Mapping Concurrently-Communicating Subcubes in a Hypercube

Multicomputer

Bing-rung Tsai and Kang G. Shin
Real-Time Computing Laboratory
Department of Electrical Engineering and Computer Science
The University of Michigan
Ann Arbor, MI 48109-2122
Email: {iast,kgshin}@eecs.umich.edu

Abstract

This paper considers the problem of mapping
concurrently-commaunicating subcubes within a hyper-
cube multicomputer so as to minimize inter-subcube
communication traffic. Our objective is to minimize
the total communication bandwidth required. Some
important mathematical properties of subcube map-
pings are derived. Methods are proposed to modify
existing optimization algorithms for finding optimal
mappings. A subset of all possible mappings, called
parallel mappings, are found to possess some desir-
able properties. For some special case, optimal paral-
lel mappings are also proved to be optimal among all
mappings.

1 Introduction

Subcube allocation — the problem of finding a sub-
cube in a large target hypercube — has been studied
extensively [1,2] under the assumption that incoming
subcube requests are independent. The commonly-
used objective of subcube allocation is to minimize hy-
percube fragmentation. In certain applications, it may
be necessary to cluster task modules into small groups,
and each group is assigned to a subcube so as to min-
imize the distance of intra-group (or intra-subcube)
communications. There can still be inter-group (or
inter-subcube) communications, which may become a
major performance bottleneck if these communicat-
ing modules/subcubes are not carefully placed within
the hypercube. For example, the embedding of TMR
modules into the hypercube, as discussed in [3], re-
quires each TMR to be embedded into a 2-dimensional
subcube, (2. So, a task composed of communicat-

The work reported in this paper was supported in part by the
Office of Naval Research under grants N00014-92-J-1080 and
NO00014-91-J-1115. Any opinions, findings, and recommenda-
tions in this paper are those of the authors and do not reflect

the views of the ONR.

ing modules 1s embedded into a set of communicat-
ing @2’s. If a pair of @2’s communicate frequently
with each other but are placed far apart, then a large
amount of inter-subcube communication will result,
which may in turn degrade intra-subcube communi-
cation performance, as both inter- and intra- subcube
communications use the same network. We will in this
paper consider the problem of mapping communicat-
ing modules/subcubes in a hypercube by minimizing
inter-subcube communication traffic.

The paper is organized as follows. Section 2 intro-
duces basic notation and assumptions and formally
states the optimization problem. In Section 3, we
derive some mathematical properties of the objective
function. Methods are introduced to modify existing
optimization algorithms to solve the problem. A spe-
cial class of mappings, called parallel mappings, are
found to be useful because of their unique properties.
Section 4 deals with sub-optimal mappings found with
various heuristic algorithms. Through simulations,
we show that when only sub-optimal mappings are
considered, parallel mappings outperform non-parallel
ones for most of the time. The paper concludes with
Section b.

2 Preliminaries

An n-dimensional hypercube, @Q,, consists of 2%
nodes which are connected in the form of a Boolean
cube network. Each node is assigned a unique n-bit
address, and two nodes are adjacent if and only if
their addresses differ in exactly one bit position. We
will henceforth use lower-case Greek letters to denote
subcube addresses. Let ¥ be a ternary symbol set
{0,1,*}, where * represents don’t care. Since each
node in a @, 1s represented by n address bits, every
subcube of the), can be uniquely represented by a
sequence of n ternary symbols in X, called the address
of the corresponding subcube.

The Hamming distance between two subcubes o =
agai...an_1 and G = boby...b,_1 of a (), is defined as

n—1
H(a,3) = > h(a;,b;), where h(a;,b;) = Lif (a;, b; €

+=0
{0,1} Aa; # b;), and h(a;,b;) = 0 otherwise. For
example, H(00%,x11) = 1, and H(00*, 11) = 2.

We will assume that the sizes of communicating sub-
cubes are known a priort, and communication events
among these subcubes occur within a small teme win-
dow [4,5], i.e., messages are exchanged almost con-
currently, as in the FFT computation. A weighted
task graph G will be used to represent the communi-
cation behavior among the subcubes within the time
window. G = (V, E), where V is the set of vertices
each denoting a subcube, and E = {(v;, vj,w;;)} the
set of weighted, directed edges from v; to v;, where
w;; denotes the weight on the edge, and represents
the length of the message from v; to v;.

We will first discuss a simple case where all sub-
cubes are of the same dimension, using the subcube
communication model defined for uniform-size sub-
cubes as in [6,7]. Given (v, v;,ws;), wy; > 0, sup-
pose ¢; = apdn_1...a1 is the subcube address which
v; is mapped to, and ¢; = byb,_1...b6; is the sub-
cube address v; is mapped to. We define an n-
stance of subcube communication as each node in ¢;
sends a message of length w;; to another node in ¢;.
Since we are now dealing only with uniform-sized sub-
cubes of dimension d (the general case of non-uniform
sized subcubes are discussed in [8]), the number of
messages sent is 2¢ in each instance of communica-
tion. These messages are routed by the algorithm
Eqg-subcube-route proposed in [6], where a 1-to-1
mapping function is found between source and des-
tination nodes, and a message between each source-
destination pair is routed through a shortest path.
Also, all messages in an instance of subcube com-
munication are routed through edge-disjoint paths.
From [7], we get the sum of lengths of these paths as
T(¢i,¢j) = M(¢i,¢;)2%, where M(¢;, ¢;) is defined
as M(¢s, ;) = >y m(ai,b;), where

1 ifa; = b; + %
1/2 otherwise.

Therefore, we define the bandwidth of such an instance
of subcube communication to be w;; T(¢;, ¢;).

In [4,5] we have shown that for concurrently-
communicating modules; the total bandwidth of a
mapping is a good indicator of run-time performance.

A mapping with a smaller total bandwidth almost al-
ways has better run-time performance, regardless of
the underlying switching methods. We will henceforth
use the total bandwidth, denoted by ®, as our objec-
tive function. Formally, we have the following problem
definition.

Given (G and a target hypercube of dimension n >
log(2¢ | V' |), i.e., it is large enough to accept all sub-
cubes in V, our goal is to find a mapping of these
subcubes into the target hypercube so that the total
communication bandwidth of all communication in-
stances is minimized. A mapping problem is described
by a three tuple (G, d,n), and we want to minimize
® = Z wi; T($i, ¢;), where ¢; and ¢; are the ad-

vy, v;€EV
dresses of subcubes v; and v; mapped to, respectively.

3 Mathematical Properties

In this section we derive some mathematical prop-
erties which are important when finding optimal sub-
cube mappings.

As in [7], we define the frontier subcube of o towards
3, denoted by 04— = cncn_1...co such that ¢; = b;
if a; = x A b; € {0,1}, and ¢; = a; otherwise. For
example, if o = 00+ and F = 1#1* then 645 = 001.
0a—p contains all the nodes in o which are closest to
4, 1.e., the Hamming distance of each node in this
subcube of « to 3 is exactly H(«, 3).

Subcubes « and 3 are said to be parallel with each
other, denoted as a || 3, if | cap |=d =| | =| 3 |.
Note that in the degenerate case, all Qg’s (individ-
ual nodes) are parallel with one another. Tt follows
that if o || 3, Tag = 29H(,3). Under a parallel
mapping all communicating subcubes are mapped to
subcube addresses parallel with one another. In a par-
allel mapping, the expression for ® can be rewritten as
® = Z wi; H (¢, qu)Qd. Therefore, if we only con-

vy, v;€EV
sider parallel mappings, minimizing the total band-
width is equivalent to minimizing Z wi; H(¢s, ¢5).
vy, v;€EV

Note that if all subcubes are parallel, we can ignore the
“don’t cares”, in subcube addresses when calculating
their Hamming distances. The optimization problem
for (G, d, n) is then reduced to finding optimal map-
pings for (G,0,n — d). This is just the optimization
problem we treated in [4].

Parallel mappings also have the advantage that,
even with the simplest (fixed-order) e-cube rout-
ing algorithm, all inter-subcube messages are routed

through links that are never used for intra-subcube
messages. For example, in Fig. 1(a), with e-cube rout-
ing, all inter-subcube messages are routed through
links of the form abx or xab, a,b € {0,1}, but never
through links a % b which are used only for intra-
subcube messages. But in the non-parallel mapping
shown in Fig. 1(b), when both vy’s send messages to
v3’s, fixed-order routing will either route a message
through the link between the nodes which vg’s are
mapped to, or the link between the nodes which v3’s
are mapped to. This situation can only be avoided by
introducing a more complex routing algorithm.

Note that for arbitrary, but not necessarily parallel
a and 3, given the frontier subcube o,_.g, each of o
and (can be partitioned into parallel subcubes of the
same size as 0qp—p. S0 the computation of T(«,)
can be broken down into the evaluation of 7T’s be-
tween parallel subcubes of dimension | 64— | within
a and 3. If | 0ap |= 0, then the evaluation of 7'
degenerates into the case of evaluating the Hamming
distances between many pairs of individual nodes in
a and 8. As an example, consider several (J2’s in a
2. The two subcube addresses 01 # % and 00 * % are
parallel, and e%t**00* = 9 Ag for the two addresses
00 % % and *1 % 1, e"9***1 =1 "and T(00 *,*1 * 1)
can be expressed as T(00* 1,01 1)+ 7T(00*0, 11 1)
or T(00+ 1,11+ 1)+ T(00* 0,01+ 1). As for 00 * *
and * * 00, e20****90 — () g0 T(00 * *, * * 00) can only
be expressed as in the definition of T, i.e., the sum of
Hamming distances between individual nodes in these
two subcubes.

As a result, all mappings for the problem (G, d, n)
can be expressed as parallel mappings for (G4=/, f, n),
f < f*, where G4/ is some graph constructed from
G (to be explained below), and f* is the dimension of
the greatest common frontier(GCF) subcube, which
can be calculated by counting the number of common
positions in which *’s appear in all subcube addresses.
For example, we have a problem of (G,2,4) with &
given in Fig. 2, and we have a non-parallel mapping
vg — 0% %0, v1 — *1 %1, v5 — *x0*x 1 and v —
1#%0. Then this mapping can be expressed as parallel
mappings of either 16 Qg’s or 8 (J1’s, which are smaller
or equal to the size of the GCF subcube of the three
Q2’s. G417 is just 2971 disjoint copies of G-

o VIl ={v, . |v; €V, 0< 2 <2977}
o BT = {(vi g, 05 0,wi5) | (vi,v5,wi5) € E,0 <
<297}

Therefore, if the value of f 1s known and if an op-
timal parallel mapping for (G4=/ f,n) is an optimal

mapping for (G, d, n), then the optimization algorithm
for (G,0,n) can be applied to solve (G,d,n). How-
ever, in general, the value of f in an optimal mapping
of (G,d,n) is not known, so we have to consider the
worst case of f = 0 and construct G4~°, which will be
denoted as G for simplicity.

Note that any mapping for (G,d,n) can be ex-
pressed as some mapping for (G4,0,n), but the con-
verse is not true. In other words, the set containing all
mappings for (G, d,n) is a subset of the set contain-
ing all mappings for (G4,0,n). Therefore, if we find
an optimal mapping for (G%,0,n), it could be use-
less since it may not be a valid mapping for (G, d, n),
l.e., copies of certain v; are not mapped into a Q4.
For example, let us consider (G, 1,3) with G given in
Fig. 2 and its corresponding G! is just two identical
(’s. Fig. 3 shows an optimal mapping for (G*,0,3),
but this mapping is not valid for (G, 1, 3) since copies
of vy are not mapped into a .

It is possible to avoid this problem by modifying G¢
into G%. We will add some extra edges to £¢, which
are of the form {(viz, vi(e41), X) | 0 < @ < 2¢ — 1},
and if d > 1, another edge {(vi(pq24—1), Vi, X)} is
added. X is some sufficiently large number and its
appropriate value is calculated by the method below.

When these edges are added, ® of any mapping
for (G4,0,n) should be the value of ® of some map-
ping for (G% 0,n) plus M such that M >| V | 2¢X.
The value X is chosen so that an optimal mapping
found will always map all copies of v; into a @4,
Yo; € V. And if M >| V | 29X + X, the mapping
can never be optimal and is not valid for (G,d,n).
So, we must have | V | 29X + X + ®(opt(G4,0,n)) > |
V | X2¢4-®(wst(G,d, n)), where opt(G?, 0, n) denotes
the optimal mapping for (G%,0,n) and wst(G,d, n)
the worst mapping for (G,d,n). So we must have
X > ®(wst(G,d,n)) — ®(opt(G*,0,n)). We can sub-
stitute any upper-bound for ®(wst(G,d, n)) and any
lower-bound for ®(opt(G?,0,n)) to obtain the value
of X needed.

For example, to prevent an optimization algorithm
from finding an invalid mapping as in Fig. 3, we
construct G% as in Fig. 4. An upper-bound of
S(wst(G,1,3)) is calculated by assuming the worst
possible case that any pair of v; and v; are mapped
3 hops away from each other, which is the farthest
distance in a Q3. A lower-bound of ®(opt(G!,0,3))
is calculated by assuming any pair of v; and v; are
mapped adjacent to each other. So X > 3+2(3+2+
1)—1+2(3+2+1) =24

Therefore the optimization algorithm for (G,0,n)
can find an optimal mapping for (G,d,n) by con-
structing G4 and apply the algorithm to (G%,0,n).
Since the optimization problem is NP-hard [4], the
computation cost is much higher than the case of find-
ing an optimal parallel mapping, where only the prob-
lem (G, 0,n — d) needs to be considered. In what fol-
lows, we will show that for some special cases of GG, an
optimal parallel mapping is indeed optimal. There-
fore, the optimization process can be greatly simpli-

fied.

We define a sub-mapping of a mapping for (G, d,n)
as a set of node addresses in a @, which collec-
tively contain a mapping for (G,0,n). FEach map-
ping for (G, d,n) can be partitioned into 2¢ such sub-
mappings, and the node addresses which the copies
of v; mapped to must form a 4 to make the map-
ping valid for (G,d,n). Note that we can partition
a parallel mapping such that each of these 2¢ sub-
mappings lies within a @, _4, and each sub-mapping
is a mapping for (G, 0, n—d). Furthermore, an optimal
parallel mapping for (G, d,n) can be partitioned into
2¢ sub-mappings, each of which is an optimal map-
ping for (G,0,n — d). But this is not true in the case
of non-parallel mappings. For example, in Fig. 1(a)
we have an optimal parallel mapping for (G, 1, 3) and
in Fig. 1(b) a non-parallel mapping, with G given in
Fig. 2. In the parallel mapping, each sub-mapping lies
within a @2 and is an optimal mapping for (G, 0, 2).
In the non-parallel mapping, sub-mappings are not
mappings for (G, 0, 2).

The following proposition is stated without giving
the proof, which 1s trivial.

Proposition 1: For a problem (G, d, n), if there ex-
ists a mapping better than an optimal parallel map-
ping, then the mapping can be partitioned into sub-
mappings and there must be a sub-mapping whose ®
is smaller than that of opt(G,0,n — d), the optimal
mapping for (G,0,n — d).

We will show that, if GG is a star-like graph, 1.e., all
edges in (G directed into or out from just one vertex,
then there is no such sub-mapping.

Lemma 1: If G is a star, an optimal parallel map-
ping for a problem (G,d,n) must also be optimal
among all mappings.

Proof: An optimal parallel mapping can be consid-
ered as 29 copies of the optimal mapping of the prob-
lem (G,0,n —d), each denoted as opt(G,0,n —d), and

the 29 nodes that a given v; mapped to form a Q4. The
® value of this mapping can be expressed as Qd@gf’;_d,
where <I>8’Z_d is the ® value of opt(G,0,n — d). Sup-
pose there is a non-parallel mapping with a smaller ®.
This mapping can also be partitioned into 2¢ copies
of sub-mappings. There must exist at least one sub-
mapping whose @ is smaller than <I>8’Z_d. To satisfy
this condition, this sub-mapping must be some map-
ping for (G,0,m),n —d < m < n.

Without loss of generality, let us assume vy to be the
central vertex of the star in G and 1s always mapped
to the address 07~ %%?. In the optimal parallel map-
ping, consider the sub-mapping in **~40% where vy
is mapped to 0. Since G is a star, the value of ®
is determined only by the distance of v;’s to vy. If
there is a mapping for (G, 0, m) with a smaller ® than
opt(G,0,n—d), then some v;’s in opt(G, 0, n—d) must
be re-mapped to the subcube 07~ %%, These addresses
v;’s originally mapped to and 07 must form a @g; oth-
erwise the copies of vy cannot be re-mapped into a
Q4. However, if the original addresses which these
v;’s mapped to can form a ()4, then re-mapping these
vi’s into 0"~ %9 cannot lower ®. Otherwise, the orig-
inal sub-mapping cannot be optimal in (G, 0,n — d).
O

We are still unable to prove the general case of arbi-
trary task graphs. However, while enumerating many
low-dimensional cases, we could not find any non-
parallel mapping better than optimal parallel map-
pings. It is our conjecture that optimal parallel map-
pings are indeed optimal.

4 Heuristic Mapping Strategies

In Section 3, we have discussed the mathematical
properties of subcube mappings, and discussed a strat-
egy to find an optimal mapping using a modified ver-
sion of existing optimization algorithms developed for
a simpler mapping problem. However, the complex-
ity of these optimization algorithms remains exponen-
tial, and hence for large problem sizes, we need some
heuristic algorithms to find good sub-optimal map-

pings.

We have shown that an optimal parallel mapping
is also optimal among all mappings for certain spe-
cial cases, and it is our conjecture that optimal map-
pings is indeed optimal. However, this does not imply
that all parallel mappings are better than non-parallel
mappings. Therefore, two important questions arise:
When we use a heuristic algorithm to find a good sub-
optimal parallel mapping, will this sub-optimal par-
allel mapping be worse than most non-parallel map-

pings? Do we need to consider all possible mappings,
and not just parallel mappings when looking for a
good sub-optimal mapping?

To answer these questions, we investigate several
heuristic methods, and compare the performance of
parallel and non-parallel mappings found with each
heuristic. We also confirm that optimization of map-
pings with respect to ® improves several other per-
formance parameters as well. We will again focus on
the discussion of the case of uniform-size communi-
cating subcubes, since we have shown [8] that map-
ping variable-size subcubes can always be reduced to
a uniform-size subcube mapping problem.

The simulated annealing method [9] is shown to be
an effective algorithm for finding near-optimal solu-
tions to NP-hard task-mapping problems [10,11]. In
[11], we investigated a simulated annealing method op-
timization process for finding good sub-optimal map-
pings for the problem (G,0,n). The implementation
of the simulated annealing method here is based on
parameters selected with a similar criterion as in [10].
We set the initial temperature Ty = 30, the new tem-
perature T,y = 0.95T, where T' is the temperature in
the last iteration. The freezing point is set so that
a move increasing the objective function by a unit
value has an acceptable probability of 2731, The per-
turb function is given by performing random 2-opt
exchanges [12] on the original mapping. Since each
instance of 2-opt exchange takes approximately the
same amount of computing time, the expected com-
puting time of an optimization process can be normal-
ized and expressed as the average number of exchanges
performed. Given the above parameters, the opti-
mization process is found to terminate after 30004500
exchanges on 90% of inputs used in producing the data
presented here.

In Table 1, we compare the performance of parallel
mappings (sn-p) and non-parallel mappings (sn-np)
found with the simulated annealing method. For sn-
p mappings, the initial mapping is a random parallel
mapping, and only exchanges among parallel subcubes
are allowed. For sn-np mappings, only non-parallel
mappings are considered. The inputs are generated
with | V' |= 25, prob(w;; > 0) = CCP (Concurrent
Communication Probability), i.e., the probability that
v; communicates with v; in the time window consid-
ered. w;; is set to 20 when w;; > 0, and each subcube
is of dimension d = 3. Each data point is obtained
by averaging results from 10,000 iterations. Deviation
from the mean values is found to be reasonably small

(< 3%).

CCP 0.1 0.2 0.4 0.6 0.8
rand | 13472 | 25952 | 49280 | 72640 | 96752
sn-p 8624 | 19072 | 41216 | 63968 | 89344
sn-np | 9552 | 21344 | 45536 | 70480 | 95856

Table 1: ® of mappings found by various strategies.

It 1s obvious that both sn-p and sn-np mappings im-
prove over random mappings significantly when CCP
is small. sn-p mappings have more than 15% im-
provement over random mappings when CCP < 0.6.
Also, sn-p mappings outperform sn-np mappings con-
sistently (> 10%) for all CCP values. This is even
more prominent when CCP > 0.5, where the margin
between sn-np and random mappings narrows down.

When w;;’s are constant as in our simulations, the
optimization of ¢ can also improve several important
performance parameters of a mapping. The commu-
nication diameter of a mapping is the largest Ham-
ming distance between two nodes belonging to a pair
of communicating subcubes. The average communi-
cation distance is the average Hamming distance of
all pair of nodes involved in inter-subcube communi-
cations. In Figs. 5 and 6, we show the three perfor-
mance parameters plotted against CCP for the map-
pings found. Obviously, sn-p mappings outperform
random and sn-np mappings in all cases, except in
the case of average subcube distance, where sn-np has
a lower value for various CCP values. This shows that
non-parallel mappings are better only in minimizing
the Hamming distance between subcubes, not neces-
sarily between nodes.

5 Concluding Remarks

In this paper, we have addressed the problem of
mapping a set of communicating subcubes in a hy-
percube by minimizing inter-subcube communication
traffic. The communication model we used was based
on the one proposed in [6,7] for routing messages be-
tween subcubes of the same size. Our objective was
to minimize the total inter-subcube communication

bandwidth.

Several important mathematical properties of this
type of mappings were derived. Methods were pro-
posed to modify existing algorithms to find an opti-
mal mapping. Parallel mappings were found to have
certain desirable properties, and require less compu-
tation cost to find. It was also shown that for some
special cases optimal parallel mappings were indeed
optimal among all mappings.

We also showed by simulations that in heuristic al-
gorithms such as simulated annealing methods and
other fast heuristics, parallel mappings still outper-
formed non-parallel mappings in most cases. In our
simulations, optimizing the proposed objective func-
tion also led to improvements in several other perfor-
mance parameters.

References

(1]

M. S. Chen and K. G. Shin, “Processor allocation
in an n-cube multiprocessor using gray codes”,
IEEE Trans. on Computers, vol. C-36, pp. 1396—
1407, Dec. 1987.

D. D. Sharma and D. K. Pradhan, “A novel ap-
proach for subcubes allocation in hypercube mul-
tiprocessors”, in Proc. of the Fourth IEEE Intl
Symposium on Parallel and Distributed Process-

g, pp. 336-345, 1992.

D. L. Kiskis and K. G. Shin, “Embedding triple-
modular redundancy into a hypercube architec-
ture”, n Proc. of the Third Conf. on Hyper-
cube Concurrent Computers and Applications,

pp. 337-345, Jan. 1988.

B.-R. Tsai and K. G. Shin, “Communication—
oriented assignment of task modules in hypercube
multicomputers”, in Proc. 12-th Int’l Conf. on
Distributed Comput. Syst., pp. 3845, June 1992.

B.-R. Tsai and K. G. Shin, “Mapping concurrent
communicating modules to mesh multicomputers
equipped with virtual channels”, submitted to
publication, 1994.

S. Padmanabhan and C. Baru, “Routing between
subcubes in a hypercube”, in Proc. of the 6th
Distributed Memory Computing Conference, pp.
295298, Apr. 1991.

M. S. Chen and K. G. Shin, “Subcube allocation
and task migration in hypercube multiprocessor”,
IEEE Trans. on Computers, vol. C-39, pp. 1146—
1155, Sep. 1990.

B.-R. Tsai, Mapping and Scheduling of Con-
current Communication Traffic in Multicomputer
Networks, PhD thesis, The University of Michi-
gan, 1994.

P.J. M. Laarhoven and E. H. L. Aarts, Simulated
Annealing: Theory and Applications, D. Reidel
Publishing Company, 1987.

[10]

F. Ercal, J. Ramanujam, and P. Sadayappan,
“Task allocation onto a hypercube by recursive
min-cut bipartitioning”, in Proc. of the Third

Conf. on Hypercube Concurrent Computers and
Applications, pp. 210-221, Jan. 1988.

B.-R. Tsai and K. G. Shin, “Communication-
oriented assignment of task modules in faulty hy-
percube multicomputers”, IFEE Trans. on Com-

puters, vol. C-36, pp. 1396-1407, May 1994.
A. V. Aho, J. E. Hopcroft, and J. D. Ull-

man, Data Structures and Algorithms, Addison-

Wesley, 1983.

100 101

@

o
s/
o
=
[

V.
0 v,
000! 001
VO V2
Vl V3
\2 \Y

[N
w

100 101

(b)

o
s/
®
P

< kB

000 001
V0 Vo

Figure 1: Two example mappings.

0
3 1
2 5 85 | | | |

T
5
5
o

Vl V2 V3 Z 80t T mG = =G = sl =G e e—a

= P &
’ e
0 < L
Figure 2: An example G. T N
g
701+ c---c rand —
s-p
== snnp
651 —
60 | | | |
0.0 0.2 0.4 0.6 0.8 10
Cccp

Figure 5: Average diameter versus CCP.

Figure 3: A mapping for (G*,0, 3).

% T T 1 1
z ST N
o
Q
=l
[=}
5 554 ©-"FT-3--G--G--G-~B=-e—--0
2 > -
< T
X e A
534 Pite ARIEi .
x
/
a .
511+ 7 a7 —
ks e
0.0 VO,]. 7 . c---c rand
! R A -|
491+ / : sep —
P X = SR
3 1 3 1]
2 2 X
471 ; -
45 | | | |
0.0 0.2 04 0.6 0.8 10

CCpP

Figure 6: Average node distance versus CCP.

Figure 4: An example G%.

