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Abstract 
Numerous methods have been proposed to integrate real-time 

and non-real-time services of the timed-token medium access con- 
trol (MAC) protocol. One of the key issues in tailoring the timed- 
token protocol for real-time applications is the synchronous band- 
width allocation (SBA) problem whose objective is to meet both 
the protocol and deadline constraints. Several non-optimal local 
SBA schemes and two optimal global schemes have been proposed 
11-41. Local SBA schemes use only information available locally 
to each node, and are thus preferred to global schemes because of 
their lower network-management ouerhead. However, we formally 
prove, using the technique of adversary argument, that there does 
not exist any optimal local SBA scheme. During the preparation 
for this proof, we also derive a timing property that generalizes 
the previous findings about the cycle-time properties of the timed- 
token protocol. 

1 Introduction 
There has been an increasing need of timely and depend- 

able communication services for such real-time systems as 
multimedia, automated factories, and industrial process con- 
trols. To meet this need, network architectures and proto- 
cols are required to provide users with a convenient means of 
guaranteeing message-transmission delay bounds. Solutions 
to this problem will not only improve the quality of service, 
but also expand their application domains to distributed real- 
time controls and digital continuous-media (motion video or 
audio) transmissions. 

The problem of guaranteeing the timely delivery of mes- 
sages has been studied by numerous researchers. Their ef- 
forts have been directed mainly towards designing medium 
access control protocols for multi-access networks which de- 
liver messages with timing constraints. Among all the meth- 
ods designed to integrate real-time and non-real-time appli- 
cations, the timed-token MAC protocol has attracted con- 
siderable attention because of its bounded access time. The 
timed-token protocol groups messages into two classes: syn- 
chronous and asynchronous. Synchronous messages arrive 
at  regular intervals and are usually associated with deliv- 
ery deadlines. Asynchronous messages have no such time 
constraints. At network initialization, a protocol parameter 
called the Target Token Rotat ion T i m e  (TTRT) is negotiated 
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among the nodes/stations to specify the expected token ro- 
tation time. Each node i is assigned a portion Hi of TTRT 
as its synchronous bandwidth, which is the maximum time 
node i is permitted to transmit its synchronous messages 
every time it receives the token. The assignment of Hi is 
also subject to the protocol constraint that the total band- 
width allocated for synchronous traffic over all nodes should 
not exceed TTRT (minus various protocol-dependent over- 
heads). Whenever a node receives the token, it transmits its 
synchronous messages, if any, up to Hi units of time. The 
node can transmit its asynchronous messages only if the time 
interval between the previous token arrival and the current 
token arrival is less than TTRT, i.e., the token arrived earlier 
than expected. 

Many researchers studied the access time bounds and 
other timing properties of the timed-token protocol. In par- 
ticular, Johnson e t  al. [5,6] prove that the average token 
cycle time is bounded by TTRT, and the maximum token 
cycle time is bounded by 2 x TTRT. Agrawal e2 al. [1,2] 
extend Johnson’s result and prove that the time elapsed be- 
tween k consecutive token’s visits to a node is bounded by 
k x TTRT. They also formulated a synchronous bandwidth 
allocation (SBA) problem and attempted to calculate the 
synchronous bandwidth Hi that should be allocated to node 
i ,  for all i ,  to meet the protocol constraint and transmit all 
synchronous messages before their deadlines. Succinctly, Hi 
should be assigned so that the minimum time available for 
node i to transmit a synchronous message after its arrival 
but before its delivery deadline is greater than or equal to 
the worst-case message transmission time. This timing con- 
straint in calculating Hi’s is called the deadline constraint.  

As discussed in [l], SBA schemes can be classified as local 
or global. A local SBA scheme uses only information avail- 
able locally to node i ,  i.e., the parameters of a synchronous 
message stream at node i. On the other hand, in a global 
scheme, each node i uses the parameters of all nodes’ syn- 
chronous message streams to compute H i .  The extra infor- 
mation on other nodes used by a global scheme may help it 
find better values of Hi’s. However, any change in a node’s 
message stream parameters may require the global scheme 
to adjust the synchronous bandwidths of all nodes. By con- 
trast, in a local scheme, if the message stream parameters of 
node i change, only Hi needs to be re-calculated and Hj’s,  
j # i, need not be modified because they were calculated 
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independently of node i’s message stream parameters. 
As the global SBA schemes use global information to al- 

locate synchronous bandwidths, they are naturally expected 
to achieve better performance. To our best knowledge, there 
are only two optimal global SBA schemes [2,3] and several 
non-optimal local SBA schemes [1,4] reported in the open 
literature. By an “optimal” SBA scheme, we mean a SBA 
scheme that finds a feasible set of Hi’s subject to the pro- 
tocol and deadline constraints whenever such a set exists. 
Whether to choose a non-optimal local scheme or an opti- 
mal global scheme depends on the trade-off between the ease 
of network management and the resulting performance im- 
provement. One important remaining issue is to determine 
if there exists any optimal local SBA scheme. In this paper, 
we formally prove, using the adversary argument technique, 
that there doesn’t exist any optimal local SBA scheme. In 
the course of preparing for this proof, we also derive a tim- 
ing property that generalizes both Johnson’s and Agrawal’s 
results. 

The rest of the paper is organized as follows. In Sec- 
tion 2, we discuss the synchronous message model used for 
real-time applications and give a brief overview of the timed- 
token MAC protocol. In Section 3, we present several tim- 
ing properties for the timed-token MAC protocol and discuss 
the timing requirements imposed on the protocol by the mes- 
sages with delivery deadlines. In Section 4, we formulate the 
SBA problem and then present the proof of non-existence 
of optimal local SBA schemes. We conclude the paper with 
Section 5 .  

2 

In this section, we first discuss the synchronous message 
model suitable for real-time applications. To make the paper 
self-contained, we also review the timed-token MAC protocol 
used in FDDI token rings and some of its timing properties. 
A more detailed description of the timed-token protocol and 
FDDI token rings can be found in [7,8]. 

2.1 Message model 
Let n be the number of nodes/stations in the system. 

Without loss of generality, we assume that there is one syn- 
chronous message stream a t  each node. (As was discussed in 
[l], a more general token ring network in which a node has 
more than one synchronous message stream can be trans- 
formed into an equivalent network with one synchronous mes- 
sage stream at each node.) The message stream at node i 
can be described by a triple (Ci, Dj, Pi), where 

Message model and MAC protocol 

P; is the minimum inter-arrival period for the message 
stream a t  node i, i.e., if the j-th message arrives at node 
i at time 2 ,  then the ( j  + 1)-th message will arrive a t  
time t + Pi or later, where j 2 1, 
C; is the maximum message transmission time at node 
i, i.e., Cj is the time needed to transmit a maximum-size 
message, and 
Di is the relative deadline for the message stream at 
node i, i.e., if a message arrives at node i at time t ,  then 
it must be transmitted by time t + Di. 

The objective of an SBA scheme is to properly set the pa- 
rameters of the MAC protocol so as to guarantee the deliv- 
ery of each message in node i’s synchronous message stream 
within a time period 5 Di after its arrival, as long as the mes- 
sage inter-arrival time is 2 Pi and the message transmission 
time is 5 C,. 
2.2 MAC protocol 

The key idea of the timed-token MAC protocol is to con- 
trol the token rotation time. A protocol parameter called the 
target token rotat ion t i m e  (TTRT) is determined upon net- 
work initialization, and specifies the expected token rotation 
time. The TTRT is chosen to  be sufficiently small so that 
the responsiveness requirements a t  every node may be met. 

Each node i is assigned a portion Hi of TTRT, known 
as its synchronous bandwidth, which is the maximum time 
a node is permitted to transmit synchronous messages every 
time it receives the token. The token is then forced by the 
protocol to  circulate with sufficient speed so that all nodes 
receive their allocated fractions of bandwidth for transmit- 
ting synchronous messages. This is achieved by transmitting 
asynchronous messages only when the token rotates suffi- 
ciently fast so that it returns to a node within the TTRT, 
i.e., it arrives early .  Specifically, each node has two timers 
and one counter: 

0 The token rotation t i m e r  (TRT) records the time elapsed 
since the last token’s visit (if the TRT has not yet ex- 
pired). 

0 The token holding t i m e r  (THT) records the amount 
of time by which the token has arrived early, i.e., the 
amount of time which can be used to transmit asyn- 
chronous messages. 

e The late counter (LC) records the number of times its 
TRT has expired since the last token’s visit. 

After the TTRT value is negotiated among the nodes dur- 
ing the network initialization, each node i initializes its timers 
and counter as follows: 

TRT + TTRT; THT t 0; LC c 0. 

TRT is enabled during all ring operations and counts down 
until one of the following three events occurs: 

El.  TRT reaches zero: The following steps are taken: (i) 
TRT t TTRT, and TRT continues to count down, and 
(ii) LC + LC + 1. 

E2. The token arrives early: That is, when the token ar- 
rives, the time elapsed since the previous token’s visit 
is less than TTRT (LC = 0). In this case, the follow- 
ing steps are taken: (i) THT + TRT, and THT counts 
down only during the transmission of asynchronous mes- 
sages, (ii) TRT + TTRT, and TRT continues to count 
down, (iii) asynchronous messages, if any, are transmit- 
ted until THT expires or until all asynchronous mes- 
sages are transmitted, whichever occurs first, and (iv) 
synchronous messages are transmitted up to Hi units of 
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time or until all synchronous messages are transmitted, 
whichever occurs first.’ 

The token arrives late: That  is, LC # 0 at  the time of 
token arrival. In this case, the following steps are taken: 
(i) LC + 0, (ii) TRT is reset, and continues to count 
down, and (iii) only synchronous messages can be trans- 
mitted up to Hi units of time, and no asynchronous 
messages can be transmitted. 

Protocol timing properties and real-time re- 
quirements 

In this section, we discuss several interesting timing prop- 
erties associated with the MAC protocol and the timing re- 
quirements imposed by the messages with delivery deadlines 
on the MAC protocol. 

To facilitate the discussion and the subsequent derivation, 
we will use the circular sum operator defined in [6]: 

n 1-1 n m 

where 1 5 k, m 5 n ,  and n is the number of nodes in the 
network, and 

Note that the definition of the circular sum operator results 
from the fact that all the nodes are in either a logical or a 
physical ring. We define the following notation: 

T: the TTRT of an FDDI network. 

0;: the latency between node i and its upstream neigh- 
bor. 0,  includes medium propagation delay, token trans- 
mission time, station latency, and token capture delay 

0: the ring latency,  i.e., 0 = Cy=l 0 i .  

0: the various protocol-dependent overheads. 

r :  the portion of the synchronous bandwidth unavailable 
for transmitting synchronous messages, i.e., r = 0 + R. 
fi: vector ( H 1 , H 2 , . . . , H n ) ,  where H ;  is the syn- 
chronous bandwidth allocated to node i. 

g c , i  ( u C , i ) :  the time spent on transmitting synchronous 
(asynchronous) traffic on the c-th token’s visit to node 
i. 
Cc,i: the length of the complete token rotation that ends 
with the c-th visit to node i. By using the circular sum 
operator, Cc,i can be expressed as 

[GI. 

C C , ~  = 2 (gj,k + a ) , k )  + r. 
,,k=c-1,,+1 

’In the MAC protocol, it is not specified which of synchronous or 
asynchronous traffic will be transmitted first. 

&(e):  the time when the token departs from node i the l- 
th time, i.e., the time when node i finishes the transmis- 
sion of its synchronous and/or asynchronous messages, 
if any, and starts the transmission of the token to its 
downstream neighbor the l-th time. 

X i :  the minimum time available for node i to transmit 
synchronous messages in an interval ( t ,  t + Di].  
fg, fi :  the functions which represent the global and local 
synchronous bandwidth allocation schemes, respectively. 
That is, a global allocation scheme can be represented 
as I? = f , (d ,  5, P , T ,  T ) ,  where d = (C l ,  C2, .  . . , C n ) ,  
5 = ( D l , D z , .  . ., Dn) ,  and @ = (P l ,P2 , .  . ., P,). A 
local allocation scheme can be represented as Hi = 
fi(C,, Di, Pi,T, r ) ,  for i = 1 , 2 , .  . . , n. 

Note that a node i can transmit its synchronous messages 
only up to its assigned synchronous bandwidth H i ,  and can 
transmit its asynchronous messages only when the token ar- 
rives early and only up to the amount of time by which the 
token arrived early. So, for c 2 1 and 1 5 i 5 n, 

g c , i  5 H i ;  
ac,i I max(0, T - Cc,;-i) 

Timing proper t ies  of the protocol:  The protocol can- 
struint on the allocation of synchronous bandwidth states 
that the total bandwidth allocated to synchronous traffic 
among all nodes in a timed-token ring should not exceed 
the available portion T - T of TTRT: 

n 

Hi 5 T - T .  

i = l  

Violation of the protocol constraint will make the ring un- 
stable and oscillate between “claiming” and “operational.” 

Let Ab,;(!, c )  be the time difference between a reference 
time point &(e)  and the time when the token departs from 
node i the c-th time after &(e) .  That is, 

d i ( l  + c - 1) - &(e) if 1 5 b < i 5 n; 
if 15 i 5 b 5 n. Ab,i(l,c) = { di(!  + c )  - d b ( l )  

Under the protocol constraint, the following well-known re- 
sult is formally proved in [5,6]. 

Theorem 1: ( Johnson  and Sevcik’s Theorem)  For the 
timed-token MAC protocol, the worst-case token rotation 
time - the time interval between the 1-th token’s depar- 
ture and the (l  + 1)-th token’s departure from node b - is 
bounded by T + (Cy,, H j  + r ) ,  i.e., 

n 

Ab,b(a, 1) = d b ( l +  1) - d b ( l )  5 T +  Hj + T 5 2 .  T ,  
j = 1  

for any 1 5 b 5 n,  and l 2 1. 0 

An important lemma follows from Theorem 1: 
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Lemma 1: For the timed-token MAC protocol, 
i i 

Ab,i(e, 1) 5 T + ( H j  + 0,) + R 5 T + 
j = b + l  j=b+l 

Hj  + 7, 
for any 15 b 5 n and e 2 1. 
Proof: We prove the lemma for the case of 1 5 b < i 5 n. 
The proof for the case of 1 5 i 5 b 5 n is similar, and 
thus omitted. The proof is by contradiction. Assume that 
Ab,i(e, 1) > T + C;,b+l (Hj  + d j )  + R. Then, 

h b , b ( t ,  1) = d b ( t  + 1) - db(f) 

= 
> 

( d b ( f +  1) - di(t))  + (di(t) - db(f)) 

(db(! + 1) - di(t))  + T 

+ 2 (Hj + e j )  +a. (3.2) 
j=b+l 

If the synchronous bandwidths are fully utilized during the 
e-th token’s visits to node i+ 1,. . . , n and during the ( L +  1)- 
th token’s visits to node 1,. . ., b ,  i.e., &(e + 1) - di(e) 
C : , i + i ( H j  4- e j ) ,  then &(e+ 1) - &(e) > T + C ; = i ( H j  + 
0,) + R = T + cy=, H j  + T in Eq. (3.2), contradicting 
Theorem 1. This contradiction implies that our assumption 
dj(e) - db(e) > T + ~ j , , + , ( ~ j  + ej) + R must be false. 

Following similar derivation steps as in [6], we can obtain a 
more general result on the upper bound of the time difference 
between db(e) and the time when the token leaves node i the 
c-th time after db(!): 

Theorem 2: For the timed-token MAC protocol, 

Ab,i(t, c )  I 

I 

j=b+l 

(3.3) 
j=b+l 

for any e 2 1 and c 2 1.  
Proof: We prove the theorem for the case of 1 5 i < b 5 n. 
The proof for the other case is similar, and thus omitted. Let 
Qc, i  = c . T + C ; , b + , ( H j  + 0,) + R and Rc,i = Ab,i(C, C) = 
di(L + C) - &,(e) (for the case of 1 5 i < b 5 n), and let 
Gc,i = Qc,i  - R C j .  We want to show that Gc,i 1 0. 

The proof is by contradiction. Assume that the z-th to- 
ken’s visit to node y after time &(e) is the first visit after 
&(e) for which Gc,i is negative. Then Gz,y < 0, but Gj,k 2 0 
for 1, b + 1 5 j ,  K < I, y. First, z must be 2 2, because 

A 

I 

G1,i = (T + (Hj + 0,) + 0) - Ab+([, 1) >_ 0, 
j=b+l 

where the inequality comes from Lemma 1.  Now, we consider 
two cases: 
Case 1: g t + z , y  + 5 H,. Consider the relationship 
between Gz,y and G z , y - l :  

Gz9y - Gt,y-l 

(Qr,y - Qr,y-1) - ( L , y  - Rz,y-l) = 

= ( H ,  + e,) - (dy(e + - dy- l (e  + 2)) 
- - Hy - (gttr.v + at+z,y) 2 0- 

Hence Gz,y 5 Gz,y- l .  
Case 2: gt+2,y  + > Hy. Since Hy L g t + z , y ,  we 
know that > 0 in this case. That  is, the ( L  + z)- 
th token’s visit to node y occurs early, or Ct+x,y-l = 

L+z y - 1  
Cj,ki(+z-l,y(gj,k + a j , k )  + < T, and hence 

0 < at+z,y I max(0, T - CL+z,y-l) = T - CL+x,y-l. 

Consider the relationship between GzBy and Gz-l ,y- l :  

Gr,y - Gr-1,g-l 

(Q2.y - Qr-I,,-1) - (Rr , ,  - &-],,-I) = 
= ( T +  H ,  + 0,) - ( d , ( t +  2) -&I(!+ - 1)) 
= 

= 
T + Hy - (Ct+z,y-I + gt+r,y + at+r,y) 

[(T - Cttz,y-l) - at+r,y] + (Hy - 9ttr.M) 2 0. 

Hence Gz,y 2 Gz- l , y - l .  
We showed that Gz,y was no less than Gz,y-l  in Case 1 and 
no less than Gz-l,y-l  in Case 2 ,  implying that z, y was not 
the first visit for which G2,y is negative. This contradiction 
shows that our assumption must be false, and thus the t h e  
orem is proved. 0 

Note that if ai([) denotes the time of the token’s e-th 
arrival at node i, then for i < n, d i ( l )  = a i + l ( e ) ,  and for 
i = n, &(e) = al(L+ 1).2 Therefore, it is easy to see that 
results similar to the above lemma/theorems can be derived 
for token arrival times. 

If we set b = i in Eq. (3.3), we obtain the following corol- 
lary. 

Corollary 1: For the timed-token protocol, the time 
elapsed between any c+ 1 consecutive token’s visits to a node 
isbounded b y c . T + C 7 = 1 H j + T <  ( c + l ) . T .  0 

A similar result of Corollary 1 was also obtained by Agrawal 
et al. [1,9] using a more complicated approach. An example 
showing that the bound is tight can also be found in [9]. 
The deadline constraint: Every synchronous message for 
real-time applications must be transmitted before its delivery 
deadline. That  is, the minimum amount of time, X i ,  avail- 
able for node i to transmit its synchronous messages in an 
interval (2, t + Di] should be no less than the required maxi- 
mum message transmission time. Using Corollary 1, Agrawal 
et al. [1,2] derived a lower bound for the time available for 
a node to transmit its synchronous messages within a given 
time period Di as follows. 

Theorem 3: Assume that at t imet,  a synchronous message 
with deadline Di arrives at node i (1 I i 5 n). Then, the 
minimum amount of time, X i ,  available for node i to transmit 
this synchronous message before its deadline is given by 

x,(I?)  = (qi-l).Hi+max(O, min(ri-( ~ j + r ) ,  Hi) ) .  (3.4) 
j = 1 ,  .... n 

If: 

0 

2Assume that latencyfoverhead is ignored. 
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Figure 1: Worst-case token visit scenarios. 

Note that Eq. (3.4) can be re-written as 

Also, note that the time available for a node to transmit 
a synchronous message before its deadline becomes minimal 
when the message arrives right after the token’s departure. 
Fig. 1 depicts the scenarios where Case 1, 2, or 3 may arise. 
For D; 5 Pi, the timing requirements of synch_ronous mes- 
sages impose the deadline constraint that X ; ( H )  2 C;, for 
i =  1 , 2 , . . . , n .  

4 

In this section, we give a proof on the non-existence of op- 
timal local SBA schemes of the form H;  = fi(Ci, D;, P;, T ,  T ) ,  

for i = 1 , 2 , .  . . , n. Without loss of generality, it suffices for 
us to prove this claim for the special case of Di = Pi, for all 
i, and T = 0. Pi and r are thus dropped in the following 
discussion. 

SBA problem and non-existence proof 

Problem 1: ( T h e  SBA P r o b l e m )  Given the number of 
nodes (or synchronous message streams), n, the maximum 
message transmission time vector, C = (C l ,  Cz, . . . , C,), the 
deadline vector, D = (01, Dz, . . . , D,), and the negotiated 
TTRT, T ,  the objective of a global SBA scheme is to find an 
algorithm that realizes the function fg : 

- 
-. 

G = ( H I ,  H 2 , .  . . , H,) = f g ( c ‘ ,  d,T), (4.1) 

and the objective of a local SBA scheme is to find an algo- 
rithm that realizes the function f i :  

Hi = f i (C; ,  D i ,T ) ,  for i = 1 , 2 , .  . . , n ,  (4.2) 

subject to 

protocol  constraint :  2 Hi 5 T - r,  (4.3) 
i = l  

deadline constraint: Xi(fi) 2 Ci, (4.4) 

where Xi(fi) is defined in Eq. (3.4). 0 

A feasible solution for the above SBP, problem is a vector E7 
that satisfies both the protocol and deadline constraints. An 
optimal global (local) SBA scheme is the one that realizes 
the function fg (f,) whenever such a solution exists. 

As mentioned in Section 1, whether or not there exists any 
optimal local SBA scheme remains unknown. The following 
theorem provides a definite answer to this issue. 

Theorem 4: There does not exist any optimal local scheme 
for the SBA problem. 
Proof:  For clarity of presentation, we outline the skeleton of 
the proof here and leave the detailed algebraic manipulation 
in the Appendix. Our proof is based on the technique of 
adversary argument, a detailed account of which can be found 
in [IO]. 

Let L be any local SBA scheme, ;and let A be the adver- 
sary. A first chooses (and fixes) the values for C1, D1, and T ,  
and asks L for the value of H I .  Since L is a local SBA scheme, 
it should be able to give a value of I l l ,  say h,  based only on 
the values of C1, D1, and T .  After I, gives A the value h of 
H I ,  A chooses the values for n,  Ci, and Di, for i = 2 , 3 , .  . . , n, 
such that with H1 = h given by L ,  it is impossible to find a 
feasible solution f? = ( h ,  H 2 ,  H 3 , .  . . , H,) for the SBA prob- 
lem with the chosen n,  T ,  Ci, Di, for i = 1 , 2 , . .  . ,n .  How- 
ever, a feasible solution does exist if 171 is not restricted to be 
h.  If for every value h that A receives from L ,  A can always 
design an instance of the SBA problem such that the above 
situation occurs, then by the adversary argument, we prove 
that L cannot be an optimal local !$BA scheme since there 
are cases in which feasible solutions exist but L is not able 
to find one. Theorem 4 is thus proved. 

We now discuss how A chooses th.e instances for the SBA 
problem and jeopardizes the optimality claim of any local 
SBA scheme L .  

A first chooses: 

1 1 
C1 = -T+6 and D1 = 3 T -  ( -T+6) ,  3 3 

where T is the TTRT and can be any fixed positive num- 
ber, and 6 is a positive number in (O,&T]. (The reason for 
choosing 6 in (O,&T] is given in Appendix A). Suppose L 
computes a value h of H1 based on the given values of C1, D1, 
a.nd T .  We consider two cases for t,he h value L computes, 
one for h > ST and the other for h 5 5T. 
CI: h > ST: A can choose 

11 = 3,C1= C, = C1, and DZ = 0 3  = D1. 

Since all Ci’s are equal, all Di’s are equal, and L is a local 
scheme, L will compute Hz = H3 := H1 = h > 4T. Since 
E:=l Hi = 3h > T and the protocol constraint is violated, 
L fails to find a feasible solution. However, one can readily 
see that 

Hi = -T - 26, for i = 1 , 2 , 3 ,  

is a feasible solution for the chosen Ci’s, Di’s, and T .  The 
feasibility of the above solution is verified in Appendix B. 

1 
3 
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C2: h 5 QT: Let h = QT - I, where x 2 0. We consider 
three subcases: x > iT-8 ,  x = i T - f ,  and 0 5 x < iT-3.  
Subcase 1: x > iT  - $. A again chooses 

In this case, L will compute 

1 1 6 ci 
3 6 2 2  

Hi  = h = -T -  x < -T+ - = -, 

for i = 1 ,2 ,3 .  Note that qi = 2, for i = 1 ,2 ,3 ,  and hence 

since min(ri - 2Hj ,  Hi) Hi. Thus, the deadline constraint 
is violated and 2 = ( h ,  h,  h )  is not a feasible solution for 
the chosen instance. However, as described in C1, a feasible 
solution, Hi = 4T - 26, for all i ,  indeed exists. 
Subcase 2: x = i T  - 8 ,  i.e., H1 = h = QT - x = AT + f .  
In this case, A chooses 

Xi(E7) = Hi + max(0, min(ri - 2Hi ,  H i ) )  5 Hi  + Hi < Ci 

6 

1 3  
2 2  n = 2 ,  CZ = -T - -6 + 6 ,  and Dz = 2 T ,  

where 0 < 6 5 iT  + f .  (The reason for choosing c in the 
above interval is given in Appendix C). 

Since DZ = 2 T  (i.e., q2 = 2 and r2 = 0), we have XZ(@) = 
H z .  In order to meet the deadline constraint for the second 
message stream, L will compute 

1 3  
2 2  

Xi(l?) = H;! 2 Cz = - T -  - 6 + r .  

Then, the minimum amount of time available for the first 
synchronous message stream becomes (note that q1 = 2 and 

= ZT - 6 )  

= Hi + max(O,min(n - H 2 ,  Hi)) 
1 6  1 6  -T+ 5 +max(O, -T+  - - E )  
6 6 2  5 

= - T + ~ - c < C I ,  1 

3 

where the first inequality comes from H2 2 4T - 56 + c, 
and the second equality comes from 6 5 $ + f .  From the 
above derivation, we conclude that the deadline constraint 
for the first message stream is not satisfied, and thus fi = 
( iT+ %, H2)  is not a feasible solution for the chosen instance. 
However, one can readily see that l? = ( H I ,  H z ) ,  where 

where IJ = ( i T  - 4) - x > 0. Since C;! = C3, 0 2  = D3, 
and L is a local SBA scheme, L will compute the same value 

1 1  HI = - T + - 6 + c ,  and 
6 2  
1 3  Hz = - T - - 6 + c = C z  
2 2  

is a feasible solution, as is verified in Appendix C. 
Subcase 3: 0 5 x < iT - f .  A chooses 

1 x u  
3 2 2  

n = 3,Cz = C3 = -T+ - + -, and 

0 2  = 0 3  = 3 T  - Cz = 3 T -  C3, 

~ 
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for Hz and H3, i.e., Hz = H3 = h‘. First, we show that 
h’ < Cz = C3. If h‘ 2 C;! = C3, then Xi Hi = h + h’ + h’ 1 
T + c > T ,  violating the protocol constraint. This then 
implies ( h ,  h‘, h‘) is not a feasible solution. We must have 
h‘ < Cz = C3. Under this restriction, i t  can be verified that ( i T  - x, h’, h‘), where h’ < C;! = $T + 4 + 5 = &T - f 
violates the deadline constraint for i = 2 , 3  and is hence not 
a feasible solution. Specifically, we have q1 = 2 ,  r1 = i T  - 6, 
q;! = 43 = 2 ,  rz = r3 = AT + a ,  and X z ( H )  = H;! + 
max(0, min(rz - H I -  H3, H z ) ) .  If r2 - H I  - H3 5 0, we have 
max(O,min(rz - H I  - H 3 , H z ) )  = 0, and XZ(@ = H Z  = 
h’ < CZ. If r2 - H I -  H3 > 0, we have max(0, min(r2 - H I -  
H3, H;! ) )  5 r;! - H1 - H3 = rz  - H I -  H z ,  and 

X z ( H )  5 H z  + (pz - H i  - H z )  

- 6 

1 6  = - T + ~ + X  
4 
5 6  < - T - - = C z ,  
12 4 

where the last inequality results from 0 5 x < f - 5 .  How- 
ever, one can readily see that l? = ( H I ,  H z ,  H3) ,  where 

1 6 1 6  
6 2 6 2 ’  

HI = - T - ( - T - - ) =  1 - T + -  and 
3 

1 3  
4 4  

H2 = H3 = -T--6,  

is a feasible solution, as is verified in Appendix D. 

5 Conclusion 
We formally proved that there does not exist any opti- 

mal local SBA scheme which is guaranteed to find a feasible 
solution for allocating synchronous bandwidths when such 
an allocation exists. This proof implies that  the decision on 
choosing a non-optimal local scheme or an optimal global 
scheme depends on the trade-off between the ease of network 
management and the performance improvement. 

Another contribution of this paper is an extension to the 
previous work on the bounded token rotation time. We prove 
that the time elapsed between the t-th token departure from 
node b and the (t + c)-th token departure from node i is 
b o u n d e d b y ( c + l ) . T + C i = b + , H j + r i f l  5 b < i < n , a n d  
is bounded by c . T + C;.=,+, H ,  + r if 1 5 i 5 b 5 n. The 
previous result on the upper bound of the token cycle time 
by Johnson el al. [5 ,6 ]  and that on the upper bound of the 
time interval between c consecutive token’s visits by Agrawal 
et d. [ I ,  21 are special cases of our result. 
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Upper bound of 6 
In both C1 and Subcase 1 of C2 (Section 4), the param- 

eters of the synchronous message streams are specified as: 
C1 = C2 = C3 = IT+6,  3 and D1 = D2 = 0 3  = 3T-(iT+6).  
And we claim that HI = H2 = H3 = i T  - 26 is a feasible 
solution. In this regard, we require that 

0 H; = i T  - 26 > 0, which leads to 6 < QT. 

0 X;(g)  2 C;, where X ; ( H )  = (q; - 1) . H; + 
max(O,min(ri - 2Hi, Hi)) = Hi + max(O,min(ri - 
2Hi, Hi)) 5 2H;, which leads to 2H; 2 C;, or 2(QT - 
26) 2 :T + 6, i.e., 6 5 &T. 

-. 

Therefore, the range of 6 is 
1 
15 

0 < 6 5 - T .  

B 
We now verify that the solution provided in C1 and Sub- 

case 1 of C 2  in Section 4, i.e., H I  = H2 = HB = i T  - 26, 
is a feasible one (under the condition 0 < 6 5 LT) for the 
instance discussed in C1 of Section 4: C; = gT + 6, and 
D; = 3T - Ci = 2T + (:T - 6 ) ,  for i = 1 , 2 , 3 .  Note that 
q; = 2 and r; = i T  - 6, for all i, for the above message 
stream configuration. 

We need to verify that both the protocol and deadline 
constraints are satisfied. The protocol constraint is satisfied 
since Hi = T - 66. On the other hand, it suffices to 
check that X1(g )  2 C1 for ensuring the deadline constraint 
to be met: 

Feasibility of the solution in C1 

r 5  

xl(lj) = 

= 

( p i  - 1) . HI + max(0, min(l.1 - H Z  - ~ 3 ,  H I ) )  

1 1 -T - 26 + max(0, min(36, -T - 26)) 
3 3 

where the third equality results from 6 5 hT (i.e., 
min(36, i T  - 26) = 36). 

C Feasibility of the solution in Subcase 2 
We now verify that the solution provided in Subcase 2 of 

C2inSect ion4, i .e . ,Hl  = $ T + : + ~ a n d H 2 = i T - + 6 + ~ ,  
where 0 < E 5 QT + 4, is a feasible one (under the condition 
0 < 6 5 &T) for the instance discussed in that subcase: 
C ~ = I T + ~ , C ~ = ; T - ~ ~ + E ,  3 D1 = 2 T + ( $ T - 6 ) , a n d  
D2 = 2T. Note that q1 = 2, r1 = $T - 6, q2 = 2, and r2 = 0 
for the above synchronous message configuration. 

We first verify that the protocol constraint is satisfied: 
H1 + H2 = ST - 6 + E 5 - f 5 T, where the first 
inequality comes from E 5 $T + f .  The deadline constraint 
is verified by calculating XI(@ and Xz(f?): 

XI (I?) = (ql  - 1) . H~ + max(0, min(l.1 - H Z ,  H I  1) 
1 6  1 6  -T + - + c + max(0, -T + 5 - e )  
6 2  

= 
6 

= ;T+6 = C1, 
3 

where the third equality results from E 5 $ + f ,  and 

X z ( d )  = 

= 

(qz  - 1 ) .  Hz + max(0, min(r2 - H I ,  H z ) )  
1 3  TT - -6 + c + max(O,min(-HI,Hz)) 

2 
1 3  = - T - - 6 + €  2 2  = Cz. 

D Feasibility of the solution in Subcase 3 
We now verify that the solution provided in Subcase 3 of 

C2 in Section 4, i.e., HI = i T +  6 2 ’  H2 = aT- a b ,  and Ha = 
$T - 36 is a feasible one (under the condition 0 < 6 5 &T) 
for the instance discussed in that subcase: C1 = i T  + 6, 

and 0 2  = D3 = 3T - Cz = 3T - C3 = 2T + (LT  12  + :), 
where U = ($T  - f )  - z > 0. Note that q1 = 2, r1 = {T - 6, 
42 = q3 = 2, and 1-2 = r3 = AT+$ for the above synchronous 
message configuration. 

The protocol constraint is satisfied since HI + H2 + H3 = 
4T-6 < T. The deadline constraint is verified by calculating 
X1(I?) and X2(fi) = X3(fi): 

4 ! 
D ~ = ~ T + ~ T - ~ , C Z = C ~ = ~ T + ~ + ~ = ~ T - ~  2 

1 2  4 ’  

X,(I?) = (q1 - 1 ) .  Hi + max(0, min(r1 - H Z  - H s ,  Hi)) 

= -T 1 6  + - + max(0, min(-T 1 + - 6 1  -T + -)) 6 
6 2 ’ 6  2 6 2  

= - T + 6 = C i ,  1 
3 

and 

~ z ( 1 7 )  = 

= 

( q z  - 1 ) .  H~ +max(O,min(rz - H~ - H ~ ) , H ~ ) )  
1 3  1 1 1  3 
-T - -6 + max(0, min(-T 6 + -6 2 ’ 4  -T - - 6 ) )  4 
4 4  

where the third equality comes from the fact that 6 is in 
(0, AT] (see Appendix A); therefore i T  + ;6  5 aT - $ 6 .  - T + b = C i ,  1 

3 
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