
704 IEEE TKANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5 , NO. 7, JULY 1994

Design and Evaluation of Effective Load Sharing
in Distributed Real-Time Systems

Kang G . Shin, Fellow, IEEE, and Chao-Ju Hou, Member, IEEE

Abstract- In a distributed real-time system, uneven task ar-
rivals temporarily overload some nodes and leave others idle or
underloaded. Consequently, some tasks may miss their deadlines
even if the overall system has the capacity to meet the deadlines
of all tasks. An effective load-sharing (LS) scheme is proposed
as a solution to this problem. Upon arrival of a task at a node,
the node determines whether the node can complete the task in
time under the minimum-laxity first-served policy. If the task
cannot be guaranteed, or if guarantees of some other tasks are
to be violated as a result of the addition of this task to the
existing schedule, the node looks up the list of loss-minimizing
decisions and determines the best node among a set of nodes in its
physical proximity, called its buddy set, to which the task(s) may
be transferred. This list of decisions is periodically updated using
Bayesian decision analysis and prior/posterior state distributions.
These probability distributions are derived from the information
collected via time-stamped state-region change broadcasts within
each buddy set. By characterizing the inconsistency between a
node’s “observed” state and the corresponding true state with
prior and posterior distributions, the node can first estimate the
states of other nodes, and then use them to reduce the probability
of transferring a task to an “incapable” node. Moreover, the
use of prior and posterior distributions and Bayesian analysis
has made the proposed scheme robust to the variation of design
parameters that usually require fine-tuning for adaptive LS. The
performance of the proposed scheme is evaluated via simulation,
along with five other schemes: no LS, LS with state probing, LS
with random selection, LS with focused addressing, and perfect
LS. The proposed scheme is shown to outperform all but perfect
LS scheme in meeting task deadlines and tolerating the delays
in state collection and task transfer. The impact of statistical
fluctuations in task arrival patterns on the performance of the
proposed scheme (in particular, the Bayesian decision analysis
part) is also analyzed via simulation to show the robustness of
the proposed scheme over a wide range of task arrivals.

Index Terms-Deadlines, real-time systems, load sharing, loca-
tion and transfer policies, Bayesian decision theory, performance
e v a I u a t i o n

Manuscript received June 7, 1992; revised March 3, 1993. This work was
supported in part by the Office of Naval Research under Grant N00014-92-
5-1080, and the National Science Foundation under Grant DMC-872 1492.
Any opinions, findings, and conclusions or recommendations expressed in
this paper are those of the authors and do not necessarily reflect the views
of the funding agencies.

K.G. Shin is with the Real-Time Computing Laboratory, Department of
Electrical Engineering and Computer Science, University of Michigan, Ann
Arbor, MI 48109-2122 USA; e-mail: kgshin@eecs.umich.edu.

C.-J. Hou was with the Real-Time Computing Laboratory, Department of
Electrical Engineering and Computer Science, University of Michigan, Ann
Arbor, MI 48109-2122 USA. She is now with the Department of Electrical and
Computer Engineering, University of Wisconsin, Madison, WI 53706 USA.

IEEE Log Number 9401 199.

I. INTRODUCTION

HE AVAILABILITY of inexpensive, high-performance T processors and memory chips has made it attractive to
use distributed computing systems for real-time applications.
Because task arrivals are usually uneven among the nodes
of a distributed system and/or because the processing power
varies from node to node, some nodes may get temporarily
overloaded while others are left underloaded or idle. Livny
and Melman [l] showed that in a network of autonomous
nodes with a large probability, at least one node is idle
while many tasks are being queued at other nodes. Thus, we
need to develop an effective method that will enable idle or
underloaded nodes to share the loads of overloaded ones.

Load sharing (LS) in a distributed real-time system is
different from that in a general-purpose system in that the
latter tries to either achieve perfect load balancing among the
nodes and/or to minimize average task response time, whereas
the former is intended to minimize the probability of failure
to complete each real-time task in time; this was termed the
probability of dynamic failure, P d y n , in [2] , [3]. Upon arrival of
a real-time task, each node determines whether it can complete
this task in time. If it can, the node will execute the task
locally; otherwise, some other “capable node” will be chosen
to execute the task [4]-[1 11. By a “capable node,” we mean a
node with unused resources enough to complete transferred-in
task(s) in time. As was discussed in [6], LS in a distributed
system is dictated by two basic policies: the transfer policy for
determining when to transfer a task, and the location policy
for determining where to transfer the task. In the context of
real-time applications, the transfer policy determines whether
a task can be guaranteed (i.e., completed in time) locally, and
the location policy determines which other node is most likely
to guarantee the task to be transferred.

According to the properties of these two policies, LS
schemes can be classified into three categories: determinis-
tic, probabilistic, and dynamic or adaptive [4], [8], [12]. A
deterministic approach allows an overloaded node to transfer
unguaranteed tasks with a fixed pattern; e.g., all unguaranteed
tasks on node i are transferred to node j . A probabilistic
approach, on the other hand, transfers tasks with prespecified
probabilities, e.g., an overloaded node i will transfer its
unguaranteed tasks to node .J’ with probability PiJ. By contrast,
an adaptive approach uses state information for their location
policy. The state of a node may be the number (or queue length
(QL)), or the cumulative task execution time (CET), of tasks
queued for execution on the node, the number and type of

1045-92 19/94$04.00 0 1994 IEEE

mailto:kgshin@eecs.umich.edu

SHIN AND HOU: DESIGN AND EVALUATION OF EFFECTIVE LOAD SHARING 70s

available resources, or a function or combination thereof. The
node makes LS decisions based on the information collected
via either periodic or aperiodic state broadcasting [8], [13],
[14] or state probing or bidding [9], [11], [15]-[17].

Both deterministic and probabilistic approaches do not
use the state information, and thus cannot react to dynamic
situations. Because an adaptive approach can adapt itself to
dynamically changing conditions, it is naturally expected to
outperform nonadaptive approaches in meeting task deadlines.
However, the required state probing or broadcasting could
incur significant communication overheads, thus delaying the
execution of tasks to be transferred. Moreover, the collected
state information may be out-of-date because of the delay
in collecting it [18]. That is, a node’s observed states of
other nodes may be different from their true states at the
time of making LS decisions. This difference often degrades
the performance of adaptive LS, as was analyzed in [16],
[17]. (Note, however, that the authors of [16], [17] did
not propose any means to alleviate or eliminate this prob-
lem.)

To reduce the performance degradation caused by the de-
lays in state collection andor task transfer, we propose a
new LS scheme using Bayesian decision theory as well as
the concept of buddy sets, preferred lists, and state-change
broadcasts in [14]. The basic ideas used here will be de-
tailed in Section 11. Using several performance metrics, such
as I‘dyn, the task transfer-out ratio, and maximum system
utilization, we comparatively evaluate the proposed scheme
along with five other schemes: no LS, LS with state probing,
LS with focused addressing, and LS with random selection,
and perfect LS. Our numerical results indicate that the pro-
posed scheme outperforms all but the perfect LS scheme in
minimizing I‘dyn.

LS approaches proposed for general-purpose distributed
systems are designed to minimize average system sojourn
time or average response time, instead of minimizing Pdyn .

Moreover, QL is usually used as the state of a node, which
is obviously inadequate for real-time applications if task
execution times are not identical. In this paper, we not only
tailor both the transfer and location policies to handle real-time
applications but also use CET as the state of each node and
Pdrn as the performance metric. Furthermore, we use Bayesian
analysis to reduce the performance degradation caused by the
delays in collecting state information and transferring tasks,
which, despite its importance, is seldom addressed in literature
(except for [16], [17]). We also study, via simulation, the
potential impact of the time-varying behavior of task arrivals
on the performance of the proposed scheme (especially on the
Bayesian analysis part).

The rest of this paper is organized as follows. The basic
ideas of the proposed scheme are described in Section 11. The
Bayesian decision model used is presented in Section 111. How
both the components of the Bayesian decision model and the
concepts presented in [I41 can be accommodated into our LS
scheme is also described there. Section IV describes how each
node constructs prior and posterior probability distributions,
and updates loss-minimizing decisions. In Section V, we
evaluate via simulation 1) the performance of the proposed

LS scheme along with five other schemes, and 2) the effect
of bursty task arrivals on the performance of the proposed LS
scheme. The paper concludes with Section VI.

11. BASIC IDEAS OF THE PROPOSED SCHEME

In order to reduce the overheads associated with state
collection and task transfer, the LS scheme in [I41 requires
each node to collect and maintain the state information of
only those nodes in its physical proximity, called a buddy set.
When a node cannot complete a real-time task in time, only
those nodes in its buddy set are considered for transferring this
task. In [141, four state regions determined by three thresholds
of QL are used to characterize the workload of each node:
underloaded, medium-loaded, fully loaded, and overloaded. A
node will broadcast the change of state region to the nodes
in its buddy set only when it switches from underloaded to
fully loaded and vice versa. The state information kept at each
node is thus up-to-date as long as the broadcast delay is not
significant. Based on the topological property of the system,
each node orders the nodes of its buddy set into a preferred
list such that a node is the kth preferred node of one and
only one other node, where k is some integer [19]. When a
node is unable to complete a task in time, it will transfer the
task to the first “capable node” found in its preferred list.
That is, the preferred lists are used a5 an effective means of
selecting a receiver among several possible candidate nodes
while minimizing the probability of more than one overloaded
node, simultaneously sending tasks to the same underloaded
node.

Communication delays may still occur and thus degrade
system performance unless the size of buddy set is kept very
small, in which case the LS capability of the whole system
may not be fully utilized. Thus, Bayesian decision theory is
used to counter the communication delay problem, as shown
in Fig. 1 . Fig. 1 shows the actions that the scheduler on each
node should take for the following four cases:

1) when a new task arrives,
2) when a state-region change broadcast is received,
3) when current CET crosses TH2k, 1 5 k 5 - 1, and
4) at every Tp clock ticks.
Those tasks already queued at a node are sorted by their

laxities and executed on a minimum-laxity first-served (MLFS j
basis. (Note that the laxity of a task is defined as the latest
time at which a task must start execution in order to meet
its deadline.) Upon arrival of a real-time task at a node, the
scheduler checks whether the CET on that node contributed
by those tasks with laxity smaller than this task is less than
or equal to the laxity of the new task. If it is not, the new
task has to be transferred, and the node’s task queue remains
unchanged; if it is, the new task is inserted into the task
queue, and if this insertion leads to violation of existing
guarantees, those tasks whose guarantees are violated need
to be transferred to other capable nodes. By “guarantee,” we
mean the node has enough resources to complete the task in
time upon its arrival. A granted guarantee may be deprived
later because of the arrivals of tighter-laxity tasks under the
MLFS policy.

706 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 7, JULY 1994

describe how the proposed LS scheme can be cast into a
Bayesian decision model.

A. Preliminaries

end

When a hroadcart nizssagr arr

When rurrent-CET C ~ O S

broadra-1 f lw , ta t?

A1 ever) Tp clack rirkc

tThe task queue Q 1s ordered b* L
$11 L node anlactpatcr. based on
Imk IS declared to he lost a i d d .

Fig. 1 . Operation-of the task scheduler on each node.

K state regions, obtained from K - 1 thresholds,
TH1, TH2, . . . , THK-1, are used to describe the workload
of each node.' Each node will broadcast a time-stamped
message, informing all of the other nodes in its buddy set of a
state-region change whenever its load crosses TH2k for some
k , where 1 5 k 5 - 1. The reason for not broadcasting
the change of state region whenever a node's load crosses any
threshold is to reduce the network traffic resulting from region-
change broadcasts. Moreover, the reason for not combining
two adjacent state regions into one and then broadcasting the
change of state region whenever a node's load crosses any
threshold is to include finer information in each broadcast,
and thus to construct more accurate posterior distributions.

By collecting time-stamped state samples and by keeping
track of the corresponding observations at the times these
samples were taken, each node can construct the prior or
posterior distributions. These distributions characterize the
inconsistency between the node's observed and true states of
other nodes, and are used to periodically (once every Tp clock
ticks) update the loss-minimizing decisions with Bayesian
theory. As will become clear, the undesirable effects of the
delay in broadcasting state-region changes or transferring tasks
are eliminated by using these prior or posterior distributions.
Whenever a node cannot guarantee a task, the node's scheduler
looks up the list of loss-minimizing decisions, and choose,
based on the current state information, the best candidate
node for transferring this task such that the expected loss
is minimized with respect to the conditional (or posterior)
probability distribution.

111. BAYESIAN DECISION MODEL

Conceptually, the task scheduler of a node can be modeled
as a Bayesian decision maker. In what follows, we shall

IC is a tunable parameter that is discussed later.

The Bayesian statistical structure is a very powerful mod-
eling tool when one has to make decisions based on some
observations. The elements of a Bayesian decision problem are
a parameter space (a space of state of nature) 0, a decision
space D, and a real-valued loss function L that is defined
on the product space R D [20], [21]. For any point
(w , d) E 0 x D , the quantity L (w , d) represents the loss
when the value of the outcome W of the space R is w and d
is the decision chosen.

If P is any given probability distribution of the parameter
W , then for any decision d E D , the expected loss or risk,
((P , d) , is given by the following equation:

x

((P , d) = J L(w: d) d P (w) . (1)
R

It is assumed that the integral in (1) is finite for every d E 0.'
We now want to choose a decision d that minimizes the risk
((P, d). The Bayes risk (* (P) is thus defined to be the greatest
lower bound for the risks <(P, d) Vd E D , i.e., as follows:

<*(P) = inf ((P , d). (2)
D

Any decision d* whose risk is equal to the Bayes risk is called
a Bayes decision with respect to the distribution P.

In many decision problems like the one we are going to
discuss, before choosing a decision from D, we observe the
value of a random variable X that is related to the parameter
W . The observation of X provides us with some information
about the value of W that may be useful in making a good
decision. The essential component of problems of this kind
is, in addition to a parameter space 52, a decision space D,
and a loss function L, a family of sampling functions { f (. lw) ,
w E S Z } of observation X . Let S denote the sample space of all
possible values of X . With the family of sampling functions
and the (prior) probability distribution, P, of W, we can
calculate the conditional distribution of W , given X , P ~ i x ,
as follows:

Now we must choose a decision function 6 that specifies, for
every possible value x E S, a decision 6(x) E D with the
expected loss, given the observation x as follows:

C (~ W (X - = z , S (5)) = L(w, 6(x))dPwlx=&). (4)

Note that (4) is almost the same as (l) , except that P has
been replaced by Pwj~,,. That is, given the observation of
X , the decision problem remains unchanged, except that the
distribution of W has changed from the prior to the posterior
distribution. Thus, any minimizing decision d* (x) is simply
a decision that yields the smallest expected loss under the

2Any decision d for which this assumption is not true can usually be
eliminated from the set D.

SHIN AND HOU: DESIGN AND EVALUATION OF EFFECTIVE LOAD SHARING 707

conditional distribution of W when the observed value of X
is z. In other words, $(x) is a Bayes decision against the
conditional distribution of W when X = x.

B. Components of the Bayesian Decision Model

This subsection describes how to apply Bayesian decision
theory to adaptive LS, and how to accommodate both the
components of the statistical model and the concept of [14]
into our scheme.

Parameter Space: The parameter space is defined as R =
R I x 0 2 x . . . x On, where n is the number of nodes in a
buddy set and Ri is the parameter space for node i . Note
that the size of state space and the overhead of broadcasting
state-region changes are greatly reduced by using the buddy
sets. The parameter space, Ri, may be defined by QL, CET,
resource available time (RAT) on node i , or a combination
thereof, depending on task characteristics and performance
requirements. For example, if all tasks have an identical
execution time, QL suffices to express each node’s workload;
otherwise, CET must be used. Because execution time varies
from task to task, the state of a node is defined to be its CET.
The dimension of the state can be augmented if more than one
resource is needed to execute tasks.

Probability Distribution on Parameter Space: The proba-
bility distribution on parameter space is the joint probability
distribution of Ri’s, e.g., Pw(g) = Pw(w1 , ~ 2 , . . . , w n) ,
where wi is the CET of node i and n is the number of nodes in
a buddy set. The marginal probability distribution on Ri, Pw, ,
can be obtained from PW by integration. We construct these
probability distributions by collecting state samples through
region-change broadcasts (to be discussed in Section IV).

Set of Available Decisions: The set of available decisions
is D = { d l , d2; . . . , d,}, where di denotes the decision to
move one task from the current node to node i . Other options
are also possible. For example, if a locally unguaranteed
task is extremely important, then one may want to move it
simultaneously to two or more nodes so that the probability of
dynamic failure can be minimized. In such a case, a decision
d i j is added to the set of available decisions, which denotes
the transfer of a task to both node i and node j .

Set of Loss Functions: The set of loss functions is defined
as {LTd,Td E (O,T,,,]}, where L describes the ‘‘loss’’
resulting from each combination of state and decision, given
that the laxity, which equals deadlinexxecution timexurrent
time, of a locally unguaranteed task, is Td. T,,, is the largest
task laxity in the system. If P d r n is the main concern, the loss
function may be defined as follows:

where S(x) is the unit step function. In such a case, minimizing
the expected loss is equivalent to minimizing the probability
of dynamic failure. The loss function can also be defined as
follows:

if the task needs to be executed not only before its deadline
but also as early as po~sible.~.

Sample Space of Observation: The sample space of obser-
vation, S , is the set of all possible observations. Specifically,
S = SI x Sz x . . . x S,, where Si is obtained by dividing
the parameter space W; for each node i into the K regions
determined by K - 1 thresholds, TH1, TH2, . . . , T H K - ~ . Node
i is said to be in the kth region if THk 5 wi < THk+1, where
k 2 0, and THO = 0.

Note that the knowledge of a node’s state region is not
sufficient to determine accurately its capability of guaranteeing
arbitrary tasks. For example, a node with its state in a high-
numbered state region may still be able to guarantee an
arriving task with a large laxity, whereas a task with a small
laxity may not be guaranteed even by a first-region node if the
CET on that node is greater than the task’s laxity. Thus, unlike
in [5] , [6], [14], [22], these thresholds serve only as reference
points, rather than indicating a node’s capability of meeting
task deadlines. As discussed in Section V, the performance
of the proposed scheme is rather insensitive to the choice of
threshold values.

Each node will broadcast a time-stamped message, inform-
ing all the other nodes in its buddy set of a state-region
change whenever its state crosses THzk, 1 5 k 5 - 1.
Upon receipt of a region-change broadcast, every node in the
buddy set will update its observation of the broadcasting node
accordingly. The delay in broadcasting a region-change may
cause inconsistency between the observed and true states of
a node. We characterize this inconsistency by constructing
prior or posterior distributions (to be discussed in Section
IV). So, based on the observation xi, a node can estimate
the state of node i by using the prior or posterior distributions
constructed from the samples collected through time-stamped
region-change broadcasts.

Family of Sampling Functions: The family of sampling
functions, {fxlW(.lg),g E a}, describes the conditional
probability distribution of the observation X , given the state
W = g. These probability distributions are derived from
the samples gathered through time-stamped region-change
broadcasts. With the prior probability distribution PW and
these sampling functions fxlw, one can derive the posterior
probability distribution Pwlx by using the Bayes rules [20]
that is needed to compute the expected loss with observations.

a

Iv . REGION-CHANGE BROADCASTING, PRIOR OR
POSTERIOR PROBABILITY DISTRIBUTIONS

AND LOSS-MINUIIZING DECISIONS

As mentioned earlier, the delay in region-change broadcasts
may cause the collected information to be out-of-date. For
example, consider the following scenario: After broadcasting
a state-region change, say from 3 to 1, node i switches back to
region 3 because of the arrival of new tasks andor transferred-
in tasks4 Upon receipt of the broadcast from node i , node j
may decide to send a task to node i, because it is unaware that

3LTd could be negative in this case; the more negative L T d , the more

4These tasks may have been sent by other nodes before the broadcast, but
early the task is executed.

arrived at node z after the broadcast because of task-transfer delay.

708 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5. NO. I , JULY 1994

node z has switched back to region 3 shortly after broadcasting
the 3 + 1 region-change. If node j , instead of hastily believing
in what it observed, can compute the probability that node i
is indeed capable of guaranteeing task(s) and decide whether
to send the task to node i , then the probability of dynamic
failure could be significantly reduced. To this end, we shall
characterize the inconsistency between the observed and true
states with prior or posterior distributions.

The first step is to construct both the probability distribution
on the parameter space and the conditional probability distri-
bution of an observation. These two distributions, in general,
vary over both nodes and time in a dynamic environment.
Thus, to monitor the dynamics of the system, each node must
collect state samples on-line and construct these distributions
from the samples gathered via region-change broadcasts. The
methods for collecting state samples, constructing probabil-
ity distributions, and deriving loss-minimizing decisions are
discussed in the following subsections.

A. Collection of State Samples

- l),
the node will broadcast, to all the other nodes in its buddy set,
a instant time-stamped message that contains node number i ,
the state wf before the change of state region, the state w: after
the change, and the time t o when wp was sampled. When the
message broadcast by node i arrives at node j , node i ’ s state
w t can be recovered by node j using the node number field
and the state field, from which PW can then be calculated.
Node j can also trace back to find out its observation xi at
time t o . This observation 5; is node j ’ s observation of node
i ’ s state at the time when node i was actually in state w:.
xi’s, along with wg’s, are used to construct fxlw. (Here we
assume that the node clocks are synchronized to establish a
global time-base. A scheme for achieving this synchronization
is presented in [23].) Any inconsistency between w t and xi at
time t o is characterized by this probability distribution. The
only effect of the delays in task transfers and region-change
broadcasts is that messages (tasks) may not arrive at a node
immediately after their broadcast (send), and thus may become
obsolete upon their arrival at other nodes. The correctness of
all samples gathered, however, is not affected by these delays.
Besides, ws sent by node i at time t o is considered as node
j ’ s new observation of node i at the time this message is
received, rather than at time tof > to .

A primary advantage of region-change broadcasts over
periodic state broadcasts is the elimination of the need to
determine an “optimal” exchange period-a very difficult
task because it depends on workload characteristics and has to
weigh the tradeoff between the resulting increase in network
traffic and the negative effect of using out-of-date information.
Moreover, as we shall see, the threshold values have only
minor effects on system performance (as a result of using
Bayesian analysis).

Whenever a node’s state crosses TH2k (1 5 k 5

B. Derivation of Probability Distributions

Each node updates, once every Tp units of time, the prob-
ability distributions using all of the samples gathered so far,

and recalculates the loss-minimizing decisions. Tp should be
chosen to reflect the fluctuation of system load and the number
of samples required for the specified level of confidence in the
results obtained.

The general rule for updating the probability distribution of
W is as follows:

where Pu is the updated probability distribution, PT is cal-
culated from the samples gathered over the last Tp units of
time, and Po is the old probability distribution. That is, the
updated probability distribution is a weighted sum of the
distribution calculated from the samples gathered within the
last Tp units of time and the old probability distribution. The
ratio a(0 < a 5 1) represents the tradeoff between obtaining
better averages and reflecting load changes. One may increase
(decrease) a if system load varies rapidly (slowly). The same
rule may be applied to update the sampling functions, fxlw.

Noninformative probability distributions (e.g., uniform dis-
tributions) or some default probability distributions (obtained
from previous experiences) may be used as the initial distri-
bution of W and the sampling functions. According to our
simulation results, the performance of the proposed scheme
is found to be rather insensitive to the choice of an initial
probability distribution. Each node may initially rely on the
preferred list for LS decisions. This is because both prior
and posterior distributions will be iteratively updated as time
goes on, and usually represents the true system characteristics
after two or three updates. Besides, if the task arrival pattern
on each node does not change drastically with time, the
probability updating process need not be executed often once
the probability distributions are well-tuned.

C. Calculation of Loss-Minimizing Decisions

With the prior distribution of W and the sampling function,
f x j W , one can calculate the posterior distribution Pwlx by
using the Bayes rule (3). For each possible observation g E S,
and for each possible laxity T d E (O,T,,,], a node then
computes the expected loss associated with the decision d i ,
given the observation g and the laxity Td as follows:

for i = 1, . . . ,n. The decision di = f i T d (g) that yields the
minimum expected loss is chosen as the optimal decision,
given the observation :. A tie will be broken by choosing, from
the preferred list, the first d; with the minimum expected loss.’.
Because of the way in which LTd(g, d i) was defined, and be-
cause of the assumption that Wi is stochastically independent
of the state of node j for j # i [6] , the computation of the
expected risk, CTd (P w ~ ~ = ~ , d i) , depends only on the marginal
probability distribution, PW,IX, (w;) . That is, if LTd(g, d ;) =

5The nice property (of the preferred lists) in distributing unguaranteed tasks
among capable nodes is thus maintained in the proposed scheme.

SHIN AND HOU: DESIGN AND EVALUATION OF EFFECTIVE LOAD SHARING 709

S(wi - Td), then we get the following equation:

In other words, the expected loss of adopting decision d i , given
the observation g and the task laxity Td, is the probability that
node 2’s CET is greater than T d . The second equality in (6)
follows from the property of total probabilities, and the third
equality results from the assumption that Wi is stochastically
independent of the observation X j of node j , j # i, i.e.,
P W , ((X , , X ~ , . . . ,x,)(w;) = P W , I X , (W ~) . Similarly, we have the
following:

if LTd (g, d i) = wi - Td. The set of loss-minimizing decisions,
{ S T d (g) : g E S,Td E (o , T ~ ~ ~] } , is a list of decisions to
choose for each possible observation and each possible task
laxity. Once these calculations are completed, a task scheduler
needs to look up a table only when determining an LS decision
for a given observation g.

V. PERFORMANCE EVALUATION

To demonstrate the effectiveness of the proposed LS
scheme, we simulated it under the assumption that interarrival
times of external tasks are exponentially distributed. Note
that periodic tasks constitute the “base load” of a real-time
system and are usually statically allocated to the nodes in
the system, as shown in [24]. An LS scheme is then used to
dynamically distribute aperiodic tasks as they arrive, and their
arrival is known to be well modeled as a Poisson process.
After their initial allocation, periodic tasks, albeit rare, may be
redistributed subject to aperiodic task arrivals and the current
systemwide state. In such a case, a Poisson task arrival model
may prove appropriate for assessing the performance of the
proposed LS scheme. Note, however, that the proposed LS
scheme is not restricted to Poisson models.

The proposed scheme and three other LS schemes are
comparatively evaluated. The schemes under consideration
differ in the way a node treats locally unguaranteed tasks as
follows.

The state probing scheme: A node with an unguaranteed
task randomly probes up to some predetermined number
of nodes and transfers the task to the first capable node
found during the probing.
The random selection scheme: Each locally unguaranteed
task is sent to a randomly selected node.
The focused addressing scheme: Each node exchanges
state information periodically. A node sends its unguar-

anteed task to a node (called the focused node), which
is randomly selected among those nodes “seen” to be
capable of guaranteeing the task. (If such a capable node
does not exist, the node itself becomes the focused node.)
Meanwhile, the node also sends request-for-bid (RFB)
messages to all the other nodes in the system, indicating
that bids (which contain the CET of the bidding node)
should be returned to the designated focused node. If the
focused node cannot guarantee the task, it chooses, based
on the bids received, a capable node for transferring the
task (ties are broken randomly); otherwise, the task is
queued on the focused node, and the received bids are
used to locate the receiver nodes for those tasks, if any,
whose guarantees become invalid as a result of accepting
the transferred task. The bids received at the focused
node are also used to update the observation of other
nodes’ states. If neither the focused node nor the bidding
nodes can guarantee the task (or if any of those tasks
whose guarantees are violated because of the acceptance
of the transferred tasks), the task is declared to be lost and
thrown out. To avoid poor central processing unit (CPU)
utilization, RFB messages do not require nodes to reserve
CPU cycles or any other resources needed to execute the
task to be transferred until it actually arrives. When a task
arrives at a node whose bid has already been accepted, the
node will check again whether the task can be guaranteed.
This is a simplified version of the scheme proposed in
[11], [15]. It also differs slightly from that of [11], [15]
in the way that a node chooses the focused node. The
authors of [11], [15] used the percentage of free time
during the next window (which is a design parameter) and
many other estimated parameters to determine the focused
node or the node to which the task must be transferred
again. However, we use the observed CET of other nodes
to determine the node(s) for transferring tasks.
The proposed scheme: A node sends each unguaranteed
task to another node in its buddy set, based on a tech-
nique that combines preferred lists, state-region change
broadcasts, and Bayesian analysis.

These schemes are compared with one another as well as with
two other baseline schemes. The first baseline scheme assumes
no load sharing, and the second is an ideal scheme where each
node has complete information on the workload of other nodes,
without incurring any overhead in collecting it.6

A 16-node regular system7 is used as an example for
the simulations. For convenience, all time-related parameters
are expressed in units of average task execution time, E(R) .
The size of the buddy set is chosen to be 10, because the
performance improvement achieved by increasing it beyond
10 was shown in [14] to be insignificant. The maximum
number of nodes to be probed randomly for each locally
unguaranteed task is restricted to 5 based on the finding in [6].
The computational overhead for each bidding, state probing,

6This cannot, however, be modeled as an MIMIn queue, because of the
transfer policy used and because the service time is fixed at 1.0, as compared
to the perfect load sharing in [6].

’A system is said to be regular if all node degrees are identical.

710 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 7, JULY 1994

region-change broadcast, and probability distribution update is
assumed to be 1%, 1%, 1010, and 2% of E (R) , respectively.

Each communication medium or link is equipped with
buffers, and transferred tasks or broadcast messages are queued
and/or transmitted in order of their arrival. No priority mech-
anism regulates the transmission over the medium; i.e., a
FCFS rule is assumed. Unless specified otherwise, the delay
associated with each task transfer is assumed to be 10% of
the execution time of the task being transferred. The queueing
delay due to task transfers, region-change broadcasts, requests
and responses for bids, and state probes dynamically changes
with system load and traffic, and is modeled as a linear
function of both the average external task arrival rate and the
number of tasks or messages queued in the particular medium
or link. (The linear coefficients are denoted as queueing delay
coefficients.)

Let qi(1 5 i 5 m) and @ (O 5 j 5 T,,,) rep-
resent, respectively, the probability that an external (local)
task requires i units of time to execute and that a task
has laxity of j units of time. For notational convenience,
{el, e 2 , . . . , e k } ~ q , , , q , , ,.,,, q e k 1 is used to denote the task set
in which a task requires execution time ei with probability
qe,, V i If qe, = qV ei. then {qe l q e z , . . . , qek } is condensed to
q. Similarly, {[I, &, . . . ~ &}idcl ,de, ,..., d P , 1 is used to describe
the distribution of task laxity. The simulation was carried out
for a task set with the external task arrival rate on each node
varying from 0.2 to 0.9, the ratio of (1 5 j 5 k - 1)
varying from 2 to 10 units of average execution time,* and
the ratio of of (1 5 j 5 n - 1) varying from 2 to 6.
Because of space limitation, we present only representative
results. In spite of a large number of possible combinations of
task arrival rates, task execution time distributions, and task
laxity distributions, the results are found to be quite robust
in the sense that the conclusion drawn from the performance
curves for a task set with the given task execution and laxity
distributions is valid over a wide range of combinations of
task execution time and laxity distributions.

For each combination, the simulation ran until it reached a
confidence level of 95% in the results for a maximum error

e 3

one-half of the confidence interval) of the following:
2% of the specified probability if Pdyn is the measure
of interest,
0.2% of the specified response time value if response
time is the measure,
5% of the task arrival rate if the maximum system
utilization is the measure, and
5% of the ratio, frequency, or fraction value if task
transfer-out ratio, frequency of broadcasts or state
probes, or fraction of idle time, is the measure.’

We first determine the tunable parameters used in the
proposed scheme. Second, we evaluate and compare different
schemes with respect to several important performance metrics

‘For convenience, E (R) is normalized to I

’The number of simulation experiments needed to achieve the above
confidence interval is calculated based on the assumption that the parameter
to be estimated or measured has a normal distribution with unknown mean
and variance.

obtained from the simulations. Then we analyze the effect of
the following:

1) varying processing or communication overheads,
2) using FCFS (instead of MLFS) as the local scheduling

policy,
3) excluding the Bayesian decision analysis from the pro-

posed scheme, and
4) statistical fluctuations in task arrival (representing bursty

task arrivals) on the performance of the proposed LS
scheme.

A. Determination of Tunable Parameters in
the Proposed Scheme

The accuracy of prior or posterior distributions depends on
the values of such tunable parameters as the probability update
interval Tp, the probability update ratio a, and the number
(X) and values of state-region thresholds. It is, however,
difficult to objectively determine an optimal combination of
these parameters which will give accurate prior or posterior
distributions while incurring the least overhead. The main
reasons for this are as follows.

The choice of a and Tp depends on the application-
dependent variation of workload.
The number and values of thresholds must be determined
by optimizing the tradeoff between the resolution of
state-region division and the overhead of the resulting
region-change broadcasts. It is impossible to determine
the optimal number and values of state-region thresholds
without a closed-form expression for this tradeoff. More-
over, the optimal number and values of thresholds depend
on both the laxity and execution time distributions of the
task set.

Thus, we shall determine the tunable parameters for each task
set with the following two steps.

S1) We first fix all but one parameter of interest at a time
and obtain the performance curve as a function of
this parameter from which its optimal value can be
determined. Next we vary another parameter of interest
while keeping the first parameter fixed at its optimal
value and the rest of the parameters fixed at their
originally-chosen values. This process will be repeated
until all of the parameters have been varied.

S2) Because a different order of examining parameters in
S1 may lead to different results, there may be more than
one parameter set, from which we choose the one with
the smallest P d y n and, at the same time, reasonably
small processing or communication overheads (e.g.,
the processing power used for updating distributions
and calculating Bayesian decisions, the frequency of
region-change broadcasts, or the task transfer-out ratio)
as the “optimal” parameter set.

The sets of parameters obtained through the above two
steps may not be globally optimal, but our simulation results
have shown them to yield good results as compared to other
schemes. Moreover, as shown later, our simulation results in-
dicate that the proposed scheme is robust to the variation of the
tunable parameters. Thus, the result with a set of suboptimal

SHIN AND HOU: DESIGN AND EVALUATION OF EFFECTIVE LOAD SHARING

Threshold pattern Pdyn
0.4,0.5,0.G 7.6857 x

0.4,0.6,0.8 7.8406 x

0.4,0.8,1.2 8.0.502 x

0.4,1.0,1.6 1.2833 x lo-’

0.4,1.2,2.0 1.5104 x lo-’

7 1 1

Tash transfer-out i a f i o . I.

0.225

0.220

(1.2 I I

0.20-1

0 20;

TABLE I

ET = (0 . 4 . 0 . 8 . 1 . 2 . 1 . 6) ~ 25, AND L = {1 ,2 .3}1 /3
Tp FOR A TASK SET WITH = 0.8,

Threshold pattern Pdyn

0.1.0.5.0.9 7.1873 x

0.4,0.8,1.2 8.0502 x io-.’

0.8,1,2,1,6 1.2479 x lo -?

0.2.0.6,l.O 7.1967 x 10-3
~

0.6,1.0.1.4 1.0575 x lo-‘

8.0564 x lo-”

0.1902

7.196; x IO -”

200 7.46‘27 x 10-3 0.1946

500 7.8438 x 0.19S1

1000 7.9582 x

r Freq. of h o a d r a i t , J b

0.230 0.l9R7

0.2l(i 0.49 I:I

0.21 I 0 5i2.S

0.21:l O. i l2L

0.21 I (1.52 IO

parameters can still give a representative performance of the
proposed scheme.

Summarized below are some of the important findings in
determining the tunable parameters. The task set with the
task arrival rate X = 0.8, the distribution of task execution
time ET = {0.4,0.8,1.2, l.6}0.25, and the distribution of
task laxity L = {l.O, 2.0, 3.0}1/3 is arbitrarily chosen for an
illustrative purpose.

Probability Update Interval Tp and Probability Update Ra-
tio n: Frequent probability updates generate more accurate
distributions, and thus provide each node with better knowl-
edge of the inconsistency between its observation of other
nodes and the corresponding true states. This benefit must
be weighed against the associated overheads. As shown in
Table I, Pdyn for the proposed scheme with the threshold
pattern {0.2,0.6.1.0} first decreases as Tp increases from 10
to 100 (in units of the average task execution time), and then
increases as Tp increases further beyond 100. (The task set
with A = 0.4 exhibits a similar behavior, except that Tp,
which results in the smallest I‘dyn, is slightly increased.) The
probability update ratio a is chosen to be 0.5, because the
task arrival rate is constant over time; thus, the distribution
constructed from the state samples gathered before is as good
as that constructed from the state samples collected over the
last Tp units of time.

Selection of the default probability distributions (or, equiva-
lently, the default risk function C T d in (6) at the system startup
is shown to have only minor effects on system performance
as long as Tp is properly chosen. So, the initial posterior
distribution of CET is chosen to be uniform. The default risk
function can then be expressed as follows:

n where i 2 0 and THO = 0.
Threshold Patterns: We first analyze the effect of changing

the resolution of state-space division with the number of
regions fixed at 4. As shown in Table 11-A, Pdyn decreases
as the interval between two thresholds gets smaller, which is
henceforth called the threshold interval. (For convenience, all
threshold intervals are assumed to be identical; even if this

TABLE 11-A

EFFECTS OF THE THRESHOLD INTERVAL FOR A TASK SET WITH
EFFECTS OF THE NUMBER AND VALUES OF THRESHOLDS ON Pdyn

X = 0 . 8 , E T = { 0 . 4 , 0 . 8 , 1 . 2 , 1 . 6) o ~ 5 , A N D L = { 1 , 2 , 3 } ~ / ~

assumption does not hold, the following discussion remains
the same, except for more complicated descriptions.) The
decrease in Pdyn becomes insignificant, however, when the
threshold interval gets smaller than the least task execution
time within the task set. Thus, the threshold interval must
not be smaller than the least task execution time. Once the
threshold interval is selected, one can analyze the effects of
changing TH1 (and thus other thresholds). It is shown in
Table 11-B that Pdyn decreases as TH1 decreases. The change
in Pdyn again becomes insignificant as TH1 gets smaller
than the least task execution time. Note that in our proposed
scheme, selecting THl < the least task execution time <
TH2 is essentially equivalent to implementing the shortest
queue policy in [6], except that the ways of collecting state
information are different (the latter with state probing, and
the former with region-change broadcasting). Thus, a modified
shortest-queue policy (or TH1 5 , the least task execution time)
is preferred for the proposed scheme to minimize Pdyn.

One interesting phenomenon is that the frequency of region-
change broadcasts is relatively high when the thresholds
coincide with the task execution times. This is because the
acceptance or completion of a task makes a node’s CET easily
cross a certain threshold, thus resulting in an excessive number
of region-change broadcasts. Such types of thresholds are
ruled out. Thus, to implement the shortest queue policy while
avoiding excessive broadcasts, TH1 must be slightly smaller
than the least task execution time.

Number of State Regions: To analyze the effects of the
number of state regions on system performance, we ran
simulations while changing the number of regions from 2 to
6. A node broadcasts the change of state region whenever the
node’s CET crosses TH1, if only two state regions are used,
and whenever the node’s CET crosses TH2k, if K 2 3 state
regions are used, where 1 5 IC 5 - 1. The reason for
not broadcasting the change of state region whenever a node’s

712

2

3

4

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 7, JULY 1994

8.0932 x 10-3 0.5079

7.310X x O.iOS(i

i.1967 x o I 1) I:$ i

TABLE 111
EFFECT OF THE NUMBER OF STATE REGIONS ON Pciyn. TASK
S E T : E T = (O . ~ , O . ~ . ~ . ~ , ~ . ~ } ~ ~ ~ A N D L = {1,2,3} 1 / 3

(A = 0 4)

Task attributes

ET = {O 4.0 U.

I 2 , 1 fi)02.,

L = (1 . 2 , 3) 1 j 3

ET = (0 027,

027,2703)1,1.

L = { l , 2 , 3) 1 / 3

E T = (0 4 , t i U .

1 2 . I 6) o z s .

L = (I J

TABLE IV-A
Pdynld vs. TASK LAXITY d FOR DIFFERENT TASK SETS

UNDER DIFFERENT SCHEMES (A' = 16): X = 0.8

Lax No State

d sharing prohlng

I 0 1612 3 594 x l o - '
2 n 0421 5 401 1 0 - 0

3 O O I l i I i 8 2 x I @ - '

I 0 2854 2 270 x I V 3

2 O17fi l 2 3 4 G x I O - '

3 t i 0 8 1 5 2 6 9 3 ~ I O Y

I 0 lGG0 8 163 x IO-'

CET crosses any threshold is to reduce the network traffic
resulting from region-change broadcasts.

As shown in Table 111, P d y n decreases as the number of state
regions grows, and the decrease in P d y n becomes insignificant
when the number of regions grows beyond four. Moreover,
the frequency of region-change broadcasts remains essentially
unchanged when the number of regions is below four, but
increases as the number of regions grows beyond five. This
is because a finer resolution of state intervals results in more
reference points for region-change broadcasts. Thus, three or
four state regions suffice to give a satisfactory performance.

One significant result is that the proposed scheme is shown
to be robust to the variation of the tunable parameters, as
compared to the other schemes reported in [14], [17], [2 2] . The
change in P d y n is shown to be less than l o p 3 for any given
change in the threshold interval, or the number of state regions,
or the values of thresholds. This is an important advantage
coming from the use of prior or posterior distributions and
Bayesian analysis. The proposed LS scheme can thus provide
good performance, even with not-well-tuned parameters, as
long as the general rules discussed above are followed.

B. Evaluation of Pevormance Measures

Probability of Dynamic Failure: A task is said to be
missed, and a dynamic failure occurs, if the sum of its
queueing-for-execution time and the delay in transferring
the task exceeds its laxity. Let Pdynld denote the probability
of missing deadlines for a task with laxity d. Then we have
the following:

j = O

Figs. 2 and 3 are the plots of P d y n versus task arrival rate (A),
and Pdyn/d versus task laxity d, respectively. Table IV shows
some numerical results of Pdy+ under different schemes. As
was expected, P d y n increases as the system load gets heavy
and/or the task laxity gets tight.

The random selection scheme outperforms the state probing
scheme when the system load gets heavy (e.g., Table IV-A
versus Table IV-B) or when the task laxity gets tight (e.g.,
L = {1,2,3} versus L = (1) in Table IV-B), for the
following reasons.

1) Under heavy loads, most nodes are likely to become
unable of guaranteeing tasks, which will in turn make

TABLE IV-B

UNDER DIFFERENT SCHEMES (N = 16): X = 0.4
pdynlc l VS. TASK LAXITY d FOR DIFFERENT TASK SETS

2) Probing other nodes before sending an unguaranteed
task requires two communication messages (one for
request, and the other for response), whereas the random
selection does not require such messages.

This negative effect becomes more pronounced as laxities get
tighter.

The focused addressing scheme outperformed the state
probing and random selection schemes, but was inferior to
the proposed scheme, especially when the task laxity is tight,
for the following reasons.

The focused node or its successor node-the node to
which the focused node will retransfer the task-among
those "seen" capable is basically chosen randomly, thus
increasing the chance of two nodes sending their unguar-
anteed tasks to the same node.
Not many RFB messages are issued under light loads,
thus making a node unable to keep its observation of other
nodes up-to-date and increasing the chance of transferring
a task to an incapable focused node. This is intolerable
to tasks with tight laxities.
Requests and replies for bids become excessive under
heavy loads, thus increasing communication delays. The
state information collected via periodic state exchanges
or via the bids sent from other nodes may thus become
out-of-date.

In all cases simulated, the proposed LS scheme is shown to
outperform all but the perfect information scheme in meeting
task deadlines, showing its effectiveness achieved by using the
judicious collection and use of state information. It does not
perform as well as the perfect information scheme, because of

state probing unsuccessful most of the time. the additional processing overhead introduced by the probabil-

SHIN AND HOU: DESIGN AND EVALUATION OF EFFECTIVE LOAD SHARING 713

Fig. 2. Pdyn vs. task

1 .k-08 I I .? I I I I 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Task arrival rate

arrival rate for a 16-node system with a task set: ET = { 0 . 4 , 0 . 8 , 1 . 2 ,

l.oe+oo
x

'1 l.k-01 s
3

s.

a

e! = l.k-02
0

'$ 1.k-03
U *I

1 .k-04

f 1.k-05
8
1.b-06

1 . k - O l

1 . k - O E
1.5 2.0 2.5 3.0 3.5 4.0 4.5

A - . - A Nosharing
o.-- . . -o Stateprobing
o - - - o Random selection
+ + Focused addressing
- Proposed scheme

0 - . - 0 Perfect scheme

A -.-A Nosharing
0 .-..- o Stateprobing
0 - - - 0 Random selection

n - Proposed scheme
0 - . - 0 Perfect scheme

+ + Focused addressing

Laxily d

Fig. 3. P d y n ~ d vs. task laxity d for a 16-node system with a task set: X = 0.8, ET = {0 .4 ,0 .8 ,1 .2 ,1 .6}0 2 5 , and L = { 1 , 2 , 3 , 4 , 5 } 0 2) .

ity update process and the communication delays incurred in
task transfers and region-change broadcasts. See Table V for
the case where all processing or communication overheads are
set to 0 while holding the task-transfer delay at 10% of task
execution time. If the processing or communication overheads
were ignored, all the realistic schemes would perform much
better than they actually do, thus underestimating Pdyn, which
is undesirable for real-time applications.

Maximum System Utilization: The system utilization is de-
fined as the ratio of the external task arrival rate (A) to the
system service rate (l / E (R)) . The service rate is normalized
to 1 in our analysis, and thus the system utilization simply
becomes A. Because P d y n increases with system load (Fig. 2),
there exists an upper bound for A, termed as maximum system

TABLE V
Pdynld FOR A TASK SET WITH ET= {0 .4 ,0 .8 ,1 .2 ,1 .6}0 2 5

AND L = { 1, 2, 3}1,3 UNDER THE IDEAL CONDITION

Arrival I I.axity 1 No 1 State I Raniloin I ~ e ~ ~ O ~ 1 ~ 1

utilization A,,,, below which P d y n 5 6 can be guaranteed for
some prespecified t > 0. Fig. 4 shows plots of the maximum
system utilization versus t for a 16-node regular system. One

714 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 7, JULY 1994

v) ::

1 .o I I I I I I
I I I 1 A

No sharing
State probing
Random selection
Focused addressing
Proposed scheme
Perfect scheme

Probability of dynamic failure
Fig. 4. A,,, vs. I‘dyn for a 16-node system.

TABLE VI-C
COMPARISON OF TASK TRANSFER Uno AMONG DIFFERENT SCHEMES X = 0 4

TABLE VI-A
COMPARISON OF TASK TRANSFER RATIO AMONG DIFFERENT
SCHEMES: TASK TRANSFER Uno vs. TASK ARRWAL UTE

FOR THE TASK SET WITH ET = (0 4,O 8,1 2 , 1 6)o 25

AND L = {1 ,2 ,3}1 /3 UNDER DIFFERENT SCHEMES

TABLE VI-B
COMPARISON OF TASK TRANSFER Uno AMONG DIFFERENT SCHEMES: X = 0.8

important result is that we do not have to sacrifice system
utilization to lower Pdynr which is in contrast to the common
notion of trading system utilization for real-time performance.
Moreover, among all LS schemes considered, the proposed
scheme has the performance closest to the perfect information
scheme, and usually outperforms the other realistic schemes
by almost an order of magnitude.

Task Transfer-Out Ratio: A task arriving at a node has to
be transferred if and only if the CET of that node exceeds
the laxity of the task. The task transfer ratio, T , is defined as
the portion of arriving tasks (both external and transferred-in
tasks) that must be transferred. T is a measure of the traffic
overhead caused by task transfers. Table VI shows the values
of T for the various task attributes under different schemes.

Under light to medium loads (e.g., X = 0.2 - 0.4 in
Table VI), the task transfer ratios associated with different
schemes are very close to one another. This is because most

tasks can be guaranteed locally or with at most one task
transfer, and thus the location policies employed by different
schemes have little influence on system performance. On
the other hand, when the system load gets heavy, the way
of choosing a node for task transfer or retransfer results in
notable differences in performance. The state probing scheme
has the task transfer ratio closest to the perfect information
scheme, because it first checks a node’s LS capability before
transferring a task to that node. The proposed scheme is
inferior to the state probing scheme because of its use of
imperfect observation to probabilistically decide the receiver
node. It does not, however, require any probing overhead at
the time of making a location decision.

The focused addressing scheme performs slightly better
than the proposed scheme under light load. When the system
load gets heavy, however, the performance of the focused
addressing scheme deteriorates quickly because of the in-
creased probability of making incorrect LS decisions based
on out-of-date” state information.

System Size: It is found from the simulations that the larger
the system size, the better the performance of the LS schemes.
(See Tables IV and VI1 for numerical results.) This is because
a larger system has a larger processing capacity to handle
bursty task arrivals at one or more nodes in the system.

IOThe decisions are out-of-date as a result of the increased communication
delays caused by excessive bidding messages.

SHIN AND HOU: DESIGN AND EVALUATION OF EFFECTIVE LOAD SHARING 715

TABLE VII-A
p,~,,ld VS TASK LAXITY d FOR DIFFERENT TAYK SETS

UNDER DIFFERENT SCHEMES (S = G - l) X = 0 8

I = { I)

TABLE VII-B
Pdyn~d vs. TASK LAXITY d FOR DIFFERENT TASK SETS

UNDER DIFFERENT SCHEMES = 64): X = 0.4

Besides, task transfers, state probes, RFB," and/or region-
change broadcasts do not significantly increase the queueing
delay (as compared to a system with only a few nodes) because
of the increased communication capacity and the decreased
chance of transferring two or more tasks through the same
link or to the same node.

Because of the way in which the buddy sets and the
preferred lists constructed [141, the unguaranteed tasks within
each buddy set will be evenly shared by all capable nodes
in the entire system as the system size grows, rather than
overloading a few capable nodes within the same buddy set.
Moreover, the preferred list of a node is different from those
of other nodes in its buddy set. Consequently, the percentage
of common nodes in the preferred lists of the nodes in a buddy
set gets smaller as the system size grows, and thus there is a
greater chance that the unguaranteed tasks of a node may be
transferred to some other nodes not in its buddy set, leading
to more even distribution of the unguaranteed tasks.

Frequency of Region-Change Broadcasts vs. Frequency of
State Probing/Bidding: In the proposed LS scheme, each node
has to broadcast a change-of-state region to all of the other
nodes in its buddy set. Thus, the frequency of region-change
broadcasts, f b , determines the traffic overhead in collecting
state information. On the other hand, the traffic overhead
in both the state-probing and focused addressing schemes is
determined by the frequency of state probing, f p , and the
frequency of RFB, f T , respectively. Table VI11 summarizes the
simulation results on f b , f p , and f T in terms of the number
of messages per E (R) .

"To reduce traffic overheads, RFB messages are sent to 10 randomly
selected nodes, instead of to all of the other nodes in the system.

TABLE VIII-A
COMPARISON OF THE TRAFFIC OVERHEAD ASSOCIATED WITH COLLECTING
STATE INFORMATION BETWEEN THE STATE PROBING AND THE PROPOSED
SCHEMES: FREQUENCY OF STATE-COLLECTION vs. DIFFERENT X FOR A

T A S K S E T W I T H E T = { ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ } ~ ~ ~ A N D L = {1,2.3}, , ,3

TABLE VIII-B

COLLECTING STATE INFORMATION BETWEEN THE STATE PROBING A N D
THE PROPOSED SCHEMES: FREQUENCY OF STATE INFORMATION

COLLECTION vs. DIFFERENT TASK SETS WHEN A. = 0.8

COMPARISON OF THE TRAFFIC OVERHEAD ASSOCIATED WITH

Under light to medium loads (e.g., X = 0.2 - 0.6 in
Table VIII-A), the proposed scheme introduces more traffic
overhead (in the worst case, about 0.5 broadcast per E (R))
than the other two schemes. The additional traffic introduced
by broadcasts may not impede the transmission of tasks andor
other messages, however, because only about 2% - 13% of
the arriving tasks (Table VI) are transferred to other nodes.
Besides, the effect of the increased communication delay
(as a result of broadcasts) on the inconsistency between a
node's observed and true states of other nodes is taken care
of by Bayesian analysis.I2 When the system load is heavy,
the state probing scheme and the focused addressing scheme
perform worse than the proposed scheme (Table VIII-B). This
phenomenon becomes more pronounced when the variance of
task execution time is large or when the task laxity is tight.

FCFS vs. MLFS: Under the MLFS local scheduling policy,
the task queue at each node is ordered by task laxities, and a
task with the minimum laxity on the node is always executed
first. Another commonly used local scheduling policy is the
first-come, first-served (FCFS) discipline. A newly arrived task
is added at the end of task queue if it can be guaranteed on that
node, and will otherwise be considered for transfer. The FCFS
discipline is simple and ensures that the existing guarantees
are not altered, and the transfer policy under this discipline
becomes a simple dynamic threshold type 151, 161, 1171, [251.13

Although the MLFS discipline does not always perform
better than the other on a per-task basis, it is shown in

''This is evidenced by the fact that the queueing delays due to state
broadcasts or task transfers, as well as the processing overheads required
for probability update or state broadcasts, were all included in our simulation.

13The threshold may change dynamically with the current state of the node
and the time constraints of tasks.

716 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. VOL. 5, NO. 7, JULY 1994

Fig. 5.

o . - '. - o State probing
0- - -0 Random selection

m - Proposed scheme
. . t . . Focused addressing

0.00 I I I 1
s.0 10.0 15.0 20.0 25.0

Task transfer cost (pcrccntagc of task cxeculion fimc)

P d y n vs. task transfer costs for a 16-node system with a task set: A = 0.8, ET = (0

TABLE IX
PERFORMANCE (Pdyn) COMPARISON OF USING FCFSMLFS

AS THE MEASURE OF WORKLOAD. TASK SET I: = 0.8,
E T = { 0 . 4 , 0 . 8 , 1 . 2 , 1 . 6 } o , 2 5 , ~ ~ ~ L = { 1 , 2 , 3 } 1 / 3 . T ~ s ~ S ~ ~ I I :
= 0 .2 , ET = {0 .4 ,0 .8 ,1 .2 ,1 .6}0 .25 , AND L {1 ,2 ,3}1 /3 . TASK SET

111: = 0.8, ET = { 0 . 4 , 0 . 8 , 1 . 2 , 1 . 6 } 0 . 2 ~ , AND L = {1.4,1.5, 1.6}1/3

te R s ~ ~ l o l n lo<~~ir<l ! I) ~ ~ , ~ , ~ I P ~

,ng 'PICCt,",, ,i<l<lw.\,,,p cl,^,,,*

[26] to perform better on the average in reducing I'dyn. To
quantitatively compare the performance of these two disci-
plines, we ran simulations with MLFS and FCFS as the local
scheduling policy for a wide range of task attributes. As
shown in Table IX, all schemes with FCFS perform worse
than their counterparts with MLFS. No matter which local
scheduling policy is used, the proposed scheme is shown to
outperform the other realistic schemes in meeting deadlines.
This demonstrates the quality of the location policy in the
proposed scheme, which uses both Bayesian analysis and the
preferred lists.

One interesting result is that the performance degradation of
the FCFS discipline is not so significant when 1) the system
load is light, and thus the task queue is often short (e.g., Task
Set I1 in Table IX), or 2) task laxities are not distributed very
widely (e.g., Task Set 111 in Table IX); that is, either all laxities
are very large or all are very tight. This makes the quality of
local scheduling less important in meeting task deadlines.

Sensitivity to Communication Delays: There are two types
of communication delays to consider: One is the state-
collection delay incurred from region-change broadcasts or

state probes, where the queueing delays play a dominating
role, and the other is the delay associated with task transfers,
where both the queueing delays and the transmission delays
dominate. To study the effect of communication delays, Pdyn

was computed with 1) the transmission cost associated with
each task transfer being 5%, lo%, 15%, and 20% of the task
execution time, and 2) the queueing delay coefficients being
halved, doubled, and tripled. (Recall that the queueing delay
coefficients are the coefficients in the linear expression used
to model the effect of both the average external task arrival
rate and the medium traffic on the queueing delay.)

As shown in Fig. 5, the state-probing scheme, the random
selection scheme, and the focused addressing scheme are all
more sensitive to the variation of the transmission cost than
is the proposed scheme. Also, see Table X(a) for numerical
examples. The performance degradation by the state-probing
scheme occurs because as the task transmission delay in-
creases, other tasks may arrive at a probed node during the
period between the time it was probed and the time an
unguaranteed task (of the probing node) arrives at that node.
Thus, there is not much correlation between the state when a
node was probed and the state when an unguaranteed task
arrived at the node. (Similarly, one can reason about the
performance degradation of the focused addressing scheme.)
The performance of the random selection scheme degrades
as the transmission delay increases, because of the combined
effect of higher task transfer-out ratios (Table VI) and large
transmission costs.

Fig. 6 (Table X-B) shows the effect of varying queueing-
related costs on the performance of several LS schemes. The
state-probing scheme is most sensitive to the variation of
queueing delay, because in addition to suffering the same
effect as varying transmission delays, the state-probing scheme
generates two additional messages per probe, thus increasing
the possibility of a task missing its deadline, especially when

SHIN AND HOU: DESIGN AND EVALUATION OF EFFECTIVE LOAD SHARING

(A = 0 8)
Queueing Delay C o d

halved

value.

from
61mUli1110"

doubled

tripled

o.- . . -o State probing
0 - - - 0 Random selection

- Proposed scheme
+ + FOCU& addressing

Laxity Slate Random
d probing 4 r c t i o i i

I G 091 x IO-' 8 280 x 10.'

3 2 813 x 6 Q4h x IO-"
I 0 1510 0 1214

z 3 758 111-4 I o m 10.'

2 4 i m 10-3 2 ii,2
a 3 514 x 10-5 1 2:11 x 10-5
I 0 2134 0 1"
2 2 8UI x lo-!' i j52 x IiIF
a 5 113 x 1 0 - 4 1 4 5 " x I l l - 5

I 041'14 I I2. l l lb
2 i 4 i 5 x I I I ~ I iiil x 1 0
1 :J $42 x IO-' I ' I 4 6 x l U - *

(times queueing-relaled coefficients)

Fig. 6. Pdyn vs. queueing delay coefficients for a 16-node system with a task set: X = 0 .8 , ET = {0.4,0.8,1.2,1.6}a.2s , and L = {1 ,2 ,3}1 /3) .

TABLE X-A

ET = { 0 . 4 , 0 . 8 , 1 . 2 , 1 . 6 } 0 . ~ s AND L = {1,2,3}1,3 UNoER
EFFECT OF COMMUNICATION DELAYS ON Pdyn FOR A TASK SET WlTH

DEFERENT SCHEMES: EFFECT OF TASK TRANSFER COSTS ON Pdyn (d

TABLE X-B

SETWITHET= { 0 . 4 , 0 . 8 , 1 . 2 , 1 . 6 } ~ . ~ ~ ANDL= {1,2,3}1/3
EFFECT OF COMMUNICATION DELAYS ON P d y n FOR A TASK

UNDER DIFFERENT SCHEMES: EFFECT OF QUEUEING DELAYS ON Pdynjd

the queueing delay is large. Varying queueing-related costs has
the same effect as varying transmission costs on the random
selection scheme, as well as on the focused addressing scheme.

In contrast, our proposed scheme is less sensitive to the
communication delays (both queueing and transmission de-

lays), because of the use of prior or posterior distributions to
characterize the correlation between the observation and the
corresponding true state.

actually
measure the benefit of using Bayesian decision analysis, we
ran. a set of experiments using a scheme that is identical
in all aspects to the proposed scheme, except that no
Bayesian analysis is used to capture the inconsistency between
the observed and true states. As the numerical results in
Table XI indicate, the proposed scheme with the Bayesian
analysis outperforms the one without the Bayesian analysis in
minimizing I'dyn, especially when the following are true.

1) Task execution times vary over a wide range

2) The distribution of task laxity gets tight (Table XI(a)>.
3) The state-collection/task-transfer delays get large

The possibility of "improper" task transfers as a result of using
outdated state information increases under condition 1 and 3,
but under condition 2 tasks with tight laxities are less immune
to improper task transfers. All of these conditions can be
handled by characterizing the inconsistency between the true
state and the outdated observation with Bayesian analysis.

Statistical Fluctuations in Task Arrival: One issue in us-
ing a Bayesian decision model is to what extent the pro-
posed scheme remains effective when the task arrival pattern
randomly fluctuates. This effect is evaluated by simulating
different task sets with hyperexponential interarrival times.
This represents a system potentially with bursty task arrivals,
and the degree of fluctuation over short periods is modeled
well by varying the coefficient of variation (CV) of the
hyperexponential task interarrival times. Specifically, let Tt
be the task interarrival time. By Chebyshev's inequality, we

Benefit of Using Bayesian Decision Analysis: To

(Table XI(a)).

(Table XI(b)).

718

Task Attributes (A : 0.8)

ET = (0.4.0.8.

1.2, 1.610 2 5 ,

L = (1 .2 .3) i ,3

ET = (0 , 0 2 i ,

0.27. 2.703)1,3,

L = { 1 , 2 , 3) , , ~

1.1. 1.6}025.

L = (1)

ET = (0 4.0 8.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 7 , JULY 1994

i e x i t y d with Bayesian analyrlr u.10 Harr i ian analysis

1 2.123 x IO-’ -1 Y V x 10-2

L

3 i 828 x 10-6 I 009 x 1 0 - 5

1 4 043 x lo-’ 0 1274

1 7.819 A l W 3 2 1.14 x 10-3

1 4.793 x 10-4 r; ii-l x 10-4

. . -. 3 523 x 10-< , L , L Y 1 0 - 4

1 2 5y.1 x in- I , I;\ x 10.’’

No sharing
Prop. scheme w/o Bayes analysis
Proposed scheme
Perfect LS

I.&-03
1.0 1.5 2.0 2.5 3 0 3.5 4 0 4.5 5.0

Coefficient of variation of task interanival time (CV)

Fig. 7.
and L = { 1 , 2 . 3 } 1 / 3 .

P d y n vs. coefficient of variation of task interarrival times for a 16-node system with a task set: X = 0.8, ET = { 0 . 4 . 0 . 8 , 1 . 2 , 1 . 6 } 0 2 5 .

TABLE XI-A
Pdynld WITH AND WITHOUT THE USE OF BAYESIAN ANALYSIS

BE 10% OF THE EXECUTION TIME OF THE TASK TRANSFERRED

IN THE PROPOSED SCHEME: Pdyn1d VS. TASK LAXITY d FOR
DIFFERENT TASK SETS. TASK TRANSFER COSTS ARE ASSUMED TO

TABLE XI-B
Pd, WITH AND WITHOUT THE USE OF BAYESIAN ANALYSIS IN THE PROPOSED

SCHEME’ Pdyn VS TASK TRANSFER COSTS FOR THE TASK SET WITH
~ = O 8 , ~ ~ = { O 4 , 0 8 , 1 2 , ~ 6) 0 ~ ~ , A N D ~ = { 1 . 2 , 3 } ~ ~ ~

get the following equation:

i.e., the smaller CV2, the less likely it is that Tt will deviate
from its mean, E(Tt). Fig. 7 shows the simulation results
under heavy system loads (A = 0.8) where the LS performance
is sensitive to the variation of CV. From Fig. 7, we draw the
following conclusions.

The two curves labeled as the proposed scheme and the
proposed scheme without using Bayesian analysis give
another evidence that LS does benefit from the use of
Bayesian decision theory.
The performance of the proposed scheme degrades as
CV increases. The proposed scheme remains effective
up to CV = 5.42 (or CV2 = 30), however, beyond
which it reduces essentially to the scheme without using
Bayesian decision analysis.

VI. CONCLUDING REMARKS

Using prior or posterior distributions and Bayesian analysis,
we proposed a new LS scheme that can estimate, even with
out-of-date state information, the workload of other nodes, and
select the best candidate receiver of each unguaranteed task.
The probability of dynamic failure as a result of using out-of-
date information is thus reduced significantly. Moreover, as
the simulation results indicate, the ability of making Bayesian
decisions based on imperfect state information makes this
scheme insensitive to communication delays. The proposed
scheme is also shown to be robust to the variation of tunable
parameters used in adaptive LS.

In a companion paper [27], using the continuous-time
Markov chain embedded in the corresponding Markov process,
we developed an analytic model that describes the state
evolution of a node with Poisson arrivals for several LS
schemes. Specifically, the state of a node is defined as the
CET on that node, and is modeled as an M[‘l]lD/I queue with
bulk arrivals. The task arrival rate at a node is a function of
the node’s CET and the transferflocation policies used.

REFERENCES

[l] M. Livny and M. Melman, “Load balancing in homogeneous broadcast
distributed systems,” Proc. ACM Comput. Network Perjormance Symp.,
1982, pp. 47-55.

SHIN AND HOU: DESIGN AND EVALUATION OF EFFECTIVE LOAD SHARING 719

121 C. M. Krishna and K. G. Shin, “Performance measures for multiproces-
sor controllers,” Perjormance’83, A. K. Agrawala and S. K. Tripathi,
Eds.

131 K.G. Shin, C.M. Krishna, and Y.H. Lee, “A unified method for
evaluating real-time computer controllers its application,” IEEE Trans.
Automatic Contr., vol. AC-30, no. 4, pp. 357-366, Apr. 1985.

[4] T. P. Yum and H.-C. Lin, “Adaptive load balancing for parallel queues
with traffic constraints,” IEEE Trans. Commun., vol. COM-32, no. 12,
pp. 1339-1342, Dec. 1984.

[SI Y. T. Wang and R. J. T. Morris, “Load sharing in distributed systems,”
IEEE Trans. Comput., vol. C-34, no. 3, pp. 204-217, Mar. 1985.

[6] D. L. Eager, E. D. Lazowska, and J. Zahorjan, “Adaptive load sharing
in homogeneous distributed systems,” IEEE Trans. Sofmare Eng., vol.
SE-12, no. 5, pp. 662-675, May 1986.

171 T.C.K. Chou and J.A. Abraham, “Distributed control of computer
systems,” IEEE Trans. Compur., vol. C-35, no. 6, June 1986.

[SI C:Y. H. Hsu and J. W.-S. Lin, “Dynamic load balancing algorithms in
homogeneous distributed systems,” IEEE Proc. 6th Int. Con$ Distrib.
Computing Syst., 1986, pp. 2 16-223.

[9] J.F. Kurose and R. Chipalkatti, “Load sharing in soft real-time dis-
tributed computer systems,” IEEE Trans. Compur., vol. c-36, no. 8, pp.
993-999, Aug. 1987.

[I O] A. Weinrib and S. Shenker, “Greed is not enough: Adaptive load
sharing in large heterogeneous systems,” IEEE INFOCOM’88; The
Con$ Comput. Commun. Proc., 1988, pp. 986-994.

[I 1 1 K. Ramamritham, J. A. Stankivic, and W. Zhao, “Distributed schedul-
ing of tasks with deadlines and resource requirements,” IEEE Trans.
Comput., vol. 38, pp. 11 10-1 141, Aug. 1989.

1121 L. M. Ni and K. Hwand, “Optimal load balancing in a multiple processor
system with many job classes,” IEEE Trans. Software Eng., vol. SE-I 1,
no. 5, pp. 491496, May 1985.

[131 J. A. Stankovic, “An application of Bayesian decision theory to decen-
tralized control of job scheduling,” IEEE Trans. Comput., vol. C-34, no.
2, pp. 117-130, Feb. 1985.

[I41 K.G. Shin and Y.-C. Chang, “Load sharing in distributed real-time
systems with state change broadcasts,’’ IEEE Trans. Comput., vol. 38,
pp. 1124-1 142, Aug. 1989.

[I51 J.A. Stankovic, K. Ramamritham, and S. Chang, “Evaluation of a
flexible task scheduling algorithm for distributed hard real-systems,’’
IEEE Trans. Comput., vol. C-34, no. 12, pp. 1130-1 141, Dec. 1985.

[I61 R. Mirchandaney, D. Towsley, and J.A. Stankovic, “Analysis of the
effect of delays on load sharing,’’ IEEE Trans. Comput., vol. 38, pp.
1513-1525, Nov. 1989.

[17] R. Mirchandaney, D. Towsley, and J.A. Stankovic, “Adaptive load
sharing in heterogeneous systems,” IEEE Proc. 9rh Int. Con$ Disrrib.
Computing Syst., 1989, pp. 298-306.

[IS] T.L. Casavant and J.G. Kuhl, “Analysis of three dynamic distributed
load-balancing strategies with varying global information requirements,”
IEEE Proc. 7th Int. Con$ Distrib. Computing Syst., 1987, pp. 185-192.

1191 K.G. Shin and Y.-C. Chang, “A coordinated location policy for load
sharing in hypercube multicomputers,” submitted for publication, 1993.

1201 J. 0. Berger, Statistical Division Theory and Bayesian Analysis. New
York: Springer-Verlag, 1986.

12 11 M. H. DeGroot. Ontimal statistical Decision. New York: McGraw-Hill.

Amsterdam: North-Holland, 1983, pp. 229-250.

1970.
S. Pulidas, D. Towsley, and J . A. Stankovic, “Embedding gradient
estimators in load balancing algorithms,” IEEE Proc. 8th Inr. Conf:
Disrrib. Computing Syst., 1988, pp. 482490.
P. Ramanathan, D.D. Kakdlur, and K. G. Shin, “Hardware assisted
software clock synchronization for homogeneous distributed systems,”
IEEE Trans. Comput., vol. 39, pp. 514-524, Apr. 1990.
D.-T. Peng and K.G. Shin, “Static allocation of periodic tasks with
precedence constraints in distributed real-time systems,” IEEE Proc. 9th
Int. Con$ Distrib. Computing Syst., 1989, pp. 190- 198.
R. Alonso and L. L. Cova, “Sharing jobs among independently owned
processors,” IEEE Proc. 8th Int. Con$ Distrib. Computing Syst., 1988,
pp. 282-288.
J. Hong, X. Tan, and D. Towsley, “A performance analysis of minimum
laxity and earliest deadline scheduling in a real-time systems,” IEEE
Trans. Comput., vol. 38, pp. 1736-1744, Dec. 1989.
K.G. Shin and C.-J. Hou, “Analytic models of adaptive load sharing
schemes in distributed real-time systems,” IEEE Trans. Purallel Distrib
Syst., vol. 4, pp. 740-761, July 1993.

K. Shin (S’75-M’78-SM’83-F’92) received the
B.S. degree in electronics engineering from Seoul
National University, Seoul, Republic of Korea, in
1970, and the M.S. and Ph.D. degrees in electrical
engineering from Comell University, Ithaca, NY, in
1976 and 1978, respectively.

He is Professor and Director of the Real-Time
Computing Laboratory, Department of Electrical
Engineering and Computer Science, University of
Michigan, Ann Arbor. From 1978 to 1982, he was
on the faculty of Rensselaer Polytechnic Institute,

Troy, NY. He has held visiting positions at the U.S. Air Force Flight Dy-
namics Laboratory, AT&T Bell Laboratories, the Computer Science Division
within the Department of Electrical Engineering and Computer Science at
the University of California at Berkeley, and the International Computer
Science Institute, Berkeley, CA. He also chaired the Computer Science and
Engineering Division, Department of Electrical Engineering and Computer
Science, University of Michigan, for three years, beginning in 1991. In
1985, he founded the Real-Time Computing Laboratory, where he and his
colleagues are currently building a 19-node hexagonal mesh multicomputer,
called HARTS, to validate various architectures and analytic results in the
area of distributed real-time computing. He has also been applying the basic
research results of real-time computing to manufacturing-related applications
ranging from the control of robots and machine tools to the development of
open architectures for manufacturing equipment and processes. Recently, he
has initiated research on the open-architecture information base for machine
tool controllers.

Dr. Shin has authored or coauthored over 270 technical papers (more
than 120 of these in archival joumals) and several book chapters in the
areas of distributed real-time computing and control, fault-tolerant computing,
computer architecture, robotics and automation, and intelligent manufacturing.
In 1987, he received the Outstanding IEEE TRANSACTIONS ON AUTOMATIC
CONTROL Paper Award for a paper on robot trajectory planning. In 1989,
he also received the Research Excellence Award from the University of
Michigan. He was Program Chair of the 1986 IEEE Real-Time Systems
Symposium (RTSS), the General Chair of the 1987 RTSS, the Guest Editor
of the 1987 special issue of IEEE TRANSACTIONS ON COMPUTERS (real-time
systems), a Program Co-chair for the 1992 International Conference on
Parallel Processing, and served numerous technical program committees. He
also chaired the IEEE Technical Committee on Real-Time Systems during
1991-93, served as a Distinguished Visitor of the IEEE Computer Society,
and is an Editor of IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED
COPMUTING, and an Area Editor of Internarion Journal of Time-Critical
Computing systems.

C.-J. Hou (S’88-M’94) received the B.S.E. de-
gree in electrical engineering from National Taiwan
University in 1987, the M.S.E. degree in electrical
engineering and computer science and the M.S.E.
degree in industrial and operations engineering in
1989 and 1991, respectively, from the University
of Michigan, Ann Arbor, and the Ph.D. degree in
electrical engineering and computer science from
the University of Michigan, Ann Arbor, in 1993.

She is currently an Assistant Professor in the
Department of Electrical and Computer Engineer-

ing, University of Wisconsin, Madison. Her research interests are in the
areas of distributed and fault-tolerant computing, real-time communications,
queueing systems, estimation and decision theory, and performance model-
ing/evaluation.

Dr. Hou is a recipient of a Women in Science Initiative Award from the
University of Wisconsin, Madison. She is a member of the IEEE Computer
Society, ACM Sigmetrics, and the Society of Woman Engineers.

