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Abstract- In a distributed real-time system, uneven task ar- 
rivals temporarily overload some nodes and leave others idle or 
underloaded. Consequently, some tasks may miss their deadlines 
even if the overall system has the capacity to meet the deadlines 
of all tasks. An effective load-sharing (LS) scheme is proposed 
as a solution to this problem. Upon arrival of a task at a node, 
the node determines whether the node can complete the task in 
time under the minimum-laxity first-served policy. If the task 
cannot be guaranteed, or if guarantees of some other tasks are 
to be violated as a result of the addition of this task to the 
existing schedule, the node looks up the list of loss-minimizing 
decisions and determines the best node among a set of nodes in its 
physical proximity, called its buddy set, to which the task(s) may 
be transferred. This list of decisions is periodically updated using 
Bayesian decision analysis and prior/posterior state distributions. 
These probability distributions are derived from the information 
collected via time-stamped state-region change broadcasts within 
each buddy set. By characterizing the inconsistency between a 
node’s “observed” state and the corresponding true state with 
prior and posterior distributions, the node can first estimate the 
states of other nodes, and then use them to reduce the probability 
of transferring a task to an “incapable” node. Moreover, the 
use of prior and posterior distributions and Bayesian analysis 
has made the proposed scheme robust to the variation of design 
parameters that usually require fine-tuning for adaptive LS. The 
performance of the proposed scheme is evaluated via simulation, 
along with five other schemes: no LS, LS with state probing, LS 
with random selection, LS with focused addressing, and perfect 
LS. The proposed scheme is shown to outperform all but perfect 
LS scheme in meeting task deadlines and tolerating the delays 
in state collection and task transfer. The impact of statistical 
fluctuations in task arrival patterns on the performance of the 
proposed scheme (in particular, the Bayesian decision analysis 
part) is also analyzed via simulation to show the robustness of 
the proposed scheme over a wide range of task arrivals. 

Index Terms-Deadlines, real-time systems, load sharing, loca- 
tion and transfer policies, Bayesian decision theory, performance 
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I. INTRODUCTION 

HE AVAILABILITY of inexpensive, high-performance T processors and memory chips has made it attractive to 
use distributed computing systems for real-time applications. 
Because task arrivals are usually uneven among the nodes 
of a distributed system and/or because the processing power 
varies from node to node, some nodes may get temporarily 
overloaded while others are left underloaded or idle. Livny 
and Melman [l] showed that in a network of autonomous 
nodes with a large probability, at least one node is idle 
while many tasks are being queued at other nodes. Thus, we 
need to develop an effective method that will enable idle or 
underloaded nodes to share the loads of overloaded ones. 

Load sharing (LS) in a distributed real-time system is 
different from that in a general-purpose system in that the 
latter tries to either achieve perfect load balancing among the 
nodes and/or to minimize average task response time, whereas 
the former is intended to minimize the probability of failure 
to complete each real-time task in time; this was termed the 
probability of dynamic failure, P d y n ,  in [ 2 ] ,  [3]. Upon arrival of 
a real-time task, each node determines whether it can complete 
this task in time. If it can, the node will execute the task 
locally; otherwise, some other “capable node” will be chosen 
to execute the task [4]-[ 1 11. By a “capable node,” we mean a 
node with unused resources enough to complete transferred-in 
task(s) in time. As was discussed in [6], LS in a distributed 
system is dictated by two basic policies: the transfer policy for 
determining when to transfer a task, and the location policy 
for determining where to transfer the task. In the context of 
real-time applications, the transfer policy determines whether 
a task can be guaranteed (i.e., completed in time) locally, and 
the location policy determines which other node is most likely 
to guarantee the task to be transferred. 

According to the properties of these two policies, LS 
schemes can be classified into three categories: determinis- 
tic, probabilistic, and dynamic or adaptive [4], [8], [12]. A 
deterministic approach allows an overloaded node to transfer 
unguaranteed tasks with a fixed pattern; e.g., all unguaranteed 
tasks on node i are transferred to node j .  A probabilistic 
approach, on the other hand, transfers tasks with prespecified 
probabilities, e.g., an overloaded node i will transfer its 
unguaranteed tasks to node .J’ with probability PiJ. By contrast, 
an adaptive approach uses state information for their location 
policy. The state of a node may be the number (or queue length 
(QL)), or the cumulative task execution time (CET), of tasks 
queued for execution on the node, the number and type of 
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available resources, or a function or combination thereof. The 
node makes LS decisions based on the information collected 
via either periodic or aperiodic state broadcasting [8], [13], 
[14] or state probing or bidding [9], [11], [15]-[17]. 

Both deterministic and probabilistic approaches do not 
use the state information, and thus cannot react to dynamic 
situations. Because an adaptive approach can adapt itself to 
dynamically changing conditions, it is naturally expected to 
outperform nonadaptive approaches in meeting task deadlines. 
However, the required state probing or broadcasting could 
incur significant communication overheads, thus delaying the 
execution of tasks to be transferred. Moreover, the collected 
state information may be out-of-date because of the delay 
in collecting it [18]. That is, a node’s observed states of 
other nodes may be different from their true states at the 
time of making LS decisions. This difference often degrades 
the performance of adaptive LS, as was analyzed in [16], 
[17]. (Note, however, that the authors of [16], [17] did 
not propose any means to alleviate or eliminate this prob- 
lem.) 

To reduce the performance degradation caused by the de- 
lays in state collection andor task transfer, we propose a 
new LS scheme using Bayesian decision theory as well as 
the concept of buddy sets, preferred lists, and state-change 
broadcasts in [14]. The basic ideas used here will be de- 
tailed in Section 11. Using several performance metrics, such 
as I‘dyn, the task transfer-out ratio, and maximum system 
utilization, we comparatively evaluate the proposed scheme 
along with five other schemes: no LS, LS with state probing, 
LS with focused addressing, and LS with random selection, 
and perfect LS. Our numerical results indicate that the pro- 
posed scheme outperforms all but the perfect LS scheme in 
minimizing I‘dyn. 

LS approaches proposed for general-purpose distributed 
systems are designed to minimize average system sojourn 
time or average response time, instead of minimizing Pdyn .  

Moreover, QL is usually used as the state of a node, which 
is obviously inadequate for real-time applications if task 
execution times are not identical. In this paper, we not only 
tailor both the transfer and location policies to handle real-time 
applications but also use CET as the state of each node and 
Pdrn  as the performance metric. Furthermore, we use Bayesian 
analysis to reduce the performance degradation caused by the 
delays in collecting state information and transferring tasks, 
which, despite its importance, is seldom addressed in literature 
(except for [16], [17]). We also study, via simulation, the 
potential impact of the time-varying behavior of task arrivals 
on the performance of the proposed scheme (especially on the 
Bayesian analysis part). 

The rest of this paper is organized as follows. The basic 
ideas of the proposed scheme are described in Section 11. The 
Bayesian decision model used is presented in Section 111. How 
both the components of the Bayesian decision model and the 
concepts presented in [I41 can be accommodated into our LS 
scheme is also described there. Section IV describes how each 
node constructs prior and posterior probability distributions, 
and updates loss-minimizing decisions. In Section V, we 
evaluate via simulation 1)  the performance of the proposed 

LS scheme along with five other schemes, and 2) the effect 
of bursty task arrivals on the performance of the proposed LS 
scheme. The paper concludes with Section VI. 

11. BASIC IDEAS OF THE PROPOSED SCHEME 

In order to reduce the overheads associated with state 
collection and task transfer, the LS scheme in [I41 requires 
each node to collect and maintain the state information of 
only those nodes in its physical proximity, called a buddy set. 
When a node cannot complete a real-time task in time, only 
those nodes in its buddy set are considered for transferring this 
task. In [ 141, four state regions determined by three thresholds 
of QL are used to characterize the workload of each node: 
underloaded, medium-loaded, fully loaded, and overloaded. A 
node will broadcast the change of state region to the nodes 
in its buddy set only when it switches from underloaded to 
fully loaded and vice versa. The state information kept at each 
node is thus up-to-date as long as the broadcast delay is not 
significant. Based on the topological property of the system, 
each node orders the nodes of its buddy set into a preferred 
list such that a node is the kth preferred node of one and 
only one other node, where k is some integer [19]. When a 
node is unable to complete a task in time, it will transfer the 
task to the first “capable node” found in its preferred list. 
That is, the preferred lists are used a5 an effective means of 
selecting a receiver among several possible candidate nodes 
while minimizing the probability of more than one overloaded 
node, simultaneously sending tasks to the same underloaded 
node. 

Communication delays may still occur and thus degrade 
system performance unless the size of buddy set is kept very 
small, in which case the LS capability of the whole system 
may not be fully utilized. Thus, Bayesian decision theory is 
used to counter the communication delay problem, as shown 
in Fig. 1 .  Fig. 1 shows the actions that the scheduler on each 
node should take for the following four cases: 

1) when a new task arrives, 
2) when a state-region change broadcast is received, 
3) when current CET crosses TH2k, 1 5 k 5 - 1, and 
4) at every Tp clock ticks. 
Those tasks already queued at a node are sorted by their 

laxities and executed on a minimum-laxity first-served (MLFS j 
basis. (Note that the laxity of a task is defined as the latest 
time at which a task must start execution in order to meet 
its deadline.) Upon arrival of a real-time task at a node, the 
scheduler checks whether the CET on that node contributed 
by those tasks with laxity smaller than this task is less than 
or equal to the laxity of the new task. If it is not, the new 
task has to be transferred, and the node’s task queue remains 
unchanged; if it is, the new task is inserted into the task 
queue, and if this insertion leads to violation of existing 
guarantees, those tasks whose guarantees are violated need 
to be transferred to other capable nodes. By “guarantee,” we 
mean the node has enough resources to complete the task in 
time upon its arrival. A granted guarantee may be deprived 
later because of the arrivals of tighter-laxity tasks under the 
MLFS policy. 
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describe how the proposed LS scheme can be cast into a 
Bayesian decision model. 

A.  Preliminaries 

end 

When a hroadcart nizssagr arr 

When rurrent-CET C ~ O S  

broadra-1 f lw , ta t?  

A1 ever) Tp clack rirkc 

tThe task queue Q 1s ordered b* L 
$11 L node anlactpatcr. based on 
Imk IS declared to he lost a i d  d .  

Fig. 1 .  Operation-of the task scheduler on each node. 

K state regions, obtained from K - 1 thresholds, 
TH1, TH2, . . . , THK-1, are used to describe the workload 
of each node.' Each node will broadcast a time-stamped 
message, informing all of the other nodes in its buddy set of a 
state-region change whenever its load crosses TH2k for some 
k ,  where 1 5 k 5 - 1. The reason for not broadcasting 
the change of state region whenever a node's load crosses any 
threshold is to reduce the network traffic resulting from region- 
change broadcasts. Moreover, the reason for not combining 
two adjacent state regions into one and then broadcasting the 
change of state region whenever a node's load crosses any 
threshold is to include finer information in each broadcast, 
and thus to construct more accurate posterior distributions. 

By collecting time-stamped state samples and by keeping 
track of the corresponding observations at the times these 
samples were taken, each node can construct the prior or 
posterior distributions. These distributions characterize the 
inconsistency between the node's observed and true states of 
other nodes, and are used to periodically (once every Tp clock 
ticks) update the loss-minimizing decisions with Bayesian 
theory. As will become clear, the undesirable effects of the 
delay in broadcasting state-region changes or transferring tasks 
are eliminated by using these prior or posterior distributions. 
Whenever a node cannot guarantee a task, the node's scheduler 
looks up the list of loss-minimizing decisions, and choose, 
based on the current state information, the best candidate 
node for transferring this task such that the expected loss 
is minimized with respect to the conditional (or posterior) 
probability distribution. 

111. BAYESIAN DECISION MODEL 

Conceptually, the task scheduler of a node can be modeled 
as a Bayesian decision maker. In what follows, we shall 

IC is a tunable parameter that is discussed later. 

The Bayesian statistical structure is a very powerful mod- 
eling tool when one has to make decisions based on some 
observations. The elements of a Bayesian decision problem are 
a parameter space (a space of state of nature) 0, a decision 
space D, and a real-valued loss function L that is defined 
on the product space R D [20], [21]. For any point 
( w , d )  E 0 x D ,  the quantity L ( w , d )  represents the loss 
when the value of the outcome W of the space R is w and d 
is the decision chosen. 

If P is any given probability distribution of the parameter 
W ,  then for any decision d E D ,  the expected loss or risk, 
( ( P ,  d) ,  is given by the following equation: 

x 

( ( P ,  d )  = J L(w:  d ) d P ( w ) .  (1) 
R 

It is assumed that the integral in (1) is finite for every d E 0.' 
We now want to choose a decision d that minimizes the risk 
(( P, d). The Bayes risk (* ( P )  is thus defined to be the greatest 
lower bound for the risks <(P, d )  Vd E D ,  i.e., as follows: 

<*(P) = inf ( ( P ,  d).  ( 2 )  
D 

Any decision d* whose risk is equal to the Bayes risk is called 
a Bayes decision with respect to the distribution P. 

In many decision problems like the one we are going to 
discuss, before choosing a decision from D, we observe the 
value of a random variable X that is related to the parameter 
W .  The observation of X provides us with some information 
about the value of W that may be useful in making a good 
decision. The essential component of problems of this kind 
is, in addition to a parameter space 52, a decision space D, 
and a loss function L, a family of sampling functions { f ( . lw ) ,  
w E S Z }  of observation X .  Let S denote the sample space of all 
possible values of X .  With the family of sampling functions 
and the (prior) probability distribution, P,  of W, we can 
calculate the conditional distribution of W ,  given X ,  P ~ i x ,  
as follows: 

Now we must choose a decision function 6 that specifies, for 
every possible value x E S, a decision 6(x) E D with the 
expected loss, given the observation x as follows: 

C ( ~ W ( X - = z ,  S ( 5 ) )  = L(w, 6(x))dPwlx=&). (4) 

Note that (4) is almost the same as (l) ,  except that P has 
been replaced by Pwj~,,. That is, given the observation of 
X ,  the decision problem remains unchanged, except that the 
distribution of W has changed from the prior to the posterior 
distribution. Thus, any minimizing decision d* (x) is simply 
a decision that yields the smallest expected loss under the 

2Any decision d for which this assumption is not true can usually be 
eliminated from the set D. 
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conditional distribution of W when the observed value of X 
is z. In other words, $(x) is a Bayes decision against the 
conditional distribution of W when X = x. 

B. Components of the Bayesian Decision Model 

This subsection describes how to apply Bayesian decision 
theory to adaptive LS, and how to accommodate both the 
components of the statistical model and the concept of [14] 
into our scheme. 

Parameter Space: The parameter space is defined as R = 
R I  x 0 2  x . . .  x On,  where n is the number of nodes in a 
buddy set and Ri is the parameter space for node i .  Note 
that the size of state space and the overhead of broadcasting 
state-region changes are greatly reduced by using the buddy 
sets. The parameter space, Ri, may be defined by QL, CET, 
resource available time (RAT) on node i ,  or a combination 
thereof, depending on task characteristics and performance 
requirements. For example, if all tasks have an identical 
execution time, QL suffices to express each node’s workload; 
otherwise, CET must be used. Because execution time varies 
from task to task, the state of a node is defined to be its CET. 
The dimension of the state can be augmented if more than one 
resource is needed to execute tasks. 

Probability Distribution on Parameter Space: The proba- 
bility distribution on parameter space is the joint probability 
distribution of Ri’s, e.g., Pw(g) = Pw(w1 ,  ~ 2 , .  . . , w n ) ,  
where wi is the CET of node i and n is the number of nodes in 
a buddy set. The marginal probability distribution on Ri,  Pw, , 
can be obtained from PW by integration. We construct these 
probability distributions by collecting state samples through 
region-change broadcasts (to be discussed in Section IV). 

Set of Available Decisions: The set of available decisions 
is D = { d l ,  d2; . . . , d,}, where di denotes the decision to 
move one task from the current node to node i .  Other options 
are also possible. For example, if a locally unguaranteed 
task is extremely important, then one may want to move it 
simultaneously to two or more nodes so that the probability of 
dynamic failure can be minimized. In such a case, a decision 
d i j  is added to the set of available decisions, which denotes 
the transfer of a task to both node i and node j .  

Set of Loss Functions: The set of loss functions is defined 
as {LTd,Td E (O,T,,,]}, where L describes the ‘‘loss’’ 
resulting from each combination of state and decision, given 
that the laxity, which equals deadlinexxecution timexurrent 
time, of a locally unguaranteed task, is Td. T,,, is the largest 
task laxity in the system. If P d r n  is the main concern, the loss 
function may be defined as follows: 

where S(x) is the unit step function. In such a case, minimizing 
the expected loss is equivalent to minimizing the probability 
of dynamic failure. The loss function can also be defined as 
follows: 

if the task needs to be executed not only before its deadline 
but also as early as po~sible.~.  

Sample Space of Observation: The sample space of obser- 
vation, S ,  is the set of all possible observations. Specifically, 
S = SI x Sz x . . .  x S,, where Si is obtained by dividing 
the parameter space W; for each node i into the K regions 
determined by K - 1 thresholds, TH1, TH2, . . . , T H K - ~ .  Node 
i is said to be in the kth region if THk 5 wi < THk+1, where 
k 2 0, and THO = 0. 

Note that the knowledge of a node’s state region is not 
sufficient to determine accurately its capability of guaranteeing 
arbitrary tasks. For example, a node with its state in a high- 
numbered state region may still be able to guarantee an 
arriving task with a large laxity, whereas a task with a small 
laxity may not be guaranteed even by a first-region node if the 
CET on that node is greater than the task’s laxity. Thus, unlike 
in [ 5 ] ,  [6], [14], [22],  these thresholds serve only as reference 
points, rather than indicating a node’s capability of meeting 
task deadlines. As discussed in Section V, the performance 
of the proposed scheme is rather insensitive to the choice of 
threshold values. 

Each node will broadcast a time-stamped message, inform- 
ing all the other nodes in its buddy set of a state-region 
change whenever its state crosses THzk, 1 5 k 5 - 1. 
Upon receipt of a region-change broadcast, every node in the 
buddy set will update its observation of the broadcasting node 
accordingly. The delay in broadcasting a region-change may 
cause inconsistency between the observed and true states of 
a node. We characterize this inconsistency by constructing 
prior or posterior distributions (to be discussed in Section 
IV). So, based on the observation xi, a node can estimate 
the state of node i by using the prior or posterior distributions 
constructed from the samples collected through time-stamped 
region-change broadcasts. 

Family of Sampling Functions: The family of sampling 
functions, {fxlW(.lg),g E a}, describes the conditional 
probability distribution of the observation X ,  given the state 
W = g. These probability distributions are derived from 
the samples gathered through time-stamped region-change 
broadcasts. With the prior probability distribution PW and 
these sampling functions fxlw, one can derive the posterior 
probability distribution Pwlx by using the Bayes rules [20] 
that is needed to compute the expected loss with observations. 

a 

Iv .  REGION-CHANGE BROADCASTING, PRIOR OR 
POSTERIOR PROBABILITY DISTRIBUTIONS 

AND LOSS-MINUIIZING DECISIONS 

As mentioned earlier, the delay in region-change broadcasts 
may cause the collected information to be out-of-date. For 
example, consider the following scenario: After broadcasting 
a state-region change, say from 3 to 1, node i switches back to 
region 3 because of the arrival of new tasks andor transferred- 
in tasks4 Upon receipt of the broadcast from node i ,  node j 
may decide to send a task to node i, because it is unaware that 

3LTd could be negative in this case; the more negative L T d ,  the more 

4These tasks may have been sent by other nodes before the broadcast, but 
early the task is executed. 

arrived at node z after the broadcast because of task-transfer delay. 
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node z has switched back to region 3 shortly after broadcasting 
the 3 + 1 region-change. If node j ,  instead of hastily believing 
in what it observed, can compute the probability that node i 
is indeed capable of guaranteeing task(s) and decide whether 
to send the task to node i ,  then the probability of dynamic 
failure could be significantly reduced. To this end, we shall 
characterize the inconsistency between the observed and true 
states with prior or posterior distributions. 

The first step is to construct both the probability distribution 
on the parameter space and the conditional probability distri- 
bution of an observation. These two distributions, in general, 
vary over both nodes and time in a dynamic environment. 
Thus, to monitor the dynamics of the system, each node must 
collect state samples on-line and construct these distributions 
from the samples gathered via region-change broadcasts. The 
methods for collecting state samples, constructing probabil- 
ity distributions, and deriving loss-minimizing decisions are 
discussed in the following subsections. 

A. Collection of State Samples 

- l), 
the node will broadcast, to all the other nodes in its buddy set, 
a instant time-stamped message that contains node number i ,  
the state wf before the change of state region, the state w: after 
the change, and the time t o  when wp was sampled. When the 
message broadcast by node i arrives at node j ,  node i ’ s  state 
w t  can be recovered by node j using the node number field 
and the state field, from which PW can then be calculated. 
Node j can also trace back to find out its observation xi at 
time t o .  This observation 5; is node j ’ s  observation of node 
i ’ s  state at the time when node i was actually in state w:. 
xi’s, along with wg’s, are used to construct fxlw. (Here we 
assume that the node clocks are synchronized to establish a 
global time-base. A scheme for achieving this synchronization 
is presented in [23].) Any inconsistency between w t  and xi at 
time t o  is characterized by this probability distribution. The 
only effect of the delays in task transfers and region-change 
broadcasts is that messages (tasks) may not arrive at a node 
immediately after their broadcast (send), and thus may become 
obsolete upon their arrival at other nodes. The correctness of 
all samples gathered, however, is not affected by these delays. 
Besides, ws sent by node i at time t o  is considered as node 
j ’ s  new observation of node i at the time this message is 
received, rather than at time tof > to .  

A primary advantage of region-change broadcasts over 
periodic state broadcasts is the elimination of the need to 
determine an “optimal” exchange period-a very difficult 
task because it depends on workload characteristics and has to 
weigh the tradeoff between the resulting increase in network 
traffic and the negative effect of using out-of-date information. 
Moreover, as we shall see, the threshold values have only 
minor effects on system performance (as a result of using 
Bayesian analysis). 

Whenever a node’s state crosses TH2k (1 5 k 5 

B. Derivation of Probability Distributions 

Each node updates, once every Tp units of time, the prob- 
ability distributions using all of the samples gathered so far, 

and recalculates the loss-minimizing decisions. Tp should be 
chosen to reflect the fluctuation of system load and the number 
of samples required for the specified level of confidence in the 
results obtained. 

The general rule for updating the probability distribution of 
W is as follows: 

where Pu is the updated probability distribution, PT is cal- 
culated from the samples gathered over the last Tp units of 
time, and Po is the old probability distribution. That is, the 
updated probability distribution is a weighted sum of the 
distribution calculated from the samples gathered within the 
last Tp units of time and the old probability distribution. The 
ratio a(0 < a 5 1) represents the tradeoff between obtaining 
better averages and reflecting load changes. One may increase 
(decrease) a if system load varies rapidly (slowly). The same 
rule may be applied to update the sampling functions, fxlw. 

Noninformative probability distributions (e.g., uniform dis- 
tributions) or some default probability distributions (obtained 
from previous experiences) may be used as the initial distri- 
bution of W and the sampling functions. According to our 
simulation results, the performance of the proposed scheme 
is found to be rather insensitive to the choice of an initial 
probability distribution. Each node may initially rely on the 
preferred list for LS decisions. This is because both prior 
and posterior distributions will be iteratively updated as time 
goes on, and usually represents the true system characteristics 
after two or three updates. Besides, if the task arrival pattern 
on each node does not change drastically with time, the 
probability updating process need not be executed often once 
the probability distributions are well-tuned. 

C. Calculation of Loss-Minimizing Decisions 

With the prior distribution of W and the sampling function, 
f x j W ,  one can calculate the posterior distribution Pwlx by 
using the Bayes rule (3). For each possible observation g E S, 
and for each possible laxity T d  E (O,T,,,], a node then 
computes the expected loss associated with the decision d i ,  
given the observation g and the laxity Td as follows: 

for i = 1, . . .  ,n. The decision di = f i T d ( g )  that yields the 
minimum expected loss is chosen as the optimal decision, 
given the observation :. A tie will be broken by choosing, from 
the preferred list, the first d; with the minimum expected loss.’. 
Because of the way in which LTd(g, d i )  was defined, and be- 
cause of the assumption that Wi is stochastically independent 
of the state of node j for j # i [6 ] ,  the computation of the 
expected risk, CTd ( P w ~ ~ = ~ ,  d i ) ,  depends only on the marginal 
probability distribution, PW,IX, (w;) .  That is, if LTd(g, d ; )  = 

5The nice property (of the preferred lists) in distributing unguaranteed tasks 
among capable nodes is thus maintained in the proposed scheme. 
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S(wi - Td), then we get the following equation: 

In other words, the expected loss of adopting decision d i ,  given 
the observation g and the task laxity Td, is the probability that 
node 2’s CET is greater than T d .  The second equality in (6) 
follows from the property of total probabilities, and the third 
equality results from the assumption that Wi is stochastically 
independent of the observation X j  of node j ,  j # i, i.e., 
P W , ( ( X , , X ~ , . .  . ,x,)(w;) = P W , I X , ( W ~ ) .  Similarly, we have the 
following: 

if LTd (g, d i )  = wi - Td. The set of loss-minimizing decisions, 
{ S T d ( g )  : g E S,Td E ( o , T ~ ~ ~ ] } ,  is a list of decisions to 
choose for each possible observation and each possible task 
laxity. Once these calculations are completed, a task scheduler 
needs to look up a table only when determining an LS decision 
for a given observation g. 

V. PERFORMANCE EVALUATION 

To demonstrate the effectiveness of the proposed LS 
scheme, we simulated it under the assumption that interarrival 
times of external tasks are exponentially distributed. Note 
that periodic tasks constitute the “base load” of a real-time 
system and are usually statically allocated to the nodes in 
the system, as shown in [24]. An LS scheme is then used to 
dynamically distribute aperiodic tasks as they arrive, and their 
arrival is known to be well modeled as a Poisson process. 
After their initial allocation, periodic tasks, albeit rare, may be 
redistributed subject to aperiodic task arrivals and the current 
systemwide state. In such a case, a Poisson task arrival model 
may prove appropriate for assessing the performance of the 
proposed LS scheme. Note, however, that the proposed LS 
scheme is not restricted to Poisson models. 

The proposed scheme and three other LS schemes are 
comparatively evaluated. The schemes under consideration 
differ in the way a node treats locally unguaranteed tasks as 
follows. 

The state probing scheme: A node with an unguaranteed 
task randomly probes up to some predetermined number 
of nodes and transfers the task to the first capable node 
found during the probing. 
The random selection scheme: Each locally unguaranteed 
task is sent to a randomly selected node. 
The focused addressing scheme: Each node exchanges 
state information periodically. A node sends its unguar- 

anteed task to a node (called the focused node), which 
is randomly selected among those nodes “seen” to be 
capable of guaranteeing the task. (If such a capable node 
does not exist, the node itself becomes the focused node.) 
Meanwhile, the node also sends request-for-bid (RFB) 
messages to all the other nodes in the system, indicating 
that bids (which contain the CET of the bidding node) 
should be returned to the designated focused node. If the 
focused node cannot guarantee the task, it chooses, based 
on the bids received, a capable node for transferring the 
task (ties are broken randomly); otherwise, the task is 
queued on the focused node, and the received bids are 
used to locate the receiver nodes for those tasks, if any, 
whose guarantees become invalid as a result of accepting 
the transferred task. The bids received at the focused 
node are also used to update the observation of other 
nodes’ states. If neither the focused node nor the bidding 
nodes can guarantee the task (or if any of those tasks 
whose guarantees are violated because of the acceptance 
of the transferred tasks), the task is declared to be lost and 
thrown out. To avoid poor central processing unit (CPU) 
utilization, RFB messages do not require nodes to reserve 
CPU cycles or any other resources needed to execute the 
task to be transferred until it actually arrives. When a task 
arrives at a node whose bid has already been accepted, the 
node will check again whether the task can be guaranteed. 
This is a simplified version of the scheme proposed in 
[11], [15]. It also differs slightly from that of [11], [15] 
in the way that a node chooses the focused node. The 
authors of [11], [15] used the percentage of free time 
during the next window (which is a design parameter) and 
many other estimated parameters to determine the focused 
node or the node to which the task must be transferred 
again. However, we use the observed CET of other nodes 
to determine the node(s) for transferring tasks. 
The proposed scheme: A node sends each unguaranteed 
task to another node in its buddy set, based on a tech- 
nique that combines preferred lists, state-region change 
broadcasts, and Bayesian analysis. 

These schemes are compared with one another as well as with 
two other baseline schemes. The first baseline scheme assumes 
no load sharing, and the second is an ideal scheme where each 
node has complete information on the workload of other nodes, 
without incurring any overhead in collecting it.6 

A 16-node regular system7 is used as an example for 
the simulations. For convenience, all time-related parameters 
are expressed in units of average task execution time, E(R) .  
The size of the buddy set is chosen to be 10, because the 
performance improvement achieved by increasing it beyond 
10 was shown in [14] to be insignificant. The maximum 
number of nodes to be probed randomly for each locally 
unguaranteed task is restricted to 5 based on the finding in [6]. 
The computational overhead for each bidding, state probing, 

6This cannot, however, be modeled as an MIMIn queue, because of the 
transfer policy used and because the service time is fixed at 1.0, as compared 
to the perfect load sharing in [6]. 

’A system is said to be regular if all node degrees are identical. 
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region-change broadcast, and probability distribution update is 
assumed to be 1%, 1%, 1010, and 2% of E ( R ) ,  respectively. 

Each communication medium or link is equipped with 
buffers, and transferred tasks or broadcast messages are queued 
and/or transmitted in order of their arrival. No priority mech- 
anism regulates the transmission over the medium; i.e., a 
FCFS rule is assumed. Unless specified otherwise, the delay 
associated with each task transfer is assumed to be 10% of 
the execution time of the task being transferred. The queueing 
delay due to task transfers, region-change broadcasts, requests 
and responses for bids, and state probes dynamically changes 
with system load and traffic, and is modeled as a linear 
function of both the average external task arrival rate and the 
number of tasks or messages queued in the particular medium 
or link. (The linear coefficients are denoted as queueing delay 
coefficients.) 

Let qi(1 5 i 5 m) and @ ( O  5 j 5 T,,,) rep- 
resent, respectively, the probability that an external (local) 
task requires i units of time to execute and that a task 
has laxity of j units of time. For notational convenience, 
{el, e 2 , .  . . , e k } ~ q , , , q , ,  ,.,,, q e k  1 is used to denote the task set 
in which a task requires execution time ei with probability 
qe,, V i  If qe, = qV ei. then {qe l  q e z ,  . . . , qek } is condensed to 
q.  Similarly, {[I, &, . . . ~ &}idcl ,de, ,..., d P ,  1 is used to describe 
the distribution of task laxity. The simulation was carried out 
for a task set with the external task arrival rate on each node 
varying from 0.2 to 0.9, the ratio of (1 5 j 5 k - 1) 
varying from 2 to 10 units of average execution time,* and 
the ratio of of (1 5 j 5 n - 1) varying from 2 to 6. 
Because of space limitation, we present only representative 
results. In spite of a large number of possible combinations of 
task arrival rates, task execution time distributions, and task 
laxity distributions, the results are found to be quite robust 
in the sense that the conclusion drawn from the performance 
curves for a task set with the given task execution and laxity 
distributions is valid over a wide range of combinations of 
task execution time and laxity distributions. 

For each combination, the simulation ran until it reached a 
confidence level of 95% in the results for a maximum error 

e 3  

one-half of the confidence interval) of the following: 
2% of the specified probability if Pdyn  is the measure 
of interest, 
0.2% of the specified response time value if response 
time is the measure, 
5% of the task arrival rate if the maximum system 
utilization is the measure, and 
5% of the ratio, frequency, or fraction value if task 
transfer-out ratio, frequency of broadcasts or state 
probes, or fraction of idle time, is the measure.’ 

We first determine the tunable parameters used in the 
proposed scheme. Second, we evaluate and compare different 
schemes with respect to several important performance metrics 

‘For convenience, E ( R )  is normalized to I 

’The number of simulation experiments needed to achieve the above 
confidence interval is calculated based on the assumption that the parameter 
to be estimated or measured has a normal distribution with unknown mean 
and variance. 

obtained from the simulations. Then we analyze the effect of 
the following: 

1)  varying processing or communication overheads, 
2) using FCFS (instead of MLFS) as the local scheduling 

policy, 
3 )  excluding the Bayesian decision analysis from the pro- 

posed scheme, and 
4) statistical fluctuations in task arrival (representing bursty 

task arrivals) on the performance of the proposed LS 
scheme. 

A.  Determination of Tunable Parameters in 
the Proposed Scheme 

The accuracy of prior or posterior distributions depends on 
the values of such tunable parameters as the probability update 
interval Tp, the probability update ratio a, and the number 
( X )  and values of state-region thresholds. It is, however, 
difficult to objectively determine an optimal combination of 
these parameters which will give accurate prior or posterior 
distributions while incurring the least overhead. The main 
reasons for this are as follows. 

The choice of a and Tp depends on the application- 
dependent variation of workload. 
The number and values of thresholds must be determined 
by optimizing the tradeoff between the resolution of 
state-region division and the overhead of the resulting 
region-change broadcasts. It is impossible to determine 
the optimal number and values of state-region thresholds 
without a closed-form expression for this tradeoff. More- 
over, the optimal number and values of thresholds depend 
on both the laxity and execution time distributions of the 
task set. 

Thus, we shall determine the tunable parameters for each task 
set with the following two steps. 

S1) We first fix all but one parameter of interest at a time 
and obtain the performance curve as a function of 
this parameter from which its optimal value can be 
determined. Next we vary another parameter of interest 
while keeping the first parameter fixed at its optimal 
value and the rest of the parameters fixed at their 
originally-chosen values. This process will be repeated 
until all of the parameters have been varied. 

S2) Because a different order of examining parameters in 
S1 may lead to different results, there may be more than 
one parameter set, from which we choose the one with 
the smallest P d y n  and, at the same time, reasonably 
small processing or communication overheads (e.g., 
the processing power used for updating distributions 
and calculating Bayesian decisions, the frequency of 
region-change broadcasts, or the task transfer-out ratio) 
as the “optimal” parameter set. 

The sets of parameters obtained through the above two 
steps may not be globally optimal, but our simulation results 
have shown them to yield good results as compared to other 
schemes. Moreover, as shown later, our simulation results in- 
dicate that the proposed scheme is robust to the variation of the 
tunable parameters. Thus, the result with a set of suboptimal 
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Threshold pattern Pdyn 
0.4,0.5,0.G 7.6857 x 

0.4,0.6,0.8 7.8406 x 

0.4,0.8,1.2 8.0.502 x 

0.4,1.0,1.6 1.2833 x lo-’ 

0.4,1.2,2.0 1.5104 x lo-’ 

7 1 1  

Tash transfer-out i a f i o .  I. 

0.225 

0.220 

(1.2 I I 

0.20-1 

0 20; 

TABLE I 

ET = ( 0 . 4 . 0 . 8 . 1 . 2 . 1 . 6 ) ~  25, AND L = {1 ,2 .3}1 /3  
Tp FOR A TASK SET WITH = 0.8, 

Threshold pattern Pdyn 

0.1.0.5.0.9 7.1873 x 

0.4,0.8,1.2 8.0502 x io-.’ 

0.8,1,2,1,6 1.2479 x lo -?  

0.2.0.6,l.O 7.1967 x 10-3 
~ 

0.6,1.0.1.4 1.0575 x lo-‘ 

8.0564 x lo-” 

0.1902 

7.196; x IO -”  

200 7.46‘27 x 10-3 0.1946 

500 7.8438 x 0.19S1 

1000 7.9582 x 

r Freq. of h o a d r a i t ,  J b  

0.230 0.l9R7 

0.2l(i 0.49 I:I 

0.21 I 0 5i2.S 

0.21:l O. i l2L 

0.21 I (1.52 IO 

parameters can still give a representative performance of the 
proposed scheme. 

Summarized below are some of the important findings in 
determining the tunable parameters. The task set with the 
task arrival rate X = 0.8, the distribution of task execution 
time ET = {0.4,0.8,1.2, l.6}0.25, and the distribution of 
task laxity L = {l.O, 2.0, 3.0}1/3 is arbitrarily chosen for an 
illustrative purpose. 

Probability Update Interval Tp and Probability Update Ra- 
tio n: Frequent probability updates generate more accurate 
distributions, and thus provide each node with better knowl- 
edge of the inconsistency between its observation of other 
nodes and the corresponding true states. This benefit must 
be weighed against the associated overheads. As shown in 
Table I, Pdyn  for the proposed scheme with the threshold 
pattern {0.2,0.6.1.0} first decreases as Tp increases from 10 
to 100 (in units of the average task execution time), and then 
increases as Tp increases further beyond 100. (The task set 
with A = 0.4 exhibits a similar behavior, except that Tp, 
which results in the smallest I‘dyn, is slightly increased.) The 
probability update ratio a is chosen to be 0.5, because the 
task arrival rate is constant over time; thus, the distribution 
constructed from the state samples gathered before is as good 
as that constructed from the state samples collected over the 
last Tp units of time. 

Selection of the default probability distributions (or, equiva- 
lently, the default risk function C T d  in (6) at the system startup 
is shown to have only minor effects on system performance 
as long as Tp is properly chosen. So, the initial posterior 
distribution of CET is chosen to be uniform. The default risk 
function can then be expressed as follows: 

n where i 2 0 and THO = 0. 
Threshold Patterns: We first analyze the effect of changing 

the resolution of state-space division with the number of 
regions fixed at 4. As shown in Table 11-A, Pdyn decreases 
as the interval between two thresholds gets smaller, which is 
henceforth called the threshold interval. (For convenience, all 
threshold intervals are assumed to be identical; even if this 

TABLE 11-A 

EFFECTS OF THE THRESHOLD INTERVAL FOR A TASK SET WITH 
EFFECTS OF THE NUMBER AND VALUES OF THRESHOLDS ON Pdyn 

X = 0 . 8 , E T =  { 0 . 4 , 0 . 8 , 1 . 2 , 1 . 6 ) o ~ 5 , A N D L = { 1 , 2 , 3 } ~ / ~  

assumption does not hold, the following discussion remains 
the same, except for more complicated descriptions.) The 
decrease in Pdyn becomes insignificant, however, when the 
threshold interval gets smaller than the least task execution 
time within the task set. Thus, the threshold interval must 
not be smaller than the least task execution time. Once the 
threshold interval is selected, one can analyze the effects of 
changing TH1 (and thus other thresholds). It is shown in 
Table 11-B that Pdyn  decreases as TH1 decreases. The change 
in Pdyn  again becomes insignificant as TH1 gets smaller 
than the least task execution time. Note that in our proposed 
scheme, selecting THl < the least task execution time < 
TH2 is essentially equivalent to implementing the shortest 
queue policy in [6], except that the ways of collecting state 
information are different (the latter with state probing, and 
the former with region-change broadcasting). Thus, a modified 
shortest-queue policy (or TH1 5 ,  the least task execution time) 
is preferred for the proposed scheme to minimize Pdyn. 

One interesting phenomenon is that the frequency of region- 
change broadcasts is relatively high when the thresholds 
coincide with the task execution times. This is because the 
acceptance or completion of a task makes a node’s CET easily 
cross a certain threshold, thus resulting in an excessive number 
of region-change broadcasts. Such types of thresholds are 
ruled out. Thus, to implement the shortest queue policy while 
avoiding excessive broadcasts, TH1 must be slightly smaller 
than the least task execution time. 

Number of State Regions: To analyze the effects of the 
number of state regions on system performance, we ran 
simulations while changing the number of regions from 2 to 
6. A node broadcasts the change of state region whenever the 
node’s CET crosses TH1, if only two state regions are used, 
and whenever the node’s CET crosses TH2k, if K 2 3 state 
regions are used, where 1 5 IC 5 - 1. The reason for 
not broadcasting the change of state region whenever a node’s 
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8.0932 x 10-3 0.5079 

7.310X x O.iOS(i 

i.1967 x o I 1) I:$ i 

TABLE 111 
EFFECT OF THE NUMBER OF STATE REGIONS ON Pciyn. TASK 
S E T : E T = ( O . ~ , O . ~ . ~ . ~ , ~ . ~ } ~ ~ ~ A N D L =  {1,2,3} 1 / 3  

( A  = 0 4 )  

Task attributes 

ET = {O 4.0 U. 

I 2 , 1  fi)02., 

L = ( 1 . 2 , 3 ) 1 j 3  

ET = (0 027, 

027,2703)1,1. 

L = { l , 2 , 3 ) 1 / 3  

E T = ( 0 4 , t i U .  

1 2 .  I 6 ) o z s .  

L = ( I J  

TABLE IV-A 
Pdynld vs. TASK LAXITY d FOR DIFFERENT TASK SETS 

UNDER DIFFERENT SCHEMES (A' = 16): X = 0.8 

Lax No State 

d sharing prohlng 

I 0 1612 3 594 x l o - '  
2 n 0421 5 401 1 0 - 0  

3 O O I l i  I i 8 2 x  I @ - '  

I 0 2854 2 270 x I V 3  

2 O17fi l  2 3 4 G x  I O - '  

3 t i 0 8 1 5  2 6 9 3 ~  I O Y  

I 0 lGG0 8 163 x IO-' 

CET crosses any threshold is to reduce the network traffic 
resulting from region-change broadcasts. 

As shown in Table 111, P d y n  decreases as the number of state 
regions grows, and the decrease in P d y n  becomes insignificant 
when the number of regions grows beyond four. Moreover, 
the frequency of region-change broadcasts remains essentially 
unchanged when the number of regions is below four, but 
increases as the number of regions grows beyond five. This 
is because a finer resolution of state intervals results in more 
reference points for region-change broadcasts. Thus, three or 
four state regions suffice to give a satisfactory performance. 

One significant result is that the proposed scheme is shown 
to be robust to the variation of the tunable parameters, as 
compared to the other schemes reported in [14], [17], [ 2 2 ] .  The 
change in P d y n  is shown to be less than l o p 3  for any given 
change in the threshold interval, or the number of state regions, 
or the values of thresholds. This is an important advantage 
coming from the use of prior or posterior distributions and 
Bayesian analysis. The proposed LS scheme can thus provide 
good performance, even with not-well-tuned parameters, as 
long as the general rules discussed above are followed. 

B. Evaluation of Pevormance Measures 

Probability of Dynamic Failure: A task is said to be 
missed, and a dynamic failure occurs, if the sum of its 
queueing-for-execution time and the delay in transferring 
the task exceeds its laxity. Let Pdynld denote the probability 
of missing deadlines for a task with laxity d. Then we have 
the following: 

j = O  

Figs. 2 and 3 are the plots of P d y n  versus task arrival rate (A), 
and Pdyn/d versus task laxity d, respectively. Table IV shows 
some numerical results of Pdy+ under different schemes. As 
was expected, P d y n  increases as the system load gets heavy 
and/or the task laxity gets tight. 

The random selection scheme outperforms the state probing 
scheme when the system load gets heavy (e.g., Table IV-A 
versus Table IV-B) or when the task laxity gets tight (e.g., 
L = {1,2,3} versus L = (1) in Table IV-B), for the 
following reasons. 

1)  Under heavy loads, most nodes are likely to become 
unable of guaranteeing tasks, which will in turn make 

TABLE IV-B 

UNDER DIFFERENT SCHEMES (N = 16): X = 0.4 
pdynlc l  VS. TASK LAXITY d FOR DIFFERENT TASK SETS 

2) Probing other nodes before sending an unguaranteed 
task requires two communication messages (one for 
request, and the other for response), whereas the random 
selection does not require such messages. 

This negative effect becomes more pronounced as laxities get 
tighter. 

The focused addressing scheme outperformed the state 
probing and random selection schemes, but was inferior to 
the proposed scheme, especially when the task laxity is tight, 
for the following reasons. 

The focused node or its successor node-the node to 
which the focused node will retransfer the task-among 
those "seen" capable is basically chosen randomly, thus 
increasing the chance of two nodes sending their unguar- 
anteed tasks to the same node. 
Not many RFB messages are issued under light loads, 
thus making a node unable to keep its observation of other 
nodes up-to-date and increasing the chance of transferring 
a task to an incapable focused node. This is intolerable 
to tasks with tight laxities. 
Requests and replies for bids become excessive under 
heavy loads, thus increasing communication delays. The 
state information collected via periodic state exchanges 
or via the bids sent from other nodes may thus become 
out-of-date. 

In all cases simulated, the proposed LS scheme is shown to 
outperform all but the perfect information scheme in meeting 
task deadlines, showing its effectiveness achieved by using the 
judicious collection and use of state information. It does not 
perform as well as the perfect information scheme, because of 

state probing unsuccessful most of the time. the additional processing overhead introduced by the probabil- 
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Fig. 2. Pdyn vs. task 
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Fig. 3. P d y n ~ d  vs. task laxity d for a 16-node system with a task set: X = 0.8, ET = {0 .4 ,0 .8 ,1 .2 ,1 .6}0  2 5 ,  and L = { 1 , 2 , 3 , 4 , 5 } 0  2) .  

ity update process and the communication delays incurred in 
task transfers and region-change broadcasts. See Table V for 
the case where all processing or communication overheads are 
set to 0 while holding the task-transfer delay at 10% of task 
execution time. If the processing or communication overheads 
were ignored, all the realistic schemes would perform much 
better than they actually do, thus underestimating Pdyn, which 
is undesirable for real-time applications. 

Maximum System Utilization: The system utilization is de- 
fined as the ratio of the external task arrival rate (A) to the 
system service rate ( l / E ( R ) ) .  The service rate is normalized 
to 1 in our analysis, and thus the system utilization simply 
becomes A. Because P d y n  increases with system load (Fig. 2), 
there exists an upper bound for A, termed as maximum system 

TABLE V 
Pdynld FOR A TASK SET WITH ET= {0 .4 ,0 .8 ,1 .2 ,1 .6}0  2 5  

AND L = { 1, 2, 3}1,3 UNDER THE IDEAL CONDITION 

Arrival I I.axity 1 No 1 State I Raniloin I ~ e ~ ~ O ~ 1 ~ 1  

utilization A,,,, below which P d y n  5 6 can be guaranteed for 
some prespecified t > 0. Fig. 4 shows plots of the maximum 
system utilization versus t for a 16-node regular system. One 
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No sharing 
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Probability of dynamic failure 
Fig. 4. A,,, vs. I‘dyn for a 16-node system. 

TABLE VI-C 
COMPARISON OF TASK TRANSFER Uno AMONG DIFFERENT SCHEMES X = 0 4 

TABLE VI-A 
COMPARISON OF TASK TRANSFER RATIO AMONG DIFFERENT 
SCHEMES: TASK TRANSFER Uno vs. TASK ARRWAL UTE 

FOR THE TASK SET WITH ET = (0 4,O 8,1 2 , 1  6)o  25  

AND L = {1 ,2 ,3}1 /3  UNDER DIFFERENT SCHEMES 

TABLE VI-B 
COMPARISON OF TASK TRANSFER Uno AMONG DIFFERENT SCHEMES: X = 0.8 

important result is that we do not have to sacrifice system 
utilization to lower Pdynr which is in contrast to the common 
notion of trading system utilization for real-time performance. 
Moreover, among all LS schemes considered, the proposed 
scheme has the performance closest to the perfect information 
scheme, and usually outperforms the other realistic schemes 
by almost an order of magnitude. 

Task Transfer-Out Ratio: A task arriving at a node has to 
be transferred if and only if the CET of that node exceeds 
the laxity of the task. The task transfer ratio, T ,  is defined as 
the portion of arriving tasks (both external and transferred-in 
tasks) that must be transferred. T is a measure of the traffic 
overhead caused by task transfers. Table VI shows the values 
of T for the various task attributes under different schemes. 

Under light to medium loads (e.g., X = 0.2 - 0.4 in 
Table VI), the task transfer ratios associated with different 
schemes are very close to one another. This is because most 

tasks can be guaranteed locally or with at most one task 
transfer, and thus the location policies employed by different 
schemes have little influence on system performance. On 
the other hand, when the system load gets heavy, the way 
of choosing a node for task transfer or retransfer results in 
notable differences in performance. The state probing scheme 
has the task transfer ratio closest to the perfect information 
scheme, because it first checks a node’s LS capability before 
transferring a task to that node. The proposed scheme is 
inferior to the state probing scheme because of its use of 
imperfect observation to probabilistically decide the receiver 
node. It does not, however, require any probing overhead at 
the time of making a location decision. 

The focused addressing scheme performs slightly better 
than the proposed scheme under light load. When the system 
load gets heavy, however, the performance of the focused 
addressing scheme deteriorates quickly because of the in- 
creased probability of making incorrect LS decisions based 
on out-of-date” state information. 

System Size: It is found from the simulations that the larger 
the system size, the better the performance of the LS schemes. 
(See Tables IV and VI1 for numerical results.) This is because 
a larger system has a larger processing capacity to handle 
bursty task arrivals at one or more nodes in the system. 

IOThe decisions are out-of-date as a result of the increased communication 
delays caused by excessive bidding messages. 
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TABLE VII-A 
p,~,,ld VS TASK LAXITY d FOR DIFFERENT TAYK SETS 

UNDER DIFFERENT SCHEMES (S = G - l )  X = 0 8 

I = { I )  

TABLE VII-B 
Pdyn~d vs. TASK LAXITY d FOR DIFFERENT TASK SETS 

UNDER DIFFERENT SCHEMES = 64): X = 0.4 

Besides, task transfers, state probes, RFB," and/or region- 
change broadcasts do not significantly increase the queueing 
delay (as compared to a system with only a few nodes) because 
of the increased communication capacity and the decreased 
chance of transferring two or more tasks through the same 
link or to the same node. 

Because of the way in which the buddy sets and the 
preferred lists constructed [ 141, the unguaranteed tasks within 
each buddy set will be evenly shared by all capable nodes 
in the entire system as the system size grows, rather than 
overloading a few capable nodes within the same buddy set. 
Moreover, the preferred list of a node is different from those 
of other nodes in its buddy set. Consequently, the percentage 
of common nodes in the preferred lists of the nodes in a buddy 
set gets smaller as the system size grows, and thus there is a 
greater chance that the unguaranteed tasks of a node may be 
transferred to some other nodes not in its buddy set, leading 
to more even distribution of the unguaranteed tasks. 

Frequency of Region-Change Broadcasts vs. Frequency of 
State Probing/Bidding: In the proposed LS scheme, each node 
has to broadcast a change-of-state region to all of the other 
nodes in its buddy set. Thus, the frequency of region-change 
broadcasts, f b ,  determines the traffic overhead in collecting 
state information. On the other hand, the traffic overhead 
in both the state-probing and focused addressing schemes is 
determined by the frequency of state probing, f p ,  and the 
frequency of RFB, f T ,  respectively. Table VI11 summarizes the 
simulation results on f b ,  f p ,  and f T  in terms of the number 
of messages per E ( R ) .  

"To reduce traffic overheads, RFB messages are sent to 10 randomly 
selected nodes, instead of to all of the other nodes in the system. 

TABLE VIII-A 
COMPARISON OF THE TRAFFIC OVERHEAD ASSOCIATED WITH COLLECTING 
STATE INFORMATION BETWEEN THE STATE PROBING AND THE PROPOSED 
SCHEMES: FREQUENCY OF STATE-COLLECTION vs. DIFFERENT X FOR A 

T A S K S E T W I T H E T = { ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ } ~ ~ ~ A N D L =  {1,2.3}, , ,3 

TABLE VIII-B 

COLLECTING STATE INFORMATION BETWEEN THE STATE PROBING A N D  
THE PROPOSED SCHEMES: FREQUENCY OF STATE INFORMATION 

COLLECTION vs. DIFFERENT TASK SETS WHEN A. = 0.8 

COMPARISON OF THE TRAFFIC OVERHEAD ASSOCIATED WITH 

Under light to medium loads (e.g., X = 0.2 - 0.6 in 
Table VIII-A), the proposed scheme introduces more traffic 
overhead (in the worst case, about 0.5 broadcast per E ( R ) )  
than the other two schemes. The additional traffic introduced 
by broadcasts may not impede the transmission of tasks andor 
other messages, however, because only about 2% - 13% of 
the arriving tasks (Table VI) are transferred to other nodes. 
Besides, the effect of the increased communication delay 
(as a result of broadcasts) on the inconsistency between a 
node's observed and true states of other nodes is taken care 
of by Bayesian analysis.I2 When the system load is heavy, 
the state probing scheme and the focused addressing scheme 
perform worse than the proposed scheme (Table VIII-B). This 
phenomenon becomes more pronounced when the variance of 
task execution time is large or when the task laxity is tight. 

FCFS vs. MLFS: Under the MLFS local scheduling policy, 
the task queue at each node is ordered by task laxities, and a 
task with the minimum laxity on the node is always executed 
first. Another commonly used local scheduling policy is the 
first-come, first-served (FCFS) discipline. A newly arrived task 
is added at the end of task queue if it can be guaranteed on that 
node, and will otherwise be considered for transfer. The FCFS 
discipline is simple and ensures that the existing guarantees 
are not altered, and the transfer policy under this discipline 
becomes a simple dynamic threshold type 151, 161, 1171, [251.13 

Although the MLFS discipline does not always perform 
better than the other on a per-task basis, it is shown in 

''This is evidenced by the fact that the queueing delays due to state 
broadcasts or task transfers, as well as the processing overheads required 
for probability update or state broadcasts, were all included in our simulation. 

13The threshold may change dynamically with the current state of the node 
and the time constraints of tasks. 
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TABLE IX 
PERFORMANCE (Pdyn)  COMPARISON OF USING FCFSMLFS 

AS THE MEASURE OF WORKLOAD. TASK SET I: = 0.8, 
E T = { 0 . 4 , 0 . 8 , 1 . 2 , 1 . 6 } o , 2 5 , ~ ~ ~ L  = { 1 , 2 , 3 } 1 / 3 . T ~ s ~ S ~ ~ I I :  
= 0 .2 ,  ET = {0 .4 ,0 .8 ,1 .2 ,1 .6}0 .25 ,  AND L {1 ,2 ,3}1 /3 .  TASK SET 

111: = 0.8, ET = { 0 . 4 , 0 . 8 , 1 . 2 , 1 . 6 } 0 . 2 ~ ,  AND L = {1.4,1.5, 1.6}1/3 

te R s ~ ~ l o l n  lo<~~ir<l ! I ) ~ ~ , ~ , ~ I P ~  

,ng 'PICCt,",, ,i<l<lw.\,,,p  cl,^,,,* 

[26] to perform better on the average in reducing I'dyn. To 
quantitatively compare the performance of these two disci- 
plines, we ran simulations with MLFS and FCFS as the local 
scheduling policy for a wide range of task attributes. As 
shown in Table IX, all schemes with FCFS perform worse 
than their counterparts with MLFS. No matter which local 
scheduling policy is used, the proposed scheme is shown to 
outperform the other realistic schemes in meeting deadlines. 
This demonstrates the quality of the location policy in the 
proposed scheme, which uses both Bayesian analysis and the 
preferred lists. 

One interesting result is that the performance degradation of 
the FCFS discipline is not so significant when 1) the system 
load is light, and thus the task queue is often short (e.g., Task 
Set I1 in Table IX), or 2) task laxities are not distributed very 
widely (e.g., Task Set 111 in Table IX); that is, either all laxities 
are very large or all are very tight. This makes the quality of 
local scheduling less important in meeting task deadlines. 

Sensitivity to Communication Delays: There are two types 
of communication delays to consider: One is the state- 
collection delay incurred from region-change broadcasts or 

state probes, where the queueing delays play a dominating 
role, and the other is the delay associated with task transfers, 
where both the queueing delays and the transmission delays 
dominate. To study the effect of communication delays, Pdyn 

was computed with 1) the transmission cost associated with 
each task transfer being 5%, lo%, 15%, and 20% of the task 
execution time, and 2) the queueing delay coefficients being 
halved, doubled, and tripled. (Recall that the queueing delay 
coefficients are the coefficients in the linear expression used 
to model the effect of both the average external task arrival 
rate and the medium traffic on the queueing delay.) 

As shown in Fig. 5, the state-probing scheme, the random 
selection scheme, and the focused addressing scheme are all 
more sensitive to the variation of the transmission cost than 
is the proposed scheme. Also, see Table X(a) for numerical 
examples. The performance degradation by the state-probing 
scheme occurs because as the task transmission delay in- 
creases, other tasks may arrive at a probed node during the 
period between the time it was probed and the time an 
unguaranteed task (of the probing node) arrives at that node. 
Thus, there is not much correlation between the state when a 
node was probed and the state when an unguaranteed task 
arrived at the node. (Similarly, one can reason about the 
performance degradation of the focused addressing scheme.) 
The performance of the random selection scheme degrades 
as the transmission delay increases, because of the combined 
effect of higher task transfer-out ratios (Table VI) and large 
transmission costs. 

Fig. 6 (Table X-B) shows the effect of varying queueing- 
related costs on the performance of several LS schemes. The 
state-probing scheme is most sensitive to the variation of 
queueing delay, because in addition to suffering the same 
effect as varying transmission delays, the state-probing scheme 
generates two additional messages per probe, thus increasing 
the possibility of a task missing its deadline, especially when 



SHIN AND HOU: DESIGN AND EVALUATION OF EFFECTIVE LOAD SHARING 

( A  = 0 8) 
Queueing Delay C o d  

halved 

value. 

from 
61mUli1110" 

doubled 

tripled 

o.- . . -o State probing 
0 - - - 0 Random selection 

- Proposed scheme 
+ . . . . . + FOCU& addressing 

Laxity Slate Random 
d probing 4 r c t i o i i  

I G 091 x IO-' 8 280 x 10.' 

3 2 813 x 6 Q4h x IO-" 
I 0 1510 0 1214 

z 3 758 111-4 I o m  10.' 

2 4 i m  10-3 2 ii,2 
a 3 514 x 10-5 1 2:11 x 10-5 
I 0 2134 0 1" 
2 2 8UI x lo-!' i j52 x IiIF 
a 5 113 x 1 0 - 4  1 4 5 "  x I l l - 5  

I 041'14 I I2. l l lb 
2 i 4 i 5  x I I I ~  I iiil x 1 0  
1 :J $42 x IO-' I ' I 4 6  x l U - *  

(times queueing-relaled coefficients) 
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TABLE X-A 

ET = { 0 . 4 , 0 . 8 , 1 . 2 , 1 . 6 } 0 . ~ s  AND L = {1,2,3}1,3 UNoER 
EFFECT OF COMMUNICATION DELAYS ON Pdyn FOR A TASK SET WlTH 

DEFERENT SCHEMES: EFFECT OF TASK TRANSFER COSTS ON Pdyn ( d  

TABLE X-B 

SETWITHET= { 0 . 4 , 0 . 8 , 1 . 2 , 1 . 6 } ~ . ~ ~  ANDL= {1,2,3}1/3 
EFFECT OF COMMUNICATION DELAYS ON P d y n  FOR A TASK 

UNDER DIFFERENT SCHEMES: EFFECT OF QUEUEING DELAYS ON Pdynjd 

the queueing delay is large. Varying queueing-related costs has 
the same effect as varying transmission costs on the random 
selection scheme, as well as on the focused addressing scheme. 

In contrast, our proposed scheme is less sensitive to the 
communication delays (both queueing and transmission de- 

lays), because of the use of prior or posterior distributions to 
characterize the correlation between the observation and the 
corresponding true state. 

actually 
measure the benefit of using Bayesian decision analysis, we 
ran. a set of experiments using a scheme that is identical 
in all aspects to the proposed scheme, except that no 
Bayesian analysis is used to capture the inconsistency between 
the observed and true states. As the numerical results in 
Table XI indicate, the proposed scheme with the Bayesian 
analysis outperforms the one without the Bayesian analysis in 
minimizing I'dyn, especially when the following are true. 

1) Task execution times vary over a wide range 

2 )  The distribution of task laxity gets tight (Table XI(a)>. 
3 )  The state-collection/task-transfer delays get large 

The possibility of "improper" task transfers as a result of using 
outdated state information increases under condition 1 and 3,  
but under condition 2 tasks with tight laxities are less immune 
to improper task transfers. All of these conditions can be 
handled by characterizing the inconsistency between the true 
state and the outdated observation with Bayesian analysis. 

Statistical Fluctuations in Task Arrival: One issue in us- 
ing a Bayesian decision model is to what extent the pro- 
posed scheme remains effective when the task arrival pattern 
randomly fluctuates. This effect is evaluated by simulating 
different task sets with hyperexponential interarrival times. 
This represents a system potentially with bursty task arrivals, 
and the degree of fluctuation over short periods is modeled 
well by varying the coefficient of variation (CV) of the 
hyperexponential task interarrival times. Specifically, let Tt 
be the task interarrival time. By Chebyshev's inequality, we 

Benefit of Using Bayesian Decision Analysis: To 

(Table XI(a)). 

(Table XI(b)). 
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TABLE XI-A 
Pdynld WITH AND WITHOUT THE USE OF BAYESIAN ANALYSIS 

BE 10% OF THE EXECUTION TIME OF THE TASK TRANSFERRED 

IN THE PROPOSED SCHEME: Pdyn1d VS. TASK LAXITY d FOR 
DIFFERENT TASK SETS. TASK TRANSFER COSTS ARE ASSUMED TO 

TABLE XI-B 
Pd, WITH AND WITHOUT THE USE OF BAYESIAN ANALYSIS IN THE PROPOSED 

SCHEME’ Pdyn VS TASK TRANSFER COSTS FOR THE TASK SET WITH 
~ = O 8 , ~ ~ = { O 4 , 0 8 , 1 2 , ~ 6 ) 0 ~ ~ , A N D ~ = { 1 . 2 , 3 } ~ ~ ~  

get the following equation: 

i.e., the smaller CV2, the less likely it is that Tt will deviate 
from its mean, E(Tt).  Fig. 7 shows the simulation results 
under heavy system loads (A = 0.8) where the LS performance 
is sensitive to the variation of CV. From Fig. 7, we draw the 
following conclusions. 

The two curves labeled as the proposed scheme and the 
proposed scheme without using Bayesian analysis give 
another evidence that LS does benefit from the use of 
Bayesian decision theory. 
The performance of the proposed scheme degrades as 
CV increases. The proposed scheme remains effective 
up to CV = 5.42 (or CV2 = 30), however, beyond 
which it reduces essentially to the scheme without using 
Bayesian decision analysis. 

VI. CONCLUDING REMARKS 

Using prior or posterior distributions and Bayesian analysis, 
we proposed a new LS scheme that can estimate, even with 
out-of-date state information, the workload of other nodes, and 
select the best candidate receiver of each unguaranteed task. 
The probability of dynamic failure as a result of using out-of- 
date information is thus reduced significantly. Moreover, as 
the simulation results indicate, the ability of making Bayesian 
decisions based on imperfect state information makes this 
scheme insensitive to communication delays. The proposed 
scheme is also shown to be robust to the variation of tunable 
parameters used in adaptive LS. 

In a companion paper [27], using the continuous-time 
Markov chain embedded in the corresponding Markov process, 
we developed an analytic model that describes the state 
evolution of a node with Poisson arrivals for several LS 
schemes. Specifically, the state of a node is defined as the 
CET on that node, and is modeled as an M[‘l]lD/I queue with 
bulk arrivals. The task arrival rate at a node is a function of 
the node’s CET and the transferflocation policies used. 
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