
IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 4, APRIL 1995 503

Efficient Implementation Techniques for
Gracefully Degradable Multiprocessor Systems

Jyh-Charn Liu, Member, IEEE Computer Society, and Kang G. Shin, Fellow, IEEE

Abstract-We propose the dynamic reconfgur&*on network
@RN) and a monitoring-at-transmisswn (MAT) bus to support
dynamic reconfiguration of an N-modular redundancy (NMR)
multiprocessor system. In the reconfiguration process, a maximal
number of processor triads are guaranteed to be formed on each
processor cluster, thus supporting gracefully degradable opera-
tions. This is made possible by dynamically routing the control
and clock signals of processors on the DRN so as to synchronize
fault-free processors. The MAT bus is an efticient way to imple-
ment a triple modular redundant (TMR) pipeline voter (PV),
which is a special case of the voting network proposed in [I]. Ex-
tensive experimental results have shown to support our design
concept, and the performance of different cache memory organi-
zations is evaluated through an analytic model.

Index Items-Clock synchronization, cluster-based multiproc-
essors, N-modular redundancy (NMR), pipelined voter (PV), reli-
ability, voting.

I. INTRODUCTION

ITH the advance of very large scale integration (VLSI) W technology, large multiprocessor systems are becoming
available on commercial market at reasonable prices. These
multiprocessor systems are ideal candidates for providing
high-performance, scalable computing services for a broad
range of time- and safety- critical applications. Typical exam-
ples of these applications include radar signal processing,
command and control centers, on-line optimization of tele-
communication and urban transportation networks [2], [3]. In
these applications, computational tasks should be completed
before their deadline to avoid catastrophe or any significant
degradation of quality of system service. Faults that might oc-
cur to the computing system should therefore be quickly de-
tected and isolated in such a way that normal computation can
be resumed in a bounded time.

Most failure recovery strategies for distributed systems are
static in nature, and thus are not very efficient for multiproces-
sor systems [4], [5]. Moreover, commercial fault-tolerant mul-
tiprocessor systems are usually designed for transaction-
oriented applications (e.g., [6], [7], [8], [9]) which do not
consider the deadline constraints and thus are not well suited
for time-critical applications. For its simplicity and high fault
coverage, the hardware-based majority voting architecture is

Manuscript received October 13, 1992; revised June 1993.
J.-C. Liu is with the Dept. of Computer Science, Texas A&M University,

K.G. Shin is with Real-Time Computing Laboratory, Dept. of Electrical and

IEEECS Log Number C95019.

College Station, TX 77843-31 12; e-mail liu@cs.tamu.edu.

Computer Science, University of Michigan, Ann Arbor, MI 48109-2122.

widely accepted for the design of real-time, non-stop fault-
tolerant systems [lo], [l l] , [12], [13]. In this architecture, a
functional unit is replicated N times, forming an N-modular re-
dundant (NMR) unit, and copies of each critical program are
executed in lock-step by redundant units. The NMR architecture
is very flexible, and it can be integrated with different fault de-
tectiodcorrection mechanisms. For example, in the Hitachi
FT-6 100 system [131 a single-error-correctioddouble-error-
detection (SEC/DED) code is used in its main memory, but its
central processor unit is protected with an NMR architecture.

Several NMR-based fault-tolerant multiprocessor systems
have been built. Some of the most notable systems include the
FIMP [lo], Fault-Tolerant Processor (FTP) [14], and C.vmp
[151. Flexibility (in providing fault-tolerance) and performance
are two main issues associated with the implementation of an
NMR-based multiprocessor system. The NMR architecture is
conceptually simple, but its implementation may have a major
impact on system performance. In an NMR system, clocks of
the N redundant units need to be synchronized with one an-
other so as to ensure lock-step execution of copies of a pro-
gram on the redundant units. For its cost-effectiveness, the All
Digital Phase-Locked Loop (ADPLL) [161 technique is widely
used, which can synchronize the N modules at a clock rate
lower than the running clocks of processors, e.g., the FTP and
the Transputer [171 architectures. For clocks of the redundant
modules to be phase-locked to each other by an ADPLL, the
phase difference of the N clocks are compared at a fixed time
interval of every k pulses of the running clocks, called one
synchronization cycle. Using the phase-comparison results of
the synchronization cycles, the running clocks are adjusted, by
additioddeletion of clock pulses, to compensate for the phase
difference of the synchronization cycles. This way the phase
difference between N clocks sources can be upper bounded by
a physical time margin S,. Unlike the conventional analog PLL
technology, the ADPLL can be implemented with digital cir-
cuitry, and it has good tolerance to the time skew between
redundant units.

Despite its cost-effectiveness, a major problem associated
with the ADPLL-based NMR architecture is that the peak
voting frequency of redundant units in a conventional voter is
constrained by S,. To overcome this problem, Parhami pro-
posed a pipelined, multiple stage cellular voter architecture,
called voting networks, to support different majority voting
rules [l]. We will call a triple modular redundancy (TMR)
voting network a pipelined voter (PV). A PV consists of a
majority voter at its output and a set of input buffers, each of
which is associated with a status bit to indicate the readiness of

0018-9340/95$04.00 0 1995 IEEE

mailto:liu@cs.tamu.edu

SO4 IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 4, APRIL 1995

data. For their flexibility, ADPLL and PV will be used in our
study as a basis for the implementation of an NMR-based
multiprocessor system.

TWO main issues, state recovery and reconfiguration, need
to be considered for the design of a gracefully degradable
multiprocessor system. A large multiprocessor system may
consist of hundreds of processors. Therefore, time efficiency is
a main concern for fault recovery of large-scale multiprocessor
systems. The time required to restore the processor state is
relatively small. However, if the size of main memory is very
large (as is usually the case), then the time spent on majority
voting for memory-state recovery can be substantial. To over-
come this problem, a memory paging technique was proposed
[18], so that only the memory pages being modified need to be
voted on for state realignment. An important question left un-
answered in [181 is “What is the optimal page size for state
realignment?’ To address this question, we develop an effi-
cient algorithm to derive the optimal memory page size.

To deal with the system reconfiguration issue, we use dy-
namic reconfiguration which can maintain a maximal number
of fault-free redundant modules in the system. To fully utilize
the architectural features of contemporary multiprocessor sys-
tems, we propose two important supporting mechanisms, both
of which are considered as the system reliability hard core, for
the implementation of an NMR-based multiprocessor system.
The first mechanism is the monitoring-at-transmission (MAT)
bus for cost-effective implementation of PV. The other is the
dynamic reconfiguration network (DRN) for dynamic recon-
figuration of clocking and control signals of redundant units.
The MAT bus can be implemented by the Wired-OWAND
logic or other similar techniques, and the MAT feature can be
readily found in some of existing commercial products. On a
MAT bus, each of NMR processor modules monitors the bus
transaction when they output data to the bus. If an inconsis-
tency is detected between the bus value and the output value in
a functional unit, then a fault is detected, and the computation
is interrupted to recover from the fault. The MAT bus is well
suited for the widely-used cluster-based multiprocessor archi-
tecture. A processor cluster consists of a set of processors in-
terconnected via a broadcast bus, and the processor clusters
are interconnected via a different system network. A DRN can
be implemented with ADPLLs and multiplexor-demultiplexor
circuits. When some processor modules fail, the failed mod-
ules can be decoupled from the DRN, and the remaining fault-
free units can be regrouped together into new NMR units. For
simplicity, we will use the TMR model as an illustrative ex-
ample throughout the paper.

The rest of the paper is organized as follows. The dynami-
cally-reconfigurable architecture and the algorithm for opti-
mizing the memory-page size are described in Section 11. Ex-
perimental results and performance evaluations of the pro-
posed architecture are presented in Section 111. Concluding
remarks are made in Section IV.

11. SYSTEM ARCHITECTURE

A. System Organization

Processor modules-ach of which consists of a processor
and its cache memory-and memory modules are the two ba-
sic functional units to be considered in our design, as in most
commercial systems [191. In a processor triad, three processor
modules are synchronized with one another, and all the exter-
nal data writes are voted on by the PV to mask faults in the
processor modules. Like the design of the C.vmp architecture
[151, the PV is placed between the cache and main memory to
form a processor triad (see Fig. 1) so that both the write-back
and write-through cache coherence protocols can be incorpo-
rated. Coordination between the PV and cache memory is de-
scribed by the flowchart in Fig. 2.

The main difference between the MAT-bus voter and a PV
is that, on the MAT-bus voter, an inconsistency between re-
dundant processors is detected, not masked, in each data vote.
For processor modules in a processor triad to take a vote on
their outputs, they first place data into their buffers and then
make a transmission request to the bus arbiter. The bus arbiter
can grant the bus transmission after all the ready bits in the
same triad are asserted, and all processor modules will then
monitor the bus transmission. If any processor detects an in-
consistency between data on the bus and its own output value,
the processor invalidates the transaction, and the data voting
will be retried. If the inconsistency remains even after several
retries, a permanent fault is assumed detected and the proces-
sor reconfiguration procedure will be invoked.

In the regrouping process of fault-free processors on the
MAT bus, fault-free processors may need to be first decoupled
from their own processor triads, so that they can later be cou-
pled with other fault-free processors to form new processor
triads. After fault-free processors are dynamically grouped into
triads, their control and clock signals need to be phase-locked
into each other. The dynamic reconfiguration network (DRN)
is designed to serve this purpose. A DRN consists of a set of
DRN modules (DRNM) connected to one another forming a
logical ring. Each DRNM has five access ports, three of which
are directly connected to three processor modules, and the
other two are connected to other DRNMs on the ring. There is
a three-input ADPLL circuit in each DRNM for synchroniza-
tion of the clocking signals from any three of the five access
ports. When a processor cluster is free of any faults, processor
modules directly connected to a DRNM are synchronized with
one another on the DRNM to form a processor triad. However,
once a fault is detected in a processor triad, the failed proces-
sor module will be disconnected from the DRNM associated
with the processor triad. Then, the DRNM will coordinate with
other DRNMs to form new processor triads after the clock and
control signals of the non-faulty processor modules are prop-
erly grouped with each other by the reconfiguration algorithm
to be discussed shortly.

Fig. 3 depicts an example DRN architecture, in which
DRNM,, ..’, DRNM,, are organized into a ring. DRNMi con-
sists of an ADPLLi circuit and five access ports, RI, ..., R;,

LIU AND SHIN: EFFICIENT IMPLEMENTATION TECHNIQUES FOR GRACEFULLY DEGRADABLE MULTIPROCESSOR SYSTEMS 505

I 1

Clock
Processor

Processor I

Module

buffex
occupied

Fig. 1. The basic organization of a PV.

i = I , 2, ..., n. TO form a ring between DRNMS, R; is con-
nected to R r ' , i = 1 , 2, ... n, and R: is connected to R:. The
clock and control signals of three processor (memory) modules
are directly connected to three of the five access ports: R; , R;,
R i . Clocks from any three of the five access ports of DRNM;
can be synchronized to each other on ADPLL;. Therefore,
when necessary, any of the clocking signals from (Ri , Ri , Ri,
Ri } can be routed to ADPLLHl along R:, so that on ADPLLHl
the clock can be synchronized with any two other clocking
signals from { RP', RF' , Rc' , RF' }. Similarly, the clocking
signal from any of access ports R; , R;, R: , R: 1 can be routed
to R: , so that it can be synchronized with any two other clocking
signals from { R;-', Ri-', Rip', R:-' } on ADPLL+,. The direct
path between R[and R: is a bypass between DRhW-, and
DRNMkI for them to directly exchangdsynchronize clock signals.

. .

EYy
(slowest channel)

B. System Reconfiguration

The DRN architecture is managed by the neighborhood-
grouping reconfiguration algorithm, which is guaranteed to
find a maximal number of processor triads on a processor
cluster. Let fi, fi, f3, -. . fn, E (0, I , 2 , 3 }, denote the numbers
of fault-free processor modules on the n DRNMs of a cluster,

then we can get + processor triads using this algorithm. I=" '1
For convenience, a DRNM with i fault-free processor

modules connected to its access ports is called an i-DRNM.
Essentially, the neighborhood-grouping algorithm is based on
a first-fit principle for processors on 2-DRNMs and 1-DRNMs
to be grouped with each other along a ring direction. An error
signal connected to every DRNM through a wired-OR broad-
cast line is used to inform every DRNM about initiation and
termination of a reconfiguration process. A reconfiguration

506 IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 4, APRIL 1995

-, Write Back Cache Operation

Fig. 2. The cache coherence protocols with PV

process is initiated by the DRNM which detects the latest
failed processor module by asserting the error signal. The re-
configuration process is terminated when the error signal is
reset. Once the error signal is asserted by a DRNM, all the
2-DRNMs and 1-DRNMs connected on the ring will partici-
pate in the reconfiguration process. Since a DRNM can accept
at most two external clock sources, no triad can be formed on
0-DRNMs, and thus 0-DRNMs do not participate the recon-
figuration process. Moreover, including 3-DRNMs in the re-
configuration process will add extra overhead without gaining
any flexibility, because if any processor in a 3-DRNh4 is to be
grouped with other fault-free processors, then we will need a
new fault-free processor from another processor triad to make
up the loss.

For convenience, the DRNMs participating in the reconfigu-
ration process are relabeled along the ring direction as D1, D2,
D3 ... Dh, h 2 1, where D1 is the coordinator, R: of Di is con-
nected to RF' of Di+l, and R/' of Dh is connected to R: of Dl.
Any DRNM between Di and Di+l is in the bypass mode. Three
different types of messages, invite, join, and done, are passed
between DRNMs along the directed ring direction, assuming
that Di sends its messages to Di+, through RI, and Di receives
messages from Ri-l through R i . The invite-message is used by
a message sender to indicate that it needs one more processor
module to form a new triad. The join-message is used by a
message sender to indicate that it has only one processor
module which can be combined with other processor modules
to form a new triad. Finally, the done-message is used to indi-
cate that all the processor modules between the initiator and

-, Write Thmugh Cache Operation

/-

---I---

-
'-

the message sender have been combined into triads. Di, i 2 1,
responds to the three different types of messages based on the
following rules.

0 invite-message: Di grants the request and routes the
clock-control signal of a non-faulty processor module to
Di-l through Ri . If Di does not have any more non-faulty
processor module, then it passes a done-message to Di+1.
join-message: 1) If Di is a 1-DRNM then it sends an
invite-message to Di+l, and waits for the response from
Di+l. If the request is granted, a triad can be formed on
Di+l. Otherwise, if the error-signal is reset then the re-
configuration process is aborted without forming any
triad. 2) If Di is a 2-DRNM, then it accepts the join-
request from Di-l to form a new triad, and it will send a
done-message to Di+l.

0 done-message: If Di is a 2-DRNM, then it sends an in-
vite-message to Di+l. Otherwise, it sends a join-message

When the reconfiguration process is initiated, D1 sends an
invite-message to D2 if it is a 2-DRNM; otherwise it sends a
join-message to D2 if it is a 1-DRNM. A new triad can be
formed on Dl if the invite-message is granted, and the clock-
control signals (of a non-faulty processor module) from R! of
D1 will be synchronized with that of the two non-faulty proces-
sor modules on D , . Similarly, if the join-message of Dl is
granted, then the only non-faulty processor on D1 can be
grouped with other processor modules to form a new triad on
some other DRNh4. After Di, i 2 1, sends out a request, it waits
for a response from Di+l. New triads can be formed either on

to Di+1.

LIU AND SHIN: EFFICIENT IMPLEMENTATION TECHNIQUES FOR GRACEFULLY DEGRADABLE MULTIPROCESSOR SYSTEMS

Processor
Cluster

Fig. 3. The DRN in a

Memory
Cluster Interwnnection

Network

Pr-0r
Clusta

I I I T 1 I 1
I ADPLLNetwok ,
I
I
I I

I I
I '

I
4

Memory
Cluster

I
I
I

I
switch

\ /- - - - - - - - - I

\ I I

1

v v
Bus CPU CPU CPU CPU CPU CPU

0 . .

I Ca: I 1 Ca; I I 1 I I - i 9 Queues

Cache

Wired ORIAND MAT bus

clustered multiprocessor system

D; or on some other node if the request is granted. However,
the reconfiguration process will be terminated with no new
triad formed if the error-signal is reset by D1 before the grant
message is received by Di. When D1 receives an inviteljoin-
request from Ri , it implies exhaustion of non-faulty processor
modules, and D1 needs to terminate the process, by resetting
the error signal, with no new triad formed.

The proposed algorithm is given in the C-language like
pseudo code as follows.

Neighborhood-Grouping Algorithm (DRNM,)/* that runs on DRNM, *I
IF (DRNM, is a 3-DRNM or 0-DRNM) then activate its bypass circuit

IF (one processor module of DRNM, fails) set reconfiguration:= True;
IF (reconfiguration is True)
[IF (DRNM, is the initiator)/* j , the number of non-faulty processor
modules on DRNM,*I

and wait until one of its processor modules fails;

[IF (fi = 2) [send the invite-request along R; ,

507

wait until (the response from R,' OR R:)
IF (ACK from R ;) (accept the clocks from Ri to form a new

triad;
wait for any message from R: ;
reset the error-signal;
retum(I);]/* a triad is formed on DRNM, */

ELSE IF (invite/join request from R:)/* NO triad can be
formed */

[reset the error-signal; retum(0);); /* no triad can be
formed *I

IF (f; = 1) send the join-request along R: ;
wait until (the response from R,' OR R:)
IF (ACK from R;) [route the clock of its only fault-free

wait until (a response from R:); reset error-signal; retum(0);I

R: ; reset error-signal;] retum(0);

processor to R; ;

IF (f; = 0) [send done-message along R,' ; wait for message from

1

508

IF (DRNM, is not the initiator) wait until a request received from R; ;

(IF (an invite-request received) [grant the request; route the clock
of one of the non-faulty processor modules on DRNMi to Ri ;

IF (DRNMi has no more fault-free processor module)
Send a “done-message” to R; ;
ELSE IF (DRNMi has one fault-free processor module)
Send a join-request to Rt ;
wait until the request granted or the error-signal is reset;

retum(0);

1
IF (a join-message received)

[IF (f,= 2)
(grant the request;
accept the clock-control signals from Ri to form a triad;
send the “done-message’’ to R; , and
wait until the error signal is reset; retum(1);

I
IF(f ,= 1)

[send the invite-request to Rf ;

IF (ACK is received) accept the clocks from R: and Ri

wait until the error-signal is reset; retum(1);
ELSE IF (REJECT is received OR error-signal is

reset) no triad is found,
reconfiguration is terminated;
retum(0);

to form a triad;

I
1
IF (a done-message received)
(IF(f ,=2)

{send the invite-request to R: ;
IF (ACK is received) accept the clocks from
R; to form a triad

wait until the error-signal is reset; retum(1);

1
IF(J= 1)

{send the join-request to R; ;
IF (ACK is received) [route the clock of the processor
module
on DRNMi to Rf ;)

wait until the error-signal is reset; return(0);

I
I

1

We now prove that the neighborhood grouping algorithm is
deadlock-free based on the following simple argument. As
mentioned earlier, both the MAT bus and the DRN are the
reliability hard cores, implying that DRNMs will not fail dur-
ing the reconfiguration process. In the neighborhood grouping
algorithm, each of the DRNMs participating in the reconfigu-
ration process receives from, and generates a message to, its
neighbors along the same ring direction. Thus, the reconfigu-
ration initiator will receive a message and will terminate the
reconfiguration process in at most n steps, and all processors
will proceed with their subsequent computational steps.

The process for reconfiguring processor modules is illus-
trated with an example plotted in Fig. 4. In this example, 15

IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 4, APRIL 1995

initiator

5- failed

Fig. 4. Processor triad configurations under different conditions: (a) no proc-
essor module fails, (b) after a new processor on DRN M I fails, and (c) after
the reconfiguration.

processor modules in a cluster form five processor triads. After
several processor modules had failed, we have taken a snap-
shot of the system state immediately after the latest failure
occurred to a processor module on DRNM,, Le., Fig. 4(b).
After detecting the faulty processor, DRNM, orders other
processors to begin the reconfiguration process. After their
state information is properly saved, all the existing triads on
the 1- and 2-DRNM are decoupled from each other, and the
neighborhood-grouping algorithm is initiated. DRNM3 and
DRNM4 will not be involved in the reconfiguration process
since they have three and zero faulty processor modules, re-
spectively. After an invite-message is sent from DRNMl to
DRNM2, the request is granted by DRNM2, since it has two
non-faulty processor modules. The new processor triad is
formed on DRNM,, and DRNMz will then send a join-message
to DRNMs since it has only one non-faulty processor module
available. DRNMS does not have enough processor modules to
form a new triad. Thus, it sends an invite-message to its next
neighbor, DRNM,. Since a processor triad is already formed
on DRNMl, DRNM, terminates the reconfiguration process by
resetting the error-signal. As a result, no new processor triad
can be formed on DRNMs. The final configuration is plotted in
Fig. 4(c).

When an NMR system is used for hard real-time applica-
tions, it is important to know the worst-case timing behavior
for the scheduling of fault recovery routines. For this purpose,
we briefly analyze the time complexity of processor-cluster
reconfiguration process as follows. Let Nf denote the total
number of 2- and 1-DRNMs on a processor cluster. After a
faulty processor module is detected in a processor triad, the
state of processor triads on the 2- and 1-DRNMs needs to be
saved into the main memory before the reconfiguration process
can begin, and this will take Nf Ts(Iye-sIaIe time units to complete.
It will then take Nf Tneigmr time units for the DRNMs to be
grouped with each other based on the nearest-neighbor algo-

509 LIU AND SHIN: EFFICIENT IMPLEMENTATION TECHNIQUES FOR GRACEFULLY DEGRADABLE MULTIPROCESSOR SYSTEMS

rithm, where Tneighbor is the worst-case time for one 2- or
I-DRNh4 to make its reconfiguration decision. After the re-
configuration decision is made, the clocks of the processors in
the same processor triad need to be phase-locked to each other
on the ADPLL of a 2- (l-)DRNM before normal computation
can be resumed on the processors. The different clock sources
can be phase-locked by resetting the clock sources of the proc-
essors and waiting until the phase difference between the dif-
ferent sources falls into a pre-specified time skew. We denote
this phase-locking time as Tphase-lock, and it is upper-bounded
by Nf Tphase-lmk. Finally, the state of processor triads needs to
be reloaded, and the time complexity of this operation is
Nf Tstute-rpstore. Summarizing the above discussion, we can ex-
press the total time complexity of processor reconfiguration as
Nf (Tsave-stute -k Tneighbor q>hase-lock T m r e - r e s t o r e) .

C. System State Alignment

The DRN is designed to dynamically phase-lock the clocks
and control signals of redundant processor modules during
reconfiguration. However, phase-locking clocks is only neces-
sary, but not sufficient, to ensure consistency of processor
states. Note that even under normal operation, redundant proc-
essors in a triad may have inconsistent states if they do not
handle external events at the same time, since the physical time
skew between the redundant processors may not be negligible.
Hence, the redundant processors need to handle external
events at identical logical steps to ensure their mutual consis-
tency. For instance, when an VO interrupt signal is asserted,
processors need to wait for each other in order to enter an
identical state for processing the interrupt event. This can be
achieved by two design approaches: 1) a precise interrupt ar-
chitecture for processors so that they will flush their pipelines
before handling the interrupt, and 2) the interrupt requests are
processed by each processor at the beginning (end) of each
synchronization cycle. Similarly, when processors need to read
external data, they have to write the input data into main mem-
ory that will be voted on by PVs. A watchdog timer is also
needed to detect stalled redundant processors due to failed
ready bits of the PV.

Realignment of processor state is relatively easy with a small
performance penalty. When a fault is detected (masked) by the
PV, the system can either ignore the failed processor or generate
an interrupt signal to the processors for realignment of their in-
ternal states. That is, the cache memory needs to be flushed, and
the registers’ contents would be written back to the main mem-
ory. Since all the data must pass through the PV during the
flushing of cache and registers, faults in any one of the redundant
units will be masked. After the masked data is written into the
main memory, processors can read back the registers and resume
their computation. This way all the transient faults in processors
and cache memories can be masked quickly. However, if faults
continue to be detected in a module, the faulty module should be
retired. Before the reconfiguration process begins, the old state
information needs to be saved first, and then, after completing
the reconfiguration, the newly-grouped functional units need to
read in their state information altogether to resume lock-step
execution of the program.

In a system with large main memory, realigning the memory
state based on majority voting may become very time-
consuming. The inefficiency of majority voting can be allevi-
ated by SECDED codes within each memory module, and
each memory module can have a backup copy to cope with
permanent failures. After a permanent fault occurred, and
memory modules are regrouped, the state of the new backup
module can be made identical to that of the original module in
a word-byword readlwrite manner. It should be noted, how-
ever, that transient faults are the predominant causes of mem-
ory failures [20], [21]. The memory can be periodically
scanned to recover from the single-bit transient faults with the
SECDED codes. However, SECDED codes are not perfect;
for example, they usually do not handle faults in the con-
trol/address and other decoding circuitry. Therefore, the voting
technique is still useful for realignment of memory state in
recovering from transient faults.

To reduce the memory realignment time, a memory system
can be partitioned into pages, each of which is associated with
an update tag bit to indicate its status [181. Let the main mem-
ory of size W be partitioned into K pages. Only those pages
that have been updated need to be realigned. That is, the mem-
ory realignment time can be expressed as

t , = [K + F :) t , , ,

where tv is the time to take a vote, and F a random variable
denoting the number of recovery pages to be realigned,
0 I F I K . We assume that W is an integral multiple of K , and
the inaccuracy resulting from such an approximation is found
to be negligible.

Although the memory partitioning technique has been suc-
cessfully implemented in [181, there remains an important
question unanswered: “What is the optimal page size to bal-
ance between the page realignment time and the tag scanning
time of the memory pages?’ Since only the faulty pages need
to be realigned, if the page size is too small, the time overhead
of page scanning becomes the dominating performance over-
head as compared to the actual page realignment time. On the
other hand, if the page size is too large, then the page-
realignment time may become excessive. It is impossible to
deterministically guarantee an upper bound of the realignment
time. So, we propose to guarantee that for the mission period t,
the probability of memory realignment requiring longer than
a time period T is less than a given & . That is, depending on
the memory failure rate, one can make a tradeoff between the
time for scanning the page tags and the time to realign the
faulty pages by minimizing the realignment cost. This is
formally stated as:

Z(t) = K + F(t)- W
min

subject to

K
P K (Z (t) > T) < E

K E I+, K < W,

where F(t) is a random variable denoting the number of faulty
pages at time t , and K is the number of memory pages. This

510 IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 4, APRIL 1995

time would be prohibitively high. To reduce the computational 13500.- , , , , , , , ,

time without loss of its solution accuracy, a two-step approach
is proposed here. At the first step, the objective function is

solution is solved likewise. Then, at the second step, the exact
optimal value is derived using an exhaustive search technique

, , , , , < I
, , , , I I I 8 I
, , , I I I I t I
, , , I I , I , I

I

, / , , < , I I I
, , , , 8 I I I I
, / I I t I I 8 I

, , , , I I I , I

. L... ...

, , " ' l " 8 , approximated as a continuous function, and its optimization

in a bounded vicinity of the approximate optimal page size. \ j j j j j j j 1 j I

quite efficiently by our scheme, as an example to be shown z(t) b I : : I : : I : /
shortly. We now explain the key idea on the approximation
technique.

13320.-.!. II , -1.. , 1.. , 1.. I ... -1- , ,....... : :. m --:- I

.... L---; i 1 4 j I r------

\ ; j j j j j j j j
\ , , , # , , I 8 8

, ; ; I ; # , " '
, I I I I

We will show that the exact optimal page size can be obtained 13140 t.; ; 4 4 4 ;.... ... c... L.
\ j I : : : I : , , I I I , I f

..................... .',.............................a.... ' ' ' 8 ..

: \ : I : : : I : b
j \ ~ , ' , : : : ' : c j ,,... 12960 ;.i---: : ; 1 1 1 i...' '
: \ ; I : : : I I
: \ j : , , , : j ' j

........ I + : ; : : : J - +.---..

j i, : : I j ; , t i i
: j \ j ~ j I : / , ,

, ; \,j j j j
In this Theorem, fK denotes the maximal number of faulty I I $ I : j J j : , , :

........ L : b -c. ' , ~~~

, , I

, , I I I I I
, I ,

, , I I I I I

Theorem 2.1 : When K* >> 1 , we have K* = fl,
where K is an arbitrary integer, 1 c K < W .

12780,r' -;-,.
I 8

'..... ' < < L
, I ,

, I # pages that can be realigned without violating the constraint of , I I 9 8

the optimization problem, and K is a randomly-chosen page I : : -!--,-? : : : :
, , , I / , I I I
, , , I # I I I I

I l l size, assuming that the SECDED codes have perfect fault de- 4500. 5300. 6100. 6900. 7700.

--

8500.

111. EXPERIMENTS AND PERFORMANCE RESULTS

In this section, we present an experimental implementation
of the PV and compare the performance of PV under two
cache replacement policies. To validate our key design con-
cepts, we developed prototypes of a 65C8 16-based processor
triad and an ADPLL circuit, and logic simulation of the PV
using the Galaxy logic simulation tool [22].

The 65C816-based processor triad was built with an
ADPLL circuitry, and data could be voted on every synchroni-
zation cycle. Upon detection of an error, an interrupt signal
will be generated for each processor to handle the event of
error detection and to force the faulty unit to be retired. The
ADPLL was implemented with three programmable generic

12700. ; ~ ~ , I I I , , . , , I . . . , , , . , . ,
.............. i i j 4 i 4 i

, , , . . I , . , .
, . , , .
/ . , .

the optimal page size in three steps. At the first step, we

A.2 of Appendix A. Then, at the second step, we can get the
I , , choose a random page size K, and then get fK using Lemma 12680.- + ; ; ; 4 : < + i , , . . . , , , , , , I , . , . , . . , .
I , , , , ,) .
I , + ; 4 ; 4 I &

-~

chronization clock, by a divide-by- 16 counter to be broadcast
for mutual synchronization. Each ADPLL adjusted its rate
when the skew between the synchronization clocks exceeded
the duration of two high-speed clock pulses. Over the several
months of our experiments, the ADPLL circuits showed re-
markably stable behavior. No single loss of synchronization
event was registered, and the time skew between different
sources was maintained within two high-speed clock pulses.
The only constraints on the performance of the ADPLL was
the delay of logic circuits. It was found in a similar logic
simulation that much higher speed clocks can be synchronized
using high-speed logic devices.

We then examined the performance of the PV through logic
simulation with the Galaxy CAD tool [22]. In our simulation

--

An example cost function Z(t) is plotted in Fig. 5. The curve
shown in Fig. 5 is K + fKLT]. It can be seen that the integral 12620,-

. , . I . , , , , . ,
, , , , , , . I . , . , I I .
, , . / I I I I I I .
, , . I . , . , , , .
, , , . / , . I .

, ,) , . I . , , . , , . , I , ,
, . , . . . , I . , . , . , . . , . . . ,

I , , , . , ... -....
............. :~~--...

. . . , -.....
I , , . , , , , .

LIU AND SHIN: EFFICIENT IMPLEMENTATION TECHNIQUES FOR GRACEFULLY DEGRADABLE MULTIPROCESSOR SYSTEMS

1.5

511

Slow Clock -
F a s t Clock -----. -

. .
m
P) 4

h

I I I

0 50 100 150 200
Clock Cycles

I I I I I I

Slow V o t e r -
F a s t V o t e r -----

0 10 20 30 4 0 50 60 I O
Instruction Cycles

Fig. 6. (a) The time skew between the three clock sources, and (b) the queue lengths of the PVs for different write rates.

each processor has four registers and an ALU, and three proc-
essors were grouped into a processor triad. The instruction set
included loadstore of data between main memory and regis-
ters, and simple ALU operations between the registers. Differ-
ent memory write frequencies were randomly generated in test
programs ranging from 10% to 50% in our experiments. The
three clock cycles of the processors were set at 164, 170, and
176 simulation time units, a 7% frequency difference between
the fastest and slowest clocks, where the simulation time unit
can be scaled to different physical time units as needed.

The time skew between the three clock sources is plotted in
Fig. 6(a), in which the fast and clocks are referred to as
the clock sources of 164 and 176 time units, respectively. The

simulated PV had an 8-word FIFO buffer and a majority voter.
The PV was controlled by a simulated control unit so that the
effective propagation delay in the majority voter could be al-
tered in the range of twice faster or slower than one instruction
cycle.

First, we studied the impact of clock skew on the clocking
effect in the data buffer. For clock skew less than two clock
cycles we found no significant impact on the queue length.
Two separate experiments were run to examine the effect of
different voting latencies on the queue length. In the first ex-
periment, the PV allowed a vote to take place in one half of the
execution time of a loadstore instruction. As shown in
Fig. 6(b) which represents a random snapshot of queue lengths

512 IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 4, APRIL 1995

of the PV with the write ratio set to 50%, the queue length was
at most one under very high write ratios. In the second experi-
ment, each vote takes one and half of the instruction execution
time. On some rare occasions where write operations occur
consecutively, up to five outstanding data items were recorded
in the PV. It should be noted that, when the cache memory is
added to each processor, the main memory read/write ratio is
expected to be reduced, and thus, the queue lengths are ex-
pected to be further reduced.

We examined the fault masking capability of the PV using a
simple fault injection circuit. In our experiment, only one voter
was used for data voting, and the voter is driven by the fast
clock source. After a fault was injected, the fault detection
(masking) latency was recorded as part of the simulation out-
put, and then manually calculated due to the lack of an auto-
matic event trace registration facility.

Different faults were injected to write-control signals, ad-
dress lines, data lines, and the clock signals of the target sys-
tem. The processor was set to execute a load or store instruc-
tion in four cycles, and the data manipulation instructions in
three cycles. In most of the simulation runs the voter cycle
time was set to be less than one instruction cycle to simulate
fast cache memories. Therefore, the main part of the voting
latency was contributed by the time required to write the voted
data to memory. For slower memories, the voting latency was
simulated to take twice as long as one instruction cycle. The
data collected in these experimental runs assumed that the
voter took six clock cycles to complete the voting process.

Transient, intermittent, and permanent faults were tested.
Injection of permanent faults was relatively straightforward.
Permanent faults were created by the fault injector after a ran-
dom period, and the target signal line was set to either a stuck-
at-0 or - 1, and then, the number of cycles after the fault occur-
rence was monitored and recorded. Although transient faults
were also injected, only a small fraction of faults were detected
when they caused data faults. Almost all transient faults on the
address bus, data bus, or control signals did not create any
error in the computational results, and thus were not detected
in the voting process. Hence, results on only a few instances of
transient faults being detected were not reported as they lack
statistical significance. Intermittent faults were created by
forcing a stuck-at-1 (-0) after a few clock cycles. Clock faults
were created by forcing the faulty module's clock line to be
stuck-at- 1 or stuck-at-0. A similar phenomenon existed ini-
tially in the intermittent fault simulation runs, but eventually
many more fault detections were registered, and thus were
reported here. The detection times of different faults are
plotted in Fig. 7.

In general, the fault detection time first decreased with the
write ratio, and then increased after a certain threshold. The
reason for this trend is that, when the write ratio was very low,
it took a lone time before the faultv data could be voted on bv

also observed that the watchdog timer was triggered in many
cases before the data voting could take place, because of the
clock skew. Therefore, the watchdog timer needs to be prop-
erly adjusted to avoid excessive false alarms.

We now compare the performance of PV under the write-
back and write-through cache replacement policies using the
average memory access time T M as the performance parameter.
T M is determined by the voter architecture, clock skew, and the
speed difference between the main and cache memories. The
main memory is assumed to be k-way interleaved, and no per-
formance loss is assumed in case of a cache read-hit. The
processor is blocked in case of a cache miss. Under the write-
through protocol, data items to be written into the cache and
main memory are first voted on by the PV, and the voted result
will be stored into the main memory if no error is detected.
Since the main memory is assumed to be interleaved, there is a
random waiting time before the data item can be stored into
the main memory, and all subsequent outputs from the PV will
be blocked .

For its performance analysis, a PV can be modeled as a
queueing system, where the write-buffer of the PV, and the
main memory are, respectively, represented by the queue and
the server. The waiting time T, for redundant data to become
ready in the PV is determined by the clock skew between the
redundant processors. Let S denote the maximum time skew
between redundant units, and clocks are adjusted once every rs
seconds, then the average waiting time due to the clock skew
can be expressed as

The average waiting time before the voted data can be stored
into the main memory is

where tc is the main memory cycle time. The average memory
write time is thus E(Tw) = %+$. Since we know the average

service time of the server and the arrival rate of the customers
(write-requests), we can get the average number of data items
waiting in PV as Q = AE(TW) = A(%+$), where A is the

arrival rate of memory-writes.
We note that under the write-through protocol, the proces-

sor can proceed with its computation without performance loss
in case of cache hit, as long as the PV is not full, so that the
data item can be directly loaded into the PV. Processor per-
formance loss occurs only in case of a cache miss, since the
PV must be flushed before a new cache block can be read in,

"
the PV. With a further increase of write ratio, the injected
faults might be overwritten by new write commands, thus in-
creasing the fault detection time. In all cases, the variances
between different runs of experiments are fairly large, indicat-
ing the unpredictable nature of fault detectiodmasking. It is

and thus, the performance loss is affected by the of
outstanding data items to be voted on in the PV. Assuming that
CPU blocking has a negligible effect, the average memory
access time can be expressed as

LIU AND SHIN: EFFICIENT IMPLEMENTATION TECHNIQUES FOR GRACEFULLY DEGRADABLE MULTIPROCESSOR SYSTEMS

10

513

IIlYVt

Permanent Write Fault
Lnstr. Cyclu InStr.

0 10 20 30 40 50 60
write 70

Permanent Address Fault
Instr. cycles

0-
0 10 20 30 40 50 60

write 90

Permanent Data Fault
Instr. cycles

Permanent Clock Fault
Cycles

50 jTz 10

0 10 20 30 40 50 60

write %

Intermittent Address Fault
lnstr. Cycles

40-

30 -

20-

10 -
0 10 20 30 40 50 60

write 70

Intermittent Data Fault
Instr. Cycles

30 I

. .
0 10 20 30 40 50 60

write R

Fig. 7. The fault detection times of a processor triad for different write rates

where h denotes the cache-hit ratio, b denotes the cache block
size, and P , denotes the fraction of memory-write instructions.
The three terms multiplied by the factor (1 - h) denote the
average delay for flushing the PV, reloading the cache, and
accessing the needed data item, respectively.

We now derive the average memory access time under the
write-back cache coherence protocol. In the write-back proto-
col, a dirty block will be written into the main memory when a
cache miss occurs. Assuming that cache blocks are randomly
replaced, the average memory access time under the write-
back protocol can be expressed as

0 10 20 30 40 50 60

write 90

(1)

where Pdirty is the probability that the cache block to be re-
placed is dirty. Pdirty is derived as follows. Assuming that the
cache consists of n blocks and all blocks have an equal prob-
ability to be accessed in each cycle, the probability of a cache
miss at the ith cycle since the last cache miss is hi-' (1 - h).
Thus, the probability of a dirty cache block being replaced is

That is, the total probability of a dirty block being replaced is

~

514 IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 4, APRIL 1995

Write-Back j (#)O

Men!.

n

Fig. 8. The performance difference between the two cache coherence protocols.

T i - T$ = Pdirry(E(Tw) + (b - I)%) -(1- h) P w E (T w) ~ ,

where Pdirry = & when n w 1. As depicted in Fig. 8, the aver- . . \ .
age memory access time of the write-back protocol is not sensitive
to the time skew between the redundant units, nor to the memory-
write frequency. On the other hand, the average memory access
time of the write-though protocol increases sharply with the clock
skew and memory-write the write-back protocol
is better suited for Nh4R multiprocessor system.

1-h
l-h*(l+).

= 1- (3)

The performance difference between the two protocols can
be expressed as

515 LIU AND SHIN: EFFICIENT IMPLEMENTATION TECHNIQUES FOR GRACEFULLY DEGRADABLE MULTIPROCESSOR SYSTEMS

IV. CONCLUSION

In this paper, we have presented the MAT bus and the DRN
as two architectural support mechanisms for dynamic recon-
figuration in an NMR-based multiprocessor system. We have
shown that the MAT bus can implement the fault detection,
instead of fault masking, function of the PV. The MAT bus
and DRN together provide a flexible platform for the dynamic
grouping of processors. The MAT bus-based architecture is
rationalized by the fact that faults occur much less frequently
than data readdwrites. Thus, to improve the system through-
put, data from redundant computing units can be put into the
PV buffer, and proceed with their normal computation. Ex-
perimental results showed that the proposed scheme is feasible
and introduces only a very small performance overhead. Our
model also showed that combination of the PV with the write-
back protocol can virtually eliminate the performance loss
resulting from data voting.

APPENDIX A:
PROOF FOR THEOREM 2.1

We prove Theorem 2.1 in four steps. We first exploit the
basic attributes of the probability function on the number of
faulty pages in the system, in Lemma A. 1. Then, we will find
the maximum number of faulty pages that can be realigned
without violating the timing constraint, in Lemma A.2. In the
third step, we will show in Lemma A.3 that if the system has a
large number of memory pages, the probability off pages be-
ing faulty is insensitive to the change of page size. So, as the
last step, we can conclude that for an arbitrary large integer K ,
we get f K close to f K * , where K* is the optimal page size being
calculated. Therefore, even though K* is unknown, we can still
estimate f K * as fK. By plugging fK into the objective function
and then taking its derivative, we can get the approximate op-
timal value of K*, Le., Theorem 2.1. Details of these steps are
explained as follows.

The probability that f pages become faulty in the system by
time t is Pr(F(r) = f) = (fK)RF-f'(t)(l - R , (t) f , where
1 - RJt) is the probability that one or more of the redundant
memory pages are faulty. Let A and q denote the failure rate of
a memory word and the number of redundant modules, re-
spectively, we have R,,(t) = e-q%'. Let I+V = WqAt, and K be a
fixed constant, then the conditional probability that f recovery
pages need to be realigned is

K = k is a feasible solution if and only if Pr(Z(t) > r) < E . If
T 2 Wtv, the recovery page design is trivial, because the mem-
ory can be easily realigned by voting on every word. If
T < Wt,, only a limited number of pages should be realigned. If
K* S 1 , then an exhaustive search for K* suffices. On the
other hand, if K* > 1 , as is in most large systems, an ap-
proximate value of K* can be found through the following
simple optimization technique.

Lemma A.1: Given I+V and K, P f i , the probability o f f
faults occurring to the system, is a monotonically decreasing

function o f f when %(e5 - 1) < 1, 1 < f I K . The suficient
condition for P f i to be a monotonically decreasing function

o f f i s (e f -1) < A, K > I .

Proof: P& is a nonnegative, monotonically decreasing
function '. if - < 1, V f . Using (4), we have

P K (f + l) P d f) = %(es - l) , or P& is monotonically decreasing if

%(e: -1) < 1 . Note that 0 I (e f - 1) I1 when f I 0.693.

Since I -, and the maximum value of % is

y , K > 1, the sufficient condition for the ratio test to hold is

(e % - l) < & , K > 1. 0

Lemma A.2: When Lemma 4.1 holds,

Proof: When Lemma A.l holds, P&+ l)/P& < p,, and
R < 1. Since ,L+< p,+l, VA we have

i=f

or

+ P y)

Note that I+V < K holds for most realistic parameter values.
When Lemma A.l holds, and K and & are given, = inf j,
which is the maximum number of faulty pages such that
P(t, > K + & +) < E, Vi, can be determined by applying
Lemma A.2 repeatedly. The next Lemma states a key condi-
tion that can greatly simplify the optimization problem.

Lemma A.3: If two integers K, and K2 are both much
greater than constants 1, then PK, (f) = PK, (f),
where P , (f) is the probability that the number of faulty
pages F is$ when the number of recovery pages is Ki.

and

Proof P K (f) = (;)e-v(1-4)(l -eT)f . When K w f ,

= e w . Furthermore, when K w I+V,

we get 1 - eT = 1 - (1 - f) = f . Combining these expressions

K f (f) = 5, and
-

-I

That is, P& is predominantly determined byf, and is insensi-
0

Lemma A.3 is valid for a broad range of K values. Note that
when K1, K, >> 1 , the values of Pki (f)s are very close to each
other. When Lemma A.l holds, PK, (A) < PK2(f ,) , wherefi >
f 2 . In these examples, the system has W = 4M words of mem-

tive to K. Thus, PK, (f) = PK, (f) .

IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 4, APRIL 1995 516

ory, q = 4 modules, A = 0.75 byte/109 hours, and r = 150 hours.

< 0.05, and IPsm(F = 3) - Pl35()0(F = 3)1< 0.001. Let K’ denote
the optimal value of K , the most desirable property of
Lemma A.3 is that when K* w 1, we get fK = fK‘, and thus, K*
can be found by Theorem 2.1.

Theorem 2.1: When K* w 1, K’ = m, where K is an

[I2]
r131

Thus, w = h q W = 1.8. Thus, IPsm(F = 1) - P135m(F = 1)l
[I41

[151

1161

[171
[I81 arbitrary integer, 1 < K < W .

Proof: From Lemma A.3, we get PK, (f) = PK, (f), Vf .

applying Lemma A.2 to an arbitrary K such that P (f > fK) < E .
Clearly, for a given E , fK = 3, VK > 1, where 3 is some
constant. The cost function Z(t) to be minimized can be ex-

pressed as min(K+ f -). Since the objective function is con-

vex when K is continuous, the optimal solution of real-valued
Ks is K’ = m. Then, K* can be found by an exhaustive

search in [K‘ - 6, K’ + 4, where 6 is very small compared to
0

~ 9 1
Thus, when K’ W 1, we have fK fK*, Or fK* Can be found by

[201

[211

[221
- w

Kw 1 K

K, and it is yet to be found.

ACKNOWLEDGMENTS

The work reported in this paper was supported in part by
NASA under Grant NAG-1-1220, by the ONR under Grant
NO0014-91-5-1115, and by the National Science Foundation
under Grants MIP-9012549 and MIP-9203895.

REFERENCES

B. Parhami, “Voting networks,” IEEE Trans. Reliability, vol. 40,

J. Kim, J.-C. Liu, P. Swamam, T. Park, Y. Hao, and T. Urbanik, “The
area-wide real-time traffic control (ARTC) system: A distributed com-
puting system,” IEEE Computer Sofrware Application Con&, pp. 263-
268, Chicago, June 1992.
J. Kim, J.-C. Liu, P. Swamam, and T. Urbanik, “The area-wide real-
time traffic control (ARTC) system: A new traffic control concept,”
IEEE Trans. Vehicular Tech., vol. 42, no. 2, pp. 212-224, May 1993.
M. Iacoponi and S. McDonald, “Distributed reconfiguration and re-
covery in the advanced architecture on-board processor,” Digest of Pa-
pers, FTCS-21, pp. 436-443, 1991.
J. Stankovic and D. Towsley, “Dynamic relocation in a highly inte-
grated real-time distributed system,’’ Proc. Int ’ I Conf. Distributed
Computing Systems, pp. 374-381, May 1986.
G. Barigazzi and L. Strigini, “Application-transparent setting of recov-
ery points,” Digest of Papers, FTCS-13, pp. 48-55, 1983.
D.B. Hunt and P.N. Marinos, “A general-purpose cache-aided rollback
error recovery (CARER) technique,” Digest of Papers, FKS-17 ,
pp. 170-175, 1987.
R.E. Ahmed, R.C. Frazier, and P.N. Marinos, “Cache-aided rollback
error recovery (CARER) algorithms for shared memory multiprocessor
systems,’’ Proc. 17th Int’l Symp. Computer Architecture, pp. 82-88,
1990.
C. Chen, A. Geng, T. Kikuno, and K. Toni, “Reconfiguration algo-
rithms for fault-tolerant arrays with minimum number of dangerous
processors,” Digest of Papers, FTCS-21, pp. 452-461, 1991.
A.L. Hopkins, T. Smith, and J. Lala, “FTMP-A highly reliable fault-
tolerant multiprocessor for aircraft,” Proc. IEEE, vol. 66, pp. 1221-
1239, Oct. 1978.
The Stratus Computer System, Stratus Inc., July 1992.

pp. 380-394, Aug. 1991.

The Series 400 Sequoia Systems, Sequoia Inc., July 1992.
FT-6100 Fault Tolerant Computer TPR Architecture, Hitachi Ltd.,
July 1992.
T.B. Smith, “Fault-tolerant processor concepts and operation,” Tech.
Report, Charle Stark Draper Lab., CSDL-P-1727, May 1983.
D.P. Sieworek, et al, “C.vmp: A voted multiprocessor,” Proc. IEEE,
vol. 66, Oct. 1978.
W. Greer and B. Kean, “Digital phase-locked loops move into analog
territory,” Electronic Design, pp. 95-100, Mar. 1982.
The Transputer Databook, Inmos Corp, 1989.
D.J. Adams and T. Sims, “A tagged memory technique for recovery
from transient errors in fault-tolerant systems,” Proc. Teal-Time Sys-
tems Symp., pp. 312-321, 1990.
D.P. Siewiorek, “Fault-tolerance in commercial computers,” Computer,
July 1990.
S.R. McConnel, D.P. Siewiorek, and M.M. Tsao, The measurement
and analysis of transient errors in digital systems,” Digest of Papers,
FTCS-9, pp. 67-70, 1979.
D.P. Siewiorek and R.S. Swarz, The Theory and Practice of Reliable
System Design, Digital Equipment Corp., Bedford, Mass., 1992.
J. Beetem, Galary CAD User Manual, Univ. of Wisconsin, Madison,
Wis.. 1992.

LIU AND SHIN: EFFICIENT IMPLEMENTATION TECHNIQUES FOR GRACEFULLY DEGRADABLE MULTIPROCESSOR SYSTEMS 517

Jyh-Cham Liu (S’84-M’89) received BS and MS
degrees in electrical engineering from the National
Cheng Kung University, Tainan, Taiwan, in 1979
and 1981, respectively. He earned the PhD degree
from the Electrical Engineering and Computer
Science Department at the University of Michigan,
Ann Arbor, Mich., in 1989.

Dr. Liu has been an assistant professor in the
Computer Science Department, Texas A&M Uni-
versity, College Station, Texas, since 1989. He was
a system engineer of the Siantek Co. Taipei, Tai-

wan, in 1983. He was a research assocke for the Real-Time Computing Lab.,
the EECS department, University of Michigan in 1989, and he was involved
with the evaluation of the Advanced Information Processing System for
NASA.

Dr. Liu’s current research interests include fault-tolerant computing, paral-
lel and distributed systems, real-time systems, and Intelligent Vehicle and
Highway systems (IVHS). He is a member of the IEEE Computer Society.

Kang G. Shin received the BS degree in electronics
engineering from Seoul National University, Seoul,
Korea, in 1970, and the MS and PhD degrees in
electrical engineering from Cornell University,
Ithaca, N.Y., in 1976 and 1978, respectively.

Dr. Shin is a professor and the director of the
Real-Time Computing Laboratory, Department of
Electrical Engineering and Computer Science,
University of Michigan, Ann Arbor, Mich. From
1978 to 1982 he was on the faculty of Rensselaer
Polytechnic Institute, Troy, N.Y. He has held visit-

ing positions at the U S . Air Force Flight Dynamics Laboratory, AT&T Bell
Laboratories, the Computer Science Division within the Department of Elec-
trical Engineering and Computer Science at the University of Califomia,
Berkeley, and Intemational Computer Science Institute, Berkeley, Calif. He
was chairman of the Computer Science and Engineering Division, Electrical
Engineering and Computer Science Department at the University of Michigan
for three years beginning in January 1991.

Dr. Shin is the author or coauthor of more than 250 technical papers (more
than 110 of these are in archival journals) and several book chapters in the
areas of distributed real-time computing and control, fault-tolerant comput-
ing, computer architecture, robotics and automation, and intelligent manufac-
turing. In 1987 he received the Outstanding IEEE Transactions on Automatic
Control Paper Award for a paper on robot trajectory planning. In 1989 he
received the Research Excellence Award from the University of Michigan. He
founded the Real-Time Computing Laboratory in 1985. He and his colleagues
at the Real-Time Computing Laboratory are currently building a 19-node
hexagonal mesh multicomputer called HARTS to validate various architec-
tures and analytic results in the area of distributed real-time computing.

Dr. Shin is an IEEE fellow and was program chairman of the 1986 IEEE
Real-Time Systems Symposium (RTSS), general chairman of the 1987 RTSS,
guest editor of the August 1987 special issue of IEEE Trunsacrions on Com-
puters on real-time systems, program co-chair for the 1992 Intemational
Conference on Parallel Processing, and has served on numerous technical
committees. He chaired the IEEE Technical Committee on Real-Time Sys-
tems from 1991-1993 and is a Distinguished Visitor of the IEEE Computer
Society, an editor of IEEE Trunsacfions on Purullel und Distributed Comput-
ing, and an area editor of the Internutionul Journal of Time-Critical Compur-
ing Systems.

Dr. Shin has been applying the basic research results of real-time comput-
ing to manufacturing related applications ranging from the control of robots
and machine tools to the development of open architectures for manufactur-
ing equipment and processes. He recently initiated research on the open-
architecture Information Base for machine tool controllers.

