To appear in Proc. Symposium on Al in Real-Time Control
Valencia, Spain, October 1994

AUTOMATING THE DESIGN OF REAL-TIME REACTIVE
SYSTEMS

DAVID J. MUSLINER*, KANG G. SHIN** and EDMUND H. DURFEE**

* Institute for Advanced Computer Studies, The University of Maryland, College Park, Mary-
land 20742, USA. Email: musliner@umiacs.umd.edu.

** Department of EE €& Computer Science, The University of Michigan, Ann Arbor, Michigan
48109, USA. Email: {kgshin,durfee} @eecs.umich.edu.

Abstract. The Cooperative Intelligent Real-time Control Architecture (CIRCA) automates
the process of designing, scheduling, and executing real-time reactive monitoring and control
systems. This paper provides an overview of CIRCA from a design-automation perspective,
and illustrates the architecture’s ability to dynamically alter its control system design based
on resource limitations or environmental constraints.

Keywords. Artificial intelligence; real-time computer systems; robots; control system de-

sign; self-adapting systems.

1. INTRODUCTION

The Cooperative Intelligent Real-time Control
Architecture (CIRCA) (Musliner et al. 1993,
Musliner et al. 1995) is designed to automate the
entire process of building a real-time reactive mon-
itoring and control system, from planning tasks,
to deriving their constraints, to scheduling them,
and finally to executing them predictably. By au-
tomating this design and implementation process,
CIRCA is “intelligent about real-time.” That is,
CIRCA uses Al methods to dynamically and flex-
ibly develop and modify its real-time behavior in
the face of changing goals, capabilities, and /or do-
mains. While many real-time Al systems can only
promise “best-effort” performance, CIRCA is able
to make explicit guarantees about its ability to
achieve its goals within particular domains using
limited sensor, processor, and actuator resources.

As illustrated in Fig. 1, CIRCA consists of sev-
eral parallel subsystems. The AT Subsystem (AIS)
is responsible for using complex Al methods to
reason about a world model, deriving appropri-
ate monitoring and control reactions for the sys-

The work reported in this paper was supported in part
by the National Science Foundation under Grants IRI-
9209031 and IRI-9158473, by a NSF Graduate Fellowship,
by the Office of Naval Research under Grant N00014-91—
J-1115, and by the ARPA /Rome Laboratory Planning Ini-
tiative (F30602-93-C-0039). David Musliner is also affili-
ated with the University of Maryland Institute for Systems
Research (NSF Grant CDR-88003012).

Scheduler

I selected reaction
contro sensor data reactions schedules
signas

reaction schedules Al Subsystem

Real-Time Subsystem

World Model

Fig. 1. CIRCA, the Cooperative Intelligent
Real-Time Control Architecture.

feedback data

tem. These reactions are built into an execution
schedule by the Scheduler module, and then down-
loaded to the Real-Time Subsystem (RTS). The
RTS is designed to provide a predictable execu-
tion environment which can enforce hard real-time
response guarantees for the planned reactions.

The development of CIRCA makes several contri-
butions to the state of the art, including a world
model and planning algorithm tailored to the
needs of hard real-time environments (Musliner
et al. 1995), and a structured interface through
which the arbitrarily complex Al planning sub-
system can communicate with and control the pre-
dictable, guaranteed RTS (Musliner et al. 1993).
This paper focuses on describing the overall oper-
ations of CIRCA from an automated-design per-
spective, emphasizing the way CIRCA retains pre-
dictable real-time behavior while also providing
the flexibility and adaptability required for intel-
ligent real-time control.

Fig. 2. The example Puma domain.

Examples of CIRCA’s adaptive design behavior
will be drawn from the prototype implementation
controlling a simulated Puma robot arm which
must pack parts arriving on a conveyor belt into a
nearby box (see Fig. 2). The parts arriving on the
conveyor can have different shapes (e.g., square,
rectangle, triangle), each of which requires a dif-
ferent packing strategy. The control system may
not initially know how to pack all of the possi-
ble types of parts— it may have to perform some
search algorithm to derive an appropriate box-
packing strategy. However, it is critical that the
robot does not allow any parts to fall off the end
of the conveyor, so if the robot does not know how
to pack an arriving part, it is allowed to simply
place the part on the nearby table and proceed
with other activities. The robot arm is also re-
sponsible for reacting to an emergency alert light.
If the light goes on, the system must push the
button next to the light before a fixed deadline.

The Puma domain thus includes two sources
of hard real-time deadlines (arriving parts and
emergency alerts) as well as the opportunity
to use search-based Al methods to derive part-
packing strategies that will improve performance.
CIRCA’s primary goal in this domain is to always
avold catastrophic failures due to missed dead-
lines, and to also try to pack as many parts as
possible into the box. When viewed from the real-
time system design perspective, CIRCA’s task is
essentially to design, verify, redesign, and imple-
ment control systems that meet hard deadlines
in the dynamic environment (part arrivals and
emergency alerts) and also intelligently deal with
changes that are not predicted (new part shapes).

2. THE AUTOMATED DESIGN PROCESS

Fig. 3 shows a flowchart mapping the steps of a
traditional control system design process to re-
lated portions of the CIRCA approach. Beginning
in the upper left of the figure, the designer (hu-
man or automated) is given a specification of the
system to be controlled. In the case of CIRCA,
this specification has three parts: a set of possi-
ble initial world states, a set of state transitions
that describe how the world can change, and a
set of agent capabilities, describing how the agent
can change the world. In the Puma domain, each
possible 1nitial world state describes the status of
the robot, the conveyor belt, the alert light, etc.
The state transitions describe the states in which
external events may occur, and the new states
that result from the events. For example, a state
transition is used to describe the possibility of a
part falling off the conveyor after some time de-
lay, leading to an unacceptable failure state. The
agent capabilities describe the robot’s methods for
moving parts and pushing the emergency button.
The output specification describes the desired be-
havior; for CIRCA | the specification includes both
goals of avoidance (to stay out of some undesirable
situations) and goals of achievement (to attain
some desirable situations). In the Puma domain,
the avoidance goals correspond to parts falling off
the conveyor and the emergency alert timing out.
The goal of attainment is to pack parts into the
box.

The design phase of the process builds a tentative
control system; CIRCA builds a reactive control
plan using lookahead planning methods similar to
STRIPS (Nilsson 1980). The reactions are cast in
the form of simple Test-Action Pairs (TAPs) that
specify the appropriate control actions for vari-
ous possible future states of the world. Each TAP
implements a set of tests to recognize a partic-
ular class of world states, and an action to per-
form when the system is in that class of states.
For example, a simple TAP in the Puma domain
might detect when the emergency light is active
and the robot is not holding any parts, and initi-
ate an action to push the emergency button, thus
cancelling the alert and avoiding the undesirable
failure (timeout) state. Deadlines defined by the
transitions in the world model are translated into
response-time requirements for each TAP that is
critical to system safety. Thus, the TAP that re-
sponds to an emergency-alert would have to be
tested (and possibly activated) frequently enough
to ensure that no emergency alert condition is al-
lowed to time-out and result in failure.

The next phase of the design process verifies that
the proposed control system can be executed to
meet the timing specifications. CIRCA’s planner

~-= |nput Specifications

(initial world states,
world transitions,

agent capabilities) Design

L-= Output Specifications (planning)

(avoidance goals,
achievement goals)

M odification

(tradeoff methods)

Verification Implementation

(model proofs,
scheduling)

Fig. 3. A flowchart showing the stages of real-time system design.

ensures the logical correctness of a TAP control
plan when it is built, based on the world model.
The Scheduler reasons about the worst-case exe-
cution times of the TAPs, and the limited execu-
tion resources available on the RTS, attempting to
build an execution schedule that meets all of the
response-time constraints’. By developing a TAP
schedule that meets all of the hard deadlines in
some region of interactions with the environment
(i.e., some portion of the overall system’s state
space), CIRCA is essentially designing a real-time
reactive control system.

Assuming that the Scheduler is able to produce
a feasible schedule that meets all the timing re-
quirements, the AIS can send the schedule to the
RTS, which will then execute the TAPs in a pre-
dictable manner, enforcing the safety guarantees
and behaviors specified by the planning system. A
primary feature of these scheduled reactive plans
is that, because they are designed to meet all
of the domain deadlines in some region of the
system’s state space, they essentially isolate the
Al-based planning system from the real-time re-
sponse requirements of the environment. While
the AIS 1s performing its planning process, the
RTS is simultaneously executing the previously-
generated reactive control plan, maintaining guar-
anteed system safety. This unique combination of
communicating but isolated Al methods and hard
real-time response guarantees i1s one of the main
performance features of the CIRCA architecture
(Musliner et al. 1993, Musliner et al. 1995).

Following the dashed arrows in the flowchart, 1t is
also possible for the design or verification phase
to fail, indicating that some modifications must
be made to the initial design or the specifications.

1Some TAPs are not responsible for meeting hard dead-
lines, and these are not assigned response-time require-
ments. Instead, they are labelled as “if-time” TAPs, which
can be executed if time and resources remain unused by the
guaranteed TAPs.

For example, the Scheduler may find that it is not
possible to run the emergency-alert-response TAP
as frequently as specified, so it will return a failure
message to the AIS. Feedback from TAPs already
executing on the RTS may also initiate modifica-
tions to the control system being designed. For
example, when parts of a new shape arrive, the
RTS will send that information to the AIS, which
must develop a new control plan that can pack
those parts. Such modifications are essential to
automating the overall design process, for two rea-
sons. First, because heuristics are used to gener-
ate designs, the initial set of proposed TAPs may
be impossible to schedule. A mechanism must
be available to modify the planning process (or
some other system aspect) so that a different de-
sign is heuristically generated and tested. Sec-
ond, because CIRCA 1is intended to control an au-
tonomous agent with bounded resources, it is not
possible to ensure that the agent will always have
sufficient resources to accomplish every task that
might arise. As a result, CIRCA must dynami-
cally consider how to apply its limited resources
to best achieve its goals, possibly by preferring
some goals over others, by changing plans, or by
making other modifications to the planning pro-
cess or specifications.

This capability distinguishes CIRCA’s approach
from a more traditional design process, in which
the input and output specifications are fixed. In
contrast, CTRCA may have to modify the 1/0
specifications of its control system design, when
faced with resource limitations. For example, if
the conveyor belt is moving very quickly, the sys-
tem may be unable to guarantee that it will both
prevent emergency timeouts and avoid dropping
parts. In response, CIRCA might have to pri-
oritize one goal over another, or alter the speed
of the conveyor. Both of these changes actually
modify the problem specification for the control
system, rather than just the control system de-
sign. The following section discusses two exam-

ples of the types of design tradeoffs CIRCA has
experimentally demonstrated.

3. DESIGN TRADEOFFS

Suppose the Puma domain is specified to have
parts arriving as little as 45 seconds apart, and
emergency alerts as little as 50 seconds apart. The
AIS will build a plan including the pickup-part-
from-conveyor and push-emergency-button
reactions, both of which must be guaranteed to
meet certain deadlines. The Scheduler will then
be invoked to see if the available RTS resources
are sufficient for those tasks. Fig. 4a shows the re-
sults of many such plan/schedule iterations, com-
piled together to represent essentially a perfor-
mance profile for the overall task. The axes of
the graph show different rates at which alerts and
parts may arrive, representing different domains.
If the arrival rates match a point below the lower,
“normal plan” curve, then the system can build a
schedule that will guarantee to both avoid emer-
gency failures and prevent parts from falling off
the conveyor. The form of this curve illustrates
the tradeoff that the scheduling mechanism can
make between tasks: when the emergency rate is
relatively high, the system will still build a sched-
ule, as long as the part arrival rate is sufficiently
low that the Scheduler can allocate more resources
to the tasks that respond to the alert. Conversely,
when the emergency rate is lower, the system can
deal with a faster rate of part arrivals.

3.1 Tradeoff Example: Ignoring Potential Failure

If the arrival rates match a point above the lower
curve, then CIRCA cannot build a schedule that
will guarantee to avoid both emergency failures
and dropping parts. The AIS must make some
type of tradeoff to arrive at a plan which is fea-
sible. Suppose, for example, that the system
decides that dropping parts off the conveyor is
not catastrophic, but merely undesirable. This
is equivalent to the system automatically chang-
ing the input problem specification so that cer-
tain states are no longer considered catastrophic.
In that case, CIRCA can build guaranteed sched-
ules for all of the domain instances below the up-
per line, the maximum rate of emergency alert
arrivals that can be handled with the given primi-
tives. The part arrival rate is no longer critical to
the scheduling problem because the system does
not need to guarantee the pickup-part-from-
conveyor action.

To illustrate the non-guaranteed nature of the re-
sulting behavior, this tradeoff method was tested
in the Puma domain by increasing the rate of

emergency alerts and part arrivals so that the orig-
inal plan of actions was not schedulable. The AIS
then chose to ignore the danger of parts falling off
the conveyor, re-planned, and built a new TAP
plan in which the pickup-part-from-conveyor
action was no longer guaranteed, but was instead
implemented by an if-time TAP. Fig. 4b shows
the expected results: as parts and emergency
alerts arrived more frequently, the number of parts
falling off the conveyor increased, because the sys-
tem had less and less free time to apply to if-time
behaviors. In this instance, CIRCA traded away
its guarantee of preventing parts from falling off
the conveyor, in exchange for the ability to guar-
antee its response to the emergency alert.

3.2 Tradeoff Example: Method Selection

In addition to making changes to the 1/O specifi-
cations in response to resource restrictions, the
AIS can also make changes directly to the im-
plemented form of the planned actions. In par-
ticular, the AIS can make changes to the TAPs
built to implement action transitions. One pow-
erful modification is to simply alter the specific
primitives used to perform the tests and action
required by a TAP. The AIS may have several
different methods for performing an action (or a
test), and it can choose amongst them according
to the resources available. This tradeoff method
is equivalent to the “configuration selection” (Kuo
and Mok 1991), “version selection” (Malcolm and
Zhao 1991), and “design-to-time” (Garvey and
Lesser 1994) approaches.

For example, suppose that the Puma control
system provides the RTS with two different
types of part-placement operations, a slow, high-
accuracy, “fine-motion” operation and a faster,
lower-accuracy, “coarse-motion” operation. This
means that the system has two possible primi-
tive operators for the place-part-in-box action
transition. Using the fine-motion operator allows
the system to place the parts very close together,
thus yielding densely-packed boxes. But the fine-
motion operator needs four seconds to finish the
placement operation. Using the coarse-motion op-
erator requires the system to leave more space
between the parts, since the placement is less-
certain. As a result, the system will produce less-
densely packed boxes, but it can produce them
more quickly, because the coarse-motion opera-
tor only needs 2.5 seconds. Thus, in this exam-
ple, method selection allows the system to trade
off the quality of its results (the packing density)
for the timeliness of its long-term and short-term
behaviors (the speed of packing whole boxes and
individual parts). Given the faster coarse-motion
operator, the system may be able to guarantee to

O
y Plan ignoring part failures

Normal plan

2.4 1+

221+

201+

1.8

1.6

1.4

Emergency Arrival Frequency (alerts/minute)

1.2

10 ! | ! ! | ! !
10 11 12 13 14 15 16 17

Part Arrival Frequency (parts/minute)

(a) Schedulability.

6_
e OT
<
o
°
2
o AT
o
o
S
g 3t
£
=3
e
g
g 2T
[
>
<

l_

0 | | | | | | |

0 2 4 6 8 10 12 14 16

Part Arrival Frequency (parts/minute)

(b) Performance.

Fig. 4. Tradeoffs by ignoring a potential failure.

respond in time to a higher frequency of emer-
gency alerts than with the slower operator.

To provide a more quantitative demonstration of
this tradeoff, experiments using these coarse/fine
operators were performed. The fine-motion opera-
tor was defined to require no space at all surround-
ing parts being placed in the box: essentially, it
could achieve 100% packing density with a fortu-
itous series of part arrivals.? The coarse-motion
operator, on the other hand, required one inch of
clearance on all sides of the parts in order to place
them in the box. Naturally, the achievable pack-
ing density is lower with this operator, since parts
occupy spaces larger than their actual size.

Fig. ba shows the improvement in response-time
achieved by using the coarse-motion operator, il-
lustrated here by the increased rate of emergency
alerts and part arrivals that can be handled. The
upper curve shows the response tradeoffs that can
be made using the faster coarse-motion packing
operator, while the lower curve shows the perfor-
mance for the fine-motion operator used in the
previous experiment (and previously graphed in
Fig. 4a). The coarse-motion operator reduces the
time allocated to the place-part-in-box TAP, so
the system can respond in time to more frequent
part arrivals, emergency alerts, or both.

However, Fig. 5b shows the corresponding de-
crease in performance quality that resulted from

2The box-packing strategy does not deliberately reorder
the parts by placing them on the table and packing them
later. Parts were only put on the table if the packing op-
eration was aborted to deal with an emergency.

the coarse-motion operator, when applied to 100
trials using randomly ordered arrivals of four dif-
ferent part shapes. On average, the density of the
packed box was reduced from 70% using the fine-
motion operator to 59% with the coarse-motion
operator. In these experiments, simulations of the
box-packing algorithm were continued until the
first arrival of a part that did not fit in the box.
The fine-motion version was able to pack an aver-
age of 45 parts in the box, while the coarse-motion
version packed an average of only 26 parts. Thus
the improved schedulability and response time il-
lustrated in Fig. ba are only achieved at the cost
of stiff performance degradation.

4. CONCLUSIONS

In summary, by automating the entire process
of designing and implementing reactive real-time
systems, CIRCA is able to intelligently adapt its
behavior while still meeting hard real-time dead-
lines. The view of CIRCA as an automated design
system highlights the importance of its mecha-
nisms for making the tradeoffs that are inevitable
in resource-bounded real-time systems. CIRCA
derives a high-quality plan based on its model of
the world, then checks to see if the plan’s resource
requirements are feasible. If not, the system has
many alternatives for making tradeoffs, includ-
ing sacrificing its guarantees of avoiding particular
types of failures, and degrading other performance
qualities in exchange for schedulability.

The experiments described above have demon-
strated these tradeoff methods. It 1s important

C . .
% Plan using coarse-motion operator

Normal plan using fine-motion operator

221

20+

181+

161+

121+

Emergency Arrival Frequency (alerts/minute)

10 | | | | | |
0.8 1.0 1.2 14 16 18 2.0

Part Arrival Frequency (parts/minute)

(a) Schedulability.

Density of packed box
o o o o o o o o
N w Iy an [*2] ~ o] ©
o o o o o o o o

o
N
o

o°
o
S

< Fine-motion operator
x Coarse-motion operator

1 | |]

0 20 40 60 80

Trial index

(b) Density of packed box.

Fig. 5. Tradeoffs by using different TAP implementations.

to realize that, because CIRCA can reason in-
ternally about the effects these tradeoff methods
have on its performance, the system is “aware”
of the tradeoffs it can make, and can choose the
effects that are most suited to its overall goals.
One of the major directions for future research
is the determination of the precise conditions to
which each of the available tradeoff methods is
best-suited.

5. REFERENCES

Garvey, A. and V. Lesser (1994). A survey of re-
search in deliberative real-time artificial intel-
ligence. Journal of Real-Time Systems 6(3),
pp. 317-347.

Kuo, T.-W. and A. K. Mok (1991). Load adjust-
ment in adaptive real-time systems. In Proc.
Real-Time Systems Symposium, pp. 160-170.

Malcolm, N. and W. Zhao (1991). Version selec-
tion schemes for hard real-time communica-
tions. In Proc. Real-Time Systems Sympo-
sium, pp. 12-21.

Musliner, D. J., E. H. Durfee and K. G. Shin
(1993). CIRCA: a cooperative intelligent real-
time control architecture. ITEEE Trans. Sys-
tems, Man, and Cybernetics 23(6), pp. 1561-
1574.

Musliner, D. J., E. H. Durfee and K. G. Shin
(1995). World modeling for the dynamic con-
struction of real-time control plans. To ap-
pear in Artificial Intelligence.

Nilsson, N. J. (1980). Principles of Artificial In-
telligence. Tioga Press, Palo Alto, CA.

100

