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An Optimal Retry Policy Based on 
Fault Classification 

Tein-Hsiang Lin, Member, IEEE, 

Abstract-An optimal (in some sense) retry policy in a com- 
puter system is usually derived under an unrealistic assumption 
that fault characteristics are known a priori and remain un- 
changed throughout the mission lifetime. In such a case, the 
optimal retry period depends only upon the system’s status at 
the time of fault detection. We propose to remedy this deficiency 
by formulating the optimal retry problem as a Bayesian decision 
problem where not only the time of fault detection but also the 
results of earlier retries are used to estimate the current fault 
characteristics. Previous knowledge about fault characteristics is 
represented by the prior distributions of fault-related parameters 
which are updated whenever new samples are obtained from retry 
and detection mechanisms. 

A new fault classification scheme is proposed to assign a 
temporal fault type (Le., permanent or intermittent or transient) 
to each detected fault so that the corresponding fault parameters 
can be estimated. The estimated fault parameters are then used 
to derive the optimal retry period that minimizes the mean task 
completion time. Efficient algorithms are developed to determine 
the optimal retry period on-line upon detection of each fault. To 
evaluate the goodness of the proposed retry policy, it is compared 
with, and is always found to outperform, a number of fixed-retry- 
period policies. 

Index Terms- Retry, fault classification, prior and posterior 
distributions, parameter estimation, error recovery, Bayesian 
decision theory. 

I. INTRODUCTION 

ETRY means re-execution of the latest instruction which R could not be completed because of a fault until either 
the fault disappears or a different recovery scheme such as 
rollback and restart is called in. We will use the definition of 
fault in [ 11 that fault is the source of an error which represents a 
logically incorrect state of the system. Based on their temporal 
effects, faults are classified into permanent, intermittent, and 
transient [2], [3]. The time period during which a fault has 
adverse effects (inducing errors) is called the active period, 
and the time period during which the fault is not active is 
called the benign period. Thus, a permanent fault is viewed to 
have an infinite active period and a transient fault is viewed 
to have a finite active period followed by an infinite benign 
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period. An intermittent fault cycles between finite active and 
benign periods. 

If the fault in question is permanent, retry will never succeed 
and the time used for retry is simply wasted; but if the fault 
is nonpermanent, the usefulness of retry depends greatly on 
how the retry period or the number of retries is chosen. (Note 
that it is easy to convert a retry period to a number of retries.) 
For a transient fault, the retry period should be longer than 
the active period of the fault. It may not be desirable to 
retry for an intermittent fault, since the same intermittent fault 
may recur an infinite number of times in future. But if an 
intermittent fault occurs near the end of the execution of a task, 
then one may choose retry over restart or rollback to recover 
from the intermittent fault, because the fault can recur only a 
limited number of times before the task completion. In that 
case the retry period should be longer than the active periods 
of all recurring faults. The major problem of determining the 
optimal retry period stems from the fact that it is impossible 
to know the type of a fault upon its detection. So, we have to 
consider the probability of a detected fault being permanent 
or nonpermanent in deriving an “optimal” (in the sense to 
be defined later) retry policy. A common policy is to retry 
for a pre-determined period and if it is not successful, then 
initiate other recovery schemes, such as rollback and restart. 
This policy works well if the retry period is chosen properly, 
because the majority of faults are known to be nonpermanent 

The retry period is usually chosen empirically in the various 
forms of retry used in earlier mainframe computers as a 
means of recovery [61-[9]. The optimal design of retry has 
recently been proposed by several researchers [lo]-[ 121. In 
I l l ] ,  the problem of combined retry and rollback recovery 
is studied under the assumption that faults are classified as 
1) permanent faults, 2) intermittent faults recoverable by 
instruction retry, and 3) intermittent faults not recoverable by 
instruction retry. In their model, all detected faults are handled 
by the same procedure, Le., retry for a fixed period and then 
roll back a fixed number of times. The optimal retry period 
and optimal inter-checkpoint intervals are derived for the three 
recovery procedures by minimizing the average time spent per 
instruction. Berg and Koren [ 101 refined the above model and 
derived an optimal policy on whether or not to use retry upon 
detection of a fault, depending on the remaining mission time. 
They considered computer systems in which each module has 
several standby spares ready to be switched in upon detection 
of a fault. In their model, a module’s fault occurrence rate is 
assumed to increase with the number of faults occurred in that 
module. Upon detection of a fault, their policy is to choose one 

~41, ~51.  
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of the following two actions, whichever has a lower average 
cost: 1) replacing the faulty module immediately with a good 
spare and 2) retrying the faulty module and replacing it only if 
the retry is unsuccessful. However, they did not discuss how 
to determine the retry period. Taking a task-oriented view, Lee 
and Shin [12] derived two types of the optimal retry period 
by minimizing the mean remaining task execution time: one 
for the case of faults with unknown types, and the other for 
the case of intermittent faults. 

The most influential parameters in determining the retry 
period are those related to the characteristics of faults, such as 
the fault occurrence rate, the mean active period of a transient 
or intermittent fault, and the probability of a detected fault 
being permanent, transient, or intermittent. These parameters 
are commonly assumed to be known a priori. Hence, the 
results obtained under this assumption are useful only if the 
fault parameters can be estimated accurately. No previous 
work except for [12] has addressed the problem of deriving 
retry policies in the absence of a priori knowledge about 
the fault parameters. Lee and Shin [12] proposed a Bayesian 
decision approach where the active and benign periods of 
an intermittent fault are estimated on-line and the estimated 
parameters are then used to derive the optimal retry periods 
for future recurrences of the intermittent fault. However, they 
did not address how to estimate other fault parameters, and 
used an ad hoc criterion in recognizing an intermittent fault. 
That is, if two consecutive fault detections are made within a 
short period and their symptoms are similar, they are assumed 
to be two manifestations of the same intermittent fault. 

Based on our earlier results on on-line fault parameter 
estimation and fault classification [13], we will formulate the 
optimal retry problem as a Bayesian decision problem [14], 
[15]. The advantage of using the Bayesian approach is that 
parameter estimation can be performed progressively from 
sample data. The sample data of the fault parameters are 
obtained from monitoring the fault behavior through retry and 
detection mechanisms, as well as through the fault classifi- 
cation scheme [ 131 which assigns an appropriate fault type to 
each detected fault, thus allowing for (probabilistically) correct 
interpretation of the corresponding sample data. 

Throughout this paper, faults are assumed to be detected 
immediately upon their occurrence by, for example, built-in 
testers or error detecting codes. If faults cannot be detected 
upon their occurrence, instruction retry is no longer effective, 
because it is impossible to determine which instruction to retry. 

In the following section, the Bayesian formulation of the 
optimal retry problem is presented with a brief description of 
parameter estimation and fault classification. The optimal retry 
periods which minimize the mean remaining task execution 
time in two distinguishable situations are derived in Section 
I11 and IV, respectively. We will also compare our optimal 
retry policy with a number of fixed-retry-period policies via 
simulation in Section V, and conclude this paper with Section 
VI. 

11. OPTIMAL RETRY AND FAULT CLASSIFICATION 

Determination of an optimal retry policy can be formulated 
as a Bayesian decision problem. The essential elements of this 

formulation include the definitions of an action space A, a 
parameter space P, and a loss function L defined on A and 
P. The idea is to choose an action from A which minimizes 
the loss function L. A is defined as the set of all possible 
retry periods. The retry period, denoted by r ,  must be an 
integral multiple of the time required for a basic retry operation 
such as the execution of a microinstruction. However, in 
order to exploit the continuous optimization techniques, T is 
assumed to be any nonnegative real number, i.e., A = R+. A 
practical solution can be obtained by evaluating the two integer 
solutions nearest to the continuous solution and choosing the 
better of the two. The action of no retry is represented by 
r = 0. 

P contains all fault parameters which may affect the retry 
policy under consideration. Our principal concern is whether 
a detected fault is permanent or intermittent or transient, and 
hence, the fault parameters are related to the occurrences of 
different types of faults. Arrivals of permanent, intermittent, 
and transient faults are assumed to be independent Poisson 
processes with rate A,, A,, and At, respectively. Other param- 
eters include the active period of a transient fault, and the 
active and benign periods of an intermittent fault, which are 
assumed to be distributed exponentially with rates AtR, A,,, 
and Azb, respectively. The parameter space is thus defined as 

In the Bayesian analysis, the uncertainty about a parameter 
is quantified by assigning a distribution to the parameter. Let 
~ ( p )  represent the joint density function of p and the loss 
function L(p,r)  be defined as the penalty incurred by one 
retry of period T for a given p, then the Bayesian expected 
loss is defined as 

W 1, L(P, T)T(P)dP. 

The Bayesian decision, rk ,  is the (optimal) retry period 
which minimizes the Bayesian expected loss. Unfortunately, 
no closed-form solution for rk can be derived due to the 
complexity of the above integral. In this paper, we will 
derive an alternative solution which minimizes the maximum 
likelihood loss L(p,  r ) ,  where p denotes the mode of ~ ( p ) . '  
This solution will henceforth be called the maximum likelihood 
decision, denoted by r h .  In general, r b  is different from rk ,  
nevertheless, if p is distributed densely over a narrow range 
around the mode, r h  will be very close to r;. 

A. Parameter Estimation 

Each fault parameter is independent of others, and hence, 
can be estimated separately. Furthermore, the estimation pro- 
cedures for all fault parameters are identical since each of 
them represents the rate of an exponential distribution. This 
distribution is updated whenever a new sample is obtained. 
Let zi be the ith sample. According to the Bayesian theorem, 

'For ease of parameter estimation, the distributions of all parameters are 
assumed to be Gamma, each with only one mode. 
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where j ’ ( x 1 X )  is the sample probability given the parameter 
A. In (2.1), r ’ - ’ ( A )  (x’(X)) will be called the prior (pasterior) 
distribution of X with respect to : I : ( .  The posterior distribution 
for the current sample becomes the prior distribution for 
the next sample. The first prior distribution (i.e., 7r0(X)) is 
determined from experiences,’ but all the other distributions 
will be calculated from the samples collected. To simplify the 
calculation of these distributions from sample to sample, it 
is desirable that both the prior and the posterior distributions 
belong to the same distribution family. In such a case, (2.1) 
can be reduced to a transformation on the key parameters 
of the distribution. For a class of sample density functions, 
any class of prior density functions which have the above 
desirable property is called a conjugute fumi/y [ 141. The 
conjugate prior distribution family for the class of exponential 
sample distributions turns out to be the Gamma distribution. 
The mode, mean, and variance of a Gamma distribution 
have closed-form expressions. Moreover, as the number of 
samples increases, both the mode and the mean become 
less dependent on the initial prior distribution while the 
variance gets smaller. This implies that the difference between 
the maximum likelihood decision and the Bayesian decision 
become insignificant as the number of samples increases. 

The parameters in P are to be estimated and updated contin- 
uously as more information is obtained through fault detection 
and retry mechanisms. The detection mechanism reveals the 
existence of a fault, whereas the retry mechanism indicates the 
active period of the fault. In addition to the knowledge of the 
existence and the active period of a fault, the type (permanent 
or intermittent or transient) of the fault must be known. In 
an earlier paper [ 131, we have proposed a systematic fault 
classification scheme which uses the collected fault samples 
for on-line parameter estimation. For completeness, we will 
briefly summarize this scheme below. 

H. Fuult Classificntion 

By “fault classification” we mean unambiguously assigning 
a Fault type to every detected fault. The assigned fault type 
may not always be correct because, for example, a transient 
fault with a long active period is indistinguishable from a 
permanent fault, or two consecutive transient faults with the 
same symptom are indistinguishable from two recurrences of 
an intermittent fault. However, the classification error or the 
probability of incorrect classification can be minimized using 
the maximum likelihood principle. The information used in  

sitication includes the time of each fault detection 
and the detection symptom which refers to the observable and 
incorrect system state identified by the detection mechanism. 
Different faults may produce the same detection symptom, but 
different detection symptoms must come from different faults. 

Faults could be classified before or ufter a retry. In the 
before-retry classification, we want to determine if the newly- 
detected fault is the recurrence of an earlier unclassified fault. 
Because faults do not occur frequently in most systems, we 
assume that only the most recent two faults can remain 

unclassified in this scheme. If the likelihood of the current 
fault being the recurrence of one of the two previous faults 
outweighs other possible scenarios, we will notify the sys- 
tem by raising a flag that an intermittent fault is detected. 
Otherwise, the newly-detected fault is left unclassified and no 
further classification will be done until after the retry. If the 
retry for an unclassified fault is successful and the number of 
unclassified faults exceeds two, we will classify the earliest 
unclassified fault as a transient fault. If the retry for the 
current fault is unsuccessful, its fault type is determined by 
the diagnosis following a reconfiguration while all the other 
unclassified faults are classified as transient faults. Note that a 
fault can only remain unclassified if it is successfully recovered 
by a retry. Therefore, as far as the retry policy is concerned, 
the fault classification scheme provides valuable information 
on whether the newly-detected fault is intermittent or not. 

See [I31 for a detailed account of this fault classification 
scheme. 

C. R e t q  Policy 

The notable difference between the proposed retry policy 
and the other retry policies lies in the treatment of intermittent 
faults. There are two conflicting options associated with the 
treatment of intermittent faults. On one hand, it is necessary 
to removehepair the module with intermittent faults as soon 
as possible, so that the damage by the recurrences of each 
intermittent fault may not accrue. On the other hand. insofar 
as the completion of the tasks affected by intermittent faults is 
concerned, retry may sometimes be more beneficial than other 
time-consuming recovery methods such as rollback and restart. 
We propose to make a compromise between these two options 
as follows. Upon detection of a fault, i f  there are reasons 
to believe that the fault is the recurrence of an intermittent 
fault, one of the above two options is chosen based on the 
cost (to be defined in the next section) associated with the 
task executing on the faulty module. If retry is chosen, a 
single optimal retry period is determined which will be used 
for all future recurrences of the intermittent fault until the 
completion of the current task. The faulty module will be taken 
off from the system for repair at the conclusion of the current 
task. The optimal retry period for intermittent faults should be 
longer than the mean active period of intermittent faults, so 
that the current task can almost always be completed without 
rollback or restart as a result of unsuccessful retries. The 
purpose of repairing the faulty module at the end of the current 
task is to prevent the same intermittent fault from causing 
any further damages to the system. Using the same retry 
period for all recurrences of an intermittent fault simplifies our 
analysis, since results of future retries are predictable in such a 
case. Moreover, this same-retry-period policy also eliminates 
the need to derive an optimal retry period for every future 
recurrence of an intermittent fault. 

Since most performance indices for computer systems are 
related to the time overhead, and since the solution minimizing 
the time overhead also minimizes any monotonically increas- 

2 1 ,  no informntion i 5  the noninformative prior distribution w i l l  ing function of the time overhead, we shall define “loss” as 
the average task execution time including the overhead of retry he used for T I ’  [ ,\). 



LIN AND SHIN: AN OPTIMAL RETRY POLICY BASED ON FAULT CLASSIFICATION 1017 

andor rollbackhestart. Let the status of a task be represented 
by a two-tuple ( R , S )  where R ( S )  is the task’s remaining 
execution time if retry succeeds (fails), and let t ,  denote the 
setup time for rollbackhestart. The loss L is a function of R, 
S ,  and t,. 

111. RETRY FOR INTERMITENT FAULTS 

Consider the case when the current fault is classified as the 
recurrence of an intermittent fault. An optimal retry period 
is determined and used for all future recurrences of this 
intermittent fault until the completion of the current task. 
Before attempting to derive the optimal retry period, we need 
to check if retry is more beneficial (in the sense of completing 
the current task) than restarthollback. Assume that the optimal 
retry period is longer than the active periods of almost all 
future recurrences of the intermittent fault as well as those of 
future transient faults. The average number of recurrences of 
the intermittent fault during the remaining task execution time 
is A,& and each recurrence requires a mean retry period of 
l / A t a .  The average number of transient faults to occur during 
the remaining task execution time is AtR and each occurrence 
requires a mean retry period of l/At,. So, the mean time to 
complete the current task with retry recovery is 

K R = R  l+ -+-  . (3.1) ( ::: :a) 

In case of restdrollback, a setup time t ,  needs to be added. 
The remaining task execution time becomes S,  but in this 
case, there will be no overhead from the existing intermittent 
fault. Thus, the mean time to complete the current task with 
restart/rollback recovery is 

K s = S  1 + -  +t,. (3.2) ( :a) 

In (3.1) and (3.2), the overhead that might occur due to a 
second permanent or intermittent fault is ignored to simplify 
the otherwise required computation. This can be justified by 
the fact that Ap and Az are usually much smaller than At and 
Aib. Retry will be chosen over restart/rollback if K R  < K s ,  
or if R < &, where 

(3.3) 

To determine the optimal retry period, a more accurate 
estimation of the loss is needed. Suppose T is the chosen retry 
period for the current intermittent fault. The probability of an 
unsuccessful retry for any future recurrence of the intermittent 
fault is e-’..,. Similarly, the probability of an unsuccessful 
retry for any Occurrence of a transient fault is e-’tar. If 
retry for the current fault is successful, three independent 
Poisson processes could lead to an unsuccessful retry in future 
before the current task is completed. They are: 1) occurrence 
of permanent faults with rate A,, 2) occurrence of transient 
faults causing unsuccessful retries with rate Ate-xta ‘ ,  and 3) 
recurrence of intermittent faults causing unsuccessful retries 
with rate X2be-Xtar. The sum of these three Poisson processes 
is also a Poisson process with rate 

The probability that all retries during R are successful, denoted 
by p,,, is equivalent to the probability that no unsuccessful 
retry occurs during R. So, 

p, ,  = e--X,R = e-(X,+Xte-~tQ‘+X,be-’zar IR. 

The loss is computed as 

L(T) = (1 - e-A2av  )[PsrKR+(l-Pal.)  

( T  + K s )  + ,-Xtar 

1 = (1 - e - X t a r )  e - X ~ n ~ R  + (1 - ,-Ln L 
x T + Ks + s)] + e - X a a r ( ~  + K s )  

2 
KR 

( 
= (T + K s )  [I - (1  - e -xzar )e -xUR]  + 

x (I - ~ - ~ 7 ~ ) ( 1 +  c X u R ) .  (3.4) 

This equation is derived by enumerating all possible events. 
The current retry may fail with the probability and 
the corresponding mean task completion time is T + Ks.  
Even if the current retry is successful, a future retry may 
become unsuccessful during the remaining task execution time 
R with probability 1 - pSr. In such a case, the mean task 
completion time is T + KS + K R / ~  where k ~ / 2  is the mean 
time until the first future unsuccessful retry, since if only one 
unsuccessful retry does occur during R, its occurrence time 
will be uniformly distributed. over R. The event leading to the 
mean task completion time KR is when the current retry and 
the future retries during R are all successful. 

Using the chain rule, the derivative of p,, becomes J e c X U R  
where 

J = ( A t A t a e - X f a r  + A t b X z a e - X q R .  (3.5) 

The derivative of L(r )  is 

L ’ ( T )  = 1 - e-XuR(1 - e - X t a T )  +- KR 
2 

11 . [ , j a e - X a a r ( l  + e-XuR) + ~ e - X u R ( 1  - e-xzar 

- (T + K S )  [ A , a e - x ~ ~ r e - x ~ R + J e - X ~ R ( l  - e - ’ , ~ ~ ) ] .  

(3.6) 

Necessary conditions for the optimal solution rif are 
L’(T&) = 0 and L’’(T;~> > 0. The possibility that T& = 0 
is ruled out because the decision to retry has already been 
made (see (3.3)). Furthermore, it is easy to see that should 
be much larger than the active period of the intermittent 
fault, since the decision to retry is based on the assumption 
that retry will be successful for almost all recurrences of the 
intermittent fault. Hence, we are interested inifinding T ; ~  in 
the region where the probability of an unsuccessful retry due 
to a long active period is much less than one, i.e., e-”~’ << 1. 
Another (realistic) assumption is that the recurrence rate of 
an intermittent fault is much higher than a transient fault’s 
occurrence rate. The term J defined in (3.5) can thus be 
approximated by 

J z Xz,,RAzae-Xtar 
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Under these assumptions, the following theorem states and 
proves that in the region where e-'za" << 1, L(r )  has exactly 
one local minimizer which is therefore the global minimizer. 
(Proofs of all theorems can be found in the Appendix.) 

Theorem I :  In the region where c,-'7nT << 1, L(v )  has 
exactly one local minimizer r* if .I A , ~ R A , , ~ C ~ ~ ~ ~ ,  and 

2 ,'uR )" 
- < < * + K s -  1+- 
A,, ( 1 + A , b R  2 

Note that 2/X,, is twice the mean active period of an 
intermittent fault and c ~ ~ , ~  << 1 since A,, is very small. Thus, 

because K R  < K s  in this case. The last assumption of the 
above theorem is easily satisfied since K s / 2  is almost always 
greater than 2/A,,. 

A. Efficient Implementation 

Since instruction retry is a low level mechanism, there is 
obviously not much time available after a fault detection to 
derive the optimal retry period. The retry period must be 
determined a priori, perhaps before a task is scheduled to 
run. If the task length is known, then Ro can be computed 
easily by (3.3) with S replacing the task length. However, in 
most cases, the task length is unknown. This difficulty can be 
handled by either replacing S with the expected task length 
or revising (3.3) such that retry will be attempted only if the 
expected remaining task execution time is less than 

(3.7) 

where F is the accumulative task time upon detection of a 
fault. The above value can be precomputed and stored in a 
table. 

The optimal retry period would then have to be precomputed 
for many combinations of R and S depending on the storage 
and computation overhead constraints. These values need only 
be updated when one or more fault parameters get updated by 
the fault classification scheme. To solve for T , : ~ ,  a recursive 
formula based on (A.l) in the Appendix is derived as the 
equation found at the bottom of the page where k = 0, 1: 2. . . .. 
Initially, TO can be set to any large value such that << 
1. Usually, a couple of steps of this formula are enough to 
yield an accurate estimate of r,Tl. A more accurate solution 
for T ; ~  can be obtained from (3.6). After this, T-~:~ can be 
updated quickly since the current value should not be too far 
off from the new value. 

Fig. 1 shows 7'2,  7 3 ,  and ril versus different II values, where 
I l o  is approximately 137 units of time. It is clear that r:% is a 

very close estimate of r,b although r3 is always greater than 
TL. 7'2 is always less than r,b, and less accurate than r3. 

Iv. RETRY FOR UNCLASSIFIED FAULTS 

In this case, the type of the current fault (wi) is unknown. 
Let U be the expected loss if retry for w; fails, and let V ( W )  
be the expected loss if retry for a transient (intermittent) fault 
w; is successful. L is then calculated as 

where p,, p t ,  and pi  are the probabilities of the detected fault 
being permanent, transient, and intermittent, respectively, and 
are computed as 

At 
A, + At + A; ' p t  = A, 

p p  = A, + At  + A, ! 
A, 

A, + At  + A, ' 
p7 = 

The expected losses U and V are defined as 

U ( r )  = 7' + t ,  + s, 
V ( T )  = T + R. 

The overhead that might occur due to any further occurrence 
of faults during R is not included in U and V .  This greatly 
simplifies the computation without losing much of accuracy, 
since the probability of multiple faults occurring during the 
execution of a task is small and the difference between the 
overhead in U and that in V is even smaller. 

For the same reason as above, the expected loss W is 
defined without including the overhead from any other faults. 
However, the overhead from future recurrences of the current 
intermittent fault must be considered since they are likely to 
occur many more times during R. If retry for w, is successful, 
the intermittent flag will be set when the first recurrence of w, 
is detected, and rollbackhestart will be chosen at that time if 
R > Ro; otherwise, retry will be chosen. Since the overheads 
from other faults are ignored, Ro in (3.3) is approximated as 

n,) 1 + - = S + t , .  ( 2)  
Let .c be the task execution time to be accrued from now till the 
first recurrence of w,, N ,  be the number of recurrences of w, 
in the remaining task execution time, and 0, be the overhead 
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of retry for all the recurrences of w;. If R 5 Ro, then 

W (  r )  = r + R (1 + 2) . 

If R > Ro, then 

W ( r )  = T + Prob[O I x < R - Ro] 

x ( S  + t ,  + E[zlO 5 x < R - Ro]) 

+ Prob[R - Ro 5 x 5 R] 

x ( R + E [ O ~ I R - R O < X <  R])  

+ Prob[z > R] R 

2 

+ ( e - A % b ( R - R o )  - ,-At,,> 

since 

and 

R+- RO&b = ( R -  Ro) +S+t,. 
Xi, 

Then, 

d L  
d r  
- = g ( r )  

= p p  - pt[Xta(U - V )  - ~ ] e - ’ t ” ~  - p i  

x [x~,(u - W )  - 1]e-”ar 

since = = = 1 from the definitions of U ,  V ,  and 
W .  Furthermore, 

g’(r) = ptXt,[Xtu(U - V )  - 1]e-’tar 
+p;X;,[Xi,(u - W )  - 11e-x-r. 

It is easy to see that lim g ( r )  = p p  > 0, meaning that 
lim L(r )  = 00. Hence, the optimal retry period rb is either 

0 or a positive local minimizer of L(r).  
Theorem 2: L(r )  in (4.1) has at most one positive local 

minimizer r* satisfying g(r*)  = 0 and g’(r*) > 0. 
In proving the above theorem, we found that g’( r )  = 0 has 

exactly one solution at r ,  which will be called the injection 
point of L(r) .  

To solve for rb, we first check if L ( r )  has a positive local 
minimizer, r,. If such an r ,  does not exist, then rh = 0. If 
such an r ,  exists and g(r) < 0, Vr < r,, then rb = T,, 

since L(r )  is monotonically decreasing in [0, r,]; otherwise, 
rh is either 0 or T, depending on whether L(0) 5 L(r,) 
or L(0) > L(r,). 

Assuming that Xta(U - V )  - 1 > 0, the problem can be 
divided into eight mutually exclusive cases, depending on the 
values of g(O), g’(O), g(r,), At, - Xi,, and Xia(U - W )  - 1. 
The trivial case when At, = Xi, will not be discussed. 

Retry should not be attempted (Le., rh = 0) in the 
following four cases for various reasons: 

Case 1: Xia(U - W )  - 1 2 0 and g(0) 2 0. 
Since no inflection point exists and limT-m g ( r )  = 

p p ,  g(r) is monotonic and ranges from g(0)  to p,. Because 
both g(0) and p p  are positive, g(r) is positive Vr 2 0. Thus, 
rb = 0 because L ( r )  is monotonically increasing. 
Case 2: X;,(U - W )  - 1 < 0, g’(O)(Xt, - A;,) 5 0, and 
d o )  2 0. 

Here, an inflection point does exist but is negative. So 
g ( r )  is monotonic and positive on [0, eo] as in Case 1. 
Case 3: Xi,(U - W )  - 1 < 0, g’(0) > 0, (Atu  - Xi,) > 0, 
and g(0) 2 0. 

A positive inflection point r, exists, and g(r,) > g(0) 2 
0 since g’(0) > 0. From the fact that g(m) = p p  > 0, it 
can be concluded that g ( r )  is again positive Vr > 0. 
Case4: Xi,(U-W)-l < 0, g’(0) < 0, and (&,-Xia) < 0 
and g(r , )  2 0. 

In this case, g ( r )  is decreasing in [O,r,] but increasing 
in [r,,  001. So, g ( r )  2 0 Vr  > 0 since g ( r )  2 g(T,) 2 0. 

Generally, if g(0)  2 0, it is very likely that rh = 0 except in 
Case 4 where we have to examine the value of g(r,). 

In the remaining four cases, a positive local minimizer r, 
exists-which can be derived rather quickly by any equal- 
interval search algorithm-if we can find two points T-  and 
r+ such that r- < T, < r+, g ( r - )  < 0 < g ( r + ) ,  and 
g ( r )  is monotonically increasing in [ r - ,  r+] .  Since the larger 
or the smaller of At, and Xi, will be mentioned frequently 
in the discussion to follow, let Amax = max{Xta,X;,} and 
Amin = min{Xta, Xia}. 

r+m 

r+m 

Case 5: Xi,(U - W )  - 1 2 0 and g(0)  < 0. 
This is similar to Case 1 except that the range of g(z), 

[g(O), p,], includes zero. And g ( r )  is monotonically increas- 
ing because g(0)  < 0 < p p .  Hence, r ,  exists and rh = r ,  
because g ( r )  < 0, Vr < r,. To solve for T,, let T-  = 0 
and 
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L(O) = u(0) = S + t ,  and because 

&+) = p p  - p,[At,(U - V )  - l]e-x'"r- 

- pz[A,,(U - W )  - l]e-x'"r+ 

> p,  - pt[Ata(U - V )  - l]e-x-L"'.- 

- p,[A,,(U - IY) - l]e-X-,nr+ 
= 0. 

Cuse 6: X,,(U - W )  - 1 < 0, g'(O)(A+, - At,) 5 0, and 

Since the inflection point T, is negative, this case is 
similar to Case 5. Therefore, = r,,, can be solved 
by letting T -  = 0 and 

.do) < 0. 

because A,,(U - W )  - 1 < 0 and 

g ( r + )  = p ,  - p 7 [ X z a ( U  - V )  - l I e - A t " 7 -  

- p,[X,,(U - W') - l ]P-X, , r+ 

> p ,  - p,[A, , (U - V )  - 11e+rt 
= 0. 

Cuse 7: A,,(U - W )  - 1 < 0 ,  g'(O) > (1, (At, - A z a )  > 0, 
and g(0) < 0. 

In this case a positive inflection point T, exists, and 
,g(r)  is increasing in [0,r,] but decreasing in [T,, CG]. So, 
g(r,) > y ( w )  = p p  > 0. It is then easy to see that 
0 < r ,  = rzi < r, and r ,  can be obtained by letting 
r -  = 0 and 7.+ = r,. 
Case 8: A,,(U-W)-l < 0, g'(0) < 0, and ( & - A z a )  < 0 
and g(r,) < 0. 

In this case, g ( r )  is decreasing in [0, r,.] but increasing in 
[rs. m]. So, r,, should lie in [rZ, m], and can be determined 
by letting r -  = r, and 

- p ,  ( 1 - ,-A,, rm ) ( u  - w - L) . 
A,, 

Therefore, in case of y(0) > 0, if 

then rzf = r ,  else r i f  = 0. 

A. Efjcient Implementation 

According to our extensive simulation results, Case 5 occurs 
most frequently, and hence, we need an efficient way to 
derive T, in Case 5, which will greatly enhance the overall 
performance. In fact, in Case 5, if At, and A;, do not differ 
by much, T, can be derived by the recursive formula found 
at the bottom of the page with the convergence ratio of 

To prove the above convergence ratio, let (II: = Amin and 
/3 = A,,, - A m i n .  Then, it can be shown that g ( r )  = 0 is 

(Amax - Amin)/Amin.  

equivalent to 

ppear  = Ae-" + B (4.2) 

where both A and B are positive constants. Starting with any 
Tk3 we get as in Case 6. But rA$I = T, only if g(0) 5 0, since g ( r )  < 0, 

V r  < rrn in this situation. If g(0 )  > 0, L ( r )  will rise 
first, then fall to L(T,) before rising again. It is possible 
that L(0) may be lower than L(T-? ,~ ) .  According to (4.1), 

+ B,  ppparAtl - - A ~ - D ~ L  

P p e a T k t L  = Ap-,grh+l + B. 
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Fig. 1 .  r h  vs. R when intermittent, t ,  = 40. S = 200, 1/X, = 2500, 
1 / X t  = 500, 1/X; = 3500, 1 / X t a  = 2, l / X t a  = 3, and 1 / X , b  = 4. 

......................................................................... 
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r k + l  will be either the largest or the smallest among r k ,  r k + l ,  

and r ~ c + ~ ,  since one side of (4.2) is monotonically increasing 
and the other side is monotonically decreasing. If T L + ~  is the 
largest, then 

If p/.: 5 1/2, this algorithm converges faster than any equal- 
interval search. 

Figure 2 shows the r h  versus R plot for the following two 
sets of fault parameters: 

l / X p  1 /X t  1 / X ,  l / X t a  1 / X , a  1 / X , b  

Set 1 2500 500 3500 2 3 4 
Set 2 2500 lo00 3500 2 3 8 

The value of R,-, is 137 in Set 1, and 175 in Set 2. The 
difference between Sets 1 and 2 is due mainly to the difference 
in At.  The more frequently transient faults occur, the greater 
the optimal retry period becomes. Comparing Fig. 2 with Fig. 
1 it can be concluded that the r h  (the range of variation) for 
unclassified faults is much smaller (greater) than the r& (the 
range of variation) for intermittent faults. 

v. PERFORMANCE EVALUATION AND DISCUSSIONS 
In the proposed retry policy, the retry period for a fault is 

determined on-line based on the current system's state. This 
retry policy will thus be called an adaptive retry policy (ARP). 

Though the ARP is optimal with respect to the Bayesian loss, 
it is interesting to see how it performs in general, as compared 
to other retry policies. Most commercial systems adopt a retry 
policy where the retry period is chosen a priori and fixed for 
all detected faults. This kind of retry policy will be called a 
j k e d  retry policy (FRP). In what follows, we will compare the 
ARP with FRPs with different retry periods via simulation. 

A system with two identical processing modules is sim- 
ulated. Tasks are executed on one module while the other 
module is used as a spare; the former is referred to as the 
running moduZe and the latter as the spare module . When a 
fault is detected in the running module, a predetermined retry 
period is used in a FRP while in the ARP, the retry period is 
determined on-line by the methods described in Sections I11 
and IV. If this retry fails, the current task will be restarted 
on the spare module which then becomes the running module. 
It is assumed that the faulty module can be repaired quickly 
and returns as the spare module, or a new module can be 
"hired" in as the spare module, before the next fault occurs. 
This essentially means that in our analysis, if a running module 
fails then a spare is always available. 

There are two possibilities that cause a retry to fail. First, the 
retry period is shorter than the fault's active period. Second, 
a second fault occurs during the retry, which usually happens 
when an intermittent fault is resident in the running module 
for a sustained period. 

To simplify the description of system workload, we assume 
that the running module is always busy executing tasks with 
exponentially-distributed execution times. The performance of 
a retry policy will be judged by the mean-time-between-repair 
(MTBR) and the mean overhead ratio which is defined as the 
percentage of time spent on retry and restart between repairs. 
A good retry policy should have a low overhead ratio but 
respectable MTBR, since unnessary repairs due to transient 
faults should be minimized while handling permanent and 
intermittent faults effieciently. 

Each time a fault occurs, the S value of the current task 
is randomly generated based on an exponential distribution 
and the R value of the current task is distributed uniformly 
between 0 and S, unless the task affected by an earlier fault 
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has not yet been completed; in such a case R is calculated 
based on the previous detection time. 

The simulation is run under a basic fault generation process 
with the following fault parameters: 

1/X, 1 / X t  1 /X ,  1 /X ta  1/X,(1 1 / X , b  
5000 500 10000 2 5 10 

The inverses of rate parameters are listed above because 
they are easy to compare with other time-related variables. 
For example, 1/X, is the mean time between two permanent 
faults, l /Xt, is the mean active period of a transient fault, and 
so on. The maximum amount of time for diagnosing a faulty 
module is assumed to be 100, i.e., any fault with an active 
period greater than 100 will be classified as a permanent fault 
by our fault classification procedure. The mean execution time 
for each task is assumed to be 200 which, in our simulation, is 
the mean value assigned to S since restart is used as the only 
alternative when retry fails. The setup time for restart recovery, 
t,, is assumed to be 20. All these variables have the same 
time unit and thus are listed without explicitly specifying their 
units. It is further assumed that there are 10 different detection 
symptoms and their occurrences are uniformly distributed. 

The following retry policies are simulated and compared 
with the ARP. 

Policy FO: The policy that initiates restarthollback upon 

Policy Fn: The policy that employs a fixed retry period of 

The mean task execution time does not have any notable 
effect on the performance of ARP, since the optimal retry 
period is partially dependent on the value of S. However, the 
task execution time may have great effects on the performance 
of certain FRPs. Generally, the FRP with a longer retry period 
performs better for those tasks with longer execution times, as 
can be seen in Fig. 3. In what follows, we will compare these 
retry policies while changing only one parameter at a time. 

The first comparison is made while varying t ,  from 20 
to 100 and the results are plotted in Fig. 4. The effect of 
increasing t ,  is similar to the effect of increasing S. Generally, 
the larger the t,, the larger the overhead ratio. The ARP has 
the lowest overhead ratio and among FRP’s, F10 always has 
lower overhead than any other FRP’s within the range of t ,  
mentioned above. The t ,  does not affect MTBR too much in 
all policies. It should be pointed out that policies with a smaller 
retry period will have a smaller MTBR, but a very short retry 
period (e.g., F5) and a very long retry period (e.g., F30) usually 
produce a large overhead ratio. While the ARP’s MTBR is not 
the largest, its value does not differ from the largest value by 
too much. The task execution time will have similar effects 
(as t,) on FRPs since the greater the task execution time, the 
larger the restart overhead may result. 

The second comparison is made while varying 1 / X t  from 
300 to 1500, and the results are plotted in Fig. 5. The overhead 
ratio tends to decrease when the mean time between transient 
faults increases. However, the magnitude of decrease is almost 
indistinguishable in F20 and this trend is even reversed in F30, 

every fault detection. 

ri . 

Fig. 3. The impact of S in different retry policies. 
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Fig. 4. The impact of t ,  in different retry policies. 

because their retry period is usually larger than the transient 
fault’s active period, which is small and is the primary source 
of the overhead. In policies with a shorter retry period such 
as F5, the difference is quite significant. The change of At has 
great impact on the MTBR. 

The third comparison is made while varying l / X t ,  from 
1 to 5 ,  and the results are plotted in Fig. 6. It is evident 
that for FRPs the overhead is very sensitive to the transient 
fault’s active period unless the retry period is much larger 
than the active period, which is the case in F20 and F30. For 
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Fig. 5. The impact of At in different retry policies. 

Fig. 6. The impact of A t o  in different retry policies. 

the ARP, the overhead ratio is consistently low for all active 
periods. 

The fourth comparison is made while varying l / & b  from 2 
to 10, and the results are plotted in Fig. 7. The overhead ratio 
appears to be insensitive to the benign period of intermittent 
faults in all retry policies, because intermittent faults occur so 
infrequently that the overhead induced by intermittent faults 
constitutes only a small portion of the total overhead. In the 
ARP and F30, the overhead decreases as the benign period 
gets larger since retries for intermittent faults are consistently 

~ 
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The impact of in different retry policies. 

Number of Detection Syndromes 
Fig. 8. The impact of different number of detection syndromes for ARP. 

successful, unlike. other FRPs with a shorter retry period. 
However, F30 has a much higher overhead ratio because it 
cannot identify the Occurrence of intermittent faults and make 
timely repair. 

It is obvious from the above comparisons that the overhead 
ratio in the ARP is always lower than those in FRPs. In 
many cases, however, the performance of F10 is quite close 
to that of ARP. This is due to the set of parameters used 
in the simulation; since from Fig. 2, the optimal retry period 
is in the range from 7 to 13, and the retry period in F10 is 
closest to the optimal value among FRFs. However, if the 
fault paramters change, F10 may not remain to be the best 
FRP, while the ARP will still be the optimal regardless of 
the change of parameters because it estiiates the parameters 
on-line based on the detected faults. 

To see the impact of the fault classification scheme on the 
ARP, we carried out simulations while varying the number 
of detection symptoms from 1 to 100. In Fig. 8, both the 
overhead ratio and the MTBR are plotted. The overhead ratio 
improves with the number of detection symptoms, because 
the classification gets more accurate with more detection 

' 
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symptoms. The performance enhancement is very significant 
when the number of detection symptoms is increased from 
1 to 5 ,  but the effect of any further increase shows only a 
marginal imrpovement. Thus, it is not necessary to design a 
complicated fault detection scheme with a large number of 
detection symptoms solely for the sake of the ARP. 

VI. CONCLUSION 

In this paper, we have developed an adaptive retry policy 
which does not require any accurate prior knowledge of the 
fault parameters and adapts itself to the changes of parameters 
during operation. A distinct feature of this policy is the 
treatment of intermittent faults. Whenever an intermittent 
fault is judged to have occurred, an optimal retry period is 
determined and then applied to all future recurrences of the 
same intermittent fault until the current task is completed, and 
at that time, the module containing the intermittent fault will 
be switched out+ven if the fault is not active-to prevent 
any further damages (by this fault) to the system. 

The main reason that our adaptive retry policy performs 
so well under a changing environment is that parameters 
are estimated on-line using the most up-to-date information. 
The on-line parameter estimation is made possible by using 
the fault classification scheme we developed earlier [ 131. 
Based on this fault classification scheme, every detected fault 
will eventually be classified as one of the four fault types: 
permanent fault, transient fault, first occurrence and recurrence 
of an intermittent fault. Extensive efforts were made on the 
derivation of the optimal retry period since this must be done 
on-line. Numerical algorithms were also developed so that an 
approximate optimal retry period can be obtained quickly. 

Our adaptive retry policy is effective as long as faults 
are detected immediately upon their occurrence. If there is a 
latency between fault occurrence and detection, the parameter 
estimation has to be modified to account for this latency. 
Furthermore, if the task is contaminated before a fault is 
detected, the instruction retry defined in this paper cannot 
succeed in recovering the system even if the fault disappears. 
These problems are interesting, difficult, and worthy of further 
investigation. 

APPENDIX 

Proof of Theorem I :  Under the first assumption, we get 

PROOFS OF THEOREMS 1 AND 2 

The first and second derivatives of L(T)  are thus approximated 
by 

eXuR is approximated by A,R + 1 because the rate of unsuc- 
cessful retries during R is very small. A, is approximated by 
A, because e-X7a”’ << I. 

because A i b  is usually milch larger than A,. So, 

and the equation L’(r) = 0 can be approximated by 

The left-hand side (LHS) of (A.l) is a positive, decreasing 
function of T ,  so is the right-hand side (RHS). When T is 
small, LHS is larger than RHS. But, when T becomes larger, 
LHS will eventually be smaller than RHS, since LHS has a 
much higher decreasing rate. Therefore, LHS = RHS will hold 
at one and only one point, T * .  From (A. l ) ,  L”(r*) > 0 if the 
third condition of the theorem is satisfied. Hence, r* is the 
only local minimizer of L. 

Proof of Theorem 2: It is assumed that 

Ata(U - V )  - 1 = At, ( t ,  + (S - I?) - 
even when R = S, since 1, is usually much longer than the 
mean active period of a transient fault, I /&, .  Consider the 
following cases. If At, = Xi,, then either S ( T )  p ,  or g ( r )  is 
a monotonic function. If Ai,( [ ]  - W )  - 1 2 0, then g’(r) > 0 ,  
and thus, g ( r )  is a monotonically increasing function of 1’. If 
A; , (U-W)- l  < 0, then g’(r) = 0 has exactly one solution at 

which will be called the injlection point of L ( r ) .  If r,  > 0 ,  
g ( r )  is monotonically increasing in either [0, r.] or [r,. CL]; 

if T, < 0 .  g ( r )  is a monotonic function. It can be concluded 
from the above cases that L(T) has at most one positive local 
minimizer. 0 
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