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Abstract - To guarantee the delivery of real-time 
messages before their deadline, a real-time connection 
or channel must be established before the transmis- 
sion of any real-time messages. During this channel- 
establishment phase, one must first select a route be- 
tween the source and destination of this channel and 
then reserve suficient resources along this route so that 
the worst-case end-to-end delay  over the selected route 
may not exceed the user-specified delay bound. 

We propose a table-driven distributed route-selection 
scheme that as guaranteed t o  find a “qualified” route, if 
any, that meets the performance requirement of the re- 
quested channel without compromising any of the exist- 
ing guarantees. The proposed scheme uses the Bellman- 
Ford shortest path algorithm t o  build real-time delay t a -  
bles, and hence, can solve the route-selection problem b y  
a simple table look-up. Several examples are presented t o  
demonstrate the effectiveness of the proposed distributed 
route-selection scheme. 

1 Introduction 

An increasing number of applications such as interac- 
tive video and computer-integrated manufacturing re- 
quire real-time networking services. Among the several 
real-time communication protocols proposed thus far to 
meet this requirement, the communication abstraction 
called the “real-time channel” [3] has received consider- 
able attention due to its conceptual simplicity. A real- 
time channel is a unidirectional virtual circuit which, 
once established, is guaranteed to meet user-specified 
performance requirements as long as the user does not 
violate his “contract” terms [3]. 

The work described in this paper was supported in part by the Of- 
fice of Naval Research under Grant N00014-5-92-1080 and the Na- 
tional Science Foundation under Grant MIP-9203895. Any opin- 
ions, findings, and conclusions or recommendations expressed in 
this paper are those of the authors and do not necessarily reflect 
the view of the funding agencies. 

There are two distinct phases with the realization 
of a real-time channel: off-line channel establishment 
and run-time message scheduling. During the channel- 
establishment phase the system has to select a route 
between the source and destination of the channel along 
which suEcient resources can be reserved to meet the 
user-specified delay and buffer requirements. Although 
several channel-establishment schemes have been pro- 
posed in the literature [3,4], very few of them have ad- 
dressed explicitly the issue of selecting a route between 
the source and destination of a channel, despite its im- 
portance to channel establishment. 

Since the number of possible routes between two com- 
municating peers in a multi-hop network could be large, 
selecting a route for each real-time channel is potentially 
a time-consuming task. It is therefore very important 
to develop an efficient scheme that is guaranteed to find 
a “qualified” route, if any, for each requested real-time 
channel. Given the worst-case anticipated traffic over 
a real-time channel, a “qualified” route for this real- 
time channel is defined to be the one that can meet 
the user-specified end-to-end delay requirement without 
compromising any of the existing guarantees. The ser- 
vice provider (the network operating system in our case) 
must also be able to reject a channel-establishment re- 
quest as soon as possible if no qualified routes are avail- 
able for the requested channel. 

There are basically two approaches to the route- 
selection problem: centralized or distributed. Most 
existing channel-establishment schemes are centralized 
[4]. They simply assume the existence of a global net- 
work manager which maintains the information about 
all the established real-time channels, the topology and 
resource distribution & commitment of the underlying 
network, and can thus select an appropriate route for 
each real-time channel requested. In such a centralized 
scheme, all of real-time channel-establishment requests 
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require the network manager’s approval. Although using 
a centralized scheme one can devise efficient algorithms 
for the network manager to select qualified routes, there 
are two serious problems with this scheme. First, the 
network manager is likely to be a performance bottle- 
neck, since it must handle all channel establishment and 
disconnection requests. Second, the system is suscepti- 
ble to a single-point failure. In contrast with the cen- 
tralized approach, distributed route-selection can avoid 
performance and reliability bottlenecks. However, since 
there could be many possible routes between two com- 
municating peers, it  may be too time-consuming to 
search for all possible routes and perform an admis- 
sion test on each candidate route during the channel- 
establishment phase. On the other hand, if we only test 
a small number of routes, we may not find a qualified 
route even if there exists one. 

In this paper, we propose a distributed table-driven 
route-selection scheme which takes advantage of the 
highly-periodic nature of interactive video and main- 
tains a real-time delay table (or simply delay table) at 
each node so that a route for a real-time video channel 
may be selected by a simple table look-up. 

The paper is organized as follows. Section 2 states 
the problem of finding a qualified route for each real- 
time video channel. Our proposed solution is presented 
in Section 3. Section 4 illustrates the effectiveness of our 
solution. The paper concludes with Section 5. 

2 Problem Statement 

There are two simple-minded approaches to the dis- 
tributed route-selection problem: (1) sequential search 
of all possible routes one by one, or I( routes at a time; 
(2) parallel search of all possible routes, i.e., sending 
multiple copies of an establishment request through all 
possible routes, “conditionally” reserving resources and 
performing admission tests on all of them. The sec- 
ond approach is practically infeasible due to its exces- 
sive operational overhead. The first approach, on the 
other hand, could be very time-consuming for the com- 
plete search of all possible routes, and its operational 
overhead is proportional to K .  

Considering the advantages and disadvantages of 
these two approaches, we have developed in [6] an ef- 
ficient scheme for selecting a route for each channel- 
establishment request. Although this scheme is guar- 
anteed to find a qualified route, if any, for a single 
channel-establishment request, it cannot guarantee the 
qualified routes to be found for multiple (near) simulta- 
neous channel-establishment requests due to its reliance 
on the over-estimation of link delays. Since this scheme 

is intended for channels with general performance re- 
quirements and traffic patterns, its performance could 
be improved siignificantly if real-time traffic is limited to 
certain types. Specifically, we will in this paper consider 
the real-time traffic of interactive video applications. In- 
teractive video applications usually generate frames at 
some fixed ratel and resolution which are both specified 
according to iindustry standards. For example, 30 frames 
per second is the frame rate for live interactive video 
and the MPE:G Video Simulation Model Three (SM3) 
suggests 352 by 288 pixels per frame for achieving video 
tape quality [ti]. Note that a standardized resolution im- 
plies a standazdized maximum-frame size. Since video 
applications cd our interest require only a small set of 
combinations of frame-generation rates and maximum- 
frame sizes, by exchanging and maintaining real-time 
traffic information among the nodes, the system may 
be able to prepare for channel establishment even before 
receiving a establishment request. Under this setting, 
we will develop a scheme which builds and maintains 
a delay table on each node so that the route-selection 
problem can be solved by a simple table look-up at the 
source node. 

3 The Proposed Solution Approach 

We first describe the environment and the assumption 
under which our distributed route-selection scheme will 
be developed. The underlying network is an arbitrary 
point-to-point network. As in [2,4,6], the generation 
of real-time messages is assumed to be governed by a 
linear-bounded arrival process that is characterized by 
three parameters: maximum message size S,,, (bytes), 
maximum message rate R,,, (messages/second), and 
maximum burst size B,,, (messages). In the linear 
bounded model, there are two restrictions: (1) the num- 
ber of messages generated in any time interval of length 
t does not exceed B,,, +- tR,,,; (2) the length of each 
message is bounded by Smax. Based on this message 
arrival model, the authors of [4] proposed a scheme to 
estimate the worst-case delay on each link and a run- 
time scheduling algorithm for real-time messages. By 
adding the worst-case delays of all links that a channel 
runs through, one can calculate the worst-case end-to- 
end delivery delay. This end-to-end delay is then com- 
pared against the user-specified end-to-end delay bound 
for the requested channel and the system can decide 
whether to accept/reject the corresponding channel re- 
quest. Note that these schemes have been developed 
under the assumption that a proper route for the re- 
quested channel was already available. 

Besides the linear bounded model, we further assume 
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that the number of possible combinations of frame- 
generation rates and maximum-frame sizes is small, 
since we are only interested in standardized interactive 
video applications. Based on the link delay calculated 
with the delay-estimation method in [4] and the above 
assumptions, we will develop a scheme which builds real- 
time channel delay tables on each node so that a quali- 
fied route may be found by a simple table look-up. 

3.1 Link-Delay Estimation 

Since real-time messages are given priority over non 
real-time ones, we will ignore the effects of non real-time 
traffic in the rest of the paper unless stated otherwise. 
We will thus assess the delay of a link based only on 
real-time traffic. Since the algorithm in [4] will be used 
to estimate link delays, we will briefly introduce it first. 

The goal of the algorithm in [4] is to compute the 
minimum worst-case response time (MWRT) on a link 
of each candidate route for a new real-time channel to 
be added without compromising the performance guar- 
antee of any of the existing channels on the link. Let 
{Mi = (C;,p;,d;),i = 1, .  . . , k }  be the set of k exist- 
ing channels on a link, where Ci is the maximum time 
required to transmit a message of channel Mi on the 
link, pi  is the minimummessage inter-arrival time in Mi,  
and di the maximum permissible delay assigned to Mi 
on this link, or link deadl ine.  Note that the inequality 
d; 5 pi must hold for the algorithm in [4] to work cor- 
rectly. Given a new channel Mk+l = ( C k + l , p k + l )  to be 
established, the algorithm can compute the the MWRT 
of Mk+l , ~ k + l ,  on link t based on the traffic-generation 
characteristics (C and p )  of the channel, when C ,  p and 
d for all existing channels on link l are available. The 
algorithm statically assigns priority to each real-time 
channel (in ascending order of d values) to calculate the 
MWRT for Mk+l , but uses an Earliest-Due-Date (EDD) 
algorithm for run-time scheduling. 

The method in [4] does not include those channels 
pending for final confirmation in the calculation of 
MWRT for the new channel-establishment request, but 
we will treat pending channels differently in two situ- 
ations. First, during the channel-establishment phase, 
we will include the load of pending channels in the cal- 
culation of MWRTs as if they had already been estab- 
lished. However, the load of pending channels will not  
be included in the real-time delay tables, i.e., we do not 
include pending channels in the calculation of MWRTs 
which are used to build real-time delay tables. 

Including pending channels in the calculation of 
MWRTs can simplify the channel-establishment phase, 
since the MWRTs remain valid when the confirmation 

message travels back from the destination to the source. 
However, inclusion of these pending channels in the link- 
delay estimation will sometimes make the MWRT larger 
than it actually would be if some of them are rejected 
later. This over-estimation of MWRT may result in 
incorrect rejections of channel-establishment requests. 
Fortunately, the over-estimation problem occurs only 
when two requests initiate at about the same time and 
their least-MWRT paths share one or more links. In or- 
der to avoid any possible confusion, “existing channels” 
will henceforth mean both established and pending chan- 
nels. Determination of each channel’s MWRT on a link 
will be referred to as link-delay e s t ima t ion .  

3.2 Building Real-Time Delay Tables 

Based on the above definition of link delay, we can 
apply the Bellman-Ford algorithm [l] and a loop-free 
version of the APARNET’s previous routing strategy 
(APRS) [7] to build real-time delay tables on each node. 
As mentioned earlier, the MWRT used to construct real- 
time delay tables does not include the load of pending 
channels for two reasons. (1) The maximum permissi- 
ble delay for a link after a final confirmation is likely 
to be greater than the MWRT computed during the 
resource-reservation phase. (2) The time between mak- 
ing resource reservation and receiving a final confirma- 
tion is usually small, e.g., it could be the time needed 
for the round-trip from a node on the route under test 
to the destination. Thus, if we want to include the load 
of pending channels in the real-time delay tables, the 
table entries may have to be modified twice in a short 
period of time. 

When only a small set of standardized combinations of 
frame-generation rates and maximum-frame sizes needs 
to be considered, each node in the network can build a 
loop-free table based on the MWRTs computed accord- 
ing to a pair of maximum-frame size (S,,, or C) and 
frame-generation rate ( p ) .  All real-time channels that 
can be specified by the same pair (Smaz, p )  are said to 
be in the same class. A node will compute the MWRT 
on each of its outgoing links as the minimum feasible 
delay of the corresponding link for each class of real- 
time channels. These MWRTs will be stored in a table, 
T M ,  which can be indexed by its neighbors’ addresses 
and has only one field, T ,  for each class of channels, rep- 
resenting their MWRTs over the corresponding link by 
considering only those channels already established. 

Since the loop-free APRS will be used to ex- 
change delay information and maintain real-time de- 
lay tables, we briefly describe the original APRS. In 
APRS, each node collects and maintains the infor- 
mation about the minimum delays to all the other 
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nodes via each of its neighbors. For every destination- 
neighbor pair, the information is kept in a 3-tuple form 
( d e s t i n a t i o n ,  ne ighbor ,  de lay ) .  Other information may 
be needed for the loop-free APRS, but we will not dis- 
cuss this issue here. (See [7] for a detailed account of 
this.) These 3-tuples are divided into groups based on 
the destination node. Within a group, they are listed 
in the ascending order of delay. The first entry of each 
group (the minimum-delay entry to the corresponding 
destination node) is then used to build a routing table. 

Each node periodically exchanges a routing message 
with its neighbors which contains the node’s current 
routing table. After receiving routing messages from its 
neighbors, each node will update its own routing table 
based on the information carried in the routing mes- 
sages and the status of its own outgoing links. As we 
shall see, the real-time delay table is built in the same 
way as the routing tables except for the following two 
differences. (1) Only real-time traffic is considered when 
building real-time delay tables. (APRS’s routing tables 
were built by considering all traffic.) (2) Real-time delay 
tables are updated only when a new real-time channel 
is established or an existing real-time channel is closed. 
Thus, a node sends “routing” messages to its neigh- 
bors only when its set of real-time channels changes. 
These “routing” messages are called real-time routing 
messages. Using an example, we will show how to build 
real-time delay tables. 

Example 1: The class of real-time channels under con- 

Figure 1: Example 1 

sideration is specified by S,,, = 100 Kbps and p = 33 
ms. Fig. 1 shows the network used for this example. The 
number on each link represents its transmission speed. 
Since initially there are no existing real-time channels, if 
a channel-establishment request of this class is received, 
the highest priority will be given to the requested chan- 
nel. The MWRT of this class for each link is thus equal 

Table 1: Initial real-time delay tables, where D = Des- 
tination, N = Neighbor, d = delay. 

I1 
11 2,5,14 11 1,5,14 11 

Table 2: Steady-state real-time delay tables. 

to the maximum service time (C) of the class and can 
be computed as: link N I  ++ N2: 100/100=1 ms; link 
N I  ++ N3: 1100/50=2 ms; link Nz c) N4: 100/50=2 
ms; link N3 ++ N4: 100/20=5 ms; link N3 * N5: 
100/10=10 mcr; and link N4 ++ N5: 100/50=2 ms. 

Table 1 shows the real-time delay tables for all 5 nodes 
in the very beginning. Initially, a node can reach only 
its neighbors ,since information about the other nodes 
is not yet available to the node. The label 03 in an 
entry represents the case when either the destination 
cannot be reached via the corresponding neighbor or 
the path via this neighbor is not loop-free. The least- 
MWRT path to each destination known so far is used 
to construct a, real-time routing message. Each entry 
of the message is a 2-tuple, ( d e s t i n a t i o n ,  d e l a y ) ,  where 
des t ina t ion  is not the neighbor to which this message 
will be sent. For example, the message from N3 to N4 

will contain two entries: ( N I ,  2) and (NF,, 10). 

Since the real-time routing messages are not sent pe- 
riodically (i.e., the updating procedures of real-time de- 
lay tables are not synchronized among nodes), it is not 
certain what the “next” state of the real-time delay ta- 
bles will be. However, the “steady-state” of real-time 
delay tables depend only on the currently-anticipated 
real-time traffic of the established real-time channels. 
Thus, after all inodes stop sending real-time routing mes- 
sages (before the next channel establishment or channel 
closing), the real-time delay tables at that moment can 
be determined from the current real-time traffic load, re- 
gardless of intermediate states. Table 2 shows the steady 
state of real-time delay tables before the arrival of any 
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real-time channel-establishment request or the closure 
of any established channel. U 

3.3 The Route-Selection Algorithm 

In addition to the real-time delay tables, each node 
has to maintain another set of tables - called the tables 
of existing channels (TEXCs) - for the existing chan- 
nels, one for each outgoing link. Each entry of a TEXC 
represents a real-time channel which goes through the 
corresponding link and consists of the following four 
fields: (1) channel identifier (ID) which uniquely iden- 
tifies a real-time channel; (2) class ( c l a s s )  of the chan- 
nel; (3) status (s ta tus)  of the channel, established (1) 
or pending (0); (4) the maximum permissible link delay 
( d )  for the channel. To ensure the uniqueness of chan- 
nel ID, each ID consists of two parts, the source-node 
address and a number (unique within the source node). 

When the source node wishes to establish a real-time 
channel to another node, say B, it will try to find the 
current least-MWRT route by considering the traffic of 
all existing channels. The source node will send a real- 
time channel-request message (Req) to the next node 
on the least-MWRT route, which contains a channel ID,  
the destination address ( d e s t ) ,  the channel class ( c l a s s )  , 
the end-to-end delay bound D ,  the path ( p a t h ) ,  the to- 
tal number of hops ( h o p s )  traveled thus far, and the 
accumulated delay d" .  Initially, da is set to the MWRT 
of the corresponding outgoing link, p a t h  is set to the 
source node, and hops  is set to 1. Although h o p s  is in- 
cluded in the request message, it can be omitted in a 
real implementation because the information carried in 
h o p s  can be derived from p a t h .  

Procedure rcv-req 
If (Req.dest = A) then {reply-req; re turn;  } 
for (i = 1 to nz~mber_of-entry(RTDT[Req.des~]) { 
If (Req.d" + RTDT[Req.des t][ i ] .d)  > Req.D) 
then {send-reply(reject);  re turn;  } 
nextnode := R T D T [ R e q . d e s t ] [ i ] . N ;  
If (no pending channel in T E X C [ n e z t n o d e ] )  then 
{ insert-r e q ( T M [ n e z t n o d e ] )  ; f orward-req( nez  t n o d e )  ; 

% compute MWRT with establishedSpending channels. 
r := c o m p u t e M W R T ( n e x t n o d e ,  1); 
If (Req.d" + RTDT[Req.dest][ i] .d  - T M [ n e x t n o d e ]  + r 

r e t u r n ; }  

5 Req.D)  then { inser t - req(r ) ;  f or2uard_req(neztnode); 
re turn;}  } 

send -repZ y ( r e j ec t )  ; 

Figure 2: Procedure of processing a request. 

Fig. 2 describes the procedure of handling a channel- 
establishment request after node A receives the request. 
This procedure can also be applied to the source node 
by setting d" := 0,  h o p s  := 0 ,  and p a t h  to an empty 
string. Procedure rcvreq uses the destination, B, as an 

index to the real-time delay table and searches through 
all routes whose delays to B are 5 Req.D- Req.d". The 
for loop and the first if statement in the loop serve as 
this function. 

After passing the first if statement in the loop, if there 
is no pending channel (the second if in the loop), this 
entry is selected and appropriate actions will be taken 
by calling Procedure insert-req and forward-req. Oth- 
erwise, we have to re-compute the MWRT (= r )  for the 
corresponding outgoing link. If the increase of MWRT 
due to the pending channel (-TM[neztnode] + r part 
in the third if statement) doesn't make the delay to the 
destination greater than Req.D- Req.d", this entry can 
be selected as the channel's route. The maximum per- 
missible delay on this link ( d  field in TEXC) is set to 
T ,  instead of obtaining i t  directly from TM[neztnode].  
RTDT in rev-req denotes real-time delay tables. 

Procedure insert-req(r)  
T E X C . I D  := R e q . I D ;  
T E X C ( R e q . I D ) . c l a s s  := Req.class; 
T E X C ( R e q . I D ) . s t a t u s  := pending; 
T E X C ( R e q . I D ) . d  := r ;  

Procedure f o r w a r d - r e q ( n e ~ t n o d e )  
Req .da  := Req.da + T E X C ( R e q . I D ) . d ;  
Req.hops := Req.hops+l; % concatenate A and Req.path. 
Req.path := A,Req.path;  % other fields remain unchanged. 
forward this request message to neetnode.  

Figure 3: Procedures of insertinglforwarding a request. 

Fig. 3 describes the procedures of inserting a new 
(pending) channel to TEXC and forwarding a request. 
As can be seen from these procedures, most fields are 
directly copied from the establishment-request message 
to TEXC and the forwarding message. 

Procedure reply-req 
If ( the request is  accep ted )  then send-reply(accept); 
else send-reply(reject);  

Procedure send-repZy(accept) 
neztnode := head(Req.path);  
RepIy.ID := Req. ID;  
Reply.flag := accept ;  
Reply.dif f := (Req .D - Req.d") /Req.hops;  
Reply.path := tai l (Req.path);  
send Reply to nextnode.  

Figure 4: Procedure of processing a channel- 
establishment request at the destination. 

Fig. 4 shows a destination's operations after receiv- 
ing a channel request. Since the d" field of a channel- 
establishment request represents the sum of MWRTs 
of all links in the path from the source to destination, 
the user-specified end-to-end delay bound, D ,  may be 
larger than d",  i.e., we are allowed to spend more time 
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Procedure f orward-reply 
If (Reply.  f l a g  = re jec t )  then delete T E X C ( R e p l y . I D ) ;  
else { T E X C ( R e p l y . l D ) . s t a t u s  := established; 
T E X C ( R e p l y . I D ) . d  := T E X C ( R e p l y . I D ) . d  + R e p l y . d i f f ;  
insert this entry in the ascending order of d field. 
% update real-time delay tables if necessary 
% assume the message is sent/forwarded by node N. 
update(N); } 

neztnode := head(Reply.path); 
Reply.path := tail(Reply.path); 
forward this message to the next upstream node neztnode.  

Figure 5: Procedure of handling reply messages. 

than the corresponding MWRT when sending a mes- 
sage over each intermediate link. In such a case, the 
authors of [4,6] proposed that D - d" should be divided 
evenly into h o p s  parts by the destination node and dis- 
tributed to all links along the path. The deadline of a 
real-time message of this particular channel over an in- 
termediate link is the channel's MWRT of that link plus 
diff = ( D  - d a ) / h o p s .  Note that one may also choose 
to divide D - d" in proportion to each link's MWRT. 
However, since this method may make the link-delay 
deadline unnecessarily small over a link which has small 
MWRT we will adopt the method proposed in [4,6]. 

The diff will be included in the channel- 
establishment confirmation message (by procedure 
send-reply(accept ) )  from the destination to source via 
the same path the corresponding request message had 
traveled (but in the opposite direction). Let R e p l y  
denote a channel-establishment confirmation message 
which consists of four fields: I D ,  f l a g  (accept or re- 
ject), diff and p a t h  (the remaining path back to the 
source node). Fig. 4 describes how a positive confirma- 
tion message is constructed ( send-reply(accept ) ) ,  and 
Fig. 5 shows the operations the intermediate nodes will 
perform when receiving a (positive or negative) reply 
message ( f o r w a d r e p l y ) .  Note that head(Zis t )  repre- 
sents the first element of list, and tail(Zist) represents 
the remaining list after removing h e a d ( l i s t )  from list. 

The operations in Procedure u p d a t e ( n o d e )  of Fig. 6 
are necessary to keep these real-time delay tables and 
TMs up-to-date after a new channel is established or an 
existing channel is torn down. Basically, nodes which 
receive a positive reply to a channel request will re- 
compute the MWRT by considering only those estab- 
lished already (including the one just accepted or ex- 
cluding the one just closed). Based on this new MWRT, 
real-time routing tables and TM are updated and a new 
real-time routing message is generated and sent to all 
neighbor nodes. When a node receives a real-time rout- 
ing message from a neighbor node, it will update its 
real-time delay tables. 

Procedure u,pdate(node) 
message := q5; 
for each class class of real-time channels { 
% compute new MWRT with only established channels. 
r := compulte .MWRT(node,  0 ) ;  
If ( T  # T M [ n o d e ] )  then { 
update-RTDT(node,  T ) ;  T M [ n o d e ]  := T ;  

table := '-Jt=all desttnattons{(i, R T D T [ i ] [ l ] . d ) } ;  } 
message := message U { (c lass ,  table)}; } 

send message,  to all neighbor nodes; 

for all destinations, dest { 
Procedure update-RTDT(node,  T )  

i := 1; 
while ( i  5 ;zumbeT-of-neighbors) { 
If (RTDT[des t ] [ i ] .N  # node)  then i := i + 1;  
else {RTDT[dest][ i] .d  := RTDT[dest][ i] .d  + T 

-TM[node];  break; } ] } 

Figure 6: Procedure of updating real-time delay tables. 

The operations necessary to keep real-time delay ta- 
bles and TMs up-to-date during the channel-disconnect 
phase are straightforward. We require one of the two 
communicating peers to send a disconnect message 
(with ID) through the route of the real-time channel to 
the other cornmunicating peer. All intermediate nodes 
and the source node will delete the corresponding entry 
from their TEXCs and update  (Fig. 6) both TMs and 
real-time delay tables. Real-time routing messages may 
also be sent as discussed in Section 3.2. 

3.4 Overhead Analysis 

In this section, we analyze the storage overhead of 
our strategy, :since the primary concern of using a table- 
driven route-selection algorithm is the size of the tables. 
The largest table used in the proposed strategy is the 
real-time delay table. All the other tables are much 
smaller than the real-time delay table. Thus, we will 
start with the derivation of an upper bound of the size 
of the real-time delay table. 

Let N denote the number of nodes in the network and 
a denote the average number of neighbors of a node (or 
node degree). Then, for each class of real-time channels, 
the maximum size of all real-time tables in the network 
is 3aN(N - 1). The first N represents the fact that 
there are N real-time tables per class in the network. 
( N  - 1)" represents the number of entries for a real- 
time delay table and 3 is the number of records for each 
entry. Basicatlly, the proposed strategy incurs O ( N Z )  
storage overhead for maintaining real-time delay tables. 

The table of MWRTs is much smaller than the real- 
time delay tables. The size of all tables of MWRTs is 
only Z a N ,  where N represents the number of such tables 
in the network, and there are a entries per table and 2 
records per entry. 
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The size of the above two tables does not change re- 
gardless how many real-time channels are established 
and which routes they use. However, the size of TEXC 
does depend on the number of existing channels and the 
average number of hops for each channel. Let h denote 
the average number of hops for an existing channel and 
n denote the number of existing channels. Then the 
size of all TEXCs in the network can be specified as 
4hn, where 4 is the number of records per entry (rep- 
resenting an existing channel) in a TEXC. Note that h 
here is of O ( N )  since our strategy chooses only loop-free 
routes. 

Based on this analysis, unless the number of existing 
channels is extremely large (i.e., more than O ( N ) ) ,  our 
strategy incurs an O ( N 2 )  storage overhead for support- 
ing each class of real-time channels. 

4 Examples 

Example 2 :  Based on Example 1, we want to establish 
a channel (ID=S:l) of this class (class 1) with an end- 
to-end delay bound D=32 ms from NI to N5. 

Link-bandwidth  reservation:Nl will use Ns as the 
index to its real-time delay table (Table 2), and find 
the next node, N z ,  on the least-MWRT path to N5 with 
MWRT = 5 ms. Since D > 5 ms and there is no pending 
channel, N I  will insert this channel into its TEXC for 
link NI -+ N2. Because T M [ N z ]  = 1 for this class, the 
entry representing this channel in TEXC can be set to 
(l:l,l ,O,S). Req(S:l,N5,1,32,N1,1,1) can also be sent to 
the next node, Nz. 

After receiving this request message, Nz will call 
rcwreq to handle this request message and forward it to 
the next hop on the least-MWRT path to N5. From Ta- 
ble 2, N4 is the next hop and the delay is 4 ms. Since the 
accumulated delay ( d “ )  carried in the request is 1 ms, 
i.e., the end-to-end MWRT (S+4 = 5 ms) is not greater 
than D = 32 ms and there is no pending channel on 
link N2 -+ N4, this channel request will be inserted into 
N2’s TEXC for link Nz --f N4. Because TM[N4]  = 2 
(for class l ) ,  the entry in TEXC will be set to (1:1,1,0,2). 
A request message, Req( 1: 1 ,N5,1,32,NzN1,2,3), will also 
be forwarded to N4. 

N4’s operations are similar to Nz’s. The entry in- 
serted in N4’s TEXC (link N4 -+ N5) for this request is 
(1:1,1,0,2), and the request message forwarded to N5 is 
Req( 1:s ,Ns,S ,32,N4N~N1,3,5). 

If the peer application at N5 decides to ac- 
cept this channel request, a positive reply message 
will be constructed and sent back to NI via the 
same path of the request message traveled but in 

the opposite direction. Using send- rep ly (accep t ) ,  
diff=(32-5)/3=9 and the positive reply message will 
be Reply(l:l,accept,S,NzN1). This reply message will 
then be sent to N4 

Channel -acceptance  confirmati0n:After receiving 
the positive reply from N5, N4 will call f o r w a r d r e p l y  
and update the entry in TEXC (link N4 -+ N5) rep- 
resenting channel 1:l to (S:l , l , l , lS),  where the third 
component indicates this channel to have been estab- 
lished, and the fourth component (2 f 9 = 11) shows 
the maximum permissible delay of this channel over 
link N4 + Ns. This positive reply (after removing 
h e a d ( R e p l y . p a t h ) )  will then be forwarded to the next 
upstream node ( N z )  specified by h e a d ( R e p l y . p a t h ) .  

Due to the establishment of channel 1:1, the MWRTs 
of channels (of all classes) over link Ne -+ N5 have to be 
re-computed. However, by using the method described 
in Section 3.1, the MWRT for class-S channels still re- 
mains to be 2 ms. Thus, N4’s real-time delay tables will 
remain unchanged and no real-time routing messages 
will be sent. 

The operations performed by Nz and N1 are similar 
to N4’s. The TEXC for link Nz -+ N4 will contain an 
entry ( l : l , l , l , l l )  and the TEXC for link N1 -+ N2 will 
contain an entry ( S : S , S , S , S O ) .  All real-time delay tables 
and TMs remain unchanged. 

If the application N5 refuses to accept this request, 
a negative reply will be sent back via the same path. 
After receiving the negative reply, all nodes will delete 
the corresponding entry from their TEXCs and forward 
the reply message to the next upstream node specified 

0 

Example 3: Another class (class 2) of real-time chan- 
nels specified by S,,, = 300 Kbps and p = 20 ms will 
be used. Table 3 shows the tables of MWRTs for all 5 
nodes after channel 1:l  is established (Example 2), and 
Table 4 shows the steady state of real-time delay tables 
for class-2 channels. We will establish a class-2 channel 
(ID = 1:2, destination = N5, and D = 30 ms) and then 
show the change in both TMs and real-time delay tables 
after its establishment. 

by the path  in the reply message. 

As in Example 2, the path NliVZiV4N5 will be cho- 
sen because it is the least-MWRT path from N1 to N5. 
Thus, a request will be sent from N I  to N5 via this path 
and each node on this path will insert a corresponding 
entry into its own TEXC to reflect the existence of chan- 
nel 1:2. The entries to be inserted into the TEXCs of 
N I ,  Nz and N4 are: link N I  -+ N2: (S:2,2,0,3), link 
N2 -+ N4: (S:2,2,0,6), and link N4 -+ N5: (1:2,2,0,6). 
If the peer application at  the destination node accepts 
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this channel-establishment request, N5 will compute 
diff = 30 - (3 + 6 + 6) = 5 ms and send a positive 
Reply(l:2,1,5,NzNl) to N4. 

After receiving the positive reply to the request of 
establishing channel 1:2, N4 will set the status of this 
channel to “established” and the maximum permissible 
delay to 6 + 5 = 11 ms in the TEXC (link N4 -+ N5). 
Then, N4 will re-compute the MWRT of both classes 
over link N4 -+ N5, including only the load of estab- 
lished channels. For class-2 channels, TM[N5] is then 
modified to 14. However, the MWRT of class-1 channels 
does not change. Thus, the real-time delay tables will be 
updated (Table 5) and real-time routing messages con- 
taining only the class-2 information will be sent to N4’s 
neighbors. For example, the message sent to Nz will 
contain three entries: (N5,14), (N3,15), (N1,21), and 
the message sent to N3 will also contain three entries: 
(N5,14), (N2,6), and (N1,9). Note that (N1,21) in the 
message to Nz is the result of loop-free routing. 

The positive reply will be forwarded to Nz then to 
N I .  Nz’s operations are similar to N4’s. The MWRTs of 
both classes over link Nz -+ N4 have to be re-computed 
and the real-time delay tables have to be updated ac- 
cordingly. The MWRT of class 2 over link Nz -+ N4 will 
increases to 14 and that of class 1 remains unchanged. 
So, {(N5,28),(N4,14),(N3,29)} will be sent to NI, and 
{(N~,3),(N3,9),(N5,38)} will be sent to N4 as the real- 
time routing messages for class-2 channels. 

After receiving the confirmation of establishing chan- 
nel 1:2, N I  will also re-compute the MWRTs of both 
classes. Since both MWRTs do not change over link 
N I  -+ Nz, no further actions are necessary. 

In addition to the positive reply messages, the real- 
time routing messages generated by N4 and Nz will 
also be used to update real-time routing tables by those 
nodes which receive the messages, as discussed in Sec- 
tion 3.2. Following the procedure of building real-time 
delay tables, Table 5 shows the steady-state real-time 
delay tables after channel 1:2 is established. 

5 Conclusion 

In this paper, we have proposed a table-driven dis- 
tributed route-selection scheme which is guaranteed to 
find a qualified route, if any, for each real-time channel- 
establishment request. By equipping a real-time delay 
table with each node, our scheme can choose a route for 
each real-time channel requested by a table look-up. 
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