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On Probabilistic Diagnosis of Multiprocessor 
Systems Using Multiple Syndromes 

Sunggu Lee, Member, IEEE, and Kang G. Shin, Fellow, IEEE 

Abstract-This paper addresses the distributed self-diagnosis of 
a multiprocessor/multicomputer system based on fault syndromes 
formed by comparison testing. We show that by using niultiple 
fault syndromes, it is possible to achieve significantly better 
diagnosis than by using a single fault syndrome, even when 
the amount of time devoted to testing is the same. We derive 
a multiple syndrome diagnosis algorithm that in terms of the 
level of diagnostic accuracy achieved, is globally suboptimal, but 
optimal among all diagnosis algorithms of a certain type to be 
defined. Our diagnosis algorithm produces good results, even with 
sparse interconnection networks and interprocessor tests with low 
fault coverage. It is also proven that our diagnosis algorithm 
produces 100% correct diagnosis as Y, the number of nodes in the 
system, approaches CO, provided that the interconnection network 
has connectivity greater than or equal to 2 and that the number 
of syndromes produced grows faster than 1og:V. Our solution 
and another multiple syndrome diagnosis solution by Fussell and 
Rangarajan are comparatively evaluated, both analytically and 
with simulations. 

Index Terms- Distributed self-diagnosis, fault-tolerant com- 
puting, intermittent fault, multicomputer, multiprocessor, prob- 
abilistic diagnosis, self-test, system-level diagnosis 

I. INTRODUCTION 

HIS PAPE,R addresses the problem of the distributed T on-line self-diagnosis of processing nodes in a multipro- 
cessor or multicomputer system. Each node diagnoses itself as 
faulty or nonfaulty based on comparisons of task outputs with 
its neighboring nodes. This type of method can be viewed as 
an on-line self-testing method in which a node tests itself by 
comparing itself to its neighboring nodes, instead of executing 
special routines to test its internal circuitry. 

Informally, a fault syndrome is a set of task output compar- 
isons viewed as a collection of binary pass-fail interproces- 
sor test results. We consider diagnosis using multiple fault 
syndromes, corresponding to diagnosis based on multiple- 
task output comparisons. Diagnosis using this type of fault 
syndrome has its origins in the PMC model 191. Unlike most 
of the system-level diagnosis methods based on the PMC 
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model, however, we do not place an upper bound on the 
number of permitted faulty processors, nor do we assume 
interprocessor tests with perfect fault coverage. In addition, 
for ease of implementation, we assume that processors test one 
another by comparing the outputs of identical tasks (commonly 
referred to as comparison-testing). Since interprocessor tests 
with imperfect fault coverage, and since intermittently faulty 
processors can result in the same types of fault syndromes, we 
can handle intermittent as well as permanent faults. 

Several authors [7], [8], [ I  11 addressed the problem of 
diagnosing intermittent faults in t,-diagnosable systems, in 
which, if no more than t ,  nodes are intermittently faulty, a 
nonfaulty node will never be diagnosed as faulty [7]. Because 
a node is identified as faulty only if there is sufficient evidence 
to definitely identify it as faulty, given the upper bound 
t ,  on the number of faulty nodes, however, these methods 
are overly conservative in identifying faulty nodes, and thus 
rarely achieve correct diagnosis (by which we mean that the 
diagnosed fault set is the same as the actual fault set). 

Other authors [ 11, [3]-[5], proposed probabilistic diagnosis 
algorithms that achieve correct diagnosis with high probabil- 
ity, given intermittently faulty processors. Such probabilistic 
diagnosis algorithms offer the most general solutions with the 
highest level of diagnostic uccuracy, defined as the percent- 
age of diagnoses that are correct. The following are three 
arguments used to support probabilistic diagnosis algorithms: 

1) using analysis to show that high diagnostic accuracy is 
achieved in certain situations [4], 

2) guaranteeing that the set of nodes most likely to have 
caused the syndrome is found [3], and 

3) showing that as the number of nodes in the system grows 
to infinity, diagnostic accuracy approaches 100% [ 11, [ 5 ] .  

Although argument 2)-guaranteeing the most probable diag- 
nosis-is the most appealing, it has been shown that finding 
the most probable diagnosis, given the global syndrome in- 
formation, is an NP-hard problem [2], [6]. From a practical 
perspective, argument 3) is insufficient, because it says nothing 
about the quality of diagnosis produced for finite systems. 
Because automated diagnosis is particularly important for large 
systems, however, asymptotically correct diagnosis is certainly 
a desirable property of any probabilistic diagnosis algorithm. 
In this paper, a diagnosis algorithm is presented that has the 
property of asymptotically correct diagnosis being optimal 
(in diagnostic accuracy) among all diagnosis algorithms of 
a certain type to be defined. Our diagnosis algorithm is 
further supported by simulations using square mesh and TMR 
structure. 
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Blough et al. [ l ]  showed that they could asymptotically 
achieve 100% correct diagnosis in an N processor system 
as N + 30, provided that a ( N )  log N tests were performed 
on each processor, where a ( N )  + oc) arbitrarily slowly as 
N + CO. In their method, the number of tests on processor U ,  

is equivalent to the number of processors testing U,. Fussell 
and Rangarajan [5] used a different testing model to show that 
the same asymptotic result as [ 11 can be obtained for systems 
with lower connectivity (e.g., meshes or rings) if each pair of 
processors conducts multiple tests and if the number of these 
tests on each processor grows faster than logN. Fussel and 
Rangarajan’s algorithm can be viewed as a multiple syndrome 
diagnosis algorithm, in which testing is conducted in stages 
and a fault syndrome is collected after each testing stage. 

In this paper, we improve upon Fussell and Rangarajan’s 
(FR) algorithm [5] for probabilistic diagnosis based on mul- 
tiple syndromes. Because multiple syndromes can be formed 
in many different ways, and because many different types of 
syndrome information can be used in the diagnosis, we define 
a specific category of multiple syndrome diagnosis (of which 
the FR algorithm is a member) and restrict our analysis to this 
category. Our diagnosis algorithm is provably optimal among 
all multiple syndrome diagnosis algorithms that use the same 
type of syndrome information as the FR algorithm. In addition, 
our optimal multiple syndrome diagnosis algorithm has the 
same desirable asymptotic properties as the FR algorithm. 

The main contributions of this paper are 1) the use of 
probability analysis to show the advantage of multiple- ver- 
sus single-syndrome diagnosis, and 2 )  the development of a 
multiple-syndrome diagnosis algorithm that is optimal among 
all diagnosis algorithms of a specific category. Simulations 
are presented in Section V to provide a comparison of the FR 
algorithm. our multiple syndrome diagnosis algorithm, and an 
single syndrome diagnosis algorithm [6]. 

11. BACKGROUND 

A. Preliminaries 

A system S is composed of N processing nodes, denoted 
by the set V = {UO~...,UN-~}. Interprocessor testing is 
assumed to be done by comparison testing, in which a test 
between two processors ui and uj is actually a comparison 
of their execution results or outputs for an identical task. 
The set of tests executed in this manner is represented by an 
undirectecl graph G = (V, E ) ,  called the testing graph, where 
vertex U ;  E V represents a processing node and undirected 
edge e;j E E represents the fact that a comparison test is 
performed between ui and uj. The testing graph is assumed 
to be a subgraph of the graph representing the interconnection 
network of the system. A (fault) syndrome SD is a mapping 
from E to (0, l}. SD(e; j )  is denoted by aij and is equal to 
1 if and only if nodes ui and w , ~  produce different execution 
results for the same task. A diagnosis is said to be correct 
if the set of nodes diagnosed to be faulty is the same as the 
actual fault set. For a given node ui, let l?(u;) denote the set 
of nodes that U ;  tests (which are the same nodes that test U;), 
and let dl:u;) = J{uj E r(u;) : a;j = 1}1, where IAl is the 

cardinality of the set A .  The fault status of ui is denoted by 
6; for “U; is faulty” and x i  for “U; is nonfaulty.” 

The following probability parameters are used. Given a node 
U ;  E V, fi is the prior fault probability of U; .  Let p;k be the 
probability that ui E V produces an incorrect result for a test 
task t k ,  given that U ;  is faulty. p;k values will be referred 
to as fault coverage. In part of the probability analysis, we 
will require the use of average probability parameter values. 
The average values of parameters will be denoted by the 
corresponding letters without subscripts. For example, f and 
p refer to the average f; and p;k values, respectively. 

The testing methods used in single- and multiple-syndrome 
diagnoses are referred to as single-syndrome testing and 
multiple-syndrome testing, respectively. As implied by their 
names, the main difference between single- and multiple- 
syndrome testing is that multiple-syndrome testing generates 
multiple (normally more than 1) syndromes by using multiple 
testing stages. As used in this paper, however, there is another 
major difference between the two methods regarding the 
manner in which the comparison tests are generated. 

In single syndrome testing, it is assumed that the comparison 
test between a node U ;  and another node uj E r(ui) is 
independent of any other comparison test. If two nodes ui and 
uj execute and compare more than one task, then a;j = aj; = 
1 if any of the task outputs are different for the two nodes. 
Most of the previous work on diagnosis with comparison 
testing has assumed single-syndrome testing. 

In multiple-syndrome testing, on the other hand, testing is 
done in stages, and in each testing stage, it is assumed that 
the same task is used in the comparison tests between a node 
ui and the nodes in r(u;).  In other words, all nodes in the 
same connected component of the testing graph must execute 
the same test task in a single testing stage. The results of 
the comparison tests in different testing stages are assumed 
to be statistically independent of each other. A “new” fault 
syndrome is formed after each testing stage using the same 
testing graph. The number of testing stages used in multiple 
syndrome testing is denoted as R. 

There are several ways in which diagnosis can be done 
using the syndromes generated by the multiple syndrome 
testing method. Let us define the most probable diagno- 
sis, given a testing graph and syndrome as the diagnosis 
(identification of faulty and nonfaulty nodes) that has the 
highest posterior probability value, given the testing graph 
and syndrome information. Then the optimal diagnosis method 
(in terms of diagnostic accuracy) is to produce the most 
probable diagnosis, given all of the information contained in 
the multiple syndromes. It has been shown that even with a 
single syndrome, however, finding the most probable diagnosis 
is an NP-hard problem [6]. In addition, an extremely high 
communication overhead is required to reliably distribute the 
syndrome information to all of the nodes. This problem is 
compounded when multiple syndromes are used. 

Therefore, to obtain an efficient and practical diagnosis al- 
gorithm, we consider diagnosis algorithms in which each node 
U ;  is aware of only the results of its tests with its immediate 
neighbors, referred to as local syndrome information. Note 
that in this case, r(ui)  is the set of U ~ S  neighbors in the 
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TABLE I 
CATEGORIZATION OF DIAGONOSIS USING LOCAL SYNDROMEINFORlMATION -"-- all a-- a 4ues values for for all all u R E stages r (u  and F 

Category Syndrome Information Interpretation 

Summar. local &iterative 
lncal 

3A Summarizedlocal ($ ' (U; )  : 1 9  k S I R )  
3AM m -threshold lccal 

($(ui) : 1 S k k R )  andF 
a.. values for all U .  E r(u,) 

I [k : 1 5 k S R and d'(ui) > m 11 

interconnection network. For a node U ,  E V ,  summarized local 
syndrome information is defined as { & ( U , )  : 1 5 k I R},  
where dk((u,) == d(u,) for testing stage k (the number of nodes 
that test U ,  to be faulty in stage k ) .  There are two dimensions 
to the syndrome information: One dimension is & ( U , )  for a 
fixed k ,  and the other dimension is the number of testing stages 
in which & ( U , )  is greater than a fixed threshold. Given an 
integer m, m-threshold local syndrome information is defined 
as l{k : 1 5 IC 5 R a n d  dk((u,) 2 m}l. 

With these definitions, several categories of diagnosis can 
be defined. Category 1, the most general category, is defined 
as diagnosis using all of the global syndrome information. 
Exponential complexity algorithms such as [3] are category 1 
diagnosis algorithms. In [ I ]  and [4], the authors employ an 
iterative diagnosis method in which faulty nodes are identified 
one at a time, using summarized local syndrome information 
and the identity of the nodes identified as faulty in previous 
iterations; this is defined as category 2A diagnosis. (Category 
2 uses local syndrome information and previously identified 
faulty node information.) Finally, category 3, 3A, and 3AM 
diagnosis are defined as diagnosis using local, summarized 
local, and m-threshold local (for any fixed m) syndrome 
information, respectively. This categorization is shown in 
Table I. For categories 2 and 2A, F refers to the set of 
nodes currently identified as faulty by the diagnosis algorithm. 
The diagnosis algorithm derived in this paper is the optimal 
category 3AM multiple-syndrome diagnosis algorithm. 

B. Description of Fussell and Rangarajan 's Algorithm 

In this section, we describe Fussell and Rangarajan's (FR) 
algorithm [5] in detail, because it is characteristic of category 
3AM diagnosis. In the FR algorithm, testing is conducted 
in stages, and two thresholds, kv, and sv,, are used. In 
testing stage k, it is assumed that all processors execute 
the same test task t k .  Let T = { t l , . .  . , t ~ }  be the set of 
R test tasks executed on all processors, where all tasks are 
treated identically, and let M be the total number of possible 
distinct results that a faulty processor can produce for a given 
test task. It is assumed that an incorrect result produced is 
uniformly distributed among the M possible distinct results. 
In Step 1 of the FR algorithm shown below, kit, is chosen 
to be Ir(u,)l - 1, and a range of values is indicated as 
being acceptable for the choice of sv, . These thresholds were 
simply chosen in order for the algorithm to satisfy desirable 
asymptotic properties. The authors of [5 ]  proved that as N -+ 

cc, the diagnostic accuracy of the FR algorithm asymptotically 
approaches 100%. An earlier algorithm by the same authors 
[lo] can be considered to be the same as the FR algorithm 
with sv3 = 0 for all U ,  E V. 

Algorithm FR 
0. Let F c 0 be the set of diagnosed faulty nodes; 
1) For each uj E V do 

kvj +- IryUj)l - 1; 
svJ t R - k,R{1 - p(1 - $)lr(u~)l}, 

where 1 5 IC, 5 2; 
2) For each t ,  E T do 

for each uj E V do 
if d ( u j )  > kv,; 
then L ( i , j )  = 1; 
else L ( i , j )  = 0; 

3) For each uj E V do 
if C,&T L( i , j )  > sv j  

then F c F U { u ~ } ;  

111. ANALYSIS OF MULTIPLE-SYNDROME TESTING 

The two main differences between multiple and single 
syndrome testing are the use of multiple versus single syn- 
dromes and the constrained manner in which the syndromes 
are formed in multiple syndrome testing. Regarding the first 
difference, examples are given in [ lo]  to show that the 
additional information available when multiple syndromes 
are used permits correct diagnosis in some fault situations 
where an "accumulated" single syndrome results in incorrect 
diagnosis. In this section, we focus on the second difference 
and show that the way in which syndromes are formed 
in multiple and single syndrome testing also results in a 
significant difference in diagnostic capability. 

Suppose we take all of the syndromes associated with 
the multiple testing stages in a multiple syndrome testing 
method and form an updated syndrome. The single syndrome 
generated by using this process has the property that for a 
given node U ,  E V, all of the tests e2, for U ,  E r(u,) 
use the same set of tasks. However, the syndrome used in 
single syndrome testing does not have this property. In single 
syndrome testing, it is assumed that the test e,, E E is 
independent of all of the other tests in E. As shown shortly, 
this "small" difference in testing method results in a significant 
difference in diagnostic capability. 

First of all, let us consider the number of tasks executed 
per test for the two testing methods, given the same amount 
of testing time. Suppose that it takes r units of time to 
execute each task, that each task has the same level of fault 
coverage p ,  and that test tasks are statistically independent in 
terms of the faults detected. For multiple syndrome testing, 
all nodes can be assigned to execute the same set of R 
tasks in time Rr, resulting in R tasks being used in each 
test. The reason for this is that the tests are not required to 
be statistically independent of each other; a dependence is 
actually enforced by the requirement that the nodes in each 
connected component of the testing graph must execute the 
same set of tasks. For single syndrome testing, there is no 
specific requirement that the set of tasks executed by different 
nodes be identical. For a node U, to test and be tested by 
another node U ,  E r(u2), however, U ,  and u3 must have at 
least one task in common. This holds for uZ and all nodes 
u3 E I'(u,). In addition, if each test eZ3 is to be statistically 
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independent for different nodes u j  E l?(ui), the set of tasks 
executed by different nodes in r(u;) must be disjoint. In time 
RT, node 71; can execute at most R tasks. Then, assuming that 
the set of R test tasks for node ui is distributed uniformly 
for all tests e i k ,  each test uses RT/lI'(u;)l tasks. This is to 
be compared with R tasks for each test in multiple syndrome 
testing. 

It may still be argued that this comparison is unfair, and that 
R tasks should be executed for each test in single syndrome 
testing also. In this case, however, the tests e i k  will not be 
statistically independent, and the single syndrome diagnosis 
algorithm, which assumes statistical independence of tests, will 
be operating on an incorrect assumption. It is noted, though, 
that if the tests e ik  are not limited to being comparison tests, 
this argument may not hold. 

To continue with the analysis, let us compare the difference 
in diagnostic capability between single and multiple syndrome 
testing when only one syndrome is used in the multiple 
syndrome testing method. For simplicity of analysis, it is 
assumed that all nodes have identical parameter values and that 
the testing graph is regular with node-degree y. The analysis 
can easily be individualized for each node (average parameter 
values are used for a given node's neighbors). Given a node 
ui and any node 'U] E r(ui) ,  let A = Aji = P(u,ji = 1 I S i )  

p - :) and B = Bji = P(aj; = 1 I Si) = fjpj = f p .  A 
( B )  is the probability of node u3 testing U; to be faulty, given 
that ui is faulty (nonfaulty). It is assumed that A > B. which 
simply says that a nonfaulty node has a lower probability of 
being accused as faulty than a faulty node does. Note that the 
easier assumption that f < 0.5 (prior node failure probability 
less than 0.5) is suficient for the assumption A > B to hold. 

For single syndrome testing, the probability of having 
z = d ( u L )  one-links incident on 7 ~ i  out of a maximum of 
y links (denoted as z one-links : y), given that I L ~  is faulty and 
nonfaulty, is calculated as follows: 

= 11; (( 1 - f j  ) + f j  ( 1 - $ ) 1 + (1 -pi ) f i p j =  (1 - f ) ~  + f ~ ( 2 -  

P(z one-links : y 1 h,) = A"(1 - A)?-'. (la) 

P ( z  one-links : y 18,) = B"(1 - B)"-'. ( lb)  

For (1 a), ;: of the y neighbors of ui are chosen such that those 
z neighbors test U L  to be faulty, and the y - z other neighbors 
test ui to be nonfaulty. The result in (lb) is obtained similarly. 
It follows that: 

P(6, 1 z one-links : y) 

- P ( z  one-links : y 1 S,)f, 
P(zone-links : y I S,)f i  + P ( z  one-links : y 1 s,)t\l - f,) - 

1 

For multiple syndrome testing with a single syndrome, the 
probability that there are z one-links incident on a node 
ui E V, given that ui is nonfaulty and faulty, is calculated 

as follows: 
P(zone - links :y I - Si) = 

+ (1 - p ) h ( z )  (2b) 
= P&) + (1 - p ) h ( z ) .  

For (2a), ui must have z or more faulty neighbors, of which 
exactly z execute the test task incorrectly. For the first part 
of (2b), zli produces an incorrect test result and has j 5 z 
nonfaulty neighbors and ( z  - j )  faulty neighbors that either 
execute the test task correctly or produce a different incorrect 
result from ui. It follows that the posterior fault probability of 
U,, given z one-links incident on ut, is calculated as follows: 

P(bi Izo71e - links :y) = 

1 if z = y. 
= { S(1- P)/(l - fp) if z # Y. 

(2c) 

The approximation holds if M is large and y 5 4. Then, if 
f (prior fault probability) values are small, (2c) is close to 
a b function, with a spike at z = y. If y > 4, then (2c) 
becomes close to a step function. In general, (IC) is a much 
more smoothly increasing function of z than (2c) is. 

In Fig. 1, we have shown the distributions of z = d(u, ) ,  
given U ,  faulty and U ,  nonfaulty for both single syndrome 
testing ((la) and (lb)) and multiple syndrome testing ((2a) 
and (2b)) using M = 1000, y = 4, p = 0.4, and two different 
values of f .  The fault coverage value p used for multiple 
syndrome testing is actually 1 - (1  -p)' = 0.87, because this 
level of fault coverage can be obtained in the same amount of 
testing time required to achieve fault coverage of p for single 
syndrome testing. A high level of diagnostic accuracy can be 
achieved if the syndrome information perceived when is 
faulty is drastically different from the syndrome information 
perceived when ?L, is nonfaulty. From our analysis, it can be 
seen that the syndrome used in multiple syndrome testing fits 
this mold much more closely than the syndrome used in single 
syndrome testing. 

IV. OPTIMAL MULTIPLE SYNDROME DIAGNOSIS 

A. Probability Analysis 

Consider category x diagnosis, where x can be any of 
the categories defined in Table I. Suppose the syndrome 
information used in diagnosing node ui E V is denoted by 
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0.8 - 
P( { A produces correct diagnosis}) 5 P( { OPT% produces 

I * 
I single ', multiple 
; syndrome 

; I correct diagnosis}). 
I Proof: Consider a testing graph G and an arbitrary cat- 

', syndrome egory z diagnosis algorithm A. A produces correct diagnosis 

I 
I I 

I multiple 
syndrome . 

b 0.6- a 
% 
R 
P 

a 0.4- 

I 
\ testing ', testing 

\ I I 
I I 

I I 
I 1 

I \ 

= P: ( CorrectG (OPTz;)) . 

I I - Eq. (la) Since P:(CorrectG(A;)) 5 P:(CorrectG(OPTz;)) for all 
I Q.E.D. 

_ _  *-- Eq.(lb) U ;  E V, the theorem follows. - Eq. (2a) 

Fig. I .  Probability distribution. (a) f = 0.0484. (b) f = 0.0050. 

I 
I 
I I 

SD;. SD; is a restricted form of the information present in 
the syndrome SD.  For a given node U ; ,  its fault status set is 
defined as StutusSeti = { S ; , s i } .  Let us consider an arbitrary 
category 5 diagnosis algorithm A.  In order for the diagnosis 
by A to be correct, A's diagnosis of each node ~ i i  E V must 
be correct. Let Ai denote the part of A that diagnoses the 
fault status of node U;, and define as basic events the pairs 
(SD; ,  f s ; ) ,  where SD;  is a "partial syndrome" and f s ;  E 
StutusSeti. The set of all possible SD;'s will be denoted 
by SD$". The diagnosis of ui by A, when executed on a 
syndrome containing the partial syndrome SD;,  is denoted by 
DiagA, (SDi) E StufusSet;. 

For category z diagnosis of node U ; ,  the sample space 
is f2; = {(SD,; , fs i )  : SD; ESD?", f s ,  E StutusSeti}, the 
event space Of is the set of all possible subsets of a?, 
and the probability measure P: is defined for category z 
diagnosis such that it is a legitimate probability measure. 
Given a testing graph G and a diagnosis algorithm A ,  let 
Correctc(Ai) := {(SD;,fs;): DiagAz(SDi) = fs;}. For a 
testing graph G, the probability of correct diagnosis of U ;  by 
A is as follows: 

_ _  e-- ~ ~ . ( 2 b )  Category 3AM multiple syndrome diagnosis is based on 
m-threshold local syndrome information for any fixed m. As 

of rn, what is the optimal diagnosis of node U,? 

From Theorem 1, we know that the most probable diagnosis 
for node U,, given its syndrome information, is the optimal 
diagnosis. If it can be shown that the posterior fault probability 
of IC, is a strictly increasing function of dk(uL) ,  the number 
of one-links incident on U ,  in testing stage k ,  then a threshold 
zttl, can be chosen for dk((u,)  such that U, is more probably 
faulty if dk (U , )  > Zth,  and more probably nonfaulty otherwise. 
Denoting this optimal threshold by ztkl,, the relevant category 
3AM syndrome information for U, can be reduced to I { k  : 
0 5 k 5 R and &(U,) > ztkl,} I. Furthermore, if it can be 
shown that the posterior fault probability of uZ is a strictly 
increasing function of the number of testing stages in which 
& ( U , )  > z&,, then the most probable diagnosis of U ,  can be 
based on a threshold H t h ,  on this quantity. 

In summary, if the requirements stated in the above para- 
graph can be shown to hold, optimal category 3AM diagnosis 
can be based on the proper selection of the two thresholds 
ztl,, and Hth,. In the FR algorithm, the threshold values 
ztk,, = kv, = y - 1 and Ift*,* = sv, were used. The thresholds 
kv, and s71, in the FR algorithm were simply chosen to prove 
desirable asymptotic properties of the algorithm. 

Optimal threshold values can be obtained by calculating 
posterior fault probabilities. The optimal choice for zth, is 
obtained by using (2c). 

Theorem 2: The optimal zth, value, denoted as ztll,, is 
equal to z such that P(S,lz one-finks : y) 5 0.5 and 

Ptx(Correctc:(A,)) = P,"(SD,, DiagAz(SD,)) .  
SD,ESD;~~ 

For category z diagnosis, let OPTlc denote the algorithm that 
makes the most probable diagnosis for node uL,  given SD,. 
Then the following theorem shows that OPTz is the optimal 
category z diagnosis algorithm. 

P(h,lz + 1 one-finks : y) > 0.5. 
First of all, it is claimed that (2c) is a monoton- 

ically increasing function of z .  From (2a) and (2b), it can 
be seen that g ( z )  is an increasing function of z and that 

Proo$ 
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h ( z )  is a decreasing function of z .  In (2c), the numerator and 
denominator can be rewritten to separate the terms multiplying 
g ( z )  and h ( z ) .  When this is done, the terms multiplying g ( z )  
are the same, and the term multiplying h ( z )  in the denominator 
is greater than the corresponding term in the numerator. Thus, 
the stated claim follows. Given that z one-links are incident 
on a node U ,  E V,U,  is more probably faulty (nonfaulty) if 
P ( &  I z one-links : y) 5 0.5 (P(S ,  I z one-links : y) > 0.5). 
Thus, based upon the claim and Theorem 1, Theorem 2 
follows. Q . E . D .  

Although calculation of (2c) for large values of y is compu- 
tationally expensive, because y is at most the node-degree of 
the interconnection network, very large y values will rarely be 
needed, because most practical systems are sparsely connected. 
Also, from the analysis done in Section I11 (approximation for 
(2c)), i t  is evident that when y 5 4 and f < 0 . 5 . ~ ; ~ ~  = y - 1. 
Because (2c) is a monotonically increasing function of z ,  we 
can obtain z : ~ ,  for y > 4 by evaluating (2c) for several values 
of z near y. 

We now use probability analysis to derive H&, , the optimal 
value of H t l , % .  Given the set of faulty nodes F'. let AI =I 
r ( u L )  n F' I (the number of faulty neighbors of U ? ) .  Then the 
probabilities of having H syndromes in which d ( u Z )  > z;,,, 
(denoted as H passes), given that 71, is faulty and nonfaulty, 
are as follows: 

P ( H  passes I 6 ; )  

and 

P ( H  passes I S i )  

where Ak 
P(d(u,) > zt;,, 1 s,, A, = k ) .  Using (3a) and (3b), the 
posterior fault probability of U,, given that d(uL) > zt;" for 
N syndromes, is as follows: 

P(d(u,) > z : ~ ,  1 6,. A, = k )  and Bk 

P(b, 1 Hpasses) 
- P ( H  passes I ti,)P(S,) 
- 

P ( H  pusses 1 6,)P(S,) + P ( H  passes 1 b2)P(bL) ' 

(3c) 

For simplicity of analysis, let us assume that y 5 4 and 
f < 0.5, so that z&, = y - 1. (The changes required in the 
analysis when y > 4 are discussed at the end of this section.) 
Then, using (2a) and (2b), we get the following equations: 

Theorem3: If f < 0.5, M > &,, and 2 5 y 5 4, the 
optimal Hth, value, H&%, is equal to N such that P(6i I 
H passes) 5 0.5 and P(Si 1 H + 1 passes) > 0.5. 

Proo) Following the proof method of Theorem 2, we 
first show that (3c) is a monotonically increasing function of 
H .  Equation (3c) can be rewritten as follows: 

From ( 5 ) ,  if & Z ( H )  < 0, then &P(6, I Hpasses)  > 0. 
Using (4a) and (4b) for Ak and Bk, and performing the 
necessary calculations for & Z ( H ) ,  it can be shown that 
& Z ( H )  < 0, provided that Ak > B,(O 5 k 5 y). Using 
(4a) and (4b), it can easily be shown that this condition holds 
when y 2 2 and M > &. Then, from Theorem 1 and the 
result that (3c) is a monotonically increasing function of If, 
Theorem 3 follows. Q.E.D. 

B. Description of OPTM Algorilhm 

Algorithm OPTM, the optimal category 3AM multiple syn- 
drome diagnosis algorithm, is essentially the same as the FR 
algorithm, except that the thresholds are chosen differently. 
This, however, is a crucial difference, because the performance 
of the algorithm hinges upon the choice of thresholds. z:,~, 
is obtained by using (2c), and HG,, is obtained by using 
Theorem 3. Our algorithm is described below, using the 
same assumptions as the FR algorithm with test tasks T = 
{t l , .  . ' 1 LE}. 

Algorithm OPTM 
1. For each uj E V doparallel 

calculate using (2c); 
calculate using Theorem 3; 

2. For each 'uj E doparallel 
for each ti E T do 

if d ( u j )  > &, 
then L ( i , j )  = 1; 
else L ( i , j )  = 0; 

3. For each uj E V doparallel 
if C t , E T  L ( i , j )  > Ki13 

then ui is faulty; 
else ui is non-faulty; 

Theorem 4: The OPTM algorithm is the optimal category 
3AM diagnosis algorithm, provided that 2 5 y 5 4, f < 0.5, 
and M > 5. 

Proofi From Theorems 2 and 3, zt;l, and HCh, are 
the optimal thresholds for the diagnosis of a node ui E V, 
given category 3AM syndrome information for ui. Also, from 
the proofs of Theorems 2 and 3 (monotonically increasing 
property of the posterior probability function), it is clear 
that using the two thresholds zt;l, and is sufficient for 
the optimal diagnosis of node U,. Then, because the OPTM 
algorithm performs the optimal diagnosis of all nodes U ;  E V-, 
given the syndrome information, the theorem fo1lows.Q.E.D. 

Although the OPTM algorithm is the optimal category 3AM 
diagnosis algorithm, it is not the optimal category 3, or even 
category 3A, diagnosis algorithm. Because the effort required 
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to obtain and use the syndrome information for category 
3 or 3A is only slightly more than for category 3AM, it 
might seem worthwhile to derive the optimal category 3 and 
3A multiple syndrome diagnosis algorithms. The diagnostic 
accuracy achieved by the OPTM algorithm is very close to the 
best possible, however, even when category 3 or 3A syndrome 
information is used. 

To see the reason for this, let us refer to the analysis of 
Section I11 and Fig. 1. Given a nonfaulty node ' u i ,  it is most 
likely not to have any one-links incident on it. Given a faulty 
node u i ,  if it fails a test task t k  (in other words, t k  covers the 
fault), then it is most likely to have y one-links incident on it; 
otherwise, if 'u; passes tk, then it is most likely not to have any 
one-links incident on it. Therefore, in all cases, ui  will most 
likely either have y one-links or zero one-links incident on 
it. Given this observation, the syndrome information used in 
category 3AM contains almost all of the important category 3A 
syndrome information. In simulations using the experimental 
setup to be described in Section VI, out of 80000 syndromes 
generated for a 100-node torus-wrapped square mesh, there 
was exactly one syndrome in which a node ui had neither 
d ( u i )  = y nor d(u ; )  = 0. Thus, the OPTM algorithm produced 
the optimal category 3A diagnosis over 99.998% of the time. 
Also, as explained in [ 6 ] ,  the optimal category 3A diagnosis 
algorithm approximates the behavior of the optimal category 
3 diagnosis algorithm, because average probability parameter 
values are used in the analysis for category 3A. In summary, 
the OPTM algorithm is the optimal category 3AM multiple 
syndrome diagnosis algorithm and the "near-optimal" category 
3A and category 3 multiple syndrome diagnosis algorithm. 

C. Asymptoticcilly Correct Diagnosis 

One of the main desirable aspects of the FR algorithm was 
that it was shown to asymptotically achieve 100% correct 
diagnosis in an N processor system as N -+ XI, provided 
that y 2 2 and R 2 a ( N )  log N testing stages are used, where 
m ( N )  + m arbitrarily slowly as N + CG. Because the OPTM 
algorithm is the optimal category 3AM diagnosis algorithm 
and the FR algorithm is in category 3AM, it  follows that 
OPTM also asymptotically achieves 100% correct djiagnosis 
under the same conditions. 

In order to prove that the FR algorithm [5] achieves asymp- 
totically correct diagnosis, the authors used Zth, = k,ui = y- 1 
and specified a range of acceptable values for H t h ,  = sui. It 
is interesting 1.0 note that H;h, does not necessarily fall in 
the range of acceptable values for su , .  In the FR algorithm, 
limits were set on .sui so that asymptotic approximations could 
be used to prove the asymptotic correctness of the algorithm. 
However, the threshold Htllz need not necessarily belong to 
the range of acceptable values for suL in order to achieve 
asymptotically correct diagnosis. 

Regarding the zt,k1, threshold, the OPTM algorithm also uses 
z&, = y - 1. However, this value of Zth, was chosen after 
careful posterior probability analysis. If y > 4 or f 2 0.5, then 
(2c) may yield a different value for z : ~ , .  The methodology 
described in this paper is still applicable in deriving If,",,,% and 
the resulting optimal category 3AM algorithm. This case is 
discussed in the next section. 

D. Analysis for  Higher Connectivity Networks 

In deriving the thresholds for the OPTM algorithm, we have 
assumed that 2 5 y 5 4, f < 0.5 and M > &. The 
restrictions f < 0.5 and M > & are reasonable, because 
f is the prior fault probability, and because M ,  the number 
of failure modes of a faulty node, can be made large by 
choosing test tasks with a large number of possible output 
results. The restriction on y is undesirable, however, because 
higher connectivity networks are useful for many applications. 
If y > 4, then it is possible that zt;l, < y - 1. In that case, the 
A k  and Bk values used in (4a) and (4b) must be changed. 

Using (2a) and (2b) and generalizing for arbitrary z ; ~ ,  
values, we get the following equation: 

After (6a) and (6b) have been used to calculate AI, and BI, 
for all k ( 0  5 k 5 y), (3a)-(3c) can be used with the new 
Ak and BI, values to calculate the posterior fault probabilities 
required by the OPTM algorithm. 

V. SIMULATIONS 

To evaluate the performance of the diagnosis algorithms 
studied, numerous simulation experiments were conducted on 
a SUN 4/280 for a 100-node torus-wrapped square mesh and 
300-node TMR structure. The TMR structure is a 2-regular 
graph in which nodes are clustered into completely connected 
components of size 3 each. In multiple syndrome diagnosis, 
diagnosis decisions are made for each node, independently of 
the other nodes. Because a diagnosis result is correct only 
if the diagnosis decisions at all nodes are correct, however, 
diagnostic accuracy decreases with increasing number of nodes 
for the two types of structures considered. For diagnostic 
accuracy to increase with increasing numbers of nodes, each 
node must be connected to at least log N other nodes, where 
N is the total number of nodes (refer to Section IV-C). 

Assumptions widely used in the fault-tolerant computing 
field were followed to generate probability parameter values. 
For each node ui E IT, failure amvals were assumed to follow 
a Poisson process and a time value T?, corresponding to the 
length of time U, has been in the system, was generated from 
a uniform distribution over the interval [O,?'] for some T.  
Then, for node u i , f i  = 1 - where X = MTTF-l is 
the mean failure arrival rate. The simulated experiments were 
conducted with T = 1 K hr and MTTF values of 50 K and 
100 K hr, resulting in AT values of 0.1 and 0.01, respectively. 
Clearly, the same results can be obtained by decreasing T and 
increasing MTTF by the same factor. Thus, this can model 
components that have been in the system for different lengths 
of times and components that have different MTTF values 
(their q values can be adjusted). Given MTTF values of 50 K 
and 100 K, E [ f ; ]  = 0.0099 and 0.0050, respectively. 
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TABLE I1 
THRESHOLD VALUES FOR TORUS-WRAPPED SQL'ARE MESH (7 = 1) 

p =0.1 
p = 0.2 
p =0.3 
p = 0.4 
p = 0.5 

TABLE 111 
THRESHOLD VALUES FOR TMR STRUCTURE (5 = 

p = 0.1 0- 1.60 0.80 
p = 0.2 0-3.20 1.60 
p = 0.3 0-4.80 2.40 
p = 0.4 0-6.40 3.20 
p = 0.5 0- 8.00 4.00 

p = 0.7 4 (f = 0.0099) 6.40- 11.20 8.80 

For all diagnosis algorithms evaluated, 1000 fault situations 
were produced and diagnosed, assuming p values of 0.1 to 0.5 
(in 0.1 increments) and the two MTTF values given above. 
For each fault situation, R = 16 testing stages were used, 
thus resulting in 16 syndromes. The OPTM algorithm was 
compared with the FR algorithm and the OPT3A algorithm, 
a category 3A single syndrome diagnosis algorithm described 
in detail in [6]. The OPT3A algorithm is used for comparison 
purposes, because it has been shown to be the optimal category 
3A single syndrome diagnosis algorithm [6]. Assuming that it 
takes T units of time to execute a single test task, multiple 
syndrome testing requires RT time units, and single syndrome 
testing requires y~ time units. Thus, for single syndrome 
diagnosis, if the same amount of time is devoted to testing, 
it is possible to use test tasks that are R / y  times as llong as 
those used in multiple syndrome diagnosis. Therefore., in the 
simulations for the OPT3A algorithm, p' = 1 - (1 - p ) R / 7  
was used as the fault coverage value. 

In the simulations for the FR algorithm, we must choose 
values for kui and s u b .  The FR algorithm specifies that kvi = 
y - 1, but indicates that a range of values is acceptable for s'u; 
(refer to Section 11-B). If the equation for mi in Section 11-B 
is used, it is possible to get a negative value for su,. Because a 
negative sui threshold value implies that all nodes in V will be 
diagnosed to be faulty, this possibility is discounted. Then the 
modified equation for sv i  is max(0, R-2R( 1 -p(  1 - R) ' )}  5 
sv;  5 R - R( 1 - p(1 - R)'). In our simulations, si i i  was 
chosen to be the value halfway between the lower and upper 
bounds for sui. A4 was chosen to be 1000. Tables I1 and 
I11 show the values of Ht;, and s v ;  for the torus-wrapped 
square mesh and TMR structure, respectively. H& values 
shown in Tables I1 and I11 are for both f = 0.0099 and 
f = 0.0050, unless otherwise specified. svi and s v ~ i d  (used in 
the simulations) are independent of f .  In Table 111, threshold 
values for p = 0.7 and f = 0.0099 are shown to demonstrate 
that H:,, and s'u; values do diverge. This shows that the optimal 
threshold value for Hth, does not necessarily lie in the region 
specified for siii [ 5 ] .  

Figs. 2 and 3 show the results of the simulations for the 
torus-wrapped square mesh and TMR structure, respectively. 
In all cases, the OPTM algorithm performs significantly better 
than the OPT3A algorithm, with the difference being more 
acute when p is small. The FR algorithm performs the same 
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Fig. 2. Accuracy with square mesh and MTTF. (a) 50 K hr. (b) 100 K hr. 

as the OPTM algorithm for p = 0.1, but then quickly falls 
off in accuracy as different [~'u;'~] threshold values are used. 
Similar results were obtained for all simulations attempted. 

VI. CONCLUSION 

In this paper, we have derived an optimal category 3AM 
(and near-optimal category 3A and category 3) multiple syn- 
drome diagnosis algorithm. Using probability analysis, mul- 
tiple syndrome testing is shown to be more effective than 
single syndrome testing. Our simulation results support the 
probability analysis. It is proven that Algorithm OPTM, the 
optimal category 3AM multiple syndrome diagnosis algorithm, 
achieves 100% correct diagnosis in an N processor system as 
Ai + 30, provided that R 2 a ( N ) l o g N  testing stages are 
used, where a ( N )  + M arbitrarily slowly as N + oc. If -1 is 
considered as a constant, the computational complexity of the 
OPTM algorithm is O ( R ) ,  which is the minimum possible for 
any multiple syndrome diagnosis algorithm, because R testing 
stages are required. 

The OPTM algorithm requires each processor to execute 
identical tasks with its neighbors, to send and receive the 
results of the tasks from its neighbors, to compare the results 
received with its own results, and to execute a diagnosis 
procedure to determine whether it should diagnose itself to be 
faulty or nonfaulty. Note that a TMR or NMR system also 
has all of the above requirements, excluding the diagnosis 
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Fig. 3. Accuracy with TMR structure and MMTF. (a) SO K hr. (b) 100 K hr. 

requirement.’ ‘The diagnosis procedure must be executed by 
a diagnostic component that operates in a fail-safe mode 
or is part of the hard-core of the processor. There must 
also be reliable communication between neighboring nodes. 
This can be accomplished by sending identical messages 
along multiple disjoint paths [6]. The thresholds used by the 
OPTM algorithm can be precomputed. Thus, the OPTM algo- 
rithm simply requires the diagnostic component to accumulate 
integer quantities and compare them against precomputed 
threshold values. The diagnostic component can therefore be 
a very simple digital circuit. 
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