
Mapping Concurrently-Communicating Subcubes in a HypercubeMulticomputerBing-rung Tsai and Kang G. ShinReal-Time Computing LaboratoryDepartment of Electrical Engineering and Computer ScienceThe University of MichiganAnn Arbor, MI 48109-2122Email: fiast,kgshing@eecs.umich.eduAbstractThis paper considers the problem of mappingconcurrently-communicating subcubes within a hyper-cube multicomputer so as to minimize inter-subcubecommunication tra�c. Our objective is to minimizethe total communication bandwidth required. Someimportant mathematical properties of subcube map-pings are derived. Methods are proposed to modifyexisting optimization algorithms for �nding optimalmappings. A subset of all possible mappings, calledparallel mappings, are found to possess some desir-able properties. For some special case, optimal paral-lel mappings are also proved to be optimal among allmappings.1 IntroductionSubcube allocation | the problem of �nding a sub-cube in a large target hypercube | has been studiedextensively [1, 2] under the assumption that incomingsubcube requests are independent. The commonly-used objective of subcube allocation is to minimize hy-percube fragmentation. In certain applications, it maybe necessary to cluster task modules into small groups,and each group is assigned to a subcube so as to min-imize the distance of intra-group (or intra-subcube)communications. There can still be inter-group (orinter-subcube) communications, which may become amajor performance bottleneck if these communicat-ing modules/subcubes are not carefully placed withinthe hypercube. For example, the embedding of TMRmodules into the hypercube, as discussed in [3], re-quires each TMR to be embedded into a 2-dimensionalsubcube, Q2. So, a task composed of communicat-The work reported in this paper was supported in part by theO�ce of Naval Research under grants N00014-92-J-1080 andN00014-91-J-1115. Any opinions, �ndings, and recommenda-tions in this paper are those of the authors and do not re
ectthe views of the ONR.

ing modules is embedded into a set of communicat-ing Q2's. If a pair of Q2's communicate frequentlywith each other but are placed far apart, then a largeamount of inter-subcube communication will result,which may in turn degrade intra-subcube communi-cation performance, as both inter- and intra- subcubecommunications use the same network. We will in thispaper consider the problem of mapping communicat-ing modules/subcubes in a hypercube by minimizinginter-subcube communication tra�c.The paper is organized as follows. Section 2 intro-duces basic notation and assumptions and formallystates the optimization problem. In Section 3, wederive some mathematical properties of the objectivefunction. Methods are introduced to modify existingoptimization algorithms to solve the problem. A spe-cial class of mappings, called parallel mappings, arefound to be useful because of their unique properties.Section 4 deals with sub-optimal mappings found withvarious heuristic algorithms. Through simulations,we show that when only sub-optimal mappings areconsidered, parallel mappings outperform non-parallelones for most of the time. The paper concludes withSection 5.2 PreliminariesAn n-dimensional hypercube, Qn, consists of 2nnodes which are connected in the form of a Booleancube network. Each node is assigned a unique n-bitaddress, and two nodes are adjacent if and only iftheir addresses di�er in exactly one bit position. Wewill henceforth use lower-case Greek letters to denotesubcube addresses. Let � be a ternary symbol setf0; 1; �g, where � represents don't care. Since eachnode in a Qn is represented by n address bits, everysubcube of the Qn can be uniquely represented by asequence of n ternary symbols in �, called the addressof the corresponding subcube.

The Hamming distance between two subcubes � =a0a1:::an�1 and � = b0b1:::bn�1 of a Qn is de�ned asH(�; �) = n�1Xi=0 h(ai; bi), where h(ai; bi) = 1 if (ai; bi 2f0; 1g ^ ai 6= bi), and h(ai; bi) = 0 otherwise. Forexample, H(00�; �11) = 1, and H(00�; 11�) = 2.We will assume that the sizes of communicating sub-cubes are known a priori , and communication eventsamong these subcubes occur within a small time win-dow [4, 5], i.e., messages are exchanged almost con-currently , as in the FFT computation. A weightedtask graph G will be used to represent the communi-cation behavior among the subcubes within the timewindow. G = (V;E), where V is the set of verticeseach denoting a subcube, and E = f(vi; vj; wij)g theset of weighted, directed edges from vi to vj, wherewij denotes the weight on the edge, and representsthe length of the message from vi to vj .We will �rst discuss a simple case where all sub-cubes are of the same dimension, using the subcubecommunication model de�ned for uniform-size sub-cubes as in [6,7]. Given (vi; vj; wij), wij > 0, sup-pose �i = anan�1:::a1 is the subcube address whichvi is mapped to, and �j = bnbn�1:::b1 is the sub-cube address vj is mapped to. We de�ne an in-stance of subcube communication as each node in �isends a message of length wij to another node in �j.Since we are now dealing only with uniform-sized sub-cubes of dimension d (the general case of non-uniformsized subcubes are discussed in [8]), the number ofmessages sent is 2d in each instance of communica-tion. These messages are routed by the algorithmEq-subcube-route proposed in [6], where a 1-to-1mapping function is found between source and des-tination nodes, and a message between each source-destination pair is routed through a shortest path.Also, all messages in an instance of subcube com-munication are routed through edge-disjoint paths.From [7], we get the sum of lengths of these paths asT (�i; �j) = M (�i; �j)2d, where M (�i; �j) is de�nedas M (�i; �j) =Pni=1m(ai; bi), wherem(ai; bi) = 8<: 1 if ai = �bi 6= �0 if ai = bi1=2 otherwise.Therefore, we de�ne the bandwidth of such an instanceof subcube communication to be wijT (�i; �j).In [4, 5] we have shown that for concurrently-communicating modules, the total bandwidth of amapping is a good indicator of run-time performance.

A mapping with a smaller total bandwidth almost al-ways has better run-time performance, regardless ofthe underlying switching methods. We will henceforthuse the total bandwidth, denoted by �, as our objec-tive function. Formally, we have the following problemde�nition.Given G and a target hypercube of dimension n �log(2d j V j), i.e., it is large enough to accept all sub-cubes in V , our goal is to �nd a mapping of thesesubcubes into the target hypercube so that the totalcommunication bandwidth of all communication in-stances is minimized. A mapping problem is describedby a three tuple (G; d; n), and we want to minimize� = Xvi;vj2V wijT (�i; �j), where �i and �j are the ad-dresses of subcubes vi and vj mapped to, respectively.3 Mathematical PropertiesIn this section we derive some mathematical prop-erties which are important when �nding optimal sub-cube mappings.As in [7], we de�ne the frontier subcube of � towards�, denoted by ��!� = cncn�1:::c0 such that ci = biif ai = � ^ bi 2 f0; 1g, and ci = ai otherwise. Forexample, if � = 00�� and � = 1�1� then ��!� = 001�.��!� contains all the nodes in � which are closest to�, i.e., the Hamming distance of each node in thissubcube of � to � is exactly H(�; �).Subcubes � and � are said to be parallel with eachother, denoted as � k �, if j ��!� j= d =j � j =j � j.Note that in the degenerate case, all Q0's (individ-ual nodes) are parallel with one another. It followsthat if � k �, T�� = 2dH(�; �). Under a parallelmapping all communicating subcubes are mapped tosubcube addresses parallel with one another. In a par-allel mapping, the expression for � can be rewritten as� = Xvi;vj2V wijH(�i; �j)2d. Therefore, if we only con-sider parallel mappings, minimizing the total band-width is equivalent to minimizing Xvi;vj2V wijH(�i; �j).Note that if all subcubes are parallel, we can ignore the\don't cares", in subcube addresses when calculatingtheir Hamming distances. The optimization problemfor (G; d; n) is then reduced to �nding optimal map-pings for (G; 0; n� d). This is just the optimizationproblem we treated in [4].Parallel mappings also have the advantage that,even with the simplest (�xed-order) e-cube rout-ing algorithm, all inter-subcube messages are routed

through links that are never used for intra-subcubemessages. For example, in Fig. 1(a), with e-cube rout-ing, all inter-subcube messages are routed throughlinks of the form ab� or �ab, a; b 2 f0; 1g, but neverthrough links a � b which are used only for intra-subcube messages. But in the non-parallel mappingshown in Fig. 1(b), when both v0's send messages tov3's, �xed-order routing will either route a messagethrough the link between the nodes which v0's aremapped to, or the link between the nodes which v3'sare mapped to. This situation can only be avoided byintroducing a more complex routing algorithm.Note that for arbitrary, but not necessarily parallel� and �, given the frontier subcube ��!�, each of �and � can be partitioned into parallel subcubes of thesame size as ��!�. So the computation of T (�; �)can be broken down into the evaluation of T 's be-tween parallel subcubes of dimension j ��!� j within� and �. If j ��!� j= 0, then the evaluation of Tdegenerates into the case of evaluating the Hammingdistances between many pairs of individual nodes in� and �. As an example, consider several Q2's in aQ4. The two subcube addresses 01 � � and 00 � � areparallel, and e01��;00�� = 2. As for the two addresses00 � � and �1 � 1, e00��;�1�1 = 1, and T (00 � �; �1 � 1)can be expressed as T (00 � 1; 01 � 1)+ T (00 � 0; 11� 1)or T (00 � 1; 11 � 1) + T (00 � 0; 01 � 1). As for 00 � �and � � 00, e00��;��00 = 0, so T (00 � �; � � 00) can onlybe expressed as in the de�nition of T , i.e., the sum ofHamming distances between individual nodes in thesetwo subcubes.As a result, all mappings for the problem (G; d; n)can be expressed as parallel mappings for (Gd�f ; f; n),f � f�, where Gd�f is some graph constructed fromG (to be explained below), and f� is the dimension ofthe greatest common frontier(GCF) subcube, whichcan be calculated by counting the number of commonpositions in which �'s appear in all subcube addresses.For example, we have a problem of (G; 2; 4) with Ggiven in Fig. 2, and we have a non-parallel mappingv0 ! 0 � �0, v1 ! �1 � 1, v2 ! �0 � 1 and v3 !1��0. Then this mapping can be expressed as parallelmappings of either 16Q0's or 8 Q1's, which are smalleror equal to the size of the GCF subcube of the threeQ2's. Gd�f is just 2d�f disjoint copies of G:� V d�f = fvi;x j vi 2 V; 0 � x < 2d�fg� Ed�f = f(vi;x; vj;x; wij) j (vi; vj; wij) 2 E; 0 �x < 2d�fg.Therefore, if the value of f is known and if an op-timal parallel mapping for (Gd�f ; f; n) is an optimal

mapping for (G; d; n), then the optimization algorithmfor (G; 0; n) can be applied to solve (G; d; n). How-ever, in general, the value of f in an optimal mappingof (G; d; n) is not known, so we have to consider theworst case of f = 0 and construct Gd�0, which will bedenoted as Gd for simplicity.Note that any mapping for (G; d; n) can be ex-pressed as some mapping for (Gd; 0; n), but the con-verse is not true. In other words, the set containing allmappings for (G; d; n) is a subset of the set contain-ing all mappings for (Gd; 0; n). Therefore, if we �ndan optimal mapping for (Gd; 0; n), it could be use-less since it may not be a valid mapping for (G; d; n),i.e., copies of certain vi are not mapped into a Qd.For example, let us consider (G; 1; 3) with G given inFig. 2 and its corresponding G1 is just two identicalG's. Fig. 3 shows an optimal mapping for (G1; 0; 3),but this mapping is not valid for (G; 1; 3) since copiesof v0 are not mapped into a Q1.It is possible to avoid this problem by modifyingGdinto GdX . We will add some extra edges to Ed, whichare of the form f(vix; vi(x+1); X) j 0 � x < 2d � 1g,and if d > 1, another edge f(vi(x+2d�1); vix; X)g isadded. X is some su�ciently large number and itsappropriate value is calculated by the method below.When these edges are added, � of any mappingfor (GdX ; 0; n) should be the value of � of some map-ping for (Gd; 0; n) plus M such that M �j V j 2dX.The value X is chosen so that an optimal mappingfound will always map all copies of vi into a Qd,8vi 2 V . And if M �j V j 2dX + X, the mappingcan never be optimal and is not valid for (G; d; n).So, we must have j V j 2dX+X +�(opt(Gd; 0; n)) > jV j X2d+�(wst(G; d; n)), where opt(Gd; 0; n) denotesthe optimal mapping for (Gd; 0; n) and wst(G; d; n)the worst mapping for (G; d; n). So we must haveX > �(wst(G; d; n))� �(opt(Gd; 0; n)). We can sub-stitute any upper-bound for �(wst(G; d; n)) and anylower-bound for �(opt(Gd; 0; n)) to obtain the valueof X needed.For example, to prevent an optimization algorithmfrom �nding an invalid mapping as in Fig. 3, weconstruct G1X as in Fig. 4. An upper-bound of�(wst(G; 1; 3)) is calculated by assuming the worstpossible case that any pair of vi and vj are mapped3 hops away from each other, which is the farthestdistance in a Q3. A lower-bound of �(opt(G1; 0; 3))is calculated by assuming any pair of vi and vj aremapped adjacent to each other. So X > 3 � 2(3 + 2+1)� 1 � 2(3 + 2 + 1) = 24.

Therefore the optimization algorithm for (G; 0; n)can �nd an optimal mapping for (G; d; n) by con-structing GdX and apply the algorithm to (GdX ; 0; n).Since the optimization problem is NP-hard [4], thecomputation cost is much higher than the case of �nd-ing an optimal parallel mapping, where only the prob-lem (G; 0; n� d) needs to be considered. In what fol-lows, we will show that for some special cases of G, anoptimal parallel mapping is indeed optimal. There-fore, the optimization process can be greatly simpli-�ed.We de�ne a sub-mapping of a mapping for (G; d; n)as a set of node addresses in a Qn which collec-tively contain a mapping for (G; 0; n). Each map-ping for (G; d; n) can be partitioned into 2d such sub-mappings, and the node addresses which the copiesof vi mapped to must form a Qd to make the map-ping valid for (G; d; n). Note that we can partitiona parallel mapping such that each of these 2d sub-mappings lies within a Qn�d, and each sub-mappingis a mapping for (G; 0; n�d). Furthermore, an optimalparallel mapping for (G; d; n) can be partitioned into2d sub-mappings, each of which is an optimal map-ping for (G; 0; n� d). But this is not true in the caseof non-parallel mappings. For example, in Fig. 1(a)we have an optimal parallel mapping for (G; 1; 3) andin Fig. 1(b) a non-parallel mapping, with G given inFig. 2. In the parallel mapping, each sub-mapping lieswithin a Q2 and is an optimal mapping for (G; 0; 2).In the non-parallel mapping, sub-mappings are notmappings for (G; 0; 2).The following proposition is stated without givingthe proof, which is trivial.Proposition 1: For a problem (G; d; n), if there ex-ists a mapping better than an optimal parallel map-ping, then the mapping can be partitioned into sub-mappings and there must be a sub-mapping whose �is smaller than that of opt(G; 0; n � d), the optimalmapping for (G; 0; n� d).We will show that, if G is a star-like graph, i.e., alledges in G directed into or out from just one vertex,then there is no such sub-mapping.Lemma 1: If G is a star, an optimal parallel map-ping for a problem (G; d; n) must also be optimalamong all mappings.Proof: An optimal parallel mapping can be consid-ered as 2d copies of the optimal mapping of the prob-lem (G; 0; n�d), each denoted as opt(G; 0; n�d), and

the 2d nodes that a given vi mapped to form aQd. The� value of this mapping can be expressed as 2d�opt0;n�d,where �opt0;n�d is the � value of opt(G; 0; n� d). Sup-pose there is a non-parallel mapping with a smaller �.This mapping can also be partitioned into 2d copiesof sub-mappings. There must exist at least one sub-mapping whose � is smaller than �opt0;n�d. To satisfythis condition, this sub-mapping must be some map-ping for (G; 0;m), n� d < m � n.Without loss of generality, let us assume v0 to be thecentral vertex of the star in G and is always mappedto the address 0n�d�d. In the optimal parallel map-ping, consider the sub-mapping in �n�d0d where v0is mapped to 0n. Since G is a star, the value of �is determined only by the distance of vi's to v0. Ifthere is a mapping for (G; 0;m) with a smaller � thanopt(G; 0; n�d), then some vi's in opt(G; 0; n�d) mustbe re-mapped to the subcube 0n�d�d. These addressesvi's originally mapped to and 0n must form a Qd; oth-erwise the copies of v0 cannot be re-mapped into aQd. However, if the original addresses which thesevi's mapped to can form a Qd, then re-mapping thesevi's into 0n�d�d cannot lower �. Otherwise, the orig-inal sub-mapping cannot be optimal in (G; 0; n� d).2We are still unable to prove the general case of arbi-trary task graphs. However, while enumerating manylow-dimensional cases, we could not �nd any non-parallel mapping better than optimal parallel map-pings. It is our conjecture that optimal parallel map-pings are indeed optimal.4 Heuristic Mapping StrategiesIn Section 3, we have discussed the mathematicalproperties of subcube mappings, and discussed a strat-egy to �nd an optimal mapping using a modi�ed ver-sion of existing optimization algorithms developed fora simpler mapping problem. However, the complex-ity of these optimization algorithms remains exponen-tial, and hence for large problem sizes, we need someheuristic algorithms to �nd good sub-optimal map-pings.We have shown that an optimal parallel mappingis also optimal among all mappings for certain spe-cial cases, and it is our conjecture that optimal map-pings is indeed optimal. However, this does not implythat all parallel mappings are better than non-parallelmappings. Therefore, two important questions arise:When we use a heuristic algorithm to �nd a good sub-optimal parallel mapping, will this sub-optimal par-allel mapping be worse than most non-parallel map-

pings? Do we need to consider all possible mappings,and not just parallel mappings when looking for agood sub-optimal mapping?To answer these questions, we investigate severalheuristic methods, and compare the performance ofparallel and non-parallel mappings found with eachheuristic. We also con�rm that optimization of map-pings with respect to � improves several other per-formance parameters as well. We will again focus onthe discussion of the case of uniform-size communi-cating subcubes, since we have shown [8] that map-ping variable-size subcubes can always be reduced toa uniform-size subcube mapping problem.The simulated annealing method [9] is shown to bean e�ective algorithm for �nding near-optimal solu-tions to NP-hard task-mapping problems [10, 11]. In[11], we investigated a simulated annealingmethod op-timization process for �nding good sub-optimal map-pings for the problem (G; 0; n). The implementationof the simulated annealing method here is based onparameters selected with a similar criterion as in [10].We set the initial temperature T0 = 30, the new tem-perature Tnew = 0:95T , where T is the temperature inthe last iteration. The freezing point is set so thata move increasing the objective function by a unitvalue has an acceptable probability of 2�31. The per-turb function is given by performing random 2-optexchanges [12] on the original mapping. Since eachinstance of 2-opt exchange takes approximately thesame amount of computing time, the expected com-puting time of an optimization process can be normal-ized and expressed as the average number of exchangesperformed. Given the above parameters, the opti-mization process is found to terminate after 3000�500exchanges on 90% of inputs used in producing the datapresented here.In Table 1, we compare the performance of parallelmappings (sn-p) and non-parallel mappings (sn-np)found with the simulated annealing method. For sn-p mappings, the initial mapping is a random parallelmapping, and only exchanges among parallel subcubesare allowed. For sn-np mappings, only non-parallelmappings are considered. The inputs are generatedwith j V j= 25, prob(wij > 0) = CCP (ConcurrentCommunication Probability), i.e., the probability thatvi communicates with vj in the time window consid-ered. wij is set to 20 when wij > 0, and each subcubeis of dimension d = 3. Each data point is obtainedby averaging results from 10,000 iterations. Deviationfrom the mean values is found to be reasonably small(< 3%).

CCP 0.1 0.2 0.4 0.6 0.8rand 13472 25952 49280 72640 96752sn-p 8624 19072 41216 63968 89344sn-np 9552 21344 45536 70480 95856Table 1: � of mappings found by various strategies.It is obvious that both sn-p and sn-np mappings im-prove over random mappings signi�cantly when CCPis small. sn-p mappings have more than 15% im-provement over random mappings when CCP < 0:6.Also, sn-p mappings outperform sn-np mappings con-sistently (> 10%) for all CCP values. This is evenmore prominent when CCP > 0:5, where the marginbetween sn-np and random mappings narrows down.When wij's are constant as in our simulations, theoptimization of � can also improve several importantperformance parameters of a mapping. The commu-nication diameter of a mapping is the largest Ham-ming distance between two nodes belonging to a pairof communicating subcubes. The average communi-cation distance is the average Hamming distance ofall pair of nodes involved in inter-subcube communi-cations. In Figs. 5 and 6, we show the three perfor-mance parameters plotted against CCP for the map-pings found. Obviously, sn-p mappings outperformrandom and sn-np mappings in all cases, except inthe case of average subcube distance, where sn-np hasa lower value for various CCP values. This shows thatnon-parallel mappings are better only in minimizingthe Hamming distance between subcubes, not neces-sarily between nodes.5 Concluding RemarksIn this paper, we have addressed the problem ofmapping a set of communicating subcubes in a hy-percube by minimizing inter-subcube communicationtra�c. The communication model we used was basedon the one proposed in [6, 7] for routing messages be-tween subcubes of the same size. Our objective wasto minimize the total inter-subcube communicationbandwidth.Several important mathematical properties of thistype of mappings were derived. Methods were pro-posed to modify existing algorithms to �nd an opti-mal mapping. Parallel mappings were found to havecertain desirable properties, and require less compu-tation cost to �nd. It was also shown that for somespecial cases optimal parallel mappings were indeedoptimal among all mappings.

We also showed by simulations that in heuristic al-gorithms such as simulated annealing methods andother fast heuristics, parallel mappings still outper-formed non-parallel mappings in most cases. In oursimulations, optimizing the proposed objective func-tion also led to improvements in several other perfor-mance parameters.References[1] M. S. Chen and K. G. Shin, \Processor allocationin an n-cube multiprocessor using gray codes",IEEE Trans. on Computers, vol. C-36, pp. 1396{1407, Dec. 1987.[2] D. D. Sharma and D. K. Pradhan, \A novel ap-proach for subcubes allocation in hypercube mul-tiprocessors", in Proc. of the Fourth IEEE Intl.Symposium on Parallel and Distributed Process-ing, pp. 336{345, 1992.[3] D. L. Kiskis and K. G. Shin, \Embedding triple-modular redundancy into a hypercube architec-ture", in Proc. of the Third Conf. on Hyper-cube Concurrent Computers and Applications,pp. 337{345, Jan. 1988.[4] B.-R. Tsai and K. G. Shin, \Communication{oriented assignment of task modules in hypercubemulticomputers", in Proc. 12{th Int'l Conf. onDistributed Comput. Syst., pp. 38{45, June 1992.[5] B.-R. Tsai and K. G. Shin, \Mapping concurrentcommunicating modules to mesh multicomputersequipped with virtual channels", submitted topublication, 1994.[6] S. Padmanabhan and C. Baru, \Routing betweensubcubes in a hypercube", in Proc. of the 6thDistributed Memory Computing Conference, pp.295{298, Apr. 1991.[7] M. S. Chen and K. G. Shin, \Subcube allocationand task migration in hypercube multiprocessor",IEEE Trans. on Computers, vol. C-39, pp. 1146{1155, Sep. 1990.[8] B.-R. Tsai, Mapping and Scheduling of Con-current Communication Tra�c in MulticomputerNetworks, PhD thesis, The University of Michi-gan, 1994.[9] P. J. M. Laarhoven and E. H. L. Aarts, SimulatedAnnealing: Theory and Applications, D. ReidelPublishing Company, 1987.

[10] F. Ercal, J. Ramanujam, and P. Sadayappan,\Task allocation onto a hypercube by recursivemin-cut bipartitioning", in Proc. of the ThirdConf. on Hypercube Concurrent Computers andApplications, pp. 210{221, Jan. 1988.[11] B.-R. Tsai and K. G. Shin, \Communication-oriented assignment of task modules in faulty hy-percube multicomputers", IEEE Trans. on Com-puters, vol. C-36, pp. 1396{1407, May 1994.[12] A. V. Aho, J. E. Hopcroft, and J. D. Ull-man, Data Structures and Algorithms, Addison-Wesley, 1983.
V

V V

V

VV

V

V

0

0

1

1

2

2

3

3

V V

V

V

VV

V

V

00

1

1

2
2

3

3

(a)

(b)

000 001

010 011

100 101

111110

000 001

010 011

100

110 111

101

Figure 1: Two example mappings.

V

V V V

0

1 2 3

3
2

1Figure 2: An example G.
V V

V

V

VV

V

V

0

0

1

1

2

2

3
3

000 001

010 011

100 101

111110

Figure 3: A mapping for (G1; 0; 3).
V

V V V

3
2

1

V

V V V

3
2

1

X
X

X

X

0,0

1,0 2,0 3,0

0,1

1,1 2,1 3,1Figure 4: An example G1X .

 rand
� � sn-p
� � sn-np

|
0.0

|
0.2

|
0.4

|
0.6

|
0.8

|
1.0

|6.0

|6.5

|7.0
|7.5

|8.0

|8.5 | | | | | |

|
|

|
|

|
|

 CCP

 A
vg

 d
ia

m
et

er

�

�

�

�

�

�

�

� �

�

�

�

�

�

� � � �

Figure 5: Average diameter versus CCP.

 rand
� � sn-p
� � sn-np

|
0.0

|
0.2

|
0.4

|
0.6

|
0.8

|
1.0

|4.5

|4.7

|4.9

|5.1

|5.3

|5.5

|5.7

| | | | | |

|
|

|
|

|
|

|

 CCP

 A
vg

 n
od

e
di

st
an

ce

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� � �

Figure 6: Average node distance versus CCP.

