
Combined Task and Message Scheduling
in Distributed Real-Time Systems

Tarek F. Abdelzaher, Member, IEEE Computer Society, and Kang G. Shin, Fellow, IEEE

AbstractÐThis paper presents an algorithm for off-line scheduling of communicating tasks with precedence and exclusion constraints

in distributed hard real-time systems. Tasks are assumed to communicate via message passing based on a time-bounded

communication paradigm, such as the real-time channel [1]. The algorithm uses a branch-and-bound (B&B) technique to search for a

task schedule by minimizing maximum task lateness (defined as the difference between task completion time and task deadline), and

exploits the interplay between task and message scheduling to improve the quality of solution. It generates a complete schedule at

each vertex in the search tree, and can be made to yield a feasible schedule (found before reaching an optimal solution), or proceed

until an optimal task schedule is found. We have conducted an extensive simulation study to evaluate the performance of the proposed

algorithm. The algorithm is shown to scale well with respect to system size and degree of intertask interactions. It also offers good

performance for workloads with a wide range of CPU utilizations and application concurrency. For larger systems and higher loads, we

introduce a greedy heuristic that is faster but has no optimality properties. We have also extended the algorithm to a more general

resource-constraint model, thus widening its application domain.

Index TermsÐReal-time scheduling, combined task and message scheduling, distributed hard real-time systems, resource

constraints, deadlock.

æ

1 INTRODUCTION

IN hard real-time systems, failure to meet the deadline of a
task may result in catastrophic consequences. Each task

must therefore be guaranteed a priori to meet its timing
constraint, and hence, efficient techniques for preruntime
scheduling or schedulability analysis are needed. Since
periodic tasks are the base load of such systems, we shall
focus on how to schedule them. Sporadic tasks may be
considered periodic by using, for example, the sporadic
server. For the algorithm to be of practical value, task
precedence constraints and resource requirements need to
be taken into account. Furthermore, the algorithm should
find a feasible schedule (i.e., one that meets all deadlines),
whenever such a schedule exists. One approach is to cast
this problem into that of minimizing maximum task
lateness. A feasible schedule would then correspond to a
solution where maximum task lateness is nonpositive. If the
optimal schedule has positive lateness, then we know that
no feasible schedule exists. Thus, the problem is to find the
optimal1 preruntime schedule for hard real-time tasks with
known arrival times, precedence constraints, and resource
requirements. Such a problem was solved by Xu and Parnas
[2] for uniprocessor systems. An attempt to extend their
approach to several processors was made by Shepard and

Gagne [3], but their algorithm occasionally fails to find
existing feasible schedules, as we pointed out in [4]. Xu [5]
remedied this shortcoming and optimally solved the
problem for multiprocessor systems. However, his model
is not suitable for distributed systems, since it assumes that
tasks can be resumed on any processor at no additional cost,
neglects the cost of intertask communication, and does not
address the problem of scheduling intermachine messages.

In distributed hard real-time systems, intermachine
message communication affects task schedulability, and
thus, has to be taken into account. One way to solve this
problem is to separate message communication from task
scheduling. A communication paradigm such as the real-
time channel [1] is first assumed where the communication
subsystem guarantees bounded message delays (specified
as message deadlines), then the task scheduling problem is
solved on top of that paradigm, assuming fixed and known
message delay bounds. An optimal algorithm for solving
the latter problem is presented in [6], but it does not
consider resource requirements. In general, a disadvantage
of separating message scheduling from task scheduling is
that the bounded message delays guaranteed by solving the
former are a function of the specified message deadlines.
However, message deadlines cannot be accurately com-
puted before a task schedule is computed (from which, for
example, we may want to know the time to send these
messages, and the lateness of their receivers), but the task
schedule cannot be computed without an assumption about
message delay bounds in the first place. Because of this
tight coupling between the end-to-end message delays
achievable for different message deadline assignments, as
well as task lateness in the corresponding task schedules,2

the problems of task scheduling and message scheduling

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 11, NOVEMBER 1999 1179

. T.F. Abdelzaher is with the Department of Computer Science, University of
Virginia, Charlottesville, VA 22903-2242.
E-mail: zaher@cs.virginia.edu.

. K.G. Shin is with the Department of Electrical Engineering and Computer
Science, University of Michigan, Ann Arbor, MI 48109-2122.
E-mail: kgshin@eecs.umich.edu.

Manuscript received 27 Oct., 1995; accepted 14 July, 1998.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 100024.

1. We mean this in the sense of minimizing maximum task lateness.

2. Actually, there exists a circular dependency.

1045-9219/99/$10.00 ß 1999 IEEE

should be solved together. We must therefore develop a
combined approach to schedulability analysis that takes into
consideration both tasks and intertask messages. Several
heuristics have been proposed to solve the combined
problem, e.g., [7] and [8]. A flexible scheme which combines
off-line analysis with on-line guarantees is suggested in [9]
for uniprocessors. In [10], a rather similar scheme is
described for distributed systems. It uses off-line analysis
to convert task precedence and communication constraints
into pseudodeadlines of tasks and messages, then employs
an on-line guarantee routine to find a runtime task and
message schedule that minimizes the number of tasks
missing deadlines. An algorithm combining this problem
with that of task allocation was presented in [11].

In contrast, we propose an optimal algorithm for
scheduling tasks in a distributed real-time system which
interacts with the problem of message scheduling, thereby
improving the quality of solution. Assuming that the real-
time channel paradigm [1] is used for message commu-
nication, the problem of message scheduling is reduced to
that of an appropriate choice of message deadlines. Let's
define the message-priority space in which each point
corresponds to a different message-priority assignment.
Our algorithm may be viewed as searching the message-
priority space and the space of all task schedules for a point
where the task scheduling problem has an optimal solution.
Conceptually, the search proceeds in two orthogonal
dimensions. The first searches the message priority space.
At a given point in the message-priority space, the second
searches the space of all possible task schedules for a
schedule that minimizes maximum task lateness. Due to the
complexity of the combined problem, optimality is guaran-
teed in the second dimension, while a near optimal solution
is sought in the first dimension.

Since it often suffices in hard real-time systems to find a
feasible schedule which satisfies all deadlines as opposed to
an optimal one, the algorithm can be terminated after
finding a first feasible schedule. This does not eliminate the
need for an optimal approach, since in case the best
schedule found so far is not feasible, we should be able to
tell whether there are no feasible solutions to the problem.

The rest of this paper is organized as follows: Section 2
presents the basic algorithm. Section 3 evaluates its
performance. A fast heuristic derived from the algorithm
is presented in Section 4, which uses a greedy technique
(instead of optimal) to search for feasible schedules. The
basic algorithm is generalized to a more practical model for
resource requirements in Section 5. The paper concludes
with Section 6.

2 THE BASIC ALGORITHM

This section presents the basic algorithm proposed for
combined task and message scheduling. Section 2.1
describes the system model and notation, while Section 2.2
presents a general solution approach. Simulation results are
provided in Section 3.

2.1 System Model

The distributed system is composed of a set, P , of p
processing nodes (PNs), PN1; � � � ; PNp, connected by an

arbitrary network N . PNs run a set T of n hard real-time
tasks, T1; � � � ; Tn. Each task is assumed to reside perma-
nently on one processor. How to assign tasks to processors
is beyond the scope of this paper. See [12] for a suitable task
assignment algorithm. Each task Tk in the distributed
system has a known arrival time ak, total execution time
ck, and deadline dk. In the case of periodic tasks, each task
also has a period Pk. The arrival time of periodic task Tk is
associated with its individual invocations, such that the
arrival time ak�j� of its jth invocation, Tk�j�, is the beginning
of its period ak � �jÿ 1�Pk. The deadline of a periodic task
invocation is set relative to its arrival time. For periodic
tasks it suffices to analyze the system within an interval of
time equal to the least common multiple (LCM) of all task
periods. We call this interval the planning cycle. Otherwise,
the planning cycle is the duration of the entire off-line
schedule. In this paper we focus on periodic tasks. Table 1
gives an example set of periodic tasks assigned to two PNs.
The duration of the planning cycle is LCM�3; 6; 12� � 12.
This set will be used throughout the rest of the paper to
illustrate the solution approach.

A task may be composed of one or more modules. Each
module Mi of a task invocation Tk�j� has the worst-case
execution time Ci, which bounds its actual execution time,
the arrival time Ai, which denotes the earliest time the
module can be invoked, and the deadline Di, which is the
latest time it can finish execution. Initially, Ai � ak�j�, and
Di � dk�j� of the corresponding task invocation. In a
particular schedule
, the time Si�
� when module Mi is
first given the CPU is called the module start time and the
time Ei�
� when the module finishes execution is called the
module completion time. The completion time of a task
invocation Tk�j� is the completion time Elast of its last
module Mlast. The lateness of task invocation Tk�j� in
schedule
 is defined as the lateness of the task's last
module, Elast�
� ÿDlast. A positive task lateness indicates
that the task missed its deadline. Schedule lateness,
lateness�
�, is the maximum lateness over all task invoca-
tions in the schedule.

Modules may have synchronization constraints, which are
either precedence constraints (e.g., when one module waits
for the results of another) or mutual exclusion constraints
(between pairs of modules accessing the same serial

1180 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 11, NOVEMBER 1999

TABLE 1
An Example Task Set

resource). A precedence constraint Mi precedes Mj means
that Mi and Mj must be scheduled such that Ei�
� � Sj�
�.
A mutual exclusion constraint Mi excludes Mj means that
neither of the two modules can have an execution interval
between the other's start time and completion time. In other
words, the modules must be scheduled such that either
Mi precedes Mj or Mj precedes Mi. Note that excludes is
commutative. The set Syncinit is the set of all synchroniza-
tion constraints defined initially for the system. In this
section, we cast resource constraints as mutual exclusion
constraints between (entire) modules, which implies that
modules lock/unlock all their required resources together
and hold them throughout the entire interval of their
execution. Thus, there is no possibility of deadlock. This
restriction will be relaxed in Section 5. Modules residing on
different processors communicate via message passing. A
message from module Mi to module Mj in a planning cycle
is denoted by mi;j. Communication among modules
residing on the same node is assumed to incur a fixed
overhead, which is included in the execution time of the
sending module.

For our running example, Table 2 depicts all task
invocations in the task set shown in Table 1 within the
planning cycle. For simplicity of illustration, all tasks except
one (T3) are chosen to consist of only one module. To
illustrate synchronization constraints, we let task T5 (mod-
ule M11) use some results computed in module M7 of task
T3 that are sent to T5 via a message m7;11. We also let each
odd-numbered invocation of task T4 (i.e., module M9)
communicate a message to the fourth invocation of task T1

(module M4) in the same planning cycle. Furthermore, we
let tasks T4 and T5 use the same serial resource, thus
creating a mutual exclusion constraint between each
invocation of T4 (modules M9 and M10) and task T5 (module
M11). The resulting set of synchronization constraints
Syncinit is shown in Table 2. This example task set will be
used throughout the paper to illustrate the algorithm.

2.2 The Solution Approach

Our objective is to find an optimal task schedule and a near-
optimal message priority assignment in the sense of
minimizing schedule lateness (defined in Section 2.1) across
all PNs. In doing so, we consider C1 a message commu-
nication paradigm, C2 an optimal task scheduling algo-
rithm, and C3 a message priority assignment heuristic.

The message communication paradigm, C1, defines the
mechanism used for message transport on the target
system. The paradigm itself is not a contribution of our
algorithm, but a parameter of the underlying system. It
must guarantee bounded communication delay for
messages. We compute

1. a message priority order using some heuristic C3
that attempts to reduce task lateness,

2. message delay bounds using paradigm C1, and
3. an optimal schedule using the optimal task

scheduling algorithm C2 that minimizes task late-
ness for given message delays.

The real-time channels presented in [1] guarantee bounded
communication delays and thus will be used as an example
for the paradigm C1. The general idea of real-time channels

is to reserve resources in the network (e.g., on network

routers) to guarantee bounded-time processing of a stream

of messages specified by a given period, maximum message

size, and worst-case jitter.
A B&B technique is used to minimize the lateness of the

distributed communicating tasks. It can be viewed as a

search, by implicit enumeration, through the entire valid

solution space. A valid solution,
, is a schedule with the

following properties.

. Every module Mi in
 starts no earlier than its arrival
time, i.e., Si�
� � Ai, and is given the CPU for a total
of Ci time units.

. All task synchronization (i.e., precedence and exclu-
sion) constraints in the set Syncinit are satisfied.3

. Message delays are computed using paradigm C1
and are accounted for in the schedule. That is, if
module Mi sends a message mi;j to module Mj, and
the delay bound of mi;j computed by paradigm C1 is
di;j, then Sj�
� � di;j �Ei�
�.

A valid solution
 is feasible if it satisfies the additional

constraint that every module Mi in
 finishes before its

deadline (i.e., Ei�
� � Di). The B&B search can be viewed as

traversing a search tree. The root vertex, Vroot, of the search

tree represents the space of all possible valid solutions.

ABDELZAHER AND SHIN: COMBINED TASK AND MESSAGE SCHEDULING IN DISTRIBUTED REAL-TIME SYSTEMS 1181

3. We have defined in Section 2.1 what it means to satisfy the precedence and
exclusion constraints.

TABLE 2
The Module Set

Messages: m7;11;m9;4;
Syncinit � fM7 precedes M11;M7 precedes M8;M9 precedes M4;
M9 excludes M11;M10 excludes M11g

Branching from vertex V is a subdivision of the solution

space of the parent among a set of child vertices. We denote

by Space�V � the set of all valid solutions represented by

vertex V . Thus, for a parent vertex V , branching subdivides

the solution space Space�V � among a set of child vertices. In

other words, the union of fSpace�C� : C is a child of V g
over all children of V amounts to Space�V �. Bounding a

vertex V is the estimation of a value, bound�V �, that lower-

bounds schedule lateness of all valid solutions in Space�V �.
That is, 8
 2 Space�V � : lateness�
� � bound�V �. Bounding

allows us to prune vertices whose bounds are higher (i.e.,

worse) than the lateness of the best solution found so far,

say BestLateness, since such vertices cannot lead to an

optimal solution. To enable pruning, a tentative schedule,

solution�V �, is computed at each expanded vertex V out of

the set Space�V �. Vertices whose bound is greater than the

lateness of solution�V � are then pruned. The algorithm

continues until an optimal solution is found, i.e., all vertices

have been pruned except one, and no further branching is

possible. The complete algorithm is thus listed below.

1. Set up Vroot. Let ActiveV ertexSet � fVrootg. Let
BestLateness � lateness�solution�Vroot��.

2. Let Vexpand be the vertex with the minimum bound�V �
among all vertices, V 2 ActiveV ertexSet. Pop Vexpand out
of ActiveV ertexSet.

3. Find solution�Vexpand�, and if
lateness�solution�Vexpand�� < BestLateness, let
BestLateness � lateness�solution�Vexpand��. Find the
children of vertex Vexpand applying the branching
function, branch�V � to Vexpand.

4. Prune the vertices that do not improve on the best
solution found so far, i.e., vertices V for which
bound�V � � BestLateness.

5. Add the remaining vertices to the set ActiveV ertexSet.
6. If ActiveV ertexSet is not empty, go to step 2. Otherwise,

return the solution with the current BestLateness.

Section 2.2.1 describes how the root vertex is set up.

Section 2.2.2 describes the function solution�V � that

computes a schedule at vertex V out of the space of valid

schedules, Space�V �, represented by the vertex. Section 2.2.3

describes the branching function, branch�V � that returns a

set of child vertices given a parent vertex V . Section 2.2.4

describes the bounding function that determines, given

some vertex V , a lower bound on schedule lateness for all

schedules in Space�V �. These functions in conjunction with

the pseudocode given above completely specify our B&B

algorithm. As with any B&B algorithm, its optimality is

guaranteed as long as 1) branching does not leave any part

of the solution space unreachable, and 2) bounding

computes a true lower bound of the performance measure

for each vertex [13]. These properties are proven when

discussing branching and bounding in Section 2.2.3 and

Section 2.2.4, respectively.

2.2.1 Setting up the Root Vertex

The root vertex represents the entire space of all valid
solutions. Space�Vroot� is implicitly specified by 1) module

arrival times and computation times, and 2) a set of
synchronization constraints Sync�Vroot� � Syncinit, as
given in the problem input (e.g., see Table 2). Any valid
solution to the scheduling problem must satisfy 1) and 2),
(as well as account for message delay bounds computed
by paradigm C1). A valid feasible solution would also
satisfy all deadlines.

For the purpose of computing an initial schedule

solution�Vroot�, we also compute an initial message priority

order, Ord�Vroot�. In Section 2.2.2, we show how this

information is used to obtain message delays and compute

a valid schedule. Ord�Vroot� can be altered during the search

process to obtain better schedules as will be described in

Section 2.2.3.
We compute the initial message priority order,

Ord�Vroot�, using heuristic C3. The ªurgencyº of each

message is first estimated as follows: The precedence

constraints associated with messages among modules

running on different PNs are neglected, and modules on

each PN are scheduled using EDF subject to the remaining

precedence and exclusion constraints. Let the resulting

schedule be
no constraints. For each message mi;j from

module Mi to module Mj we note the completion time

Ei�
no constraints� of the sending module Mi in schedule

no constraints, which is the time message mi;j is sent. The

message must make it to the receiver Mj in time for it to

execute by its deadline, Dj. Thus, the relative deadline for

message mi;j is set to Dj ÿ Cj ÿEi�
no constraints�.
Messages are ordered by their relative deadlines, such

that messages with tighter relative deadlines have higher

priorities. Ties are broken arbitrarily. This results in the

initial message priority order Ord�Vroot�. Fig. 1 demonstrates

the schedule
no constraints for one planning cycle of the task

set in Table 2. It shows the intervals from message

transmission time to receiver deadline for the two messages

in the planning cycle, m7;11 and m9;4. From the figure it is

seen that m7;11 must have higher priority than m9;4. Thus,

Ord�Vroot� � m7;11;m9;4 (in decreasing priority order).

2.2.2 Computing solution�V �
In order to prune vertices in the search space we compute a

valid solution at each visited vertex V . The solution is

drawn from the solution subspace Space�V � represented by

the vertex. The lateness of the computed solution is used to

prune vertices whose bound�� is higher. Thus, the goodness

of the function solution�V � in picking a low-lateness

schedule out of Space�V � determines how efficient the

pruning process is. In this subsection we describe the

function solution�V �.
Given a complete message priority order Ord�V � at

vertex V , and a set Sync�V � of synchronization constraints,

we need to 1) compute message delays, 2) compute a valid

task schedule, and 3) find schedule lateness. Of these,

computing message delays is not performed by our

algorithm. Instead, it is performed by the underlying

communication paradigm, C1 (e.g., real-time channels). In

our running example, we would thus use C1 to establish a

1182 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 11, NOVEMBER 1999

channel for the higher priority message m7;11 first, then

establish a channel for message m9;4. For the purpose of

illustration, assume that the delay bounds computed by C1

for messages m7;11 and m9;4 are 1:75 and 3, respectively.
Once the message delay has been established for each

message, the function solution�V � computes a new arrival

time Ai, and deadline Di for each module Mi to account for

message communication delays and precedence constraints.

The following recursive equations are used.

Ai � max�Ai; fAj � Cj �mji j Mj precedes Mig� �1�

Di � min�Di; fDj ÿ Cj ÿmij j Mi precedes Mjg�; �2�
where Cj is the worst-case computation time of Mj, and

mji �mij� is the computed communication delay between

Mj and Mi (Mi and Mj), if any. This is a standard technique

for deadline and release time modification in order to

account for precedence constraints. Variations of it have

been used in several publications, e.g., [5], [6], [10], [14]. For

example, in the task set of Table 2,

A11 � max�0; A7 � C7 �m7;11� � 2:75;

and

D7 � min�12; D11 ÿ C11 ÿm7;11; D8 ÿ C8�
� min�12; 9ÿ 1ÿ 1:75; 12ÿ 2� � 6:25:

Next, solution�V � computes an EDF schedule subject to

the above arrival times and deadlines, as well as precedence

and exclusion constraints in set Sync�V �. We choose EDF

because it is a locally optimal preemptive scheduling policy.

To prevent unbounded (dynamic) priority inversion, a

module which blocks others with earlier deadlines inherits

the earliest of these deadlines. We call this policy EDF with

Deadline Inheritance (EDF-DI). Note that we do not use

dynamic priority ceilings [15], because deadlocks cannot

occur in our simplified model. Fig. 2 shows the schedule

computed by solution�V � at the root vertex for the task set

in Table 2. In this example, schedule lateness is

lateness�solution�Vroot�� � 1:5, which is the lateness of T5

(module M11).

2.2.3 Branching branch�V �
The branching function, branch�V �, subdivides the valid

solution space Space�V � represented by a parent vertex V

into a set of subspaces, each represented by a child vertex.

To make sure that no parts of the solution space are ªlost,º

the union of the subspaces Space�C� over all children C of

vertex V must amount to Space�V �. The set of valid

solutions Space�V � at an arbitrary vertex V is implicitly

represented by 1) module arrival times and computation

times at vertex V , and 2) the set of synchronization

constraints Sync�V �. The solution space is subdivided by

the branching function in order to help pruning subsets of

that space. We prune vertices whose lower bound is worse

(i.e., higher) than the best lateness of a schedule found by

solution�V �. Thus, we need solution�V � to return

progressively better schedules as we get deeper in the

search tree to enable pruning more vertices. In what

follows, we describe how branching is done, and present

the methodology used to attempt to improve the lateness of

solution�V � at each descendant.

Consider some vertex V in the search tree generated by

our B&B algorithm. Let Tm be the task with the maximum

task lateness in the schedule computed by solution�V �. If

there is a tie, let Tm be the task with the maximum lateness

that finishes first. This tie-breaking rule is important to

guarantee ªprogressº (i.e., prevent an infinite loop in the

algorithm) as will be described later in this section. Let

Mlastm be the last module of task Tm. For example, in the

root schedule shown in Fig. 2, Mlastm is M11. Unless the

schedule at V happens to be optimal, there exists a way to

reduce schedule lateness. In other words, it is possible to let

module Mlastm finish earlier. In the following, we consider

all possible ways of letting Mlastm finish earlier. In order to

categorize and describe these ways, we use the concept of a

busy period [2]. Informally, the busy period, Bi, of module Mi

is the interval �Gi;Ei�, where Ei is the completion time of

Mi, and Gi is the start of the period of continuous processor

utilization that includes Mi. For example, in the root

schedule shown in Fig. 2, the busy period of the latest

ABDELZAHER AND SHIN: COMBINED TASK AND MESSAGE SCHEDULING IN DISTRIBUTED REAL-TIME SYSTEMS 1183

Fig. 1. Computing message priority order Ord�Vroot�.

module M11 is B11 � �6; 10:5�. The busy period Bi of module

Mi is defined recursively as follows:

1. Mi 2 Bi,
2. While 9 Mk, whose completion time satisfies t <

Ek < Ei (where t � minfAj j Mj 2 Bi�g� let Mk 2 Bi.

In order to reduce schedule lateness, we consider the
following three cases, exactly one of which will be satisfied
in any schedule (since their ORing amounts to unity).

Case 1: No module Mi in Blastm has predecessors on other
processors (according to set Sync�V �), and no module Mi

in Blastm has a deadline Di > Dlastm .

Case 2: 9 some module Mi in Blastm whose deadline
Di > Dlastm .

Case 3: 9 some module Mi in Blastm who has a predecessor
Mj on a different processor (according to set Sync�V �),
and no module in Blastm has a deadline Di > Dlastm .
Case 1: No module Mi in Blastm has predecessors on

other processors (according to set Sync�V �), and no module
Mi in Blastm has a deadline Di > Dlastm . In any schedule with
a lower lateness than solution�V � the module Mlastm (which
has the maximum lateness in solution�V �) must complete
earlier. However, since all other modules in Blastm have
tighter deadlines, the schedule where Mlastm executes last in
Blastm (i.e., solution�V �) is optimal. That is to say, it is the
optimal solution within the subset Space�V � of all possible
schedules represented by vertex V . No further branching
from that vertex is possible. The branching function returns
a null set of children.

Case 2: There exists some module Mi in Blastm whose
deadline Di > Dlastm . Since EDF scheduling is used to
obtain solution�V �, modules scheduled before the latest
module Mlastm in its busy period must necessarily have
earlier deadlines. The only way some module Mi in Blastm

can have Di > Dlastm yet be scheduled before Mlastm is
because of priority inversion due to a mutual exclusion
constraint which prevents that module from being pre-
empted. In other words, Case 2 implies that 9Mj 2 Blastm

such that Mi excludes Mj 2 Sync�V �. For example, in Fig. 2

we can see a situation where the latest module M11 which
becomes ready upon delivery of message m7;11 at time t �
6:75 cannot preempt a less urgent module M10 due to a
mutual exclusion constraint, even though D10 > D11. We
also see a case where M13 of intermediate priority delays
less urgent M10 before M11 becomes ready, thus indirectly
delaying the higher priority module M11 because of the
mutual exclusion constraints.4 ªEliminatingº the exclusion
constraint would resolve the problem of priority inversion,
potentially resulting in a better schedule. To eliminate an
exclusion constraint Mi excludes Mj, the branching func-
tion branch�V � generates two children C1 and C2 such that
Space�C1� is the subset of all schedules in Space�V � where
Mi precedes Mj, and Space�C2� is the subset of all schedules
in Space�V � where Mj precedes Mi. In other words, we set
the children's synchronization constraints such that

Sync�C1� � Sync�V � ÿ fMi excludes Mjg
� fMi precedes Mjg

and

Sync�C2� � Sync�V � ÿ fMi excludes Mjg
� fMj precedes Mig:

Since an exclusion constraint Mi excludes Mj 2 Sync�V �
means that in any valid solution, either Mi precedes Mj or
Mj precedes Mi, it can be seen that

Space�C1� [Space�C2� � Space�V �:
However, in each child independently, the exclusion
constraint has been replaced with a precedence constraint.

For the sake of illustration, Fig. 3 gives the Sync�� sets of
the two children of the root vertex whose schedule, shown
in Fig. 2, satisfies Case 2. The figure shows that applying the
solution�� function to each child gives a better schedule (in
terms of maximum task lateness) than that of the parent.

(Compare the maximum lateness of the children in Fig. 3 to

1184 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 11, NOVEMBER 1999

Fig. 2. Root schedule.

4. EDF-DI does not prevent such priority inversion, because it cannot
keep M10 from being preempted before it inherits the deadline of M11.

that of root schedule in Fig. 2.) Child1 results in decreasing

the deadline of module M10 (see (2)), thus preventing M13

from preempting M10. As a result, both M10 and M11 finish

earlier, thus reducing schedule lateness. Child2 results in

causing M10 to wait until M11 is finished instead of blocking

it due to mutual exclusion, also reducing schedule lateness.

This lateness improvement leads to more efficient pruning.

Intuitively, the improvement is attributed to the local

optimality of EDF scheduling when no mutual exclusion

constraints are present.
Case 3: There exists some module Mi in Blastm who has a

predecessor Mj on a different processor (according to set

Sync�V �), and no module in Blastm has a deadline

Di > Dlastm . Following the same argument as in Case 1,

the schedule generated in Case 3 for the busy period

Blastm � �Glastm ; Elastm � is locally optimal. The latest module

has the largest deadline and is therefore scheduled last in

the busy period. However, since in Case 3, 9Mi 2 Blastm

which has a remote predecessor Mj, schedule lateness may

be improved by either increasing the priority of message

mj;i, if any, to let it arrive earlier at the destination, or else

by rescheduling Mj earlier on its processor. In either case,

the busy period Blastm as a whole may start earlier, thus

potentially reducing schedule lateness. For example, con-

sider the schedule of Child2 shown in Fig. 3. The latest

module Mlastm is M10 whose lateness is 1:25. The busy

period Blastm is B10 � �6:75; 11:25�. There exists a module

Mi �M11 in Blastm with a remote predecessor Mj �M7,

thus Case 3 is satisfied. Message m7;11 already has top

priority. So we consider scheduling M7 earlier to decrease

the lateness of the latest task. In general, a remote

predecessor Mj is forced to start earlier by decreasing its

deadline such that it inherits the lateness of Mlastm . Thus, the

branching function in Case 3 returns a set of children

as follows:

ABDELZAHER AND SHIN: COMBINED TASK AND MESSAGE SCHEDULING IN DISTRIBUTED REAL-TIME SYSTEMS 1185

Fig. 3. Branching in Case 2.

. If 9 a message mi;j from a remote predecessor Mj

immediately preceding some Mi 2 Blastm (i.e.,
Mj precedes Mi 2 Sync�V �), increase the priority of
mi;j (if possible). The algorithm shown in Fig. 4
specifies how message priority is increased. Essen-
tially, the first promoted message gets the highest
priority. Each time another message is promoted, its
priority is set one level below the priority of the
previously promoted message. The variable
priority limit�V � tells which level message priority
should be increased to at search vertex V . The
variable is set to the highest priority, 1, at the root,
and is incremented each time a message has been
promoted. We do not claim optimality with respect
to setting message priorities, although we expect
that increasing the priority of a message on the
critical path is likely to improve schedule lateness.

. If message priority cannot be increased (or there are
no messages), then for all remote predecessors Mj

immediately preceding some Mi 2 Blastm (i.e.,
Mj precedes Mi 2 Sync�V �) create a child vertex
with same module arrival times, computation times,
and synchronization constraints, and let Mj inherit
the lateness of the latest task, i.e., reduce the deadline
of Mj in the child to min�Dj;Ej ÿ lateness�Mlastm��,
where lateness�Mlastm� � Elastm ÿDlastm . Note that

changing a module deadline makes the heuristic
function, solution��, return a different (potentially
better) EDF schedule for child C than it does for its
parent V , leading to pruning more vertices.
However, Space�C� � Space�V � because the valid
solution space is defined independently of
deadline values.

If the deadline of a predecessor Mj of the latest module is
advanced, the predecessor will either:

1. Finish earlier in the new schedule (i.e., a different
schedule,
C , results at the child), or

2. Become the latest task itself.

In either case ªprogressº is guaranteed in the sense that the
child differs from the parent in either the schedule returned
by Solution�V � or the latest task. Note that option 2 above is
because the predecessor's deadline has been advanced to
Dj � Ej�
V � ÿ lateness�Mlastm�, where
V is the schedule at
the parent vertex V . Thus, if the predecessor does not finish
earlier in the new schedule (i.e., if Ej�
C� � Ej�
V �), its
lateness will be

Ej�
C� ÿDj � Ej�
V � ÿDj � lateness�Mlastm�:
Since our tie breaking rule chooses the latest task to be
the one with the minimum completion time among those
with the maximum lateness, it will choose Mj rather than
Mlastm as the latest task in the new schedule,
C . This
guarantees progress. Note that the branching in Case 3 is
similar to substituting a precedence constraint between
the latest task and one of its remote predecessors with an
artificial deadline on the predecessor. Removal of a
precedence constraint between tasks residing on different
processors brings the EDF schedule at the child vertex
closer to the optimal. EDF is optimal when all such
precedence constraints (and all exclusion constraints) are
removed. Fig. 5 illustrates the branching in Case 3. It
shows the schedule obtained by branching from vertex
Child2 shown in Fig. 3 by letting the predecessor M7

inherit the lateness of the latest module M10. The new
deadline of M7 becomes D7 � 5ÿ 1:25 � 3:75. Intuitively,

1186 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 11, NOVEMBER 1999

Fig. 5. Branching in Case 3.

Fig. 4. The branching function.

M7 must complete by that deadline in order for M10 to
complete in time. The resulting new EDF schedule shifts
M7 earlier (in accordance with its new deadline), which
happens to result in a globally optimal schedule. Fig. 6
summarizes the branching function.

2.2.4 Bounding bound�V �
Our bounding function determines a lower bound on
lateness at a vertex V by removing from set Sync�V � 1) all
the mutual exclusion constraints, and 2) all precedence
constraints among modules on different processors, then
computing vertex cost subject to the remaining set of local
precedence constraints, say Syncrem�V � � Sync�V �, and
module arrival times and deadlines as described in
Section 2.2.2. (Note that message priorities are irrelevant
here, because precedence constraints and delays associated
with interprocessor messages have been ignored in
Syncrem�V �.)

The lateness of the computed EDF schedule is globally
optimal among all schedules that satisfy Syncrem�V �. This is
because:

1. Since no exclusion constraints are present in
Syncrem�V �, EDF is locally optimal.

2. Since all constraints in Syncrem�V � are between
modules on the same processor, modules on each
processor are ªindependentº of modules on every
other processor.

Therefore, the set of locally optimal uniprocessor schedules
is a globally optimal schedule. Let the aforementioned
optimal lateness be called Lmin.

Finally, since any solution S 2 Space�V � to the original
task scheduling problem satisfies the constraint set Sync�V �,
it satisfies, by implication, the constraint subset Syncrem�V �.
Thus, the lateness of S cannot be less than the global
optimum Lmin. Thus, Lmin is a true lower-bound on lateness
for any valid solution in Space�V �. The optimality of the
B&B algorithm follows from the correctness of the bound-
ing function, and the ability of the branching function to

encompass the entire solution space. Intuitively, the
branching function transforms the set of initial precedence
and exclusion constraints into an equivalent set of con-
straints with no mutual exclusion and no precedence
constraints across different processors; a case in which
EDF is globally optimal.

3 EVALUATION

To demonstrate the utility of the algorithm, a simulator was
constructed, generating arbitrary task graphs on which the
algorithm can be applied. On each run, the algorithm was
given a task graph, an optimal solution was found, and the
number of generated vertices was recorded. The numbers of
modules, processors, precedence and exclusion constraints,
were varied to determine the trends in algorithm perfor-
mance. We restrict the following discussion to the most
tangible results we found, namely, the effects of application
concurrency, CPU utilization, and module interaction on
the performance of the algorithm. We considered systems of
300 modules running on four processors. The effect of
application concurrency is analyzed by varying the number
of concurrent application threads per processor. CPU
utilization is varied by changing the average module
execution time. Finally, module interaction is controlled
by varying the number of communicated messages between
different modules. In the figures given below, each point is
obtained by averaging 25 readings.

Fig. 7 shows the effect of concurrency. The number of
concurrent application threads per processor is varied from
one to nine. Note that the total number of application
threads may be much more. By concurrent threads we mean
only those that become ready to execute during the same
time intervals. CPU utilization is fixed at 90 percent, and the
number of messages in the system is fixed at 150 (half the
number of modules). It can be seen that an optimal schedule
is found near the root in most cases when the degree of
concurrency is low. This is explained by the fact that EDF
scheduling (performed at the root) is locally optimal.

ABDELZAHER AND SHIN: COMBINED TASK AND MESSAGE SCHEDULING IN DISTRIBUTED REAL-TIME SYSTEMS 1187

Fig. 6. The branching function.

Exploiting this characteristic may lead to an optimal
solution when application concurrency is low. For con-
currency of six threads per processor or less, the average
number of generated vertices is less than five. As the
concurrency increases, the local optimality of EDF
scheduling becomes less and less sufficient. Thus, our
algorithm expands progressively more vertices to find a
globally optimal solution.

Fig. 8 demonstrates the effect of CPU utilization. CPU
utilization is the total computational workload per
processor divided by schedule length. The number of
messages in the system was fixed at 150, and the average
degree of concurrency was eight. The algorithm performs
very well for utilization up to 80 percent. The average
number of generated vertices over that range is less than 10.
As utilization increases, the algorithm runtime increases
abruptly, due mainly to the accompanying increase in the
length of the busy period, and therefore the increase in
branching factor.

Finally, Fig. 9 illustrates the effect of module interaction
measured in the number of communicated messages within
the system. CPU utilization was fixed at 90 percent, and the
degree of concurrency was fixed at eight. Unlike the other
curves, the algorithm runtime increases almost linearly with
the number of messages, because, as the number of
messages increases, so does the branching factor. However,
since each message introduces a precedence constraint,
increasing the number of messages tends to constrain the
task graph and decrease scheduling options at any given
time, thus reducing the depth of the search tree.

In general, for a wide range of workloads the algorithm
generates an optimal solution at or near the root of the
search tree. A similar observation was reported in [3]. This
is due to the nature of the performance measure being
optimized. Schedule lateness refers to the lateness of only
one module. If we happen to be unable to reduce the
lateness of the latest module, the algorithm terminates even

though there may be ways of decreasing the lateness of
other modules. The generation of vertices is inexpensive.
For the task sets considered in this section, the worst-case
computation time of a run was in the order of a few seconds
on a Sun Ultra workstation.

4 A SIMPLE HEURISTIC

The complexity of the algorithm presented in Section 2 can
be reduced by employing a greedy heuristic which
performs depth-first search with no backtracking. Our
heuristic expands each vertex V by generating all its
children, then branches to the minimum-cost child, ignoring
all others. Thus, at each vertex, after generating its children,

1188 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 11, NOVEMBER 1999

Fig. 7. Effect of application concurrency. Fig. 8. Effect of processor utilization.

Fig. 9. Effect of module interaction.

a complete schedule is computed for each child (as opposed
to a lower bound). Children whose schedule lateness is
more than that of the parent are pruned. Among the
surviving ones, the child with the minimum schedule
lateness is selected for expansion next. The algorithm
continues until a vertex is reached that has no children (or
until the first feasible schedule is found, if so desired).
Although pathological cases may be constructed where the
heuristic fails to find an existing feasible schedule, it was
able to arrive at the optimal schedule in 29 out of
30 randomly generated cases of periodic task sets with
90 percent CPU utilization. This number, however, depends
much on the nature of the task set. In the case where tasks
arrive at random times with random deadlines, the
heuristic performs worse than in the case where tasks
arrive at regular intervals and have the same deadline at
each invocation. To compare the costs of running the two
algorithms, 30 randomly generated periodic task sets (of 400
tasks each) were constructed, and each algorithm was run
on each set. The number of generated vertices was not used
as a measure for algorithm comparison, since the amount of
computation per vertex is higher for the heuristic algorithm.

This is because it computes a complete schedule for each child

vertex, while the optimal one computes only a lower bound.

Since the computation of a schedule at a vertex was found

to be the most costly element of both B&B algorithms, the

number of complete schedules computed until a solution is

found was taken as the measure for their comparison. The

heuristic was found to generate 74 percent fewer schedules

than the optimal algorithm for the task set size considered

before the best schedule is found. It is projected that the

savings are greater for larger task sets.

5 A MORE GENERAL RESOURCE CONSTRAINT

MODEL

In the previous sections, we presented an algorithm for

combined task and message scheduling in distributed real-

time systems. The algorithm uses a simple model for

resource requirements. The model has two limitations, i.e.,

resources are assumed to be:

. locked/unlocked together;

. all locked at module start and unlocked upon
module termination.

Fig. 10 illustrates a consequence of these limitations. For

example, resource R2 has to be locked by the modules

throughout the entire interval of their execution, even

though it is used only for a part of that interval. A more

severe consequence is that all resources have to be

unlocked at module termination, thus in Fig. 10 the

exclusion constraints do not prevent the scheduler from

inserting a module which uses R1 or R2 between M1 and

M2, which should not be the case. In what follows, we

present a more realistic version of resource constraints,

and describe how the algorithm in Section 2 can be

modified to accommodate it.

5.1 A General Exclusion Model

We extend the notion of an exclusion constraint to include

exclusion between strings of modules where a string of k

modules M1 M2 � � � Mk is a module sequence in which

M1 precedes M2 � � � precedes Mk. Thus, the constraints

have the general form

ABDELZAHER AND SHIN: COMBINED TASK AND MESSAGE SCHEDULING IN DISTRIBUTED REAL-TIME SYSTEMS 1189

Fig. 10. Accounting for contention.

Fig. 11. An example of mutual exclusion.

ModuleString1 excludes ModuleString2;

meaning that all modules in one of the strings have to

terminate before any module in the other can start. For

example, Fig. 11 depicts the resource requirements of two

tasks. The following exclusion constraints can be derived:

. C1: M2 M3 M4 M5 excludes M9 M10 (because of R1)

. C2: M3 M4 excludes M8 M9 M10 M11 (because of R2)

. C3: M5 excludes M8 M9 M10 M11 (because of R3)

Note that under this model, a deadlock may occur. For
example, in Fig. 11 a potential deadlock arises because task1

and task2 lock resources R1 and R2 in different orders.

5.2 Algorithm Modifications

A close look at the algorithm may reveal that no modifica-
tions are necessary to accommodate the new type of
exclusion constraints. This is because an exclusion con-
straint such as M2 M3 M4 M5 excludes M9 M10 can simply
be viewed as a simple exclusion constraint Ma excludes Mb,
where Ma �M2M3M4M5, and Mb �M9M10. The algorithm
can account for such constraints as discussed earlier. Our
only concern is to avoid deadlocks when computing a
valid solution, Solution�V �. Thus, to accommodate the
exclusion model presented above, we slightly modified
the definition of a valid schedule. In particular, in
addition to the former requirements, a valid schedule
must also be deadlock-free. As a result, the function
Solution�V � must have a way to detect deadlocks in the
computed solution. This function is performed off-line,
and can utilize any of the known methods for deadlock
detection. (Deadlock detection is not a concern of this
paper.) The problem is how to modify the schedule to
avoid the deadlock without losing optimality.

Note that if there were no exclusion constraints, dead-
locks would not develop. We had already demonstrated
one way of removing exclusion constraints by replacing
them with precedence constraints. When a deadlock is
detected by Solution�V �, it is circumvented using a similar
technique. Consider a deadlock that occurs during the
computation of a solution schedule Solution�V � at some
search vertex V . A typical deadlock detection algorithm can
then identify a cycle of modules in which each module
cannot run because it is waiting for another module in the
cycle to proceed. The presence of the cycle manifests the
deadlock. Since there are no cycles in the precedence
constraint graph, one of the edges in the deadlock cycle
must be due to an exclusion constraint between the
corresponding modules. This exclusion constraint can be
replaced by one of two possible precedence constraints,5

thus splitting the current vertex into two. If the exclusion
constraint replacement results in a cyclic precedence
constraint graph in any of the two generated vertices, this
vertex is destroyed, since it does not lead to valid solutions.
Bounding is then performed on the surviving of the two
vertices, and the one with the lower bound is expanded.
Solution�V � is then applied to the expanded vertex. It will
no longer run into the same deadlock. In essence, to avoid

the deadlock we have ªeliminatedº an exclusion constraint
the same way we described earlier in the context of
branching, albeit for a different reason. Eventually enough
of the exclusion constraints will be eliminated to produce a
deadlock-free schedule.

6 CONCLUSION

This paper presented a new B&B algorithm for off-line
combined task and message scheduling in distributed
systems. The algorithm computes a schedule for tasks, a
set of deadlines for messages derived from a priority
assignment, and a route selection such that the maximum
task lateness is minimized. It accounts for precedence and
exclusion constraints between task modules. Furthermore,
it exploits the coupling between task completion times
and message delays by recomputing message priorities
and deadlines during the search to reduce the maximum
task lateness.

The algorithm is proven to compute an optimal schedule
for the set of message deadlines defined for the solution
point in the search space. A simulation study has shown
that it scales well with respect to system size and the
number of communicated messages among tasks. A
heuristic version of the algorithm is presented, where a
greedy technique is used to trade optimality for speed. We
also suggest a way to generalize the algorithm for a more
practical resource mode.

ACKNOWLEDGMENTS

An earlier version of this paper was presented at the 1995
IEEE Real-Time Systems Symposium. The work reported in
this paper was supported in part by the U.S. Office of Naval
Research under Grant N00014-99-1-0465, and the U.S.
National Science Foundation under grant MIP-9203895.
Any opinions, findings, and conclusions or recommenda-
tions expressed in this paper are those of the authors and do
not necessarily reflect the views of funding agencies.

REFERENCES

[1] D.D. Kandlur, K.G. Shin, and D. Ferrari, ªReal-Time
Communication in Multi-Hop Networks,º IEEE Trans. Parallel
and Distributed Systems, vol. 5, no. 10, pp. 1,044±1,056, Oct. 1994.

[2] J. Xu and D. L. Parnas, ªScheduling Processes with Release Times,
Deadlines, Precedence, and Exclusion Relations,º IEEE Trans.
Software Eng., vol. 16, no. 3, pp. 360±369, Mar. 1990.

[3] T. Shepard and M. Gagne, ªA Pre-Run-Time Scheduling
Algorithm for Hard Real-Time Systems,º IEEE Trans. Software
Eng., vol. 17, no. 7, pp. 669±677, July 1991.

[4] T.F. Abdelzaher and K.G. Shin, ªComment on a Pre-Run-Time
Scheduling Algorithm for Hard Real-Time Systems,º IEEE Trans.
Software Eng., vol. 23, no. 9, pp. 599±600, Sept. 1997.

[5] J. Xu, ªMultiprocessor Scheduling of Processes with Release
Times, Deadlines, Precedence, and Exclusion Relations,º IEEE
Trans. Software Eng., vol. 19, no. 2, pp. 139±154, Feb. 1993.

[6] D.-T. Peng and K.G. Shin, ªOptimal Scheduling of Cooperative
Tasks in a Distributed System Using an Enumerative Method,º
IEEE Trans. Software Eng., vol. 19, no. 3, pp. 253±267, Mar. 1993.

[7] R. Agne, ªA Distributed Offline Scheduler for Distributed Hard
Real-Time Systems,º Distributed Computer Control Systems, Proc.
10th IFAC Workshop, pp. 35±40, Sept. 1991.

[8] K. Jeffay, ªOn Latency Management in Time-Shared Operating
Systems,º Real-Time Operating Systems and Software, pp. 86±90,
May 1994.

1190 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 11, NOVEMBER 1999

5. The replacement of an exclusion constraint by complementary
precedence constraints has been described in Section 2.2.3.

[9] H. Chetto, M. Silly, and T. Bouchentouf, ªDynamic Scheduling of
Real-Time Tasks under Precedence Constraints,º J. Real-Time
Systems, vol. 2, no. 3, pp. 181±194, Sept. 1990.

[10] M.D. Natale and J.A. Stankovic, ªDynamic End-to-End
Guarantees in Distributed Real-Time Systems,º Proc. Real-Time
Systems Symp., pp. 216±227, Dec. 1994.

[11] K. Ramamritham, ªAllocation and Scheduling of Complex
Periodic Tasks,º Proc. Int'l Conf. Distributed Computing Systems,
pp. 108±115, 1990.

[12] D.-T. Peng, K.G. Shin, and T.F. Abdelzaher, ªAssignment and
Scheduling of Communicating Periodic Tasks in Distributed
Real-Time Systems,º IEEE Trans. Software Eng., vol. 23, no. 12,
pp. 745±758, Dec. 1997.

[13] W.H. Kohler and K. Steiglitz, ªEnumerative and Iterative
Computational Approach,º Computer and Job-Shop Scheduling
Theory, pp. 229±287, 1976.

[14] T. Shepard and M. Gagne, ªA Model of the F18 Mission Computer
Software for Pre-Run-Time Scheduling,º Proc. Int'l Conf. Distrib-
uted Computing Systems, pp. 62±69, 1990.

[15] M.-I. Chen and K.-J. Lin, ªDynamic Priority Ceilings:
A Concurrency Control Protocol for Real-Time Systems,º J. Real
Time Systems, vol. 2, no. 4, pp. 325±346, 1990.

Tarek Abdelzaher received his BSc and MSc
degrees in electrical and computer engineering
from Ain Shams University, Cairo, Egypt, in
1990 and 1994, respectively. In 1994, he began
his PhD studies with the Department of Electrical
Engineering and Computer Science at the
University of Michigan, Ann Arbor, and received
his PhD in 1999. He is currently an assistant
professor for the Department of Computer
Science at the University of Virginia. His
research interests are in the field of Quality of

Service (QoS) provisioning and real-time computing. He is a member of
the IEEE Computer Society and a recipient of the Distinguished Student
Achievement Award in Computer Science and Engineering.

Kang G. Shin received the BS degree in
electronics engineering from Seoul National
University, Seoul, Korea in 1970, and the MS
and PhD degrees in electrical engineering from
Cornell University, Ithaca, New York, in 1976
and 1978, respectively. From 1978 to 1982, he
was on the faculty of Rensselaer Polytechnic
Institute, Troy, New York. He has authored/
coauthored more than 600 technical papers and
numerous book chapters in the areas of dis-

tributed real-time computing and control, computer networking, fault-
tolerant computing, and intelligent manufacturing. In 1985, he founded
the Real-Time Computing Laboratory, where he and his colleagues are
investigating various issues related to real-time and fault-tolerant
computing. He received the Outstanding IEEE Transactions on
Automatic Control Paper Award in 1987, and the Research Excellence
Award from The University of Michigan in 1989. He is currently at the
University of Michigan, Ann Arbor, where his research focuses on QoS
sensitive computing and networking, with emphasis on timeliness and
dependability. He has also been applying the basic research results to
telecommunication and multimedia systems, intelligent transportation
systems, embedded systems, and manufacturing applications. Dr. Shin
is a fellow of the IEEE.

ABDELZAHER AND SHIN: COMBINED TASK AND MESSAGE SCHEDULING IN DISTRIBUTED REAL-TIME SYSTEMS 1191

