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Abstract 

Real-time communication typically consists of guar- 
anteed packets that must satisfy their delivery dead- 
lines and best-effort packets that can tolerate occa- 
sional deadline misses for  improved average latency. 
This paper presents hardware techniques for support- 
ing the coexistence of these two t raf ic  classes in real- 
t ime point-to-point networks. A careful selection of 
routing and switching techniques, coupled with fine- 
grain arbitration between t raf ic  classes, can allow net- 
work adapters to  support the diverse performance re- 
quirements of best-effort and guaranteed communica- 
tion. Cycle-level simulations of SPIDER (Scalable 
Point-to-point Interface DrivER), a network adapter 
for point-to-point distributed systems, demonstrate the 
utility of supporting multiple low-level communication 
policies for  diflereni classes of t raf ic .  

1 Introduction 

Point-tepoint networks, with their multiplicity of 
processors and internode routes, provide a natural 
platform for real-time applications that require both 
high performance and dependability. While many 
parallel machines connect processing elements with a 
point-to-point network [3,6,13], these processors often 
reside on a single board or chassis, making them espe- 
cially vulnerable to single-point failures. A network of 
physically-distributed computers offers the advantage 
of independent processor and link failures. However, 
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in many distributed systems, a node interfaces to the 
communication fabric through only one or two ports, 
as in a CSMA/CD, token ring, or token bus network. 
In this configuration, one or two media failures can 
partition the network. 

Combining the high connectivity of point-to-point 
parallel machines with the communication media and 
protocols of distributed systems results in a hybrid en- 
vironment well-suited to real-time applications. Real- 
time communication is typically categorized into two 
basic classes of traffic, guaranteed messages requiring 
delivery before their deadlines and best-effort mes- 
sages without delivery-deadline guarantees [2,10,18, 
191. Distributed real-time systems aim to satisfy the 
constraints of guaranteed messages, while providing 
good performance for the best-effort traffic. 

This paper addresses techniques for the effective 
mixing of guaranteed and best-effort traffic by utiliz- 
ing flexible hardware support for routing and switch- 
ing. Unlike protocol software, network hardware can 
exercise efficient, fine-grain control over the interac- 
tion of packets. By closely regulating access to the 
physical links, real-time systems can control the inter- 
action of guaranteed and best-effort traffic at the byte 
or word level, providing tight bounds on the intrusion 
of best-effort traffic on guaranteed packets. In opti- 
mizing for the performance needs of each class, this 
hardware can employ different routing and switching 
strategies to manage the two classes of traffic. 

Section 2 evaluates the suitability of various routing 
and switching schemes for supporting different higher- 
level performance requirements. The section com- 
pares the schemes running on a cycle-level simulation 
model of SPIDER (Scalable Point-to-point Interface 
DrivER), a hardware adapter for real-time multi-hop 
networks [7,8]. Designed as the front-end interface for 
HARTS [17], SPIDER supports a variety of routing 
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and switching schemes through flexible, low-level con- 
trol over the network links. Section 3 presents mech- 
anisms for utilizing such low-level hardware support 
to regulate the mixing of guaranteed and best-effort 
traffic. The paper concludes with Section 4. 

2 Routing and Switching 

Modern routing and switching techniques signifi- 
cantly reduce packet latency by avoiding unnecessary 
packet buffering, but they also impinge on predictabil- 
ity and control over packet scheduling. With proper 
hardware support, real-time systems can capitalize on 
the various routing and switching schemes to improve 
the quality of service for both guaranteed and best- 
effort communication. 

2.1 Hardware Support 

SPIDER, shown in Figure 1, implements pro- 
grammable routing and switching schemes for best- 
effort traffic, while facilitating host control over 
scheduling and resource allocation for guaranteed 
communication. Designed to reside on the host pro- 
cessor’s private memory bus, SPIDER has direct ac- 
cess to the host memory and provides the host with 
a memory-mapped control interface. The adapter co- 
ordinates bidirectional communication with up to six 
neighboring nodes, with two virtual channels [5] on 
each unidirectional link. 

The programmable routing controller (PRC), a cus- 
tom integrated circuit, exploits concurrency amongst 
the virtual channels and provides fair, fine-grain arbi- 
tration at the memory and network interfaces [7]. The 
twelve PRC TXs provide low-level control of packet 
transmission, while the twelve microprogrammable 
PRC RXs coordinate packet reception and implement 
routing and switching policies for in-transit traffic. 
The PRC TXs and PRC RXs implement the low-level 
drivers controlling the actual transmitter and receiver 
devices on the network interface (NI). 

The NI performs the media access and flow con- 
trol for six pairs of AMD TAXI chips [l], providing a 
low-cost communication fabric of either fiber-optic or 
twisted-pair interconnect. Each TAXI TX-RX pair 
forms a bidirectional link to an adjacent node. The 
NI TX and NI RX control units perform the neces- 
sary interleaving of virtual channels to and from the 
physical links, on a byte-by-byte basis. The NI serves 
as a hardware wrapper that generates the abstraction 
of multiple, bidirectional channels between neighbor- 
ing nodes. 

SPIDER treats the outbound virtual channels (NI 
TXs) as individually reservable resources, allowing the 
device to support a variety of routing and switching 
schemes through flexible control over channel alloca- 
tion policies. Upon receiving the header bytes of an 
incoming packet, the PRC RX decides whether to 
buffer, stall, forward, or drop the packet. The PRC 
RX bases its routing and switching decision on its mi- 
crocode, the arriving header, and prevailing network 
conditions. By downloading different microcode to  
each PRC RX, SPIDER can tailor the low-level com- 
munication policies of each virtual channel. 

2.2 Communication Policies 

The various routing and switching schemes differ in 
terms of delivery latency, bandwidth utilization, and 
predictability. Flexible adapter hardware enables the 
system to tailor communication policies to application 
requirements and network conditions. The routing al- 
gorithm determines which link and node resources are 
consumed by an in-transit packet. Static routing pro- 
vides a single, deterministic path between each source 
and destination node, whereas adaptive schemes can 
incorporate network conditions into the routing deci- 
si on. 

For a given source-destination pair, a packet us- 
ing static routing consumes fixed bandwidth along a 
predetermined path, making these schemes appropri- 
ate for guaranteed communication. While most static 
routing algorithms generate only shortest-path routes 
between the source and destination nodes, some adap- 
tive schemes consider nonminimal routes in the hope 
of circumventing network congestion. Adaptive and 
nonminimal approaches can improve average latency, 
but at the expense of predictability, making these 
schemes better-suited to best-effort traffic. 

In defining how packets flow through the network, 
the various switching schemes exercise different re- 
sources a t  nodes along a packet’s route. Traditional 
packet switching requires an arriving packet to buffer 
completely before transmission to  the subsequent node 
can begin. Buffering the packet after each hop al- 
lows the software protocols to directly schedule traffic 
to  provide guarantees [l l] .  In contrast, cut-through 
switching schemes, such as virtual cut-through [12] 
and wormhole [3], allow an incoming packet to  be- 
gin transmission to the subsequent node prior to com- 
plete reception at the current node if the output link is 
idle. If the packet encounters a busy outgoing link, vir- 
tual cut-through switching buffers the blocked packet 
at the node, whereas wormhole switching stalls the 
packet in the network until the link becomes available. 
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Figure 1: SPIDER architecture 

Packet switching consumes predictable network 
and processing bandwidth, while virtual cut-through 
oftentimes avoids buffering packets at intermediate 
nodes. Virtual cut-through imparts fewer packets on 
the protocol software, but limits this software’s ability 
to influence bandwidth scheduling. For example, sup- 
pose a guaranteed packet enters an intermediate node 
well in advance of its deadline. The protocol may wish 
to detain this packet, even if its outgoing link is free, to  
avoid overloading the subsequent node unexpectedly. 

Wormhole switching, though conceptually similar 
to virtual cut-through, has quite different character- 
istics. Stalled wormhole packets form logical queues 
spanning multiple nodes, complicating packet schedul- 
ing. Since a blocked wormhole packet never buffers, it 
imparts no memory demands on intermediate nodes, 
but instead consumes unpredictable amounts of chan- 
nel bandwidth. Figure 2 compares the performance 
of wormhole and packet switching in simulations of a 
6 x 6 wrapped square mesh (torus). 

The simulator [7] includes a cycle-level model of 
SPIDER that captures the details of flow control, re- 
source arbitration, and microcode execution. Packets 
use static dimension-ordered routing, with the worm- 
hole packets employing deadlock-free routing on a pair 
of virtual channels [4,16]. Each node independently 
injects 64byte packets with uniform random selection 
of destination nodes. As shown in Figure 2(a), worm- 
hole switching results in lower end-to-end latency than 
packet switching at low loads, but wormhole packets 
suffer larger latency and delay variance at high loads. 
Figure 2(b) shows the standard deviation of latency 
for packets traveling exactly five hops. 

Traditionally, real-time systems have used packet 

switching and static routing for guaranteed messages, 
since it is difficult to control the packet delivery 
time under adaptive routing and cut-through switch- 
ing schemes. However, best-effort packets could po- 
tentially improve their average latency by employ- 
ing these aggressive schemes. Cut-through switching 
avoids the delay of buffering the packet, while adap- 
tive routing can increase the possibility of establishing 
these cut-throughs. Additionally, using cut-through 
switching for best-effort packets reduces the load these 
packets impart on the protocol software. 

3 Controlled Traffic Mixing 

While guaranteed packets can employ static rout- 
ing and packet switching for predictable performance, 
best-effort packets can use schemes with less pre- 
dictability, but better average latency. The effective 
mixing of guaranteed and best-effort communication 
hinges on regulating the interaction between these two 
traffic classes. In particular, the best-effort packets 
cannot consume arbitrary link, memory, or processing 
resources while guaranteed packets await service. 

3.1 Virtual Networks 

Partitioning the best-effort and guaranteed packets 
onto separate virtual networks can regulate this in- 
trusion. This divides each physical link into multiple 
virtual channels, where some virtual channels carry 
best-effort packets and the rest accept only guaran- 
teed packets. Assigning guaranteed and best-effort 
traffic to different virtual networks, provided by the 
hardware router, allows best-effort packets to safely 
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employ adaptive routing and cut-through switching 
schemes without endangering guaranteed packets. 

Packets on separate virtual networks interact only 
to compete for access to the physical link. Fair, 
demand-slotted arbitration schemes provide the tight 
bounds necessary for guaranteed traffic, while allow- 
ing best-effort packets to utilize any remaining band- 
width. For instance, SPIDER employs a binary pri- 
ority tree arbiter [7,14] to  order requests for byte ac- 
cess to the physical links. This provides a tight re- 
sponse time for guaranteed packets, independent of 
the amount or length of best-effort packets. 

The router can further minimize intrusion on guar- 
anteed packets by imposing priority arbitration be- 
tween the virtual networks. Priority arbitration en- 
ables a guaranteed packet to travel at the same rate 
through each link in its journey, independent of the 
number of active best-effort virtual channels. The 
router can then employ effective scheduling tech- 
niques [ l l ,  151 to  establish tight delay bounds or band- 
width guarantees. Since priority arbitration varies 
the service rate for the lower-priority traffic, the best- 
effort virtual networks could employ adaptive routing 
to allow these packets to circumvent links and nodes 
serving a heavy load of guaranteed packets. 

Careful selection of routing and switching schemes, 
coupled with fine-grain arbitration between the vir- 
tual networks, allows the traffic classes to share com- 
munication bandwidth without sacrificing the perfor- 
mance requirements of either class. Since channel con- 
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Figure 2: Packet switching and wormhole switching 

tention in one virtual network does not directly in- 
fluence the other virtual networks, best-effort traffic 
can utilize routing and switching schemes with unpre- 
dictable consumption of virtual channel resources. 

3.2 Wormhole and Packet Switching 

The system can limit the resources consumed by 
best-effort communication to ensure sufficient memory 
and processing resources for any guaranteed packets. 
Since wormhole switching does not consume buffer 
resources at intermediate nodes, the combination of 
wormhole switching for best-effort traffic and packet 
switching for guaranteed packets enables effective par- 
titioning of both host and network resources. In this 
 scheme, blocked best-effort packets temporarily stall 
in their own virtual network instead of consuming re- 
sources at intermediate nodes. 

Figure 3 shows simulation results for a 6 x 6 torus 
carrying a mixture of best-effort and guaranteed traf- 
fic on separate virtual networks. The simulations ex- 
periment with a SPIDER model that supports three 
virtual channels on each link, with two allocated to 
best-effort packets for deadlock-free wormhole rout- 
ing and one dedicated to  guaranteed traffic using 
packet switching. The experiment varies the injec- 
tion rate for the wormhole packets, while keeping the 
packet-switching injection constant at one packet ev- 
ery 1500 cycles. Figure 3(a) shows the average end- 
to-end packet latency for each class of traffic, while 
Figure 3(b) shows the standard deviation of latency 
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Figure 3: Mixing packet switching and wormhole switching 

for all packets traveling exactly five hops. 
As the amount of wormhole traffic increases, the 

best-effort packets incur increased latency and de- 
lay variance because of channel contention within the 
best-effort virtual network. This contention does not 
influence the guaranteed packets, since blocked worm- 
hole packets do not consume any physical link or buffer 
resources. Both the average latency and predictability 
of the guaranteed packets are largely unaffected by the 
presence of traffic on the other virtual network, due to 
fine-grain arbitration amongst the virtual channels. 

4 Conclusion 

Emerging distributed applications impose a broad 
range of performance requirements on the communi- 
ca.tion subsystem, including control over end-to-end 
latency, delay variance, and bandwidth allocation [9]. 
For point-to-point networks, these communication re- 
quirements affect the suitability of particular routing 
and switching schemes. While the network hardware 
alone cannot satisfy application performance require- 
ments, design decisions should not preclude the com- 
munication subsystem from establishing guarantees. 

The combination of packet switching and static 
routing simplifies packet scheduling and bandwidth 
allocation, but impinges on end-to-end packet la- 
tency. With flexible control close to  the communi- 
cation links, network hardware can apply routing and 
switching schemes tailored to the unique performance 

requirements of guaranteed and best-effort traffic. By 
employing aggressive routing and switching schemes, 
best-effort traffic incurs lower latency while reducing 
intrusion on the software protocols at intermediate 
nodes. 

Adapter hardware can manage these disparate traf- 
fic classes by partitioning the physical network into 
multiple virtual networks, each with its own com- 
munication policies. Low-level control over routing 
and switching, coupled with fine-grain arbitration, en- 
ables network hardware to effectively mix guaranteed 
and best-effort communication. The best-effort traf- 
fic can then capitalize on flexible routing and switch- 
ing schemes that improve average performance, with- 
out interfering with the predictable, timely delivery of 
guaranteed packets. 
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