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Abstract-We propose the dynamic reconfgur&*on network 
@RN) and a monitoring-at-transmisswn (MAT) bus to support 
dynamic reconfiguration of an N-modular redundancy (NMR) 
multiprocessor system. In the reconfiguration process, a maximal 
number of processor triads are guaranteed to be formed on each 
processor cluster, thus supporting gracefully degradable opera- 
tions. This is made possible by dynamically routing the control 
and clock signals of processors on the DRN so as to synchronize 
fault-free processors. The MAT bus is an efticient way to imple- 
ment a triple modular redundant (TMR) pipeline voter (PV), 
which is a special case of the voting network proposed in [I]. Ex- 
tensive experimental results have shown to support our design 
concept, and the performance of different cache memory organi- 
zations is evaluated through an analytic model. 

Index Items-Clock synchronization, cluster-based multiproc- 
essors, N-modular redundancy (NMR), pipelined voter (PV), reli- 
ability, voting. 

I. INTRODUCTION 

ITH the advance of very large scale integration (VLSI) W technology, large multiprocessor systems are becoming 
available on commercial market at reasonable prices. These 
multiprocessor systems are ideal candidates for providing 
high-performance, scalable computing services for a broad 
range of time- and safety- critical applications. Typical exam- 
ples of these applications include radar signal processing, 
command and control centers, on-line optimization of tele- 
communication and urban transportation networks [2], [3]. In 
these applications, computational tasks should be completed 
before their deadline to avoid catastrophe or any significant 
degradation of quality of system service. Faults that might oc- 
cur to the computing system should therefore be quickly de- 
tected and isolated in such a way that normal computation can 
be resumed in a bounded time. 

Most failure recovery strategies for distributed systems are 
static in nature, and thus are not very efficient for multiproces- 
sor systems [4], [5]. Moreover, commercial fault-tolerant mul- 
tiprocessor systems are usually designed for transaction- 
oriented applications (e.g., [6], [7], [8], [9]) which do not 
consider the deadline constraints and thus are not well suited 
for time-critical applications. For its simplicity and high fault 
coverage, the hardware-based majority voting architecture is 
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widely accepted for the design of real-time, non-stop fault- 
tolerant systems [lo], [ l l ] ,  [12], [13]. In this architecture, a 
functional unit is replicated N times, forming an N-modular re- 
dundant (NMR) unit, and copies of each critical program are 
executed in lock-step by redundant units. The NMR architecture 
is very flexible, and it can be integrated with different fault de- 
tectiodcorrection mechanisms. For example, in the Hitachi 
FT-6 100 system [ 131 a single-error-correctioddouble-error- 
detection (SEC/DED) code is used in its main memory, but its 
central processor unit is protected with an NMR architecture. 

Several NMR-based fault-tolerant multiprocessor systems 
have been built. Some of the most notable systems include the 
FIMP [lo], Fault-Tolerant Processor (FTP) [14], and C.vmp 
[ 151. Flexibility (in providing fault-tolerance) and performance 
are two main issues associated with the implementation of an 
NMR-based multiprocessor system. The NMR architecture is 
conceptually simple, but its implementation may have a major 
impact on system performance. In an NMR system, clocks of 
the N redundant units need to be synchronized with one an- 
other so as to ensure lock-step execution of copies of a pro- 
gram on the redundant units. For its cost-effectiveness, the All 
Digital Phase-Locked Loop (ADPLL) [ 161 technique is widely 
used, which can synchronize the N modules at a clock rate 
lower than the running clocks of processors, e.g., the FTP and 
the Transputer [ 171 architectures. For clocks of the redundant 
modules to be phase-locked to each other by an ADPLL, the 
phase difference of the N clocks are compared at a fixed time 
interval of every k pulses of the running clocks, called one 
synchronization cycle. Using the phase-comparison results of 
the synchronization cycles, the running clocks are adjusted, by 
additioddeletion of clock pulses, to compensate for the phase 
difference of the synchronization cycles. This way the phase 
difference between N clocks sources can be upper bounded by 
a physical time margin S,. Unlike the conventional analog PLL 
technology, the ADPLL can be implemented with digital cir- 
cuitry, and it has good tolerance to the time skew between 
redundant units. 

Despite its cost-effectiveness, a major problem associated 
with the ADPLL-based NMR architecture is that the peak 
voting frequency of redundant units in a conventional voter is 
constrained by S,. To overcome this problem, Parhami pro- 
posed a pipelined, multiple stage cellular voter architecture, 
called voting networks, to support different majority voting 
rules [l]. We will call a triple modular redundancy (TMR) 
voting network a pipelined voter (PV). A PV consists of a 
majority voter at its output and a set of input buffers, each of 
which is associated with a status bit to indicate the readiness of 
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data. For their flexibility, ADPLL and PV will be used in our 
study as a basis for the implementation of an NMR-based 
multiprocessor system. 

TWO main issues, state recovery and reconfiguration, need 
to be considered for the design of a gracefully degradable 
multiprocessor system. A large multiprocessor system may 
consist of hundreds of processors. Therefore, time efficiency is 
a main concern for fault recovery of large-scale multiprocessor 
systems. The time required to restore the processor state is 
relatively small. However, if the size of main memory is very 
large (as is usually the case), then the time spent on majority 
voting for memory-state recovery can be substantial. To over- 
come this problem, a memory paging technique was proposed 
[18], so that only the memory pages being modified need to be 
voted on for state realignment. An important question left un- 
answered in [ 181 is “What is the optimal page size for state 
realignment?’ To address this question, we develop an effi- 
cient algorithm to derive the optimal memory page size. 

To deal with the system reconfiguration issue, we use dy- 
namic reconfiguration which can maintain a maximal number 
of fault-free redundant modules in the system. To fully utilize 
the architectural features of contemporary multiprocessor sys- 
tems, we propose two important supporting mechanisms, both 
of which are considered as the system reliability hard core, for 
the implementation of an NMR-based multiprocessor system. 
The first mechanism is the monitoring-at-transmission (MAT) 
bus for cost-effective implementation of PV. The other is the 
dynamic reconfiguration network (DRN) for dynamic recon- 
figuration of clocking and control signals of redundant units. 
The MAT bus can be implemented by the Wired-OWAND 
logic or other similar techniques, and the MAT feature can be 
readily found in some of existing commercial products. On a 
MAT bus, each of NMR processor modules monitors the bus 
transaction when they output data to the bus. If an inconsis- 
tency is detected between the bus value and the output value in 
a functional unit, then a fault is detected, and the computation 
is interrupted to recover from the fault. The MAT bus is well 
suited for the widely-used cluster-based multiprocessor archi- 
tecture. A processor cluster consists of a set of processors in- 
terconnected via a broadcast bus, and the processor clusters 
are interconnected via a different system network. A DRN can 
be implemented with ADPLLs and multiplexor-demultiplexor 
circuits. When some processor modules fail, the failed mod- 
ules can be decoupled from the DRN, and the remaining fault- 
free units can be regrouped together into new NMR units. For 
simplicity, we will use the TMR model as an illustrative ex- 
ample throughout the paper. 

The rest of the paper is organized as follows. The dynami- 
cally-reconfigurable architecture and the algorithm for opti- 
mizing the memory-page size are described in Section 11. Ex- 
perimental results and performance evaluations of the pro- 
posed architecture are presented in Section 111. Concluding 
remarks are made in Section IV. 

11. SYSTEM ARCHITECTURE 

A. System Organization 

Processor modules-ach of which consists of a processor 
and its cache memory-and memory modules are the two ba- 
sic functional units to be considered in our design, as in most 
commercial systems [ 191. In a processor triad, three processor 
modules are synchronized with one another, and all the exter- 
nal data writes are voted on by the PV to mask faults in the 
processor modules. Like the design of the C.vmp architecture 
[151, the PV is placed between the cache and main memory to 
form a processor triad (see Fig. 1) so that both the write-back 
and write-through cache coherence protocols can be incorpo- 
rated. Coordination between the PV and cache memory is de- 
scribed by the flowchart in Fig. 2. 

The main difference between the MAT-bus voter and a PV 
is that, on the MAT-bus voter, an inconsistency between re- 
dundant processors is detected, not masked, in each data vote. 
For processor modules in a processor triad to take a vote on 
their outputs, they first place data into their buffers and then 
make a transmission request to the bus arbiter. The bus arbiter 
can grant the bus transmission after all the ready bits in the 
same triad are asserted, and all processor modules will then 
monitor the bus transmission. If any processor detects an in- 
consistency between data on the bus and its own output value, 
the processor invalidates the transaction, and the data voting 
will be retried. If the inconsistency remains even after several 
retries, a permanent fault is assumed detected and the proces- 
sor reconfiguration procedure will be invoked. 

In the regrouping process of fault-free processors on the 
MAT bus, fault-free processors may need to be first decoupled 
from their own processor triads, so that they can later be cou- 
pled with other fault-free processors to form new processor 
triads. After fault-free processors are dynamically grouped into 
triads, their control and clock signals need to be phase-locked 
into each other. The dynamic reconfiguration network (DRN) 
is designed to serve this purpose. A DRN consists of a set of 
DRN modules (DRNM) connected to one another forming a 
logical ring. Each DRNM has five access ports, three of which 
are directly connected to three processor modules, and the 
other two are connected to other DRNMs on the ring. There is 
a three-input ADPLL circuit in each DRNM for synchroniza- 
tion of the clocking signals from any three of the five access 
ports. When a processor cluster is free of any faults, processor 
modules directly connected to a DRNM are synchronized with 
one another on the DRNM to form a processor triad. However, 
once a fault is detected in a processor triad, the failed proces- 
sor module will be disconnected from the DRNM associated 
with the processor triad. Then, the DRNM will coordinate with 
other DRNMs to form new processor triads after the clock and 
control signals of the non-faulty processor modules are prop- 
erly grouped with each other by the reconfiguration algorithm 
to be discussed shortly. 

Fig. 3 depicts an example DRN architecture, in which 
DRNM,, ..’, DRNM,, are organized into a ring. DRNMi con- 
sists of an ADPLLi circuit and five access ports, RI, ..., R;, 



LIU AND SHIN: EFFICIENT IMPLEMENTATION TECHNIQUES FOR GRACEFULLY DEGRADABLE MULTIPROCESSOR SYSTEMS 505 

I 1 

Clock 
Processor 

Processor I 

Module 

buffex 
occupied 

Fig. 1. The basic organization of a PV. 

i = I ,  2, ..., n. TO form a ring between DRNMS, R; is con- 
nected to R r ' ,  i = 1 ,  2, ... n, and R: is connected to R:. The 
clock and control signals of three processor (memory) modules 
are directly connected to three of the five access ports: R; , R;, 
R i .  Clocks from any three of the five access ports of DRNM; 
can be synchronized to each other on ADPLL;. Therefore, 
when necessary, any of the clocking signals from ( Ri , Ri , Ri, 
Ri } can be routed to ADPLLHl along R:, so that on ADPLLHl 
the clock can be synchronized with any two other clocking 
signals from { RP', RF' , Rc' , RF' }. Similarly, the clocking 
signal from any of access ports R; , R;, R: , R: 1 can be routed 
to R: , so that it can be synchronized with any two other clocking 
signals from { R;-', Ri-', Rip', R:-' } on ADPLL+,. The direct 
path between R[ and R: is a bypass between DRhW-, and 
DRNMkI for them to directly exchangdsynchronize clock signals. 

. .  

EYy 
(slowest channel) 

B. System Reconfiguration 

The DRN architecture is managed by the neighborhood- 
grouping reconfiguration algorithm, which is guaranteed to 
find a maximal number of processor triads on a processor 
cluster. Let fi, fi, f3, -. . fn, E (0,  I ,  2 ,  3 }, denote the numbers 
of fault-free processor modules on the n DRNMs of a cluster, 

then we can get + processor triads using this algorithm. I=" '1 
For convenience, a DRNM with i fault-free processor 

modules connected to its access ports is called an i-DRNM. 
Essentially, the neighborhood-grouping algorithm is based on 
a first-fit principle for processors on 2-DRNMs and 1-DRNMs 
to be grouped with each other along a ring direction. An error 
signal connected to every DRNM through a wired-OR broad- 
cast line is used to inform every DRNM about initiation and 
termination of a reconfiguration process. A reconfiguration 
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Fig. 2. The cache coherence protocols with PV 

process is initiated by the DRNM which detects the latest 
failed processor module by asserting the error signal. The re- 
configuration process is terminated when the error signal is 
reset. Once the error signal is asserted by a DRNM, all the 
2-DRNMs and 1-DRNMs connected on the ring will partici- 
pate in the reconfiguration process. Since a DRNM can accept 
at most two external clock sources, no triad can be formed on 
0-DRNMs, and thus 0-DRNMs do not participate the recon- 
figuration process. Moreover, including 3-DRNMs in the re- 
configuration process will add extra overhead without gaining 
any flexibility, because if any processor in a 3-DRNh4 is to be 
grouped with other fault-free processors, then we will need a 
new fault-free processor from another processor triad to make 
up the loss. 

For convenience, the DRNMs participating in the reconfigu- 
ration process are relabeled along the ring direction as D1, D2, 
D3 ... Dh, h 2 1, where D1 is the coordinator, R: of Di is con- 
nected to RF' of Di+l, and R/' of Dh is connected to R: of Dl. 
Any DRNM between Di and Di+l is in the bypass mode. Three 
different types of messages, invite, join, and done, are passed 
between DRNMs along the directed ring direction, assuming 
that Di sends its messages to Di+, through RI, and Di receives 
messages from Ri-l through R i .  The invite-message is used by 
a message sender to indicate that it needs one more processor 
module to form a new triad. The join-message is used by a 
message sender to indicate that it has only one processor 
module which can be combined with other processor modules 
to form a new triad. Finally, the done-message is used to indi- 
cate that all the processor modules between the initiator and 

-, Write Thmugh Cache Operation 

/- 

---I--- 

- 
'- 

the message sender have been combined into triads. Di, i 2 1, 
responds to the three different types of messages based on the 
following rules. 

0 invite-message: Di grants the request and routes the 
clock-control signal of a non-faulty processor module to 
Di-l through Ri .  If Di does not have any more non-faulty 
processor module, then it passes a done-message to Di+1. 
join-message: 1) If Di is a 1-DRNM then it sends an 
invite-message to Di+l, and waits for the response from 
Di+l. If the request is granted, a triad can be formed on 
Di+l. Otherwise, if the error-signal is reset then the re- 
configuration process is aborted without forming any 
triad. 2) If Di is a 2-DRNM, then it accepts the join- 
request from Di-l to form a new triad, and it will send a 
done-message to Di+l. 

0 done-message: If Di is a 2-DRNM, then it sends an in- 
vite-message to Di+l. Otherwise, it sends a join-message 

When the reconfiguration process is initiated, D1 sends an 
invite-message to D2 if it is a 2-DRNM; otherwise it sends a 
join-message to D2 if it is a 1-DRNM. A new triad can be 
formed on Dl if the invite-message is granted, and the clock- 
control signals (of a non-faulty processor module) from R! of 
D1 will be synchronized with that of the two non-faulty proces- 
sor modules on D , .  Similarly, if the join-message of Dl is 
granted, then the only non-faulty processor on D1 can be 
grouped with other processor modules to form a new triad on 
some other DRNh4. After Di, i 2 1, sends out a request, it waits 
for a response from Di+l. New triads can be formed either on 

to Di+1. 
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D; or on some other node if the request is granted. However, 
the reconfiguration process will be terminated with no new 
triad formed if the error-signal is reset by D1 before the grant 
message is received by Di. When D1 receives an inviteljoin- 
request from Ri ,  it implies exhaustion of non-faulty processor 
modules, and D1 needs to terminate the process, by resetting 
the error signal, with no new triad formed. 

The proposed algorithm is given in the C-language like 
pseudo code as follows. 

Neighborhood-Grouping Algorithm (DRNM,)/* that runs on DRNM, *I 
IF (DRNM, is a 3-DRNM or 0-DRNM) then activate its bypass circuit 

IF (one processor module of DRNM, fails) set reconfiguration:= True; 
IF (reconfiguration is True) 
[IF (DRNM, is the initiator)/* j ,  the number of non-faulty processor 
modules on DRNM,*I 

and wait until one of its processor modules fails; 

[IF (fi = 2) [send the invite-request along R; , 

507 

wait until (the response from R,' OR R:)  
IF (ACK from R ; )  (accept the clocks from Ri to form a new 

triad; 
wait for any message from R: ; 
reset the error-signal; 
retum( I);]/* a triad is formed on DRNM, */ 

ELSE IF (invite/join request from R: )/* NO triad can be 
formed */ 

[reset the error-signal; retum(0);); /* no triad can be 
formed *I 

IF (f; = 1) send the join-request along R: ; 
wait until (the response from R,' OR R:)  
IF (ACK from R;)  [route the clock of its only fault-free 

wait until (a response from R: ); reset error-signal; retum(0);I 

R: ; reset error-signal;] retum(0); 

processor to R; ; 

IF (f; = 0) [send done-message along R,' ; wait for message from 

1 
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IF (DRNM, is not the initiator) wait until a request received from R; ; 

( IF (an invite-request received) [grant the request; route the clock 
of one of the non-faulty processor modules on DRNMi to Ri ; 

IF (DRNMi has no more fault-free processor module) 
Send a “done-message” to R; ; 
ELSE IF (DRNMi has one fault-free processor module) 
Send a join-request to Rt ; 
wait until the request granted or the error-signal is reset; 

retum(0); 

1 
IF (a join-message received) 

[IF (f,= 2) 
(grant the request; 
accept the clock-control signals from Ri to form a triad; 
send the “done-message’’ to R; ,  and 
wait until the error signal is reset; retum(1); 

I 
IF(f ,= 1) 

[send the invite-request to Rf ; 

IF (ACK is received) accept the clocks from R: and Ri 

wait until the error-signal is reset; retum(1); 
ELSE IF (REJECT is received OR error-signal is 

reset) no triad is found, 
reconfiguration is terminated; 
retum(0); 

to form a triad; 

I 
1 
IF (a done-message received) 
( IF( f ,=2)  

{send the invite-request to R: ; 
IF (ACK is received) accept the clocks from 
R; to form a triad 

wait until the error-signal is reset; retum(1); 

1 
IF(J= 1 )  

{send the join-request to R; ; 
IF (ACK is received) [route the clock of the processor 
module 
on DRNMi to Rf ; ) 

wait until the error-signal is reset; return(0); 

I 
I 

1 

We now prove that the neighborhood grouping algorithm is 
deadlock-free based on the following simple argument. As 
mentioned earlier, both the MAT bus and the DRN are the 
reliability hard cores, implying that DRNMs will not fail dur- 
ing the reconfiguration process. In the neighborhood grouping 
algorithm, each of the DRNMs participating in the reconfigu- 
ration process receives from, and generates a message to, its 
neighbors along the same ring direction. Thus, the reconfigu- 
ration initiator will receive a message and will terminate the 
reconfiguration process in at most n steps, and all processors 
will proceed with their subsequent computational steps. 

The process for reconfiguring processor modules is illus- 
trated with an example plotted in Fig. 4. In this example, 15 
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initiator 

5- failed 

Fig. 4. Processor triad configurations under different conditions: (a) no proc- 
essor module fails, (b) after a new processor on DRN M I  fails, and (c) after 
the reconfiguration. 

processor modules in a cluster form five processor triads. After 
several processor modules had failed, we have taken a snap- 
shot of the system state immediately after the latest failure 
occurred to a processor module on DRNM,, Le., Fig. 4(b). 
After detecting the faulty processor, DRNM, orders other 
processors to begin the reconfiguration process. After their 
state information is properly saved, all the existing triads on 
the 1- and 2-DRNM are decoupled from each other, and the 
neighborhood-grouping algorithm is initiated. DRNM3 and 
DRNM4 will not be involved in the reconfiguration process 
since they have three and zero faulty processor modules, re- 
spectively. After an invite-message is sent from DRNMl to 
DRNM2, the request is granted by DRNM2, since it has two 
non-faulty processor modules. The new processor triad is 
formed on DRNM,, and DRNMz will then send a join-message 
to DRNMs since it has only one non-faulty processor module 
available. DRNMS does not have enough processor modules to 
form a new triad. Thus, it sends an invite-message to its next 
neighbor, DRNM,. Since a processor triad is already formed 
on DRNMl, DRNM, terminates the reconfiguration process by 
resetting the error-signal. As a result, no new processor triad 
can be formed on DRNMs. The final configuration is plotted in 
Fig. 4(c). 

When an NMR system is used for hard real-time applica- 
tions, it is important to know the worst-case timing behavior 
for the scheduling of fault recovery routines. For this purpose, 
we briefly analyze the time complexity of processor-cluster 
reconfiguration process as follows. Let Nf denote the total 
number of 2- and 1-DRNMs on a processor cluster. After a 
faulty processor module is detected in a processor triad, the 
state of processor triads on the 2- and 1-DRNMs needs to be 
saved into the main memory before the reconfiguration process 
can begin, and this will take Nf Ts(Iye-sIaIe time units to complete. 
It will then take Nf Tneigmr time units for the DRNMs to be 
grouped with each other based on the nearest-neighbor algo- 
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rithm, where Tneighbor is the worst-case time for one 2- or 
I-DRNh4 to make its reconfiguration decision. After the re- 
configuration decision is made, the clocks of the processors in 
the same processor triad need to be phase-locked to each other 
on the ADPLL of a 2- (l-)DRNM before normal computation 
can be resumed on the processors. The different clock sources 
can be phase-locked by resetting the clock sources of the proc- 
essors and waiting until the phase difference between the dif- 
ferent sources falls into a pre-specified time skew. We denote 
this phase-locking time as Tphase-lock, and it is upper-bounded 
by Nf Tphase-lmk. Finally, the state of processor triads needs to 
be reloaded, and the time complexity of this operation is 
Nf Tstute-rpstore. Summarizing the above discussion, we can ex- 
press the total time complexity of processor reconfiguration as 
Nf (Tsave-stute -k Tneighbor q>hase-lock T m r e - r e s t o r e ) .  

C. System State Alignment 

The DRN is designed to dynamically phase-lock the clocks 
and control signals of redundant processor modules during 
reconfiguration. However, phase-locking clocks is only neces- 
sary, but not sufficient, to ensure consistency of processor 
states. Note that even under normal operation, redundant proc- 
essors in a triad may have inconsistent states if they do not 
handle external events at the same time, since the physical time 
skew between the redundant processors may not be negligible. 
Hence, the redundant processors need to handle external 
events at identical logical steps to ensure their mutual consis- 
tency. For instance, when an VO interrupt signal is asserted, 
processors need to wait for each other in order to enter an 
identical state for processing the interrupt event. This can be 
achieved by two design approaches: 1) a precise interrupt ar- 
chitecture for processors so that they will flush their pipelines 
before handling the interrupt, and 2) the interrupt requests are 
processed by each processor at the beginning (end) of each 
synchronization cycle. Similarly, when processors need to read 
external data, they have to write the input data into main mem- 
ory that will be voted on by PVs. A watchdog timer is also 
needed to detect stalled redundant processors due to failed 
ready bits of the PV. 

Realignment of processor state is relatively easy with a small 
performance penalty. When a fault is detected (masked) by the 
PV, the system can either ignore the failed processor or generate 
an interrupt signal to the processors for realignment of their in- 
ternal states. That is, the cache memory needs to be flushed, and 
the registers’ contents would be written back to the main mem- 
ory. Since all the data must pass through the PV during the 
flushing of cache and registers, faults in any one of the redundant 
units will be masked. After the masked data is written into the 
main memory, processors can read back the registers and resume 
their computation. This way all the transient faults in processors 
and cache memories can be masked quickly. However, if faults 
continue to be detected in a module, the faulty module should be 
retired. Before the reconfiguration process begins, the old state 
information needs to be saved first, and then, after completing 
the reconfiguration, the newly-grouped functional units need to 
read in their state information altogether to resume lock-step 
execution of the program. 

In a system with large main memory, realigning the memory 
state based on majority voting may become very time- 
consuming. The inefficiency of majority voting can be allevi- 
ated by SECDED codes within each memory module, and 
each memory module can have a backup copy to cope with 
permanent failures. After a permanent fault occurred, and 
memory modules are regrouped, the state of the new backup 
module can be made identical to that of the original module in 
a word-byword readlwrite manner. It should be noted, how- 
ever, that transient faults are the predominant causes of mem- 
ory failures [20], [21]. The memory can be periodically 
scanned to recover from the single-bit transient faults with the 
SECDED codes. However, SECDED codes are not perfect; 
for example, they usually do not handle faults in the con- 
trol/address and other decoding circuitry. Therefore, the voting 
technique is still useful for realignment of memory state in 
recovering from transient faults. 

To reduce the memory realignment time, a memory system 
can be partitioned into pages, each of which is associated with 
an update tag bit to indicate its status [ 181. Let the main mem- 
ory of size W be partitioned into K pages. Only those pages 
that have been updated need to be realigned. That is, the mem- 
ory realignment time can be expressed as 

t ,  = [ K + F : ) t , , ,  

where tv is the time to take a vote, and F a random variable 
denoting the number of recovery pages to be realigned, 
0 I F I K .  We assume that W is an integral multiple of K ,  and 
the inaccuracy resulting from such an approximation is found 
to be negligible. 

Although the memory partitioning technique has been suc- 
cessfully implemented in [ 181, there remains an important 
question unanswered: “What is the optimal page size to bal- 
ance between the page realignment time and the tag scanning 
time of the memory pages?’ Since only the faulty pages need 
to be realigned, if the page size is too small, the time overhead 
of page scanning becomes the dominating performance over- 
head as compared to the actual page realignment time. On the 
other hand, if the page size is too large, then the page- 
realignment time may become excessive. It is impossible to 
deterministically guarantee an upper bound of the realignment 
time. So, we propose to guarantee that for  the mission period t, 
the probability of memory realignment requiring longer than 
a time period T is less than a given & . That is, depending on 
the memory failure rate, one can make a tradeoff between the 
time for scanning the page tags and the time to realign the 
faulty pages by minimizing the realignment cost. This is 
formally stated as: 

Z( t )  = K +  F(t)-  W 
min 

subject to 

K 
P K ( Z ( t )  > T )  < E 

K E I+,  K < W, 

where F(t)  is a random variable denoting the number of faulty 
pages at time t ,  and K is the number of memory pages. This 
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time would be prohibitively high. To reduce the computational 13500.- , , , , , , , , 

time without loss of its solution accuracy, a two-step approach 
is proposed here. At the first step, the objective function is 

solution is solved likewise. Then, at the second step, the exact 
optimal value is derived using an exhaustive search technique 

, , , , , < I  
, , , , I I I 8 I  
, , , I I I I t I  
, , , I I , I , I  

I . . . . .  

, / , , < , I I I  
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, , " ' l " 8 ,  approximated as a continuous function, and its optimization 

in a bounded vicinity of the approximate optimal page size. \ j  j j j j j j 1 j I  

quite efficiently by our scheme, as an example to be shown z(t)  b I : :  I : :  I : /  
shortly. We now explain the key idea on the approximation 
technique. 
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Theorem 2.1 : When K* >> 1 ,  we have K* = fl, 
where K is an arbitrary integer, 1 c K < W .  
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8500. 

111. EXPERIMENTS AND PERFORMANCE RESULTS 

In this section, we present an experimental implementation 
of the PV and compare the performance of PV under two 
cache replacement policies. To validate our key design con- 
cepts, we developed prototypes of a 65C8 16-based processor 
triad and an ADPLL circuit, and logic simulation of the PV 
using the Galaxy logic simulation tool [22]. 

The 65C816-based processor triad was built with an 
ADPLL circuitry, and data could be voted on every synchroni- 
zation cycle. Upon detection of an error, an interrupt signal 
will be generated for each processor to handle the event of 
error detection and to force the faulty unit to be retired. The 
ADPLL was implemented with three programmable generic 

12700. ; ~ ~ , I I I , .  . . . . .  . . .  , . , , I  . . .  , , , .  , . , .  . . .  
.............. i ............. i ...... j ...... 4 ...... i ...... 4 ...... i ...... 

, , , . . I  , . , .  
, . , , .  
/ . , .  

the optimal page size in three steps. At the first step, we 

A.2 of Appendix A. Then, at the second step, we can get the 
I ,  , . .  . . .  choose a random page size K, and then get fK using Lemma 12680.- ...... + ...... ; ...... ; ...... ; ...... 4 ...... : ...... < ...... + ...... i . ...... , , . . . , . .  . . . . . .  , , , , , I  , . , .  , . . , .  
I ,  , ,  , , ) .  
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-~ 

chronization clock, by a divide-by- 16 counter to be broadcast 
for mutual synchronization. Each ADPLL adjusted its rate 
when the skew between the synchronization clocks exceeded 
the duration of two high-speed clock pulses. Over the several 
months of our experiments, the ADPLL circuits showed re- 
markably stable behavior. No single loss of synchronization 
event was registered, and the time skew between different 
sources was maintained within two high-speed clock pulses. 
The only constraints on the performance of the ADPLL was 
the delay of logic circuits. It was found in a similar logic 
simulation that much higher speed clocks can be synchronized 
using high-speed logic devices. 

We then examined the performance of the PV through logic 
simulation with the Galaxy CAD tool [22]. In our simulation 

-- 

An example cost function Z(t) is plotted in Fig. 5. The curve 
shown in Fig. 5 is K + fKLT]. It can be seen that the integral 12620,- 
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Fig. 6.  (a) The time skew between the three clock sources, and (b) the queue lengths of the PVs for different write rates. 

each processor has four registers and an ALU, and three proc- 
essors were grouped into a processor triad. The instruction set 
included loadstore of data between main memory and regis- 
ters, and simple ALU operations between the registers. Differ- 
ent memory write frequencies were randomly generated in test 
programs ranging from 10% to 50% in our experiments. The 
three clock cycles of the processors were set at 164, 170, and 
176 simulation time units, a 7% frequency difference between 
the fastest and slowest clocks, where the simulation time unit 
can be scaled to different physical time units as needed. 

The time skew between the three clock sources is plotted in 
Fig. 6(a), in which the fast and clocks are referred to as 
the clock sources of 164 and 176 time units, respectively. The 

simulated PV had an 8-word FIFO buffer and a majority voter. 
The PV was controlled by a simulated control unit so that the 
effective propagation delay in the majority voter could be al- 
tered in the range of twice faster or slower than one instruction 
cycle. 

First, we studied the impact of clock skew on the clocking 
effect in the data buffer. For clock skew less than two clock 
cycles we found no significant impact on the queue length. 
Two separate experiments were run to examine the effect of 
different voting latencies on the queue length. In the first ex- 
periment, the PV allowed a vote to take place in one half of the 
execution time of a loadstore instruction. As shown in 
Fig. 6(b) which represents a random snapshot of queue lengths 
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of the PV with the write ratio set to 50%, the queue length was 
at most one under very high write ratios. In the second experi- 
ment, each vote takes one and half of the instruction execution 
time. On some rare occasions where write operations occur 
consecutively, up to five outstanding data items were recorded 
in the PV. It should be noted that, when the cache memory is 
added to each processor, the main memory read/write ratio is 
expected to be reduced, and thus, the queue lengths are ex- 
pected to be further reduced. 

We examined the fault masking capability of the PV using a 
simple fault injection circuit. In our experiment, only one voter 
was used for data voting, and the voter is driven by the fast 
clock source. After a fault was injected, the fault detection 
(masking) latency was recorded as part of the simulation out- 
put, and then manually calculated due to the lack of an auto- 
matic event trace registration facility. 

Different faults were injected to write-control signals, ad- 
dress lines, data lines, and the clock signals of the target sys- 
tem. The processor was set to execute a load or store instruc- 
tion in four cycles, and the data manipulation instructions in 
three cycles. In most of the simulation runs the voter cycle 
time was set to be less than one instruction cycle to simulate 
fast cache memories. Therefore, the main part of the voting 
latency was contributed by the time required to write the voted 
data to memory. For slower memories, the voting latency was 
simulated to take twice as long as one instruction cycle. The 
data collected in these experimental runs assumed that the 
voter took six clock cycles to complete the voting process. 

Transient, intermittent, and permanent faults were tested. 
Injection of permanent faults was relatively straightforward. 
Permanent faults were created by the fault injector after a ran- 
dom period, and the target signal line was set to either a stuck- 
at-0 or - 1, and then, the number of cycles after the fault occur- 
rence was monitored and recorded. Although transient faults 
were also injected, only a small fraction of faults were detected 
when they caused data faults. Almost all transient faults on the 
address bus, data bus, or control signals did not create any 
error in the computational results, and thus were not detected 
in the voting process. Hence, results on only a few instances of 
transient faults being detected were not reported as they lack 
statistical significance. Intermittent faults were created by 
forcing a stuck-at-1 (-0) after a few clock cycles. Clock faults 
were created by forcing the faulty module's clock line to be 
stuck-at- 1 or stuck-at-0. A similar phenomenon existed ini- 
tially in the intermittent fault simulation runs, but eventually 
many more fault detections were registered, and thus were 
reported here. The detection times of different faults are 
plotted in Fig. 7. 

In general, the fault detection time first decreased with the 
write ratio, and then increased after a certain threshold. The 
reason for this trend is that, when the write ratio was very low, 
it took a lone time before the faultv data could be voted on bv 

also observed that the watchdog timer was triggered in many 
cases before the data voting could take place, because of the 
clock skew. Therefore, the watchdog timer needs to be prop- 
erly adjusted to avoid excessive false alarms. 

We now compare the performance of PV under the write- 
back and write-through cache replacement policies using the 
average memory access time T M  as the performance parameter. 
T M  is determined by the voter architecture, clock skew, and the 
speed difference between the main and cache memories. The 
main memory is assumed to be k-way interleaved, and no per- 
formance loss is assumed in case of a cache read-hit. The 
processor is blocked in case of a cache miss. Under the write- 
through protocol, data items to be written into the cache and 
main memory are first voted on by the PV, and the voted result 
will be stored into the main memory if no error is detected. 
Since the main memory is assumed to be interleaved, there is a 
random waiting time before the data item can be stored into 
the main memory, and all subsequent outputs from the PV will 
be blocked . 

For its performance analysis, a PV can be modeled as a 
queueing system, where the write-buffer of the PV, and the 
main memory are, respectively, represented by the queue and 
the server. The waiting time T, for redundant data to become 
ready in the PV is determined by the clock skew between the 
redundant processors. Let S denote the maximum time skew 
between redundant units, and clocks are adjusted once every rs 
seconds, then the average waiting time due to the clock skew 
can be expressed as 

The average waiting time before the voted data can be stored 
into the main memory is 

where tc is the main memory cycle time. The average memory 
write time is thus E(Tw) = %+$. Since we know the average 

service time of the server and the arrival rate of the customers 
(write-requests), we can get the average number of data items 
waiting in PV as Q = AE(TW) = A(%+$), where A is the 

arrival rate of memory-writes. 
We note that under the write-through protocol, the proces- 

sor can proceed with its computation without performance loss 
in case of cache hit, as long as the PV is not full, so that the 
data item can be directly loaded into the PV. Processor per- 
formance loss occurs only in case of a cache miss, since the 
PV must be flushed before a new cache block can be read in, 

" 
the PV. With a further increase of write ratio, the injected 
faults might be overwritten by new write commands, thus in- 
creasing the fault detection time. In all cases, the variances 
between different runs of experiments are fairly large, indicat- 
ing the unpredictable nature of fault detectiodmasking. It is 

and thus, the performance loss is affected by the of 
outstanding data items to be voted on in the PV. Assuming that 
CPU blocking has a negligible effect, the average memory 
access time can be expressed as 



LIU AND SHIN: EFFICIENT IMPLEMENTATION TECHNIQUES FOR GRACEFULLY DEGRADABLE MULTIPROCESSOR SYSTEMS 

10 

513 

IIlYVt 

Permanent Write Fault 
Lnstr. Cyclu InStr.  

0 10 20 30 40 50 60 
write 70 

Permanent Address Fault 
Instr. cycles 

0- 
0 10 20 30 40 50 60 

write 90 

Permanent Data Fault 
Instr. cycles 

Permanent Clock Fault 
Cycles 

50 jTz 10 

0 10 20 30 40 50 60 

write % 

Intermittent Address Fault 
lnstr. Cycles 

40- 

30 - 

20-  

10 - 
0 10 20 30 40 50 60 

write 70 

Intermittent Data Fault 
Instr. Cycles 

30 I 

. .  
0 10 20 30 40 50 60 

write R 

Fig. 7. The fault detection times of a processor triad for different write rates 

where h denotes the cache-hit ratio, b denotes the cache block 
size, and P ,  denotes the fraction of memory-write instructions. 
The three terms multiplied by the factor (1 - h) denote the 
average delay for flushing the PV, reloading the cache, and 
accessing the needed data item, respectively. 

We now derive the average memory access time under the 
write-back cache coherence protocol. In the write-back proto- 
col, a dirty block will be written into the main memory when a 
cache miss occurs. Assuming that cache blocks are randomly 
replaced, the average memory access time under the write- 
back protocol can be expressed as 

0 10 20 30 40 50 60 

write 90 

(1) 

where Pdirty is the probability that the cache block to be re- 
placed is dirty. Pdirty is derived as follows. Assuming that the 
cache consists of n blocks and all blocks have an equal prob- 
ability to be accessed in each cycle, the probability of a cache 
miss at the ith cycle since the last cache miss is hi-' (1 - h). 
Thus, the probability of a dirty cache block being replaced is 

That is, the total probability of a dirty block being replaced is 
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Fig. 8. The performance difference between the two cache coherence protocols. 

T i  - T$ = Pdirry(E(Tw) + (b  - I)%) -(1- h ) P w E ( T w ) ~ ,  

where Pdirry = & when n w 1. As depicted in Fig. 8, the aver- . . \  . 
age memory access time of the write-back protocol is not sensitive 
to the time skew between the redundant units, nor to the memory- 
write frequency. On the other hand, the average memory access 
time of the write-though protocol increases sharply with the clock 
skew and memory-write the write-back protocol 
is better suited for Nh4R multiprocessor system. 

1-h 
l-h*(l+).  

= 1- (3) 

The performance difference between the two protocols can 
be expressed as 
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IV. CONCLUSION 

In this paper, we have presented the MAT bus and the DRN 
as two architectural support mechanisms for dynamic recon- 
figuration in an NMR-based multiprocessor system. We have 
shown that the MAT bus can implement the fault detection, 
instead of fault masking, function of the PV. The MAT bus 
and DRN together provide a flexible platform for the dynamic 
grouping of processors. The MAT bus-based architecture is 
rationalized by the fact that faults occur much less frequently 
than data readdwrites. Thus, to improve the system through- 
put, data from redundant computing units can be put into the 
PV buffer, and proceed with their normal computation. Ex- 
perimental results showed that the proposed scheme is feasible 
and introduces only a very small performance overhead. Our 
model also showed that combination of the PV with the write- 
back protocol can virtually eliminate the performance loss 
resulting from data voting. 

APPENDIX A: 
PROOF FOR THEOREM 2.1 

We prove Theorem 2.1 in four steps. We first exploit the 
basic attributes of the probability function on the number of 
faulty pages in the system, in Lemma A. 1. Then, we will find 
the maximum number of faulty pages that can be realigned 
without violating the timing constraint, in Lemma A.2. In the 
third step, we will show in Lemma A.3 that if the system has a 
large number of memory pages, the probability off pages be- 
ing faulty is insensitive to the change of page size. So, as the 
last step, we can conclude that for an arbitrary large integer K ,  
we get f K  close to f K * ,  where K* is the optimal page size being 
calculated. Therefore, even though K* is unknown, we can still 
estimate f K *  as fK. By plugging fK into the objective function 
and then taking its derivative, we can get the approximate op- 
timal value of K*, Le., Theorem 2.1. Details of these steps are 
explained as follows. 

The probability that f pages become faulty in the system by 
time t is Pr(F(r) = f )  = (fK)RF-f'(t)(l - R , ( t ) f ,  where 
1 - RJt) is the probability that one or more of the redundant 
memory pages are faulty. Let A and q denote the failure rate of 
a memory word and the number of redundant modules, re- 
spectively, we have R,,(t) = e-q%'. Let I+V = WqAt, and K be a 
fixed constant, then the conditional probability that f recovery 
pages need to be realigned is 

K = k is a feasible solution if and only if Pr(Z(t) > r )  < E . If 
T 2 Wtv, the recovery page design is trivial, because the mem- 
ory can be easily realigned by voting on every word. If 
T < Wt,, only a limited number of pages should be realigned. If 
K* S 1 ,  then an exhaustive search for K* suffices. On the 
other hand, if K* > 1 ,  as is in most large systems, an ap- 
proximate value of K* can be found through the following 
simple optimization technique. 

Lemma A.1: Given I+V and K, P f i ,  the probability o f f  
faults occurring to the system, is a monotonically decreasing 

function o f f  when %(e5 - 1) < 1,  1 < f I K .  The suficient 
condition for P f i  to be a monotonically decreasing function 

o f f i s  ( e f  -1) < A, K > I .  

Proof: P& is a nonnegative, monotonically decreasing 
function '. if - < 1, V f .  Using (4), we have 

P K ( f + l )  P d f )  = %(es - l ) ,  or P& is monotonically decreasing if 

%(e: -1) < 1 .  Note that 0 I ( e f  - 1 )  I1 when f I 0.693. 

Since I -, and the maximum value of % is 

y ,  K > 1, the sufficient condition for the ratio test to hold is 

( e % - l ) < & ,  K > 1. 0 

Lemma A.2: When Lemma 4.1 holds, 

Proof: When Lemma A.l  holds, P&+ l)/P& < p,, and 
R < 1. Since ,L+< p,+l, VA we have 

i=f 

or 

+ P y )  

Note that I+V < K holds for most realistic parameter values. 
When Lemma A.l  holds, and K and & are given, = inf j, 
which is the maximum number of faulty pages such that 
P(t, > K + & + )  < E,  Vi, can be determined by applying 
Lemma A.2 repeatedly. The next Lemma states a key condi- 
tion that can greatly simplify the optimization problem. 

Lemma A.3: If two integers K, and K2 are both much 
greater than constants 1, then PK, ( f )  = PK, ( f  ), 
where P , ( f )  is the probability that the number of faulty 
pages F is$ when the number of recovery pages is Ki. 

and 

Proof P K ( f )  = ( ; )e-v(1-4)( l -eT)f .  When K w f ,  

= e w .  Furthermore, when K w I+V, 

we get 1 - eT = 1 - (1 - f) = f . Combining these expressions 

K f  (f ) = 5, and 
- 

-I 

That is, P& is predominantly determined byf, and is insensi- 
0 

Lemma A.3 is valid for a broad range of K values. Note that 
when K1, K, >> 1 ,  the values of Pki ( f  )s are very close to each 
other. When Lemma A.l holds, PK, ( A )  < PK2( f , ) ,  wherefi > 
f 2 .  In these examples, the system has W = 4M words of mem- 

tive to K. Thus, PK, ( f )  = PK, ( f )  . 
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ory, q = 4 modules, A =  0.75 byte/109 hours, and r = 150 hours. 

< 0.05, and IPsm(F = 3) - Pl35()0(F = 3)1< 0.001. Let K’ denote 
the optimal value of K ,  the most desirable property of 
Lemma A.3 is that when K* w 1, we get fK = fK‘, and thus, K* 
can be found by Theorem 2.1. 

Theorem 2.1: When K* w 1, K’ = m, where K is an 

[I2] 
r131 

Thus, w = h q W  = 1.8. Thus, IPsm(F = 1) - P135m(F = 1)l 
[I41 

[151 

1161 

[171 
[I81 arbitrary integer, 1 < K < W .  

Proof: From Lemma A.3, we get PK, (f) = PK, (f), Vf . 

applying Lemma A.2 to an arbitrary K such that P ( f >  fK) < E . 
Clearly, for a given E ,  fK = 3, VK > 1, where 3 is some 
constant. The cost function Z(t) to be minimized can be ex- 

pressed as min(K+ f -). Since the objective function is con- 

vex when K is continuous, the optimal solution of real-valued 
Ks is K’ = m. Then, K* can be found by an exhaustive 

search in [K‘ - 6, K’ + 4, where 6 is very small compared to 
0 

~ 9 1  
Thus, when K’ W 1, we have fK fK*, Or fK* Can be found by 

[201 

[211 

[221 
- w  

Kw 1 K 

K, and it is yet to be found. 
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