
QoS-Sensitive Protocol Processing in Shared-Memory 
Multiprocessor Multimedia Servers (Extended Abstract) 

Ashjsh Mehra Kang G. Shin 

Real-Time Computing Laboratory 
Department of Electrical Engineering and Computer Science 

University of Michigan 
Ann Arbor, MI 48109-2122 

Email: { ashish,kgshin}B eecs. umich. edu 

1 Iiit ro d uct ioii 

The advent of high-speed nrtworks and  demand for distributed multimedia applications now requires that the 
communication subsystems in  end hosts (or simply hosts) be designed and implemented to  facilitate and provide 
certain quality-of-service (QoS) guarantees. An application specifies its &OS requirements for each active connec- 
tion in terms of several parameters such as end-to-end delay, delay jitter, and bandwidth; additional requirements 
regarding packet loss and in-order delivery can also be specified [l, 21. Additionally, the application may need to 
specify its traffic cliaracteristics on each connection in order for the host communication subsystem and network 
to  provide the required guarantees. Acceptance of a guaranteed-QoS connection by the network implies a contract 
between the network and  the application that the requirements of the latter will be met as long as the application 
honors its traffic specifications. Given appropriate support within the network t o  establish and maintain such 
connections, we focus on the problem of maintaining QoS-guarantees within the communication Subsystem on 
the host’. In particular we consider shared-memory multiprocessor (SMMP) hosts since medium- to large-scale 
SMMPs are increasingly being employed as multimedia servers and desktop workstations. 

Large-scale multimedia servers may support hundreds of guaranteed-QoS connections simultaneously, each 
requiring the processing and transfer of large amounts of data. Supporting multiple guaranteed-QoS connections 
on SMMP hosts requires a careful study of the hardware and software structure of the communication subsystem. 
which includes protocol processing and access to/from the network via the network adapter. The communication 
subsystem structure must facilitate a range of &OS guarantees, while keeping resource utilization high, because of 
three aspects of application behavior: ( i )  applications may have a variety of &OS requirements, (ii) there may be 
large variations in the traffic behavior of each connection even when traffic specifications are not violated, and ( i i i )  
the number of established connections and their desired QoS may vary over time. The primary goal, therefore, is 
to design the communication subsystem to make protocol processing and network transmission/reception &OS- 
senstttve. 

In this paper we study the issues involved in designing the communicationsubsystem to provide QoS guarantees 
for connections originating or terminating at an SMMP host. In  particular] we propose an architecture for QoS- 
sensitive protocol processing and  highlight the design tradeoffs involved in realizing the architecture on an S M M P  
host. I n  the remaining sections we motivate the necessity of such an architecture and highlight its salient features 
and associat,ed design t radeoffs. We conclude by describing our simulation-based evaluation framework which 
features object-oriented. parameterized models for resources participating in communication and QoS-sensitive 
resource man agemen 1, pol I cies. 

. 

The work reported in this paper was supported in part by the National Science Foundation under grant MIP-9203895 and the Office 
of Naval Research undcr grant NO001 4-94-1-0229. Any opinions, findings, and conclusions or recommendations expressed in this 
paper are those of the authors and do not necessarily reflect the views of NSF or ONR. ’ End-teend performance guarantees cannot be provided without maintaining QoS guarantees within the compufafioa sulsysf  em 
as well. While extremely relevant, the issues involved are beyond the scope of this paper. Since we focus on communication subsystem 
design for a server, we only consider transmission-side issues; our future work will consider reception-side issues as well. 
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2 Issues and Approaches for QoS-Sensitive Protocol Processing 

Consider the problem of servicing a large number of guaranteed-QoS connections engaged in network transmission. 
In addition to such  connections, there may be several best-effort connections that must be serviced in a fair 
manner, with reasonably good performance. The data to be transmitted over each connection resides either 
in  an input device (such as a frame-grabber) or in  host memory; we assume that the computation subsystem 
prepares outgoing data i n  a QoS-sensitive fashion before handing it over to the communication subsystem. Each 
guaranteed-QoS connection is assumed to have the following traffic flow semantics. On each connection data is 
transferred from the server to the  destination client (unidirectional data flow), successive messages on a connection 
must be delivered i n  the order they were generated (in-order message delivery), and data that suffers loss of &OS 
guarantees within the network is unusable and hence not retransmitted (unreliable data transfer). Best-effort 
connections do not have the requirement of in-order delivery but may require retransmissions to ensure loss-less 
data transfer. These connection semantics are applicable to a large class of multimedia applications, and retain 
the generality of our proposed architecture for QoS-sensitive protocol processing. 

2.1 Requirements 

Once established. transmission on each connection must commence by a certain deadline and, once initiated. 
the connection must receive a certain rate of protocol processing and transmission bandwidth; both the deadline 
and the rate are derived from the connection’s &OS requirements. While policies for uncontrolled sharing would 
maximize resource utilization. and hence be ideal for best-effort traffic, these sharing models are ill-suited for 
QoS-sensitive protocol processing. Uncontrolled sharing of communication resources introduces unpredictability 
in  protocol processing and  can  result in violations of &OS guarantees. For example, connections may receive 
service in  an order that causes a less urgent message to be transmitted ahead of an urgent one. Similarly, on a 
given connection, the order of message transmissions may violate the requirement of in-order message delivery. 
This is because, assuming static network routes for connections, in-order delivery of messages necessitates in-order 
message transmission. Therefore, the communication subsystem must exercise fine-grain control over management 
of resources involved in communication, such as processors and the network adapter. 

Within the communication subsystem, the degree of sharing of processors amongst connections depends on the 
transport system architecture [3] and resource management policies employed. Resources such as processors and 
buffers must be allocated to individual connections in order to meet their QoS requirements. This allocation must 
attempt to reduce load imbalance, achieve high resource utilization, and maximize the number of connections that 
can be serviced. llnlikc uniprocessor hosts. network adapter access by multiple processors must be coordinated 
to  satisfy the &OS requircnient.~ of individual connections. The nature and overhead of this coordination depends 
on the design features a n d  performance characteristics of the network adapter. The interconnection architecture 
(e.g., bus or crossbar) and shared-memory model (uniform or non-uniform access) within the host also influence 
this aspect significantly. 

A final requirement. is that connections must be insulated from one another so that an ill-behaved connection 
only degrades its own performance and not that of any  other connection. A connection can violate its traffic 
specification in two ways: initiating bursts of message transmissions and transmitting messages larger than the 
maximum message size allowed on that connection. The policies for resource management must ensure that an 
ill-behaved connection docs not consume resources at  the expense of well-behaved connections. At the same time, 
the ill-behaved connection must continue to receive service insofar as possible, perhaps with a degraded &OS, 
since the traffic specification violations are likely to be of a temporary nature. 

’ 

2.2 Proposed Architecture 

In order to satisfy tlir above requirements. we propose a communication subsystem architectcure which provides 
QoS-sensitive protocol processing by 

0 dedicat ing  a set of processors for protocol processing. 
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0 mapping active connections to these protocol processors, 
0 scheduling protocol processing on each protocol processor, and 

coordinating (i.e.: scheduling) access to the network adapter by the active protocol processors (i.e., those 

Together, these features allow the communication subsystem to exercise fine-grain control over resource manage- 
ment in order to  satisfy &OS guarantees, as discussed below. We assume that  all activities other than managing 
resources involved in communication, performing protocol processing, and coordinating access to  the network 
link, are executed on the Computation subsystem. 

Dedicating a set. of processors for protocol processing implies a stat ic  parfi tzoning of the available processors 
in the host: this e1iininat.e~ sharing (and  the resulting interference) between the computation and communication 
subsystems. Provision of multiple protocol processors facilitates scalable server design by increasing the processing 
capacity of the communication subsystem and allowing concurrent handling of different connections. Protocol 
processing is based on a vertical process architecture employing the process-per-connection model [3]. Each 
connection h a s  associated with it a unique process (the connection “handler”) and a first-in-first-out (FIFO) 
queue of messages waiting to be processed and transmitted; the connection handler processes the queued messages 
one at  a time. Maintaining a FIFO queue of messages per-connection preserves the order in which messages are 
generated on each connection; early arrivals due to  message bursts are absorbed in the message queue and do not 
affect processing on other connections. A message is dequeued for processing only when the previous message 
has  been completely processed and the corresponding packets enqueued for transmission. A message violating 
the message-size limit can be dropped as s00n as it is generated. Alternately, the message can be enqueued 
for protocol processing but is processed at  a reduced priority. We lower handler priority in proportion to the 
amount by which t,he message exceeds the size limit; the priority is reduced incrementally to  spread out the total 
degradation evenly across the maximum-message-size “blocks” in the original message. 

Associating a unique process with each connection simplifies the mapping of connections to processors and 
the scheduling of the corresponding handlers an each processor. When a connection is established, it is mapped 
to  exactly one of the protocol processors (in other words, a processor is allocated to it). This mapping is a 
function of the available processing capacity on each processor and the &OS requirements of the connection to 
be established. Mapping a connection to  exactly one processor ensures that packets belonging to  a message 
are enqueued for transmission in the correct order; it also reduces coordination and synchronization overheads. 
Since more than one processor may have sufficient processing capacity t o  accommodate the new connection, 
processor selection is done based on heuristics such as first-fit, least-current-load? least-number-of-connections, 
or a combination thereof. This mapping could be changed each time a new connection is accepted for service. 
However, for connections reserved in advance (i.e., the client announces its connection requirements well before 
the time it actually needs the established connection), an  optimal static mapping may be derived and processors 
scheduled accordingly. 

Given a mapping of connect,ions to processors, per-connection protocol processing is scheduled on each pro- 
cessor according to the &OS requirements of the connections mapped onto that processor. Both dynamic-priority 
and fixed-priority real-tinw Scheduling algorithms can be employed to manage each processor. The scheduling 
algorithm used determines the number and type of connections that can be mapped onto a processor without 
violating QoS guarant.ees. The processor-connection mapping may need to be changed in order to  accommodate 
a new connection, iinprovc utilization. or reduce load imbalance; the feasibility of connection remapping depends 
on the potential benefits a n d  associated cost of remapping. 

Since multiple connect.ions receive service simultaneously, more than one processor would compete for access 
to  the network adapter if each connection handler initiated transmission. Coordination amongst active processors 
is necessary to ensure that. the network adapter transmits packets based on the relative &OS requirements of the 
connections. Instead of directly invoking transmission, each connection handler inserts its packets into a shared set 
of link packet queues that. determine the order in which packets from all connections will be transmitted. Initiation 
of transmission can either be done by the network adapter, if it has the required capability and intelligence to  access 
the packet queues, or transmission can be initiated by a special link scheduler executing on one of the processors. 
Note that scheduling of packets may be required even if the network adapter is cognizant of connections and their 
QoS requirements, as in A T M  networks. 

that have packets to transmit). 
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Best-effort connections are handled differently in the proposed architecture. They must be serviced in a fair 
manner so that reasonably good performance is delivered to them even in the the presence of guaranteed-QoS 
connections. Unlike guaranteed-QoS connections, best-effort connections are maintained as a shared pool of work 
available to all  protocol processors. Processing of messages on best-effort connections is given higher priority 
than processing early niessages on guaranteed-QoS connections, even if per-connection protocol processing is 
work-conserving. Instead of idling. a processor processes best-effort connections; in addition to providing pro- 
cessing capacity for best-effort connections, this keeps processor utilization high. Generation of messages on 
guaranteed-QoS connections immediately preempts processing on best-effort connections. Fair servicing amongst 
best-effort connections is provided through FIFO or round-robin scheduling policies. To provide a certain mini- 
mum processing capacity to best-effort connections, a number of protocol processors can be set aside. Fairness in 
packet transmissions is ensured by giving best-effort packets priority over early-arriving packets when scheduling 
packet transmissions. 

2.3 Design Tradeoffs 

The myriad design tradcoffs that  arise within the framework of the proposed architecture can be classified as 
follows: 

Processor-conn.ection mapping and rem.apping: While an opt.imal static mapping may be derived for connections 
reserved sufficiently in advance, the absence of a priori knowledge of connection requests necessitates use of 
heuristics to guide the mapping. For a given set of protocol processors, there is a fundamental tradeoff between 
load imbalance amongst, processors and the utilization of each processor. Since the available heuristics exploit 
this tradeoff differently, i,he choice of the mapping heuristic has a significant impact on the number and type 
(determined by the QoS requirement) of connections that can be established for service. The choice of map- 
ping heuristic also determines the potential benefit and incurred cost of dynamically remapping connections to  
“garbage-collect“ suficient processing capacity for a new connection. 

Per-processor conncciion scheduling and per-connection protocol processing: The utilization of each processor is 
determined by the scheduling algorithm employed and the mix of connections mapped onto the processor. This 
in turn determines sparc processing capacity and hence the  set of connections that will be mapped onto the 
processor in  the future. ‘I’he tradeoffs involved depend greatly on whether handler execution is fully preemptive 
(immediate preemptmion). semi-preemptive (bounded-delay preemption) or non-preemptive. Note that these three 
differ primarily i n  the pwemplion granularily, which can be viewed as the number of packets processed between 
preemption points. The preemption granularity determines the worst-case preemption delay, which must be 
balanced against, preemption ovcrheads such as context switches and cache misses. Additionally, per-connection 
protocol processing could be work-conserving or non-work-conserving; this impacts the handling of message bursts 
on a connection. Assuiiiing that guarant,ees of other connections are not violated, work-conserving protocol 
processing would improve processor utilization. Finally, the scheduling of connection handlers is also affected by 
the mechanisms employed to police traffic. For example, a handler should be blocked if the connection does not 
have any available slots i n  the l ink  packet queues; this can happen either when a handler is “working ahead!“ or 
when a message violates the maximum-message-size limit. 

Global coordination (schfduling) for network adapter access: Since mutual exclusion is necessary to deposit packets 
in the link packet queues. the overhead of packet insertion could get excessive. Depending upon the preemption 
granularity for protocol processing. each handler can amortize this overhead by inserting a block of packets instead 
of inserting each packet as soon as it is prepared for transmission. The characteristics of the adapter and the 
interconnection architecture of the host play a significant role in  realizing the coordination amongst processors. 
Important adapter characteristics include provision of DMA capability, amount of on-board packet memory and 
organization of packet queues, ability to  maintain per-connection &OS guarantees, and bounded, predictable 
latency to access the communication medium. The interconnection architecture determines the data  transfer 
path from the source (processor, main memory, or an input/output device) to the network adapter, and how the 
available dat.a transfer bandwidth on this path is shared amongst the connections. A bus-based interconnection 
limits concurrent data  transfers: furthermore, QoS-sensitive consumption of transfer bandwidth may not be 
achieved simply through priority-based arbitration amongst processors. A crossbar-based interconnection provides 

166 



additional concurrency and, coupled with support in the network adapter, can support DMA-based data transfer 
on multiple connections simultaneously. If the protocol stack decouples data transfer from control, and the adapter 
supports DMA to/from any source in the host, bandwidth can be consumed in the order in which packets are 
transmitted. 

Number of protocol processors: The partitioning of processors between the computation and communication 
subsystems depends on the expected computational and communication load per connection, respectively. With 
advance reservation of connections, the optimal partition can be determined off-line. Without a priori  knowledge 
of connection requests, however, determining the partition is ad hoc. Given the capacity of each processor, a 
static choice of the num.ber of processors may not scale with the number of connections. Depending upon the 
tradeoffs identified earlier. it may be possible to  allow controlled sharing of processors between the computation 
and  communication subsystem. Additional protocol processors could be deployed only when necessary, i.e.: when 
new connections arc e~t~ablished and cannot be accommodated on the available protocol processors. 

3 Evaluat iiig the Desigil Tradeoffs 

As a first step towards dciiionstrating the feasibility of the proposed architecture and evaluating the design trade- 
offs highlighted, we have implemented a QoS-sensitive communication subsystem on a single protocol processor [4] 
residing in a small-scale bus-based multiprocessor host with a NUMA configuration [5 ] .  The implementation has  
been done in the context of real-izme channels, a paradigm for real-time communication services in packet- 
switched networks [SI. The communication executive on the protocol processor is derived from r-kernel 3.1 [7]; 
our implementation of the  protocol stack decouples data transfer and control to minimize data copying. The imple- 
mentat.ion features a process-per-channel model with fixed-priority and earliest-deadline-first semi-preemptive 
scheduling of channel handlers; each channel handler relinquishes the CPU to a waiting higher-priority handler 
at  evenly-spaced preempt,ion points. Protocol processing can be work-conserving or non-work-conserving, with 
best-effort channels given processing and transmission priority over “work ahead” real-time channels. Link access 
scheduling is performed by a non-work-conserving link scheduler thread that. runs at the highest possible priority. 
Channel handlers violat.iiig their traffic specification are prevented from consuming processing and link capacity 
either by blocking their execution or lowering their priority relative to the well-behaved channels. We are cur- 
rently evaluating the implementation to determine a variety of cost-performance tradeoffs, such as preemption 

, granularity/overheads: a n d  the  effectiveness of the scheduling and traffic policing mechanisms. 

Based on the insights gained, we are designing a powerful, parameterized, object-oriented SMMP simulator 
to study the proposed architecture and design tradeoffs identified in this paper. The design of the simulator 
is similar to the one developed in [8], but specifically geared towards QoS-sensitive protocol processing. In 
particular, it features parameterized models for resources (processors, memory, processor-memory or processor- 
processor interconnect, network adapter), resource management and scheduling policies (connection admission 
control, processor-connection mapping, per-processor scheduling, link access scheduling), and resource usage 
(connection requests, per-connection traffic generation and protocol processing). The overall structure of the 
simulator is illustrated in Figure 1. 

As shown in Figure 1. the user configures the simulator for a given set of experiments via a specification script 
written in  the simulator‘s specification language. The user’s specification is parsed by a front-end module to  de- 
termine the policies, parameters, and architectural environment to  be used for the experiments. The specification 
of resources includes the number and type of available resources, their performance characteristics, and the ar- 
chitectural configurat.ion of the SMMP; the simulator instantiates resources based on this specification. Resource 
management specification includes the policies and heuristics to  use for resource management and scheduling, 
which is used to select and configure generic resource management modules in the simulator. The specification of 
workload generation i s  used to determine the QoS requirements and traffic characteristics of individual conner- 
tions, and the probability distributions for generation of connection requests and per-connection traffic. Finally, 
the data collection specification is used to select the performance parameters and metrics for which the simulator 
must collect data and accumulate statistics. At the completion of the experiments, the simulator outputs per- 
formance results such as the utilization of each resource, the delivered &OS on each active connection, and the 
number of connections accepted/rejected. 
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Figure 1: Structure of SMMP simulator 

4 Related Work 

The approaches taken to implement protocol processing in SMMPs essentially lie on two extremes. In one 
approach. each processor executing a process also performs protocol processing for messages transmitted by that 
process [9]. In this model. protocol processing is treated as work strictly local to each processor, resulting in 
an implicit sharing betwren the computation and communication subsystems. An alternative approach treats 
protocol processing as global work that can be scheduled uniformly on any available processor [ lo ,  111; this results 
i n  explicit sharing between the two subsystems. These approaches may not suffice for QoS-sensitive protocol 
processing since they introduce unpredictability in the availability and allocation of processing resources. and 
complicate global coordination for network access. Our proposal for static partitioning of processing resources is 
similar to those for multiprocessor front-ends 1121, except that a set of processors within the  host are dedicated 
for protocol processing. as in [13]. 

Vertical process archibectures employing process-per-connection and process-per-message models have been 
proposed to  exploit parallelism in protocol implementations [3]. A process-per-message model seems unsuitable for 
QoS-sensitive protocol processing. Assuming that each message’s shepherd process is independently scheduled on 
the  protocol processors. simultaneous processing of multiple messages from the same connection would lead to out- 
of-order consumption of protocol processing and transmission bandwidth. Further, shepherd processes handling 
messages belonging to  the same connection must now synchronize to maintain consistent connection state. With 
potentially several coiinections mapped to the same processor, it becomes more expensive to  coordinate handling of 
messages on a connection and between connections. Our choice of the process-per-connection model and mapping 
of each connection handler to exactly one processor is based on these considerations. Recent results have shown 
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that connectional para l ld i sm delivers comparat ively m o r e  scalable performance t h a n  message parallelism [14.15]. 

T h e  design of high-speed network adapters .  their performance characteristics, a n d  implicat ions for protocol 
s tacks h a s  received significant attention recently, for FDDI [lS] as well as ATM [17,18] networks. However, t h e  
design tradeoffs haw becn explored pr imari ly  in  t h e  context  of uniprocessor workstat ions a n d  best-effort network 
traffic. We have s tudied the implications of network adapter  characteristics for real-time communicat ion on a 
Fibre  Channel a d a p t e r  manufactured by Ancor Communica t ions  [5]. 
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