying ap-

The work reported in this paper was supported in part by the
Office of Naval Research under Grant N00014-91-J-1115, by
Texas Instrument, and by POSTECH internal fund. Any opin-
ions, findings, and recommendations in this paper are those of
the authors and do not reflect the views of the funding agencies.

Kang G. Shin

Dept. of EECS
The University of Michigan
Ann Arbor, MI 48109-2122

plications. Second, the system must operate continu-
ously even in the case of random fault occurrences.

There are several methods proposed for finding
an“optimal” configuration upon the occurrence of a
fault [1-3]. These methods focused on “optimal” re-
configuration in the sense of maximizing reliability
upon detection of a fault, but did not address such
issues as how many jobs are currently executing in
the system and how soon the reconfiguration must be
completed to meet the timing constraints of currently-
executing jobs.

Melhem [4] modeled state-dependent reconfigura-
tion. He identified the system to be in strict- or
relaxed- mode, depending on the environment of
currently-running jobs. The strict-mode represents
both a heavy computational load and a strict demand
for response within a tight timing bound. The relaxed-
mode, on the other hand, is characterized by a light
computational load with relatively relaxed constraints
on the response time. For example, a radar system
would be in strict-mode when it is tracking a target,
and is in relaxed-mode when there is no object to be
tracked.

When a system is in strict-mode and needs to be
reconfigured, for example, due to the occurrence of a
component failure, the system is required to do it fast
using only local information of the failed component.
On the other hand, when the system is in relaxed-
mode and needs to be reconfigured, the system may
gather information on all live components and find an
optimal system configuration by maximizing its sta-
bility and reliability. Reconfiguration based on local
information as shown in [4] is not the only fast method.
The method proposed in [3] is also fast using precom-
puted reconfiguration tables. In this method, possi-
ble system configurations are determined a prior: and
stored in a reconfiguration table, and when a fault is
detected, a possible system configuration is selected

from the table. This kind of reconfiguration is said to
be static. On the other hand, the reconfiguration that
gathers information, whenever needed, from the en-
tire system and finds an optimal configuration, is said
to be dynamic. The weakness of the method in [4] is
that there are no key parameters that can be used to
clearly identify the system to be in strict- or relaxed-
mode.

System reconfiguration may be invoked only upon
the occurrence of a fault, and, in such a case, may find
the “best” (in some sense) configuration, which may
still contain the faulty component. The reconfigured
structure will no longer be the best when a new job
arrives or the currently running job finishes its execu-
tion. Upon completion of one of the currently-running
job or upon start of a new job, the system must be
reconfigured in order to enhance the system’s perfor-
mance and reliability (as opposed to a single task per-
formance). The objective of this reconfiguration is to
maximize the system’s performance and reliability —
commonly known as performability. The reconfigu-
ration to handle the occurrence of a fault is said to
be passive and the reconfiguration to maximize per-
formability is said to be active. We will henceforth
call the former “fault-tolerating” reconfiguration and
the latter “performability-enhancing” reconfiguration.

In this paper, we propose a hybrid reconfiguration
scheme for real-time fault-tolerant systems. The pro-
posed scheme classifies the system to be in one of three
possible states: C (constrained), U (unconstrained), F
(fault). For each of these system states, the proposed
scheme prescribes an optimal configuration by max-
imizing system performability. In other words, the
scheme accounts for not only fault-tolerating reconfig-
uration, but also performability-enhancing reconfigu-
ration. As a result, the proposed hybrid reconfigura-
tion satisfies the real-time constraints and maximizes
the system performability.

This paper is organized as follows. The proposed
hybrid reconfiguration scheme is introduced in Section
2. State identification and system reconfiguration are
treated in Section 3. In Section 4, the performance
of the proposed hybrid reconfiguration scheme is com-
pared against a simple reconfiguration scheme. The
paper concludes with Section 5.

2 Reconfiguration Scheme

2.1 Background

In areal-time system, high performance and contin-
uous operation are two key attributes to the correct,
timely completion of critical jobs. High performance
can be achieved by employing a well-structured sys-
tem and utilizing system resources efficiently. Contin-
uous operation can be achieved by adopting and main-
taining fault-tolerant structures. For performance-
enhancement and fault-tolerance, the system has to be
reconfigured dynamically so as to choose and maintain
an optimal system configuration. That is, the system
needs to be reconfigured either upon the occurrence
of a fault or at anytime if it can enhance system per-
formability. In [3], the reconfiguration needed to en-
hance system performability was called active recon-
figuration, while the one needed upon occurrence of a
fault was called passive reconfiguration.

Depending on the strictness or importance of meet-
ing task deadlines, a real-time system is said to be
hard or soft. In a hard real-time system, all critical
tasks must be completed before their deadline to avoid
dynamic failure [5]. A real-time system has two op-
erating modes: constrained mode and unconstrained
mode. When it is in the constrained mode, the sys-
tem is heavily-loaded with time-critical jobs and busy
executing them to meet their deadlines, thus needing
to minimize any disruption (caused by system recon-
figuration) in executing the tasks. By contrast, when
it is in the unconstrained mode, the system has only a
small number of critical jobs to execute and has time
to do other things, such as thorough health checking
and maintenance.

The reconfiguration algorithm for the constrained
mode should differ from that for the unconstrained
mode, since there isn’t enough time to find an efficient
or optimal configuration. It should be fast enough not
to miss the deadline of any of the currently-executing
jobs. More details about reconfiguration are discussed
in next subsections.

2.2 Hybrid Reconfiguration

We propose here a hybrid reconfiguration scheme
for a real-time fault-tolerant system which adopts dif-
ferent reconfiguration strategies depending on its op-
erating status. Although the system status can be
classified in many ways, we classify it in the following
two ways relevant to system reconfiguration. First,

Passive-Static
Reconfiguration

Passive-Dynamic
Reconfiguration

Fault
Occurrence

Task Variation

Task Variation

Active-Static Regonf. Active-Dynamic Regonf.

Figure 1: System state transition diagram.

the system status is divided into fault-free mode and
fault-occurred mode, depending on whether a fault has
already occurred or not. The system should reconfig-
ure itself not only to tolerate or handle a fault upon its
occurrence, but also to enhance the performability of
the system, even when no fault has occurred. We will
call the “fault-tolerating” reconfiguration passive and
the “performance-enhancing” reconfiguration active.

Second, as discussed above, we distinguish the oper-
ating status/condition of a real-time system with two
modes, constrained and unconstrained, depending on
the tightness of timing constraints. Conceptually, the
system is considered to be in the constrained mode if
the total remaining time before task deadlines expire
is small. Otherwise, the system is in the unconstrained
mode. When a system is in the constrained mode, all
but urgent operations should be avoided or shortened.
For example, if a fault occurs in a constrained system,
the system should perform “minimal” or fast reconfig-
uration so as to minimize the disruption in the execu-
tion of those tasks whose deadlines are tight. Static or
pre-determined reconfiguration is a typical example of
this type. This kind of system reconfiguration is suit-
able for hard real-time systems. When the system is
in the unconstrained mode, since there are no tight
deadlines to be met, the system derives an optimal re-
configuration structure dynamically as needed. This
kind of system reconfiguration is said to be dynamic.

The proposed hybrid reconfiguration scheme adopts
one of four reconfiguration strategies, depending on
the system status, to enhance the system perfor-
mance and dependability. The four reconfiguration
strategies are passive-static, passive-dynamic, active—
static, and active-dynamic. Applying these four
strategies, we can find three distinct system states.
These states and transitions among them are shown
in Fig. 1.

The system is classified into one of three possible
states: F (faulty), C (constrained), and U (uncon-
strained). The state F represents that the system
has a fault. When a faulty system reconfigures and
it is in the constrained mode, passive—static recon-
figuration is necessary to meet the tightness of tim-
ing constraints. The state after this reconfiguration
is thus represented as C. Passive-dynamic reconfigu-
ration is performed in the unconstrained mode and
the state after this reconfiguration is represented as
U. The state transition from C to U or from U to C
occurs when one of the currently-running job finishes
or a new job is scheduled to execute by timing con-
straint. Active-dynamic reconfiguration is performed
in the state U to enhance the performability of the
unconstrained system. Similarly, active-static recon-
figuration is performed in the state C to enhance the
performability of the constrained system.

The proposed hybrid reconfiguration scheme is at-
tractive and of practical significance since it can mini-
mize the possibility of missing task deadlines and max-
imize the performability of a real-time fault-tolerant
system. However, one obvious problem of the pro-
posed scheme is state identification. Although it is
easy to say that the system is in the constrained or
unconstrained mode, it is difficult to differentiate be-
tween the two modes precisely. In the next section,
we will discuss how to identify the systems state.

3 System State Identification

A system enters the reconfiguration phase upon oc-
currence of a fault or upon scheduling of a new job
or upon completion of a currently-running job. The
reconfiguration method could be static or dynamic.
Determining which reconfiguration method to use de-
pends on the system state at the time of reconfigu-
ration. If the system is determined to be in the con-
strained mode, then a static reconfiguration method
will be used. Otherwise a dynamic reconfiguration
method will be used. Although there are many pa-
rameters describing the system constraints, such as
response time, number of jobs, job arrival rate, job
service rate, and deadline tightness, most of them give
only a partial view of the system state. Among these
parameters, deadline tightness is the most important
to real-time applications. We will therefore focus on
the system mode determined by the deadline tightness
of real-time jobs.

Each real-time job can be described with three
parameters: its start time, execution time, and

deadline [6]. Suppose there are m real-time jobs,
T1,Ts, ..., Ty, in the system. The start time, execution
time, and deadline of the k-th job or T} are denoted as
s(Te), e(T), d(Te) (1 < k < m). When these m jobs
are sorted in ascending order of their deadlines, job 1
through job k in the sorted list have to be completed
before the deadline of job k. Hence, the sum of exe-
cution times of the first k& jobs should be smaller than
the deadline of job k; that is,

o(T:) < d(Tk), (1< k <m)

The fault-tolerating reconfiguration is triggered by
the occurrence of a fault. The reconfiguration process
requires a certain amount of time, called the reconfigu-
ration delay, to find a suitable reconfigured structure.
In order to meet the deadlines of real-time jobs, the
addition of reconfiguration delay to the execution time
of each job should be within the job’s deadline. Let
R(t) denote the reconfiguration delay, then

o(T)) + R(t) < d(Th), (1< k<m)

=1

This equation restricts the reconfiguration delay, R(t),
to be less than d(T%) — Ele e(T) (1 <k <m).

In the hybrid reconfiguration scheme, there exist
two kinds of reconfiguration delay functions for pas-
sive and active reconfigurations: in constrained and
unconstrained modes. Let R.(t) and R, (t) denote the
reconfiguration delay in constrained mode and uncon-
strained mode, respectively. By determining the sys-
tem’s operating mode upon occurrence of a fault, we
estimate the reconfiguration delay. For example, if
the allowable reconfiguration delay R(¢) is larger than
both R.(t) and R,(t), then system is in unconstrained
mode. In unconstrained mode, the system has time to
do optimal reconfiguration. If R(t) is smaller than
R,(t) and larger than R.(¢), then the system is in
constrained mode and should be reconfigured as fast
as possible to minimize the percentage of jobs missing
deadlines, or the deadline miss ratio for short. But
if the allowable reconfiguration delay R(t) is smaller
than R.(t), then there is a job that cannot afford any
reconfiguration delay. In such a case, the job will miss
its deadline irrespective of the reconfiguration method
used. However, to reduce the number of jobs missing
deadlines, it would be better for the system to use
static reconfiguration. Thus, hybrid reconfiguration
minimizes the deadline miss ratio. Also, reconfigura-

tion in unconstrained mode makes it possible to en-
hance the performability of the system. The hybrid
reconfiguration scheme maximizes the system perfor-
mance by minimizing the deadline miss ratio for real-
time jobs.

4 Performance Evaluation

The advantages of hybrid reconfiguration are
demonstrated using simulations. The selected mea-
sure for our evaluation is the probability of meeting
the deadlines of real-time jobs, called the deadline
hit ratio. The deadline hit ratio of hybrid reconfig-
uration is compared against a simple reconfiguration
scheme that uses the same parameters. We assume
that job inter-arrival times, job execution time, and
fault inter-arrival times are exponentially distributed
with parameters A, u, and 7, respectively. Since the
system becomes stable after a long period of time since
the occurrence of a fault, we observed the system be-
havior only for 1000 units of time measured from the
point of failure with hybrid and simple reconfigura-
tion schemes. The time to do static reconfiguration
is assumed to be a % of the time to do dynamic re-
configuration. In the simulation, we generated jobs
without considering whether the generated jobs would
finish within their deadline or not, thus increasing the
deadline miss ratio. The deadline of each task is com-
puted as the summation of its execution time and a
randomly-generated delay between 1 and 5.

Fig. 2 shows the deadline hit ratio as a function of
failure rate when A = 0.5, ¢ = 0.7, and o = 50%. The
difference between the hybrid and simple schemes be-
comes more pronounced as the failure rate increases.
When the failure rate v is 0.01, only 10 % of the sub-
mitted jobs are completed in time with the simple re-
configuration scheme, while 50 % of the submitted jobs
are finished within their deadlines with the hybrid re-
configuration scheme.

Fig. 3 shows the effect of varying the ratio of the
time to do static reconfiguration to the time to do dy-
namic reconfiguration. In this simulation, the failure
rate is given as 0.001. When the time to do static
reconfiguration is 10% of the time to do dynamic re-
configuration, the deadline hit ratio is greater than 98
%. The reason why the deadline hit ratio is less than
100 % is that jobs are not checked for the feasibility
of their timely completion.

In Fig. 4, the range of arrival rates that hybrid
reconfiguration can reduce the deadline miss ratio is

1 T
Hybrid —
0.8 Non-Hybrid ...
06
Hit
Ratio
04 .
02t R 1
0 | L L L L I I 1
0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

Failure Rate

Figure 2: Deadline hit ratio versus failure rate.

1

0.95 - Hybrid —
Non-Hybrid -
09 [b

0.85 7

Hit
Ratio
08 7

O S NN

07 1 1 1 1 1
01 02 03 04 05 06 07 0.8 0.9 1

Fast reconfiguration time ratio

Figure 3: Deadline hit ratio versus the ratio of recon-
figuration times.

evaluated in the simulation. In this simulation, y, v,
o are set to 0.7, 0.001, 50%, respectively. Utilization
factor (p = A/p) must be less than 1 for the system
to be stable. Hybrid reconfiguration is shown to im-
prove the deadline hit ratio for all stable conditions.
Especially, the larger the utilization factor the better
hybrid reconfiguration becomes.

5 Conclusion

Though many researchers studied the problem of
system reconfiguration, none of their results are suit-
able for real-time applications. To remedy this defi-
ciency, we proposed a hybrid reconfiguration scheme
for fault-tolerant real-time systems. The proposed
scheme classified the operating status of a fault-
tolerant real-time system into two types. First, the op-
erating status is divided into constrained and uncon-
strained modes, depending on the tightness of dead-
lines of real-time jobs. Second, the operating sta-
tus is divided into fault-tolerating and performability-
enhancing modes, depending on whether a fault has

09 Hybrid —
08t Non-Hybrid - 1
07]
06 i

Hit 05 f]
Ratio g4 B

1 T

03r 1

02]

01t .

0 L L L L 1 e ! !

0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1
Arrival Rate

Figure 4: Deadline hit ratio versus job arrival rate.

occurred or not. From these two different classifi-
cations, we identified four distinct system’s operat-
ing modes, each of which requires a different recon-
figuration scheme to have better system performance
and dependability. The hybrid reconfiguration scheme
adopts a different reconfiguration strategy for each op-
erating mode. Our simulation results have shown that
the proposed hybrid reconfiguration scheme outper-
forms a simple reconfiguration scheme.

References

[1] T. K. Chang Chen, An Feng and K. Torii, “Reconfig-
uration algorithm for fault-tolerant arrays with min-
imum number of dangerous processors,” in Proc. of
FTCS-21, pp. 452-459, 1991.

[2] P. Banerjee and M. Peercy, “Design and evaluation of
hardware strategies for reconfiguring hypercubes and
meshes under faults,” IFEE Trans. on Computers,
vol. 43, pp. 841-848, July 1994.

[3] Y.-H. Lee and K. G. Shin, “Optimal reconfiguration
strategy for a degradable multimodule computing sys-
tem,” J. of ACM, vol. 34, pp. 326-348, Apr. 1987.

[4] R. G. Melhem, “Bi-level reconfigurations of fault toler-
ant arrays in bi-modal computational environments,”
in Proc. of FTCS-19, pp. 488-495, 1989.

[5] M. H. Woodbury and K. G. Shin, “Evaluation of the
probability of dynamic failure and processor utilization
for real-time systems,” in Proc. of 9th Real-Time Sys-
tem Symposium, pp. 222-231, Dec. 1988.

[6] J. Y.-T. Leung, “Research in real-time scheduling,” in
Foundations of Real-Time Computing: Scheduling and
Resource Management (A. M. van Tilborg and G. M.
Koob, eds.), ch. 2, pp. 31-62, Kluwer Academic Pub-
lishers, 1991.

