
912 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. VOL. 5. NO. 9. SEPTEMBER 1994

.... .

Fault-Tolerant Clock Synchronization
in Large Multicomputer Systems

Alan Olson and Kang

Abstract-The cost of synchronizing a multicomputer increases
with system size. For large multicomputers, the time and re-
sources spent to enable each node to estimate the clock value
of every other node in the system can be prohibitive. We show
how to reduce the cost of synchronization by assigning each
node to one or more groups, then having each node estimate
the clock values of only those nodes with which it shares a group.
Since each node estimates the clock value of only a subset of the
nodes, the cost of synchronization can be significantly reduced.
We also provide a method for computing the maximum skew
between any two nodes in the multicomputer, and a method for
computing the maximum time between synchronizations. We also
show how the fault tolerance of the synchronization algorithm
may be determined.

Index Terms- Clock synchronization, clock skew, clock drift,
fault tolerance, multicomputer systems

I. INTRODUCTION

N a multicomputer system, the cooperation between the I nodes is high, often to the point where the system can be
thought of as a single computer. In some cases, such as real-
time control systems, a systemwide time is used to facilitate
cooperation. It determines when each node is supposed to
finish certain tasks and when other nodes expect them to finish.
Each node measures time with its own clock, and each clock
runs at a slightly different rate, and as a result, the difference
between each node’s idea of the current time increases over
time. Such a disparity can cause deadlines to be missed, and
eventually lead to system failure.

One possible solution is to reduce the difference between
clock rates. Atomic clocks and oven-controlled quartz oscilla-
tors are far more accurate than the simple quartz oscillators
found in most computers. However, adding such a device
to each node can greatly increase the cost, size, weight,
and power consumption of the multicomputer. Alternatively,
one could use someone else’s atomic clock. Universal time
coordinated (UTC) can be read via telephone, radio, or satellite
from several sources at varying levels of accuracy [2], [16].
Giving each node the hardware necessary to read UTC will
make sure the nodes agree on the current time. Once again, the
extra hardware will increase the system cost, size, weight, and

Manuscript received September 1992; revised June 1993. This work was
supported in part by Martin Marietta Aeronautics Group in Denver, and by the
National Aeronautics and Space Administration (NASA) under Grant NAG-
1-1220.

The authors are with the Real-Time Computing Laboratory, Computer
Science and Engineering Division, Department of Electrical Engineering and
Computer Science, University of Michigan. Ann Arbor. MI 48 109-2 I22 USA;
e-mail: alan@eecs.umich.edu, kgshin@eecs.umich.edu.

IEEE Log Number 9403080.

G. Shin, Fellow, IEEE

power consumption. Also, a mobile system may have trouble
reading UTC while moving.

A more common solution is to use a synchronization
algorithm. All synchronization algorithms have two phases.
First, nodes distribute information about their current clock
values. Second, each node uses this information to decide
how much to adjust its own clock in order to synchronize
it with the clocks of the rest of the nodes. Distributing
clock information is the costliest part of the synchronization
algorithm, with cost generally increasing with accuracy. Since
accuracy of synchronization depends directly upon accuracy of
clock information, much effort has gone into devising efficient
ways to distribute clock information accurately. These methods
can be divided into two groups.

Hardware methods [6], [7], [13], [I51 use a dedicated
network to broadcast each clock signal, and give very accurate
results. However, the clock network requires on the order
of n2 communications links for an 71 node multicomputer,
and is thus very expensive for all but the smallest systems.
Network methods [1 J, 131, [SI, [SI-[121, [141 use the existing
communication network to exchange information about clock
values. Network methods usually give less accurate results,
because of uncertainties in the delays imposed by the commu-
nication network, but are much cheaper to implement, because
no special hardware is required. A special class of network
methods is probabilistic methods. They exploit the stochastic
nature of communications delays to get very accurate results,
at the cost of greater network traffic. Also, accuracy is not
guaranteed; instead it has an associated probability. which can
be made as close to I as is desired.

Many synchronization algorithms require each node distrib-
ute information about its clock to every other node. In a large
multicomputer, or if tight synchronization is needed, this can
be very expensive. Other synchronization algorithms use a
master-slave clock organization, so only master clocks need to
distribute clock information. This reduces the cost, but creates
other problems. The master clock nodes are forced to carry
an extra load, and another synchronization algorithm must be
provided to synchronize the master clocks.

In this paper, we propose a synchronization algorithm that
does not require each node to distribute information about its
clock to every other node, and does not require a master-slave
clock organization. Instead, each node belongs to one or
more groups, and sends information about its clock only
to other members of its group. This reduces the cost of
synchronization, but does not place the entire load on a few
nodes. Also, any of the above methods can be used to distribute

1045-9 2 I9/94$(14 00 0 I994 IEEE

--I.-I_

mailto:alan@eecs.umich.edu
mailto:kgshin@eecs.umich.edu

OLSON AND SHIN: FAULT-TOLERANT CLOCK SYNCHRONIZATION

clock information, so one can be selected on the basis of A. Assumptions

913

the accuracy of information provided. Our algorithm also
provides a range of synchronization: Nodes in the same group
will be tightly synchronized, whereas looser synchronization
prevails globally. This reflects the needs of many real-world
applications, where cooperating or replicated tasks may need
tight synchronization, whereas a looser synchronization may
be suirable otherwise.

The paper is organized as follows. Section I1 presents
our assumptions and an overview of our synchronization
algorithm. Sections I11 and IV show how to guarantee a given
maximum skew. Section V discusses the fault tolerance of the
synchronization algorithm, and how to determine the number
of faults it can tolerate. The paper concludes with Section VI.

11. SYNCHRONIZATION

A clock is a discontinuous function C (t) mapping from
some external real-time (i.e., Newtonian time) reference into
the set of integers. Computer clocks are usually nondecreasing
functions, because many computers do not like to have their
clocks set back; but we do not require this. Each clock has a
drift rute p, such that if C (t) is the clock function and t l , tz are
times in the external reference with t 2 > t l , and if the clock is
not interrupted or halted in any way during the interval [t l ~ t z] ,
then we have the following equation:

(1 - p) (t z - t l) 5 q t ,) - G(t1) 5 (1 + p) (t * - t l) . (2.1)

For a good crystal oscillator, p will be on the order of
In real clocks, the value of p is not constant, but changes over
time. Because the change almost always happens very slowly,
we can neglect its effects.

Two clocks, C,(t) and C,(t), are said to be &synchronized
at time t if and only if:

The purpose of a synchronization algorithm is to ensure that
any pair of clocks in the multicomputer will be &synchronized
whenever the multicomputer is in operation. Synchronization
algorithms that use hardware methods to distribute clock
information usually run continuously, constantly adjusting
clock rates to keep clocks synchronized. Other algorithms,
including the one we describe here, run periodically, and
clocks can drift apart between runs of the synchronization
algorithm. Such algorithms generally synchronize clocks to
within some target 7 < 5 . The value of 7 is chosen to be
small enough so that clock drift cannot increase skew to more
than 5 before the next run of the synchronization algorithm,
i.e., if T is the real time that elapses between successive
synchronization :

We make the following assumptions about the multicom-
puter, the clocks, and the way clock information is interpreted.

1) Each node of the multicomputer has its own hardware
clock. The clock consists of a counter whose value can
be read at any time.

2) A method exists to allow each node to gather information
about the clocks of other nodes in the multicomputer. We
do not require each node be able to gather information
about all other nodes, only a subset sufficient to ensure
synchronization, as detailed in Section 111.

3) The value of the clock increases at an almost constant
rate over the period where clock information is being
distributed through the multicomputer. The frequency of
all real clocks varies somewhat, and also the synchro-
nization algorithm may insert or suppress clock cycles
periodically in order to synchronize the clock. This is
tolerable as long as the variation in rate is small in
comparison to the rate itself.

4) Each node uses the information it gathers to estimate the
difference, or skew, between its clock and the clocks of
other nodes. The error of any given estimate is no more
than F . This accuracy may be guaranteed, or may have an
associated probability if probabilistic methods are used.

These assumptions allow any of the distribution methods
mentioned above to be used with little or no modification.
Hardware distribution methods usually connect lines from
other node’s clocks to a phase-locked loop, but for our
purposes, each would be connected to a counter. and the dif-
ference in counter values would give the skew between clocks.
Network methods require clocks to be counters anyway, and
all synchronization algorithms that use them produce skew
estimates either explicitly or implicitly.

B. Overview of the Proposed Algorithm

The amount of clock information to be distributed can
be reduced if each node is selective about the other nodes
from which it gathers information. It is possible to provide
synchronization while requiring each node only gather clock
information from a few carefully selected nodes. This is the
basis of our algorithm.

We begin by defining sets of nodes, called synchronization
groups. We guarantee the clocks of any two nodes that belong
to the same synchronization group will be &synchronized.
Overlap between synchronization groups guarantees that if two
nodes do not belong to the same synchronization group, there
exists some integer IC such that the skew between the clocks
of the two nodes is less than kb .

Each node belongs to at least one synchronization group,
and gathers clock information from, and sends clock informa-
tion to, only those nodes with which it shares a synchronization
group. A node uses the clock information that it receives from
another node to estimate the skew between its clock and the
clock of the other node. An interactive convergence algorithm
[8] is then applied. Any skew estimates that are too large are
discarded; the rest are averaged, and the result is the amount
by which the clock is to be adjusted. Large skews are discarded

(2.3)

914 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 9, SEFEMBER 1994

1

goo" g'fOO gol" g*'ol

Fig. 1. Synchronization graph for a 16-node hypercube multicomputer.

to present a single faulty node from throwing off the average,
a skew a is considered too large if la1 > S + E (the maximum
skew plus any estimation error). A single application of this
algorithm will synchronize the clocks of a synchronization
group to within T , and the algorithm must be run again before
the clocks can drift to more than 6 apart.

The guarantees of maximum skew depend on the assignment
of nodes to synchronization groups. If there is not enough
overlap between groups, the guarantees will not hold. In
Section I11 and IV, we show how to determine if a given set of
synchronization groups will provide the necessary guarantees.
Section I11 presents a graph-oriented method for describing
synchronization groups, and Section IV shows how to use the
graph to compute 7 .

C. Initial Synchronization

Any guarantees of maximum skew also depend on the
method of achieving initial synchronization. This would nor-
mally be done during system initialization. Any algorithm
for achieving initial synchronization [5] , [9] can be used.
Additionally, a temporarily appointed master could repeatedly
broadcast its clock value, much as in [l], until the rest of the
nodes can get an accurate-enough estimate. If none of these
approaches can synchronize the multicomputer tightly enough,
repeated applications of our algorithm can be used to finish the
job. If the nodes of synchronization group are synchronized to
within A, a single application or our algorithm will reduce the
skew to some 71 < A. Immediately applying our algorithm
again will result in a maximum skew of 7 2 < 71. Continuing
in this fashion will eventually result in a maximum skew of
~f 5 7, the target value during normal operation.

111. SYNCHRONIZATION GROUPS

Each node will belong to at least one synchronization group.
Two nodes are said to be tied if they are both members of the
same synchronization group. The transitive closure of tied is
strung, e.g., nodes A and B are strung, because A is tied to C,
which is tied to D, which is tied to B. Because there is a limit
on the skew between tied nodes, there will exist a limit on
the skew between strung nodes. If two nodes are not strung,
there will be no limit on the skew between them. To ensure

gl 0" g**lo gll" g"l 1

synchronization, a node need not be tied to every other node,
but it must be strung to every other node.

As a simple example, consider a 16-node hypercube. Each
node will have a binary address between 0000 and 11 11. We
define eight synchronization groups of four members each. The
first four groups will be the subcubes of the form ab * *, and
the second four groups will be subcubes of the form * * ab,
where * indicates a "don't care" address bit and a, b E (0, l}.
Every node will belong to two synchronization groups, each
with three other nodes. Thus, each node will be tied to six
other nodes. Any pair of nodes will be strung.

A. The Synchronization Graph

A bipartite synchronization graph can be derived from
the definitions of the synchronization groups. One vertex
set, called the group vertices, has one vertex for each syn-
chronization group; the other vertex set, called the system
vertices, has one vertex for each node. The system vertex
that corresponds to node a is denoted as sa, and the group
vertex that corresponds to synchronization group A is g A . An
edge exists between sa and g A if and only if node a is in
synchronization group A. Nodes a and b are tied if and only
if the distance between sa and sb is 2. Nodes a and b are
strung if and only if there is a path between sa and sb. If
the synchronization graph is connected, then all pairs of nodes
will be strung. Throughout this paper, we use nodes to refer to
the physical nodes of the multicomputer, and vertices to refer
to vertices of the synchronization graph.

Fig. 1 shows the synchronization graph for the 16-node
hypercube example discussed in the previous section, where
the small circles represent system vertices and large circles
are group vertices.

The stretch between a pair of nodes is half the length
o f the shortest path between their respective vertices in the
synchronization graph; e.g., the stretch between a pair of tied
nodes is 1. In Fig. 1, the distance between any two system
vertices is no greater than 4, so the stretch between any
two nodes in this multicomputer is no greater than 2. The
stretch between a pair of nodes multiplied by 6 yields the
maximum skew between the nodes. One should take care to
distinguish between the stretch between two nodes, and the
distance between them in the multicomputer's network. The

OLSON AND SHIN: FAULT-TOLERANT CLOCK SYNCHRONIZATION 915

stretch indicates the maximum skew between two nodes, and is
not necessarily related to the. physical distance between nodes.
This can be seen from Fig. 1, where the maximum stretch is
2, but the diameter of a 16-node hypercube is 4.

B. Synchronization Paths

We call the set of nodes tied to a given node that node's
synchronization set. For example, in our 16-node hypercube
example, the synchronization set of node 0000 will be
{0001,0010.0011,0100,1000.1100}. When a node computes
the adjustment to its clock, it will use the estimated skews
for all nodes corresponding to vertices in its synchronization
set. Some of these nodes may not belong to a common
synchronization group; e.g., in the earlier example, 0000 will
use skew estimates from 001 1 and 1100 that do not belong
to a common synchronization group. It would therefore be
impossible for 0000 to remain synchronized with both 001 1
and 1100 if there were no bounds on the skew between the
latter two. The stretch provides the needed bound, and it
can be computed from the synchronization graph. However,
when fault tolerance is considered, we need to know more
than the stretch. We need to know upon which nodes and
synchronization groups the stretch depends. Specifically, for
any pair of nodes, we need to know what paths exist between
their respective nodes in the synchronization graph.

In a multicomputer with synchronization graph S, node a
and corresponding system vertex sa , let S" be the set of all
vertices a distance of 2 from sfL (i.e., vertices corresponding to
node a 's synchronization set). We then define synchronization
paths (SP's) for u and b as follows.

Dejinition I : Given a multicomputer with synchronization
graph S , and tied nodes U and b, let S,E,b = Sa n Sb , and let
Gab be the set of group vertices a distance of 1 from exactly
one of sa and s'. A synchronization path (SP) is a simple
path in S from a member of Sa to a member of Sb, which
contains at most one member of S:', no members of Gab, and
has length no greater than 4.

The existence of an SP between ,sd E Sa and sp E Sb
indicates a relationship between node d in a's synchronization
set and node e in b's synchronization set. Either d and e are
tied to each other, or are both tied to some common third node.

As an example, consider Fig. I again. Nodes 0000 and 0001
are both in synchronization group 00 * *. We have:

s0000 - (~ 0 0 0 1 , so010 s O o l l
- , 9 1 ' }

so001 - - (~ 0 0 0 0 ~ s"010 < s O O 1 l , p o l c y l O O l c s l l O l }

0100 s l O O O Q l l O O

I

GOOOO00(!1 - - {G**OO. y+*(!l},

Each of the members of Sooo0 not in S:OOOOOO1 has an SP of
, and

slloO + gl'** -+

Each SP has a corresponding stretch of half the length of
the SP. Each SP is classified according to its corresponding
stretch. An SP of length 2 has a corresponding stretch of 1,
and is therefore called a I-SP. Similarly, an SP of length 4
is called a 2-SP.

We can find all SP's for a given pair of nodes using a
simple modification of a depth-first search algorithm. Pro-

length 2: soloo ~ ,qO1** -+ sol(! l s l O O O ~ g l O * * ~ R l O O l

There are also 12 SP's of length 4.

Procedure Fnd.synch_path(fragment!
begin

if fmgment i s a synchronization path then

else
makeSP(fmgment!

if IengthVragment) i 4 then
tail = last vertex of fmgment;
foreach neighbor of tail

find~synch.path(frugment+neighbor),
endif

endif
end

Fig. 2. Procedure f indsynchpath

cedure jindsynchpath, shown in Fig. 2, will find all SP's
that have endpoints at a given vertex. The complexity of this
algorithm depends on the synchronization graph. If each node
belongs to no more than g synchronization groups, and each
synchronization group has no more than k members, then the
maximum size of S" is .9(k - 1). The algorithm will search
all paths of length 4 from these nodes, for a maximum of
g (k - l)g2k2 = g"* (k - 1) paths.

C. Synchronization Areas

To show that the multicomputer will remain synchronized,
we must show that immediately after the synchronization
algorithm has finished, the skew between any pair of tied nodes
will be less than 7. This could require checking a large number
of cases. Fortunately, it is not necessary to check most of the
cases.

Dejinifion 2: Given synchronization graph S and tied nodes
a and b, the synchronization area of a and b is a subgraph
of S containing sa. sb. all group vertices a distance of I
from sa and d' and the edges connecting them, all system
vertices a distance of 1 from these group vertices and the
edges connecting them, and all vertices and edges contained
in SP's for U and b.

The synchronization area of sa and d' is all vertices and
edges contained in paths of length less than or equal to 8
between sa and sb. This will contain all SP's for vertices in
Sa and Sb. Because the SP's determine the maximum skew
between nodes a and b, the synchronization area is the only
part of the synchronization graph that has any part in comput-
ing the maximum skew. One should take care to distinguish
between a synchronization set and a synchronization area. A
synchronization set is the set of nodes whose skews a node
estimates in order to synchronize. A synchronization area is the
subgraph of the synchronization graph that is used to determine
the maximum skew for a pair of tied nodes.

Any pair of tied nodes will have a corresponding syn-
chronization area. If two synchronization areas differ only in
the labeling of their vertices, i.e., if one can be transformed
to the other by simply relabeling its vertices, then they are
said to be equivalent. To show that the multicomputer is
synchronized, one has to show synchronization for all possible
nonequivalent synchronization areas; i.e., any synchronization
areas equivalent to synchronization areas already checked do
not have to be checked. This greatly reduces the number of
cases. Often, as in Fig. 1 , the synchronization graph will be
identical from the point of view of any system vertex. More
specifically, if a is a node, a labeling of the vertices of the

916 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 9, SEPTEMBER 1994

synchronization graph can be found that gives the label sa to
any desired system vertex. In Fig. 1, the label sooo" has been
given to the system vertex at the far left; it could just as easily
been given to the system vertex at the far right, or to any
system vertex in between. In such cases, all synchronization
areas are equivalent.

IV. MAXIMUM SKEW

When nodes a and 6 synchronize, each will estimate the
clock skew between itself and every node in its synchroniza-
tion set. Each will then average the resulting skew estimates
to get the amount by which to adjust its own clock. If a and
b are in the same synchronization set, we want the clock
skew between them after they have adjusted their clocks
(assume that clocks are adjusted instantaneously) to be less
than the target skew, 7. It is trivial to show that this is true
in standard synchronization algorithms, where there is a single
synchronization group containing all nodes. In our case, things
are more complicated, and in this section, we show how to
prove that the multicomputer will remain synchronized. It
should be understood that we are showing only how to prove
the algorithm works, not describing the algorithm's operation.
None of the computations done in this section have to be made
by the synchronization algorithm while it is operating.

Assume that nodes a and 6 are tied. Let na and rib be the
number of skew estimates made by U and 6 ; i.e., na is the
number of nodes in 0,'s synchronization set, plus one (the
extra one is the skew for node a itself, which is always 0). Let
Ta and Tb be the sum of the skew estimates computed by a
and 6. Without loss of generality, we can assume that 6 has a
greater clock value than a. At worst, the skew between a and
6 is already the maximum allowable, S. The maximum skew
between a and 6 after synchronization can then be found by
maximizing the following quantity:

T* T"
nb n a

S f - - - . (4.1)

In order to show synchronization, it must be less than 7, i.e.,
as follows:

(4.2)

Consider the synchronization area of a and b. Assume
that the skew of 6 with respect to a is 6. We wish to give
skews, with respect to the appropriate node, to each vertex in
Sa and Sb, so that if these were the skews computed for their
respective nodes, the value in (4.1) would be maximized. At
worst, members of S* are given skews of S with respect to 6 ,
and members of Sa are given skews of -6 with respect to a.
This implies a skew of 36 between members of Sb and S a .
But some vertices will be in both Sa and Sb, and a vertex
must have a skew of 0 with respect to itself. Also, an SP
imposes a limit on the skew between its endpoints. A 1-SP
indicates a maximum skew of 5 between its endpoints, and a
2-SP indicates a maximum skew of 26 between its endpoints.

By giving a skew to one vertex, we limit the skews that can
be given to a number of other vertices, and by giving skews to
these vertices, we limit the skews we can give to even more
vertices, and so on. Finding the maximum skew between a
and 6 after synchronization is therefore a process of searching
a large number of cases.

We need to be able to compute the maximum quickly. To do
this, we break the problem into a number of similar but smaller
ones. The division is done carefully, so that the maximum for
each of the small problems can be found by checking only a
few cases. The sum of these maxima is an upper bound for
the true maximum, and in many cases, will be equal to it.

A. Clusters

The problem is one of maximizing a quantity subject to
certain restrictions. We err on the safe side if we ignore some
restrictions, because removing restrictions will not reduce the
maximum. The SP's correspond to the restrictions, and we
simplify the problem by eliminating many of the SP's. We
partition the members of Sa and Sb into clusters. A cluster
is a group of vertices where each vertex has an SP to at
least one other vertex in the cluster. We ignore any SP's
between clusters (and many SP's within a cluster), allowing
us to consider each cluster separately. Finding the maximum
skew for each cluster is a simple matter of checking a few
cases. The sum of the maximums for each cluster is then an
upper bound for the actual maximum skew.

A vertex in either Sa and Sb can be typed by the length of
the shortest SP for which it is an endpoint. A vertex in SEb is
an intersection vertex, a vertex that is the endpoint of a I-SP
is a 1-vertex, a vertex that is the endpoint of a 2-SP (but no 1-
SP's) is a 2-vertex, and a vertex that is not the endpoint of any
SP is an unbound vertex. To form clusters, each 1-vertex and
2-vertex will be assigned to some other vertex. An assignment
indicates the existence of an SP, and thus a bound on the skew,
between two vertices. If vertex sd is to be assigned to vertex
sc, the following two requirements must be met.

1) There must be an SP with endpoints at sd and sc.
2) If sd is a 1-vertex, there must be a 1-SP with endpoints

at sd and sc. Note that sc then must be either a 1-vertex
or an intersection vertex.

Because each assignment corresponds to some SP, either
sd E Sa and sc E Sb, or the reverse. Also, notice that a 1-
vertex must be assigned to either a 1-vertex or an intersection
vertex, whereas a 2-vertex can be assigned to either a 2-vertex,
a 1-vertex, or an intersection vertex.

A cluster is a minimal nonempty set of vertices such that for
every vertex sd in the cluster, the cluster contains all vertices
assigned to sd , and the vertex to which sd is assigned, if any.
An intersection vertex may belong to a cluster if some vertex
is assigned to it, but it will not be assigned to any vertex. As
an example, if sd is assigned to sc, and if some vertex se is
assigned to sd, all three vertices will be in the same cluster.
Because a cluster is a minimal set, no subset can be removed
and still leave a cluster.

No special effort needs to be made to find clusters; they
can be found as a direct result of making assignments. To find

OLSON AND SHIN: FAULT-TOLERANT CLOCK SYNCHRONIZATION 917

the clusters, make assignments one at a time according to the
following procedure.

Assign 1 -vertices first, then 2-vertices.
If sd is assigned to sc and sc already belongs to a cluster,
then sd belongs to se's cluster.
If sd is assigned to se and se does not belong to any
cluster, a new cluster is created with se and sd as
members. Furthermore, if sc and s" are the same type
vertices (i.e., both 1-vertices or both 2-vertices) assign
sc to sd. Notice that if .sc is a I-vertex, then sd must
be a I-vertex, because all 1-vertices are assigned before
2-vertices.
cluster where all vertices are assigned to vertices of

the same type is called a straight cluster. If one or more
vertices is assigned to a vertex of a different type (e.g., a
1-vertex is assigned to an intersection vertex), the cluster is
called jumbled. Calculation of maximum skew is easiest when
clusters are small and straight. To get small, straight clusters,
we must be careful when selecting assignments. If vertex sd is
to be assigned, then for each se to which sd could be assigned,
place sc in whichever of the following sets in appropriate:

1) Vertices of the same type as sd that do not belong to

2) Vertices of the same type as sd that belong to a straight

3) Intersection vertices that do not belong to a cluster.
4) Vertices that belong to a jumbled cluster.
5) Vertices of a different type than sd that belong to a

These sets are listed in order of decreasing desirability. The
vertex to which sd is assigned is selected from the most
desirable nonempty set. Within sets 1 and 3, select one at
random. Within sets 2, 4, and 5, select at random from the
vertices that belong to the smallest clusters.

a cluster.

cluster.

straight cluster.

B. Computing Skew Terms

Clusters allow us to reduce the maximizing problem of (4.2)
to one of maximizing a sum of terms. The terms are formed by
breaking up the T" and Tb sums and reorganizing and mixing
pieces to form terms of the form 5 - 5. The form of z
and :y is a sum of related skews. For example, the term for
a cluster will have IC as the sum of skews for vertices in the
cluster that are in Sb, and y as the sum of skews for vertices
in the cluster that are in Sa. There will be one term for each
cluster, one term for estimation error, one term for the skew
between U and b, one term for the unbound vertices, and one
term for the intersection vertices that do not belong to a cluster.
The maximum of the sum is found by maximizing each term,
which means maximizing the values of the skews. Because
of dependencies between terms (due to SP's between clusters
we are ignoring), the maximum of the sum will be an upper
bound on the actual maximum skew between a and b after
synchronization.

The maximum of each term is the maximum contribution
that each term may make to the skew between a and b after
synchronization. In most cases, finding the maximum means
checking several possible worst-case configurations of vertices

to see which is the maximum. Section IV-B lists these worst-
case configurations and shows how to compute the skew for
each. The details are tedious, and the casual reader may wish
to proceed directly to Section IV-C.

Noncluster Terms: The error term represents the maximum
contribution to the skew because of the inaccuracy of the
estimation process. If the maximum error is 6 , estimation error
can subtract t(n" - 1) from T" and add t(nb - 1) to Tb. (There
is no error in estimating one's own clock.) The value of this
term is then + e*.

The next term is generated by each node estimating the
other's clock. If the skew between them is 6, and b has the
greater clock value, the value of this term is - S / i i b - S / n n .
This term will always reduce the maximum skew.

Because the unbound vertices have no SP's, their skew val-
ues are bound only because they belong to either Sa and Sb.
Therefore, as a worst case, the unbound vertices in Sa are
given skews -6, and the unbound vertices in Sb are given
skews 6. If there are na>" unbound vertices in S'l and nb."
unbound vertices in Sb, this term has value 6 + s).

Intersection vertices will be given skews relative to both
a and b. These skews must be consistent; i.e., for a given
vertex, the skew with respect to a must be 6 greater than the
skew with respect to b. If there are 71"'" intersection vertices
that do not belong to any cluster, and if the total skew with
respect to a of these vertices is Tn37L, then the value of this

is a function of T".". Because the intersection vertices must
remain within S of both a and b, their skews with respect to
a must be in [0, SI. This gives T":" a range of [O, h n n 3 "] . The
function is linear, and so will have its maximum at one of
the endpoints. The maximum value of this term is then the
maximum of -6% and - 6%. This term also will reduce
only the maximum skew.

Cluster Terms: Each cluster will generate a term in the sum,
and the form of the term depends on the type of cluster.
The general idea is to place vertices from Sa as far from
the vertices of Sb as the SP's will allow, while keeping their
skews less than S. This is similar to the original problem of
giving skews to the vertices we discussed at the beginning
of Section IV, only now we have greatly simplified matters
by considering only one cluster at a time and by ignoring
SP's between clusters. We further simplify by considering
only those SP's within a cluster that correspond to the actual
assignments. A configuration of a cluster is made by giving a
skew to each of its members, and each cluster will have only
a few possible configurations of its members that could yield
a maximum value for its term.

Number the clusters from 1 to C, where C is the total
number of clusters. We define to be the number of 1-
vertices from Sa that are members of cluster i , nq.' to be the
number of 2-vertices from Sa in cluster i, and similarly for
vertices in Sb. In a similar fashion, we define Sz?.'. S;.'! Spil
and S:'2 to be the sets of vertices in cluster i .

The preference for assigning vertices to unassigned vertices
has an interesting consequence for straight clusters of 1-
vertices. Every vertex in S7?,l will be assigned to the same

(

term is T".U-6n".U T".U - - ,n . This value is not constant, but
nb

918 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 9, SEPTEMBER 1994

Fig. 3. Configuration for a straight cluster of 1-nodes.

vertex in St,' (the point of St?'), and every vertex in SPl1
will be assigned to the same vertex in S;>' (the point of S,>').
This results in two possible configurations for the maximum
skew. A whole configuration is one where all the vertices
are given the same skew k. In a fractured configuration, all
but the point of S:,' and the point of SZb1' are given skews
-6, whereas all but the point of St,' and the point of S;,'
are given skews 6. Fig. 3 shows the two configurations: the
fractured configuration on top, and the whole configuration
on the bottom. The line at left shows skews with respect to
a. Subtracting 6 from this value gives skew with respect to
b. The vertices of St7' are cross-hatched, and assignments
are indicated by the arrows. The whole configuration always
yields the maximum value when either St!,' or St" has only
one member. This configuration generates a term similar to
the one for intersection vertices; i.e., it is a linear function
of the skew given to the vertices. The function will have its
maximum when the skews are either -6 or 6. The maximum
skew for the whole configuration is then the maximum of
6 (- n::l - $) and 6($ - $) . The fractured configura-

tion usually yields the maximum when both Szfl' and S,Ps1
have more than one member. This configuration gives a skew
of 6(+ *) . The larger of the skews for the two
configurations is the value of the term.

A straight cluster of 2-vertices is handled much like the
straight cluster of 1 -vertices. The same general configurations
apply, and only the values of the skews change slightly,
because nodes may now be 26 apart. The whole configuration
yields values 6% and 6%. The fractured configuration

a . 2 b , 2

Fig. 4. Configuration for a jumbled cluster without an intersection vertex.

Jumbled clusters can be one of two kinds: Either they
contain an intersection vertex or they do not. We consider
each separately.

If a jumbled cluster does not contain an intersection vertex,
then it is simply a straight cluster of 1-vertices where some
2-vertices have been assigned to some of the 1-vertices.
Whole and fractured configurations exist just as they do in
straight clusters. The main difference is the extra consideration
that must be given to the skew given to the 2-vertices and
the 1-vertices to which they have been assigned. In both
configurations shown in Fig. 4, a pair of 2-vertices (gray-filled)
are assigned to a single 1-vertex. It may be the case that the
term will have a greater value if the three vertices had the
positions shown in light gray. It is helpful to consider each of
these groupings as a subcluster separate from the rest of the
cluster. As an example, Fig. 4 contains only one subcluster, the
one discussed above. It contains three vertices, and its value is
the maximum of -6 and 25 (the two possible terms generated
by the subcluster). With some modification for subclusters,
computation of maximum term value proceeds much like it
does for straight clusters.

The fractured configuration in the upper half of Fig. 4
is handled just like the analogous arrangement for straight
clusters, except that the subclusters are handled separately.
The term is computed as if the subcluster vertices did not
belong to the cluster; then the subcluster terms are added in.
The whole configuration is somewhat more complex, because
it will now have three possible maxima. The first two are
the same as for the straight cluster; the nonsubcluster vertices
will be given skews -6 or 5 . When they are given skews - 5
(as shown in the lower part of Fig. 4), subclusters containing
vertices in Sza,' must be considered separately, whereas when
they are given skews 6, subclusters containing vertices in S: '
must be considered separately. The third possible maximum
is brought about by the presence of 2-vertices. Members of
S:,' and S:'2 will have skews 0 and -6, whereas members
of S,b" and S:.' will have skews 0 and 6, and subclusters are
not considered. This generates a value of b (5 + &) . The
largest of the values becomes the value of the cluster term.

If a jumbled cluster contains an intersection vertex, it must
contain only one intersection vertex, and every vertex in the
cluster must be assigned to a vertex of a different type. It
follows that all 1-vertices, and perhaps some of the 2-vertices,
will be assigned to the sole intersection vertex. The 2-vertices

h 2 a 2

OLSON AND SHIN: FAULT-TOLERANT CLOCK SYNCHRONIZATION 919

variables, we can determine the minimum ratio for the other
two; e.g., if S = 106, we can substitute into (4.3) to get a
minimum ratio between r and S.

As an example, consider the 16-node hypercube whose
synchronization graph is shown in Fig. 1. The synchronization
set of each node has size members, for a total of seven
estimates (including the 0 estimate for its own clock). For any
pair of tied nodes, there will be two intersection vertices, and
six 1-vertices (three for each node). The estimation error will
contribute no more than to the maximum skew. Each node
estimating the other's clock will contribute no more than - $6
to the maximum skew. The two intersection vertices will also
contribute no more than - $ b to the maximum skew. Cluster
assignment will yield three straight clusters of 1-vertices, each
with two members, and each contributing 0 to the maximum t t

Fig. 5 . Configuration for a jumbled cluster containing an intersection vertex.

assigned to I-vertices will form subclusters, as in the case
of jumbled clusters without intersection vertices. Once again,
we get a linear function for the value of the term, this time
depending on the skew given to the intersection vertex. Thus,
there are two possible maxima, when the intersection vertex
has a skew of either 0 or b with respect to U . The configuration
where it is given 0 is shown in Fig. 5, and the intersection
vertex is shown with a bold border. In this configuration, any
subclusters containing vertices of S:,' must be considered
separately. If there are n;'lf vertices not in any subcluster
in Sza'l, and np'2f vertices not in any subcluster in S:,2, then
this configuration yields value S (y - 1 + na I f ~~ +nr ') ,plus

any subcluster values. If the intersection vertex is given skew
b with respect to U , then any subcluster containing vertices
of S:" must be considered separately. If there are n;'lf
vertices not in any subclusters in S:,', and vertices
not in any subcluster in S:72, then this arrangement produces

value S(1 n b 1 + +), plus any subcluster values.
The largest value yielded by these configurations becomes the
value for this cluster term.

nb I f + n b 2 nQ r f -

C. Relating t, 6, and r

the value in (4.1) is less than or equal to r , i.e., we have:
If synchronization is to be maintained, we must show that

T b T"
n b na

T 2 s + - - -. (4.3)

From the results of Section IV-B, we know that T" and T6
are functions of t and 6. So, (4.3) relates three variables,
r , t , and S. If we know the value of one of them, we can
solve to get a minimum ratio for the remaining two; e.g., if t
is 1 ms, we can substitute into (4.3) to get a minimum ratio
between r and S. Even if we know only the ratio of two of the

skew. We get the following inequality:
12 4
7 7

' r ~ S + - - - - - - S

12 3
7 7

If S = 106, then T 2 $6. or r 2 6t. A good estimation
algorithm might have an E of 1 ms; then 6 is 10 ms, and T

is at least 6 ms. If we assume a clock drift p of lop6, (2.3)
gives a time between synchronization of no more than 4000 s.

2 - € + -6.

D. Complexity . .
Assigning vertices to clusters requires looking at each SP

at most twice, and thus has a complexity of no more than
twice the number of SP's. Computing the value of each cluster
requires looking at each vertex once, so the complexity is
related to the number of vertices. Thus, it is cluster assignment
that dominates the complexity of computing maximum skew.

In practice, cluster assignment is very fast. All SP's need
not be considered, only the shortest ones. Usually, only a few
of these need to be checked in order to make an assignment.
Also, in practice, one need not check all the vertices of a
cluster in order to compute its maximum value. Most of the
information (the cluster type, regardless of whether it contains
an intersection vertex, the numbers of nodes of each type) can
be derived as the cluster is formed; only subclusters require
special handling.

E. Dejning Synchronization Groups

Although we have defined what a synchronization group is,
and have shown how to compute the maximum skew for them,
we have said nothing about how to define them for a particular
multicomputer. For some multicomputers, there is an obvious
choice for the synchronization groups. For instance, in the
hypercube, it is reasonable to base the synchronization groups
on subcubes. However, there is no general algorithm that
works well for all possible multicomputers. What constitutes a
good set of synchronization groups will depend, in part, on the
network and the distance between nodes. Clock information
is usually more accurate and easier to get for nodes that
are close by, so defining synchronization groups that contain
many nodes from distant parts of the system can make
synchronization more difficult and less accurate.

920 IEEE TRANSACTIONS ON PARALLEL AND DISTRlBUTED SYSTEMS, VOL. 5, NO. 9, SEPTEMBER 1994

There is, however, a simple approach that can be used to
generate good synchronization groups for most systems. For
an n-node multicomputer, lay out the nodes in a fi x fi
grid, filling any empty spaces with dummy nodes. Defining
each row and each column of the mesh to be a synchronization
group. This results in a fairly good set of 2 f i synchronization
groups of fi nodes each. If more synchronization groups are
needed (for fault tolerance), one can define the diagonals as
synchronization groups as well, yielding 4 f i synchronization
groups of fi nodes each.

This approach may not be ideal under all circumstances, but
it may serve as a good starting point. One particular advantage
is that the synchronization graph will be fairly homogeneous,
so few synchronization areas will have to be checked when
computing the maximum skew. Furthermore, if fi is an
integer, the synchronization graph will be homogeneous, so
there will only be one synchronization area to check.

V. FAULT TOLERANCE

Any multicomputer, especially a large one, or one that will
be operating for a long period of time, will have to deal
with faults. Such multicomputers are designed to tolerate a
given number of faults, and the synchronization algorithm
must tolerate these faults, too.

A. Fault Model

Any analysis of fault tolerance depends upon the fault model
used. Since we make few assumptions about the way in which
clock information is distributed, we assume that estimates are
trustworthy. That is, whenever any nonfaulty node estimates
its clock skew with respect to another nonfaulty node, that
estimate will be accurate to within F . Put another way, no
faulty node can alter or destroy clock information sent out by
nonfaulty nodes in a way that cannot be detected and corrected.
This may be accomplished by the network through digital
signatures or multiple copies of messages, or by other means;
or it may be provided by the distribution method. We can then
model faults by removing components of the synchronization
graph. We have the following fault types.

Node Faults: This corresponds to the removal of a sys-
tem vertex from the synchronization graph. Examples
of this type of fault are dead nodes, nodes isolated by
communication failures, and nodes with faulty clocks.
Edge Faults: This corresponds to the removal of an edge
from the synchronization graph. Communication failures
often fall into this type. Because these faults have effects
less than the node faults of their endpoints, we do not
consider them.
Group Faults: This corresponds to the removal of a group
vertex from the synchronization graph. Faults that prevent
the clock information from getting distributed fall under
this type. If the distribution method is fault tolerant, these
faults are generally the consequence of multiple node
faults. A number of node faults within a small part of the
synchronization graph may mean that we can no longer
guarantee maximum skew between a pair of tied nodes.

A group fault that is caused by the presence of node
faults is called an induced fault, There is nothing wrong
with the synchronization group itself; its nonfaulty members
may continue to estimate each other’s clock values, but the
guarantee of a maximum skew of S between members no
longer holds.

R. Determining Fault Tolerance

We consider the multicomputer to be synchronized as long
as the synchronization graph is connected. The synchronization
graph can become disconnected solely because of faults,
or through a combination of faults and induced faults. We
consider each of these problems separately.

each fault corresponds to the removal of a component of
the synchronization graph, multiple faults may disconnect
the graph. The number of faults that the multicomputer can
withstand is therefore limited by the minimum number of
faults that can disconnect the synchronization graph.

The minimum cut, or connecfedness, of a graph is a well-
known problem from graph theory. It can be solved through
use of a max-flow algorithm in conjunction with the max-flow
min-cut theorem. A straightforward linear-time transformation
can change the graph to an instance of max-flow min-cut.
Let E and V be the number of edges and vertices in the
transformed graph; then the max-flow problem can be solved
in O(EV log(V2/E)) [4].

Collapse of Synchronization Groups: A synchronization
group is said to have collapsed if it can be shown that
the maximum skew after synchronization between two of
its nonfaulty members, as calculated in Section IV, is greater
than r. The collapse of a synchronization group is an induced
group fault.

The problem with induced faults is that they may cascade.
An induced group fault can induce further group faults, which
can induce more group faults, until all groups have collapsed.
Exact computation of the minimum number of faults required
to cause such a cascade is a difficult problem, but we can
compute the minimum number of node faults needed to induce
a group fault, and the minimum number of group faults needed
to induce more group faults. A combination of these two
numbers gives a good estimate for a lower bound on the
number of faults needed to produce a cascade.

To determine the number of faults needed to collapse a
synchronization set, one must list all the different synchro-
nization areas, and then check each to find the minimum
number of faults to cause a synchronization group to collapse.
These are the same areas that are checked when computing
maximum skew. If there is more than one synchronization
area to consider, the search should start with the ones whose
synchronization groups have maximum skews already close to
T, or have small values of either nna or rib.

Finding the minimum fault set to collapse a synchronization
group requires searching all fault sets of the synchronization
area. Although the number of fault sets within a synchro-
nization area is much less than the number in the entire
multicomputer, it may still be rather large. The approach that

Connectedness of the Synchronization Graph: Because

OLSON AND SHIN: FAULT-TOLERANT CLOCK SYNCHRONIZATION 92 I

we took was a simple tree search. Each node of the tree
represents a fault set. The root of the tree corresponds to the
empty fault set, and the children of a node correspond to the
fault sets created by adding a single fault to the parent fault
set. Thus, nodes with a depth of 1 in the tree correspond to
fault sets of size 1, nodes a depth of 2 correspond to fault sets
of size 2, and so on. Each node will also have a corresponding
maximum skew, which is found by inserting that node’s fault
set and computing the maximum skew. The search tries to find
the node closest to the root that has a maximum skew greater
than 5 . Our implementation used a depth-first search, though
other types of search could be used. A breadth-first search
in particular would parallelize well, making it a good choice
for implementation on a multiprocessor. Any of the following
discussion applies equally well to a breadth-first approach.

Once a fault set has been found that collapses a synchro-
nization group, only the nodes above it in the tree have
to be searched. The number of nodes in the tree increases
exponentially with depth. It is therefore important to find
small fault sets quickly, because it will greatly reduce the
search time. When searching the children of a node, one
should start with those whose fault sets are thought most
likely to be subsets of the minimum fault set. We had two
strategies for doing this. The first strategy was to rate each
fault set according to the types of faults that it contained. Fault
sets that contained group faults, andor node faults involving
intersection vertices or 1 -vertices, were searched first. The
second strategy was to compute the maximum skew for each
fault set, and search those with the highest skews first. We
quickly abandoned the first strategy, because it would take
days to find sets that the second would find in minutes.
In fact, the second strategy usually found the smallest fault
set almost immediately. The first strategy seemed to fail,
because though the favored fault types caused great increases
in maximum skew at first, they tended to mask one another’s
effects (especially in the case of group faults), and faults added
later would have little or no effect on maximum skew.

Even though our search found the minimum fault set
quickly, a large number of nodes may still have to be searched.
In one of our examples below, the synchronization area will
contain in excess of 40 system vertices, whereas the minimum
set is 13 node faults. To verify that this set is the minimum,
one has to search all nodes a depth of 12 in the tree. But
there are over 5 billion of these nodes. To allow our search to
finish within a reasonable amount of time, we employed two
strategies that caused the search to skip those nodes thought
to be unlikely to yield a minimum fault set. First, if several
children of the current node have identical skews, search only
one of them; the rest are assumed to be equivalent. Second, do
not search any children who do not have a greater maximum
skew than their parent. These strategies greatly reduced the
search time, from 22 days to less than 24 hr in one case.

Any strategies to reduce the number of nodes searched
may cause the search to overlook the minimum fault set.
We encountered no such cases (in fact, the first set found
was almost always the minimum set), but it would be wise
to consider the smallest set found to be only an estimate of
the actual fault tolerance. As we show in the examples, it is

possible to intentionally underestimate the fault tolerance by
changing F and 7. This can be used to reassure oneself that the
multicomputer will have the desired fault tolerance. It should
also be possible to intentionally underestimate fault tolerance
by ignoring 2-SP’s. This should speed up the search (though
we did not try it), and could be used for multicomputers where
the minimum fault set is too large for the search to find within
a reasonable time.

C. Examples

Faults have the effect of increasing the value in (4.1). A r
that works when there are no faults may be too small when
faults are present. T must be chosen somewhat larger than the
value of (4.1) in order to satisfy (4.3) when faults are present.
In each example, we must consider only a single synchroniza-
tion area, because the synchronization graphs are such that any
two pairs of tied nodes will have isomorphic synchronization
areas. This is partly because of the homogeneous nature of
the multicomputers that we consider, and partly because such
graphs are easier to deal with.

We start with the 16-node hypercube of Fig. 1. For a best-
case estimate of fault tolerance, we assume no estimation error
and continuous synchronization; i.e., 6 = 0 and r = 6. In
order to collapse a synchronization group, a minimum of five
node faults or three group faults is needed. fault tolerance
decreases as 6 increases, and it increases as r increases. If
we increase t to .16 and decrease r to .9S, either three node
faults or one group fault will collapse a synchronization group.
Thus, three node faults may induce a cascade of group faults
that will engulf the multicomputer.

For our second example, we consider a 16 x 16 square
mesh, wrapped on the edges to provide a homogeneous
multicomputer. We use the method suggested in Section IV-
E to define 32 synchronization groups of 16 members each,
one group for each row of the mesh, and one group for each
column. If we let t = 0 and r = 6, either 14 node faults
or nine group faults are needed to collapse a synchronization
group. We can increase t and decrease r to the more realistic
values of t = .15 and r = .OS, but at the cost of some fault
tolerance. In this case, either six node faults or one group fault
are needed to collapse a synchronization group. So, at least six
node faults are needed to induce a cascade of group faults.

The fault tolerance of the previous example can be improved
if more groups are used. We consider a 256-node hypercube
with 64 synchronization groups of 16 members each. The hy-
percube has an 8-bit address, abcde fgh. Each synchronization
group will be a 4-bit addressable subcube, where a subcube is
defined by fixing four bits of the address and allowing the other
four bits to vary. If we let z indicate a “don’t care” position in
the address, we can define the 64 subcubes as follows: 16 of
the form abcdzzzz, 16 of the form :r::r:rxe f gh., 16 of the form
abzzzz f g , and 16 of the form xzcde fzz . The extra groups
greatly improve fault tolerance. When t = 0 and r = 6, the
search algorithm did not terminate in over two weeks. The
smallest set found was 27 node faults. We can get the search to
terminate by increasing F and decreasing r. When c = .16 and
r = .86, either 13 node faults or two group faults are needed

922 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 9, SEPTEMBER 1994

to collapse a synchronization group. We can reduce r further
and still tolerate a fair number of faults. If r = .86 then eight
node faults are required to collapse a synchronization group.

Last, we consider two 1024-node multicomputers, a 10-
cube, and a 32 x 32 wrapped square mesh. For the 10-cube,
we define 64 synchronization groups, thirty-two 5-cubes of
the form abcdez.rxxz, and thirty-two 5-cubes of the form
zzzzzfghij. For the square mesh, we again define each row
and each column to be a synchronization group. Each of these
two multicomputers will have 64 groups of 32 members each.
In fact, the synchronization graphs for the two multicomputers
are isomorphic, so their fault tolerances are identical. These
multicomputers are too large to solve easily for E = 0 and r =
IS. If we increase t to .1S and decrease r to .9h, we find
each multicomputer requires 10 node faults or one group fault
before a synchronization group can collapse. We can further
reduce r to .8h and still require five node faults. Although
a set of 10 faults may not seem like much in a 1024-node
multicomputer, note that each node gathers information on
only 62 other clocks, and that the 10 faults must be confined
to a relatively small portion of the multicomputer. Also, fault
tolerance can be improved by increasing the number of groups,
as we showed in the previous example.

The above examples clearly show the ability of our al-
gorithm to synchronize large multicomputers while reducing
synchronization overhead. The reduction in overhead can be
determined by comparing the number of nodes in a node’s
synchronization set to the number of nodes in the system. In
the 16-node hypercube example, each node has a synchro-
nization set of six nodes, so each node needs to communicate
with only six other nodes in order to synchronize. This is
compared with the 15 nodes of standard algorithms, a twofold
reduction. For the 16 x 16 square mesh, we get a reduction
of 255/30, or more than eightfold; doubling the number of
synchronization groups to improve fault tolerance gives us
a savings of only fourfold. In our last example, each node
needs to communicate with only 62 out of 1023 other nodes
in order to synchronize, which is more than a 16-fold decrease
in synchronization overhead.

Our examples also show how well fault tolerance is main-
tained, and how il can be adjusted. The examples also demon-
strate a method for dealing with the difficulty in determining
absolute fault tolerance. By increasing t, decreasing T , or
reducing the number of synchronization groups, the fault
tolerance of the multicomputer is reduced, and so is the time
required to find a minimum fault set. By adjusting these
parameters, no: only will one find a lower bound for fault
tolerance, but by analyzing how each parameter affects fault
tolerance, one may be able to estimate fault tolerance that the
search would take too long to find.

VI. CONCLUSION

In this paper, we have presented an algorithm that greatly
reduces synchronization overhead for large multicomputers
by reducing the amount of clock information that has to be
distributed. The nodes of the system are assigned to groups,
and each node distributes information about its clock only
to the nodes with which it shares a group. Our algorithm

works with many different clock estimation algorithms, so one
may consider the trade-offs of overhead versus accuracy that
come with different algorithms. The algorithm also provides
a natural way to map real-time tasks into the system, in that
parts of the system have the tight synchronization needed by
cooperating or replicated tasks while the system as a whole
still remains synchronized.

We presented a method for analyzing the algorithm, and
determining the maximum skew. The method can also be
used to determine the fault tolerance. We used this method
to analyze the fault tolerance of several systems, including a
1024-node hypercube. We also showed how the fault tolerance
of a system can be adjusted by changing the number of groups,
and presented a simple method for defining synchronization
groups that works well in many cases.

REFERENCES

K. Arvind, “A new probabilistic algorithm for clock synchronization,”
in Proc. Real-Time Sysr. Symp., 1989, pp. 33&339.
R.E. Beehler and D . W . Allan, “Recent trends in NBS time and
frequency distribution services,” Proc. IEEE, vol. 74, no. I , pp. 155-157,
Jan. 1986.
F. Cristian, “Probabilistic clock synchronization,” Distrib. Computing ,
vol. 3, pp. 146-158, 1989.
A.V. Goldberg and R.E. Tarjan, “A new approach to the maximum
flow problem,” in Proc. 18th Ann. A C M Symp. on Theory ofcompuring,
1986, pp. 136146.
J. Y. Halpem, B. Simons, R. Strong, and D. Dolev, “Fault-tolerant clock
synchronization,” in P roc. 3rd Symp. Principles Distrib. Computing,
1984, pp. 89-102.
J. L. W. Kessels, “Two designs of a fault-tolerant clocking system,” IEEE
Trans. Compuf. vol. C-33, no. IO, pp. 912-919, Oct. 1984.
C. M. Krishna, K. G. Shin, and R. W. Butler, “Ensuring fault tolerance
of phase-locked clocks,” IEEE Trans. Comput. vol. C-34, no. 8, pp.
752-756, Aug. 1985.
L. Lamport and P. M. Melliar-Smith, “Synchronizing clocks in the
presence of faults,” J . A C M , vol. 32, no. 1, pp. 52-78, Jan. 1985.
J. Lundelius-Welch and N. Lynch, “A new fault-tolerant algorithm for
clock synchronization,” Inform. Computation, vol. 77, pp. 1-36, 1988.
A. Olson and K. G. Shin, “Probabilistic clock synchronization in large
distributed systems,” in Proc. 11th Inr. Con$ Distrib. Computing Sysr.,
1991, pp. 290-297.
P. Ramanathan, D. D. Kandlur, and K. G. Shin, “Hardware-assisted
software clock synchronization for homogeneous distributed systems,”
IEEE Trans. Compuf., vol. 39, pp. 514-524, Apr. 1990.
S. Rangarajan and S. K. Tripathi, “Efficient synchronization of clocks in
a distributed system,” in Proc. Real-Time Sysr. Symp., 1991, pp. 22-31.
K.G. Shin and P. Ramanathan, “Clock synchronization of a large
multiprocessor system in the presence of malicious faults,” IEEE Trans.
Compuf., vol. C-36, no. 1, pp. 2-12, Jan. 1987.
T. K. Srikanth and S. Toueg, “Optimal clock synchronization,” J. A C M ,
vol. 34, no. 3, pp. 626-645, July 1987.
N. Vasanthavada and P. N. Marinos, “Synchronization of fault-tolerant
clocks in the presence of malicious failures,” IEEE Trans. Comput., vol.
37, pp. 440448, Apr. 1988.
G. M. R. Winkler, “Changes at USNO in global timekeeping,’’ Proc.
IEEE, vol. 74, no. I , pp. 151-155, Jan. 1986.

A. Olson received the B.S.E., M.S.E., and Ph.D. de-
grees in computer engineering from the University
of Michigan, Ann Arbor, in 1987, 1989, and 1994,
respectively.

He is currently a Research Assistant in the Real-
Time Computing Laboratory at the University of
Michigan, and is working toward his Ph.D. degree
there. His dissertation topic is the synchronization of
distributed real-time systems. His primary research
interests are in designing, verifying, and testing
fault-tolerant and distributed systems.

OLSON AND SHIN: FAULT-TOLERANT CLOCK SYNCHRONIZATION 923

K. G . Shin (S’75-M’78-SM’83-F92) received the
B.S. degree in electronics engineering from Seoul
National University, Seoul, Republic of Korea, in
1970, and the M.S. and Ph.D. degrees in electrical
engineering from Cornell University, Ithaca, NY,
USA, in 1976 and 1978, respectively.

He is Professor and Director of the Real-Time
Computing Laboratory, Department of Electrical
Engineering and Computer Science, University of
Michigan, Ann Arbor, MI, USA. From 1978 to
1982, he was on the faculty of Rensselaer Poly-

technic Institute, Troy, NY, USA. He has held visiting positions at the
U.S. Air Force Flight Dynamics Laboratory, AT&T Bell Laboratories, the
Computer Science Division within the Department of Electrical Engineering
and Computer Science at the University of California at Berkeley, and the
International Computer Science Institute, Berkeley, CA, USA. He also chaired
the Computer Science and Engineering Division, Department of Electrical
Engineering and Computer Science, University of Michigan, Ann Arbor, MI,
USA, for three years beginning in 1991. In 1985, he founded the Real-Time
Computing Laboratory, where he and his colleagues are currently building a
19-node hexagonal mesh multicomputer, called HARTS, to validate various
architectures and analytic results in the area of distributed real-time computing.
He has also been applying the basic research results of real-time computing
to intelligent vehicle highway systems and manufacturing-related applications
ranging from the control of robots and machine tools to the development of
open architectures for manufacturing equipment and processes. Recently, he
has initiated research on the open-architecture information base for machine
tool controllers.

Dr. Shin has authored or coauthored more than 270 technical papers (more
than 120 of these in archival journals) and numerous book chapters in the
areas of distributed real-time computing and control, fault-tolerant computing,
computer architecture, robotics and automation, and intelligent manufacturing.
He is currently writing a textbook, Real-Time Systems, with C.M. Krishna,
which is scheduled to be published by McCraw-Hill in 1995. In 1987, he
received the Outstanding IEEE TRANSACrlONS ON ALTOMATIC CONTROL Paper
Award for a paper on robot trajectory planning. In 1989, he also received
the Research Excellence Award from the University of Michigan. He was
Program Chair of the 1986 IEEE Real-Time Systems Symposium (RTSS),
the General Chair of the 1987 RTSS, the Guest Editor of the 1987 special
issue of IEEE TRANSACTIONS ON COMPUTERS (real-time systems), a Program
Co-chair for the 1992 International Conference on Parallel Processing, and
served numerous technical program committees. He also chaired the IEEE
Technical Committee on Real-Time Systems during 1991-1993, served as a
Distinguished Visitor of the IEEE Computer Society, and is an Editor of IEEE
TRANSACTIONS ON PARALLEL AND DISTRIBUTED COMPUTING, and an Area Editor
of International Journal of Time-Critical Computing Systems.

- _. . - - _I

