
Artificial Intelligence 74 (1995) 83-127

Artificial
Intelligence

World modeling for the dynamic construction of
real-time control plans

David J. Musliner a**, Edmund H. Durfee b,l, Kang G. Shin bp2
a Honeywell Technology Center MN65-2200.3660 Technology Drive, Minneapolis, MN 55418, USA

b Department of EE & Computer Science, The University of Michigan, Ann Arboc MI 48109-2122, USA

Received September 1992; revised January 1994

Abstract

As intelligent, autonomous systems are embedded in critical real-world environments, it be-
comes increasingly important to rigorously characterize how these systems will perform. Research
in real-time computing and control has developed ways of proving that a given control system
will meet the demands of an environment, but has not addressed the dynamic planning of control
actions. Building an agent that can flexibly achieve its goals in changing environments requires
a blending of real-time computing and AI technologies, The Cooperative Intelligent Real-time
Control Architecture (CIRCA) implements this blending by executing complex AI methods and
guaranteed Ral-time control plans on separate subsystems. We describe the formal model of
agent/environment interactions that CIRCA uses to build control plans, and we show how those
control plans are guaranteed to meet domain requirements. CIRCA’s world model provides the in-
formation required to make real-time performance guarantees, but avoids unnecessary complexity.

1. Introduction

Artificially intelligent agents that are constructed in the laboratory are often unsuited
to real-world domains, where the pace of interactions between an agent and its changing
environment may exceed the response rate of traditional AI methods. For example, an
autonomous vehicle operating in the real world needs a control system that responds
quickly enough to avoid collisions with obstacles or other vehicles. This requirement for
timely behavior is the defining characteristic of a class of environments known as hard

* Corresponding author. Fax: (612) 951-7438. E-mail: musliner@src.honeywell.com.

1 E-mail: dmfee@eecs.umich.edu.
* E-mail: kgshin@eecs.umich.edu.

0004-3702/95/$09.50 @ 1995 Ekevier Science B.V. All rights reserved
SSDI 0004-3702(94)00008-O

84 D.J. Musher et al. /Artt#ciul Intelligence 74 (I 995) 83-127

real-time domains. Hard real-time domains have deadlines by which control responses
must be produced, or catastrophic failure may occur. Other common examples of hard
real-time domains include nuclear power plant control, medical monitoring, and aircraft
control.

Because catastrophic failure may occur if deadlines are missed, control systems for

agents operating in real-time environments must not only choose appropriate actions in
varied situations, they must make those action choices at appropriate times. Research in
real-time systems addresses precisely this issue, by developing methods for guaranteeing
that the reaction rate of a control system matches the rate of change in the environment.
Real-time computing is not about building “fast” systems; it is about building systems
that are predictably “fast enough” to act on their environments in ways that achieve

their goals [23,491. Real-time systems researchers have developed a powerful set of
tools to prove that embedded systems meet this criterion. These tools include techniques

for characterizing a system’s interactions with its environment through such measures
as worst-case execution time, resource requirements, and deadlines. Given this type of

information, mechanisms are available to predictably schedule and execute the described
behaviors and to guarantee that they will meet their deadlines.

While real-time systems research addresses timeliness issues for a given set of tasks, it
does not address the source of those tasks; real-time researchers assume they are given
tasks that have certain performance requirements, but the motivations for those tasks

and requirements are left unspecified. Traditional AI planning research, on the other
hand, has characterized the interactions of an agent and its environment in terms of

state spaces and operators that move through those spaces. Planning has concentrated on
searching for sequences of operators (tasks) to execute in a particular situation. Thus
we would like to combine the guaranteed performance methods of real-time systems
with AI planning mechanisms to build a flexible, intelligent control system that can
dynamically plan its own behaviors and guarantee that those behaviors will meet hard
deadlines in real-time environments.

This paper describes the techniques we have developed to model agent/environment
interactions, allowing a system to integrate real-time considerations into a state-based

planning representation, and to reason over this representation in a uniform and consistent
manner. We describe this world model in the context of the Cooperative Intelligent
Real-time Control Architecture (CIRCA) [31,341. As illustrated in Fig. 1, CIRCA
combines parallel AI and real-time control subsystems to meet the requirements of both
arbitrarily complex AI algorithms and predictable real-time control responses. The AI

subsystem (AIS) performs high-level reasoning about tasks and, in cooperation with the
Scheduler, develops low-level control plans using low-variance primitives. These control
plans are executed in a predictable, guaranteed fashion by the real-time subsystem

(RTS).
CIRCA’s domain-independent world modeling method provides a concise charac-

terization of the information required to make guarantees, and allows the system to
automatically derive a reactive control plan that can be guaranteed to meet the domain’s
deadlines and achieve the system’s goals. The architecture makes a fundamental dis-
tinction between activities directed towards achieving “control-level” goals, which are
guaranteed to meet domain deadlines, and behaviors for “task-level” goals, which are

D.J. Musher et al. /Artificial Intelligence 74 (1995) 83-127 85

Fig. 1. The Cooperative Intelligent Real-time Control Architecture.

executed in a less-predictable manner. We will show how the world model serves not
only as the basis for planning actions and making performance guarantees, but also
as a key justification for the architectural division of control-level (guaranteed) and
task-level (unguaranteed) goals.

By reasoning about this model of agent/environment interactions to produce its guar-
anteed control plans, CIRCA is also able to introspect on its own capabilities. When
the system does not have sufficient resources to guarantee that it will meet all of the
domain’s deadlines, CIRCA can recognize this overconstraining situation from the world
model, and can make explicit tradeoffs in its plans, goals, and expectations. The world
model thus plays a crucial role in guiding the system’s behavior and providing an
underlying framework for performance guarantees.

From an AI perspective, this paper presents a method for dynamically building reactive
systems based on an explicit characterization of the range of possible agent/environment
interactions. From a real-time systems perspective, this paper presents a method for
intelligently automating the dynamic synthesis and verification of real-time control sys-
tems.

1.1. Example domain

We will illustrate CIRCA’s world-modeling and control-planning mechanisms in the
example domain shown in Fig. 2. The Puma robot arm, simulated in Deneb Robotics’
Igrip system, is assigned the task of packing objects (parts) arriving on the conveyor
belt into the nearby box. The parts can have several shapes (e.g., square, rectangle,
triangle), each of which requires a different packing strategy. The control system may
not know Q priori how to pack all of the possible types of parts. If parts of a new
shape arrive, the system can stack those parts on the nearby table until it has derived an
appropriate box-packing strategy. The conveyor moves at a fixed rate and the parts are
spaced apart on the belt so that they arrive with some maximum frequency. Once at the
end of the belt, each part remains motionless until the next part arrives, at which time it
will be pushed off the end of the belt (unless the robot picks it up first). If a part falls
off the end of the belt because the robot does not pick it up in time, the system is said
to have failed.

The robot arm is also responsible for reacting to an emergency alert light. If the light
comes on, the system has only a limited time to push the button next to the light, or
it fails. This portion of the task represents a completely asynchronous interrupt with a
hard deadline on its service time.

86 D.J. Musher et al./Artijicial Intelligence 74 (1995) 83-127

Fig. 2. The example domain, in which the Puma robot packs objects from the conveyor into the box.

1.2. Organization

This paper is organized into six additional sections. In the next section, we provide
more detail on the conflicting nature of AI and real-time systems, and briefly describe
previous approaches to combining these methods. Section 3 presents an architectural
overview of CIRCA and discusses the guarantees that the system strives to provide.
Section 4 describes the world model that the system uses to build and guarantee control
plans. The model was introduced briefly in [34]; this paper provides complete details
on the theoretical basis for the system’s guarantees. Section 5 describes how the world
model is used explicitly by the system to dynamically construct and guarantee control

plans. Section 6 discusses related work on modeling techniques used in the service of
real-time control. Section 7 concludes with a summary of our progress and the avenues
of future research we are pursuing.

D.J. Musher et al./Artijcial Intelligence 74 (1995) 83-127 87

2. Background: real-time versus AI

AI planning research has traditionally concentrated on being able to prove that a
sequence of actions will lead to a desirable state of the world. Real-time systems,
however, are concerned with proving that the time needed by a set of actions will not
exceed deadlines. Ideally, we would like to combine the intelligent planning methods
from AI with the guaranteed performance features of real-time systems, to build an
intelligent agent that could be guaranteed to succeed in its environment. But when real-
time constraints are imposed on the action of planning as well as on the resultant plan,
developing intelligent real-time embedded agents is very difficult.

In this section, we compare the features of real-time and AI methods. This comparison
reveals a conflict between the constraints involved in making real-time guarantees and
the characteristics of traditional AI methods. We briefly survey several approaches to
resolving this conflict before introducing our approach in Section 3.

2.1. Real-time systems

As we noted in the Introduction, real-time domains are primarily characterized by
deadlines. To succeed in a real-time domain, a control system must always provide
required responses before their associated deadlines. Thus real-time research has focused
on ways of proving that a particular set of tasks can be guaranteed to meet a domain’s
timing constraints. The most common approach to making these guarantees is to analyze
the worst-case resource requirements of the set of required tasks and then build a task-
execution schedule that ensures the tasks will all meet their deadlines in the worst
case.

As with all such proofs, these guarantees are based on several assumptions about the
nature of the tasks and domain. For example, the system must know all of the tasks to
be executed, and their worst-case resource needs, before those tasks must actually be
executed. Similarly, the system must know the deadlines by which the tasks must be
completed, and the available execution resources. Finally, the system must be able to
finish building the schedule of tasks before those tasks must actually be executed.

These characteristics of real-time systems are summarized in the second column of
Table 1: a real-time system assumes an environment that may be dynamic (in the sense
that the tasks required may vary at runtime) but that at least has known worst-case
task requirements. Most real-time systems run numeric control algorithms with well-
understood resource requirements and performance. Using these worst-case measures, it
is possible to build task schedules that allocate the system’s limited execution resources
and provide guaranteed response times.

2.2. Al methods

The third column of Table 1 outlines characteristics of traditional AI planning systems,
and reveals a sharp contrast with real-time systems. Most AI systems are based on the
“closed world” assumption: the AI-controlled agent is the only source of change in the
world. Within this environment, the AI system’s task is to plan some future course of

88

Table I

D.J. Musher et ui. /Art@cial Intelligence 74 (I 995) 83-127

Cornmarina features of Al and real-time svstems

Real-time Traditional

system AI planner
Reactive

AI system

Cooperative

AI & real-time

Environment

Tasks

Resources

Response

time

dynamic, known

worst-case

classical control,

numeric algorithms

limited

guaranteed

static,

closed-world,

predictable

search,

lookahead planning

assumed sufficient

high-variance

or unbounded

dynamic,

unpredictable,

unmodeled

situated reaction,

no lookahead

assumed sufficient

bounded

dynamic, modeled,

limited

unpredictability

planning &

reaction

limited

guaranteed reactions,

high-variance

planning

action using projection (lookahead) and search. Most planners assume that the agent

executing the plan will have essentially unlimited sensing and processing resources.
If we try to cast this type of AI method as a task within a real-time system, the

fundamental problem is that planning involves searching for the solution to a generally
intractable problem [5], and thus the planning process has extremely large worst-

case resource requirements. The time to find a plan in the worst case may be several
orders of magnitude longer than the average time to find a plan. This means that

allocating resources to guarantee the worst-case response time will be very costly, and
will lead to very low utilization of a system’s resources [37,451. Furthermore, AI
systems with powerful knowledge representations [5, lo] or learning abilities [9] may
have unbounded worst-case response times. In these cases, it is impossible to allocate
sufficient resources ahead of time, and thus real-time guarantees are not feasible.

2.3. Approaches to real-time Al

We can intuitively describe two fundamental approaches to integrating AI and real-
time systems: a system can try to be “intelligent in real-time”, or it can try to be
“intelligent about real-time”. In the first approach, AI mechanisms are forced to meet
real-time deadlines, and the high-variance problems discussed above are relevant. In the
second approach, AI methods are used to reason about the real-time tasks that must
meet deadlines, but the AI process itself is not so constrained.

2.3. I. Reactive systems

Most research on the first approach focuses on overcoming the high-variance na-
ture of traditional planning systems, thus making it practical to embed them in real-
time systems [37]. For example, “reactive” systems have been developed to rely on

frequently-updated, sensor-based representations of their environment and perform little
or no lookahead planning [1,4,11]. The features of these systems are summarized in
the fourth column of Table 1. Note that, since they do not perform search, reactive sys-
tems generally have low-variance, bounded response times. While these hand-engineered

D.J. Mudiner et al. /Artificial Intelligence 74 (1995) 83-127 89

systems have been quite successful, they lack a rigorous foundation supporting their
capabilities. Recent research has focused on automatically generating reactive control
systems for situated agents [1529,471. In this approach, a system is given a description
of an agent’s goals, its environment, and its possible actions. The system then derives
a reactive control system that chooses the correct action for any particular situation
within the bounds of the world model. This approach combines the logical correctness
of traditional planning systems with the robust execution features of reactive systems.

However, while reactive systems may have low-variance response times, “reaction
planning” systems do not yet provide real-time performance guarantees. There is no
proof that the reactive systems they generate will react at a rate appropriate to the
environmental changes. A system can be over-reactive if it acts prematurely, committing
to a poor course of action when it has sufficient time to compute a better one. Likewise,
a system can be under-reactive if it fails to keep up with changes in its environment,
and its decisions are based on excessively outdated information. The effectiveness of
an agent depends not on its absolute reaction speed, but on its speed relative to its
environment. Thus a fundamental design goal for a situated agent is the ability to react
to its environment at an appropriate time scale. Furthermore, since various environmental
features may change at drastically different rates, an agent should be able to support
reactivity on a variety of time scales, and should be able to explicitly reason about the
appropriate rate of reactivity for a particular goal and environment.

2.3.2. The cooperative approach
The second approach to real-time AI, where an agent should be “intelligent about

real-time”, avoids embedding AI mechanisms within a real-time system. Instead, AI
processing and real-time control run in parallel and are loosely coupled. In essence,
the cooperative approach builds an overall system from two components: a traditional
real-time system and a real-time system designer. Real-time system designers have tra-
ditionally been people, who are given detailed characterizations of how the real-time
system needs to interact with the environment. In the cooperative approach, an AI system
performs the role of a system designer, explicitly allocating the system’s limited exe-
cution resources for expected tasks. Because the real-time and AI components are only
loosely coupled in a cooperative system, the AI processing can remain unpredictable,
high-variance, and unguaranteed. This cooperative approach has motivated the design of
CIRCA.

3. Overview of CIRCA

We assume that the autonomous agent our system must control will inhabit an en-
vironment in which, to survive and achieve its goals, the agent must respond actively
to various types of input stimuli. Some of those responses will maintain the system’s
safety and some will help achieve other system goals. Within this type of environment,
CIRCA is designed to make guarantees about its performance based on the fundamental
restriction that the system has limited sensing, processing, and actuating resources. A
direct consequence of this bounded rationality [48] and bounded reactivity [331 is that

90 D.J. Musher et ul. /Artificral Inlelligence 74 (1995) 83-127

TAP place-rectangle-in-box
:TEST (and (part-status in-gripper) (part-type rectangle))
:ACTION (place-rectangle-in-box)
:RESOURCES (overhead-camera arm>
: TEST-TIME .2 [seconds]
:ACTION-TIME 2.5 [seconds]
:MAX-PERIOD 11.2 [seconds]

Fig. 3. An example TAP from the robot arm domain.

the system usually cannot simultaneously guarantee all the required reactions to input
stimuli that may ever be required to achieve its goals. CIRCA’s solution to this limita-
tion has two elements. First, the system divides its overall task into subtasks that only
require selected subsets of the system’s possible reactions. CIRCA dynamically builds

short-term control plans that are guaranteed to implement those subsets of reactions. As
the agent pursues different subtasks, the appropriate reactions change, and new control
plans are derived. Thus the system never tries to simultaneously implement all of the
reactions required for the overall task.

CIRCA’s second way of dealing with resource limitations is to gracefully degrade its

guarantees. If a subtask still requires more reactive responses than can be guaranteed,
the system can leave less-important reactions unguaranteed. CIRCA’s guarantees are

based on worst-case execution times, so when guaranteed reactions use less time than
they have been allotted, the system can use the remaining time to execute unguaranteed
reactions. Thus CIRCA creates two classes of reactions (guaranteed and not) so that

it can guarantee the timeliness of some reactions rather than none. We will discuss the
value of these guarantees in Section 3.4, after presenting more details on CIRCA.

3. I. Control plans

CIRCA’s control plans take the form of cyclic schedules of simple test-action pairs

(TAPS). Each TAP is essentially an annotated production rule consisting of a set of
tests (or preconditions), a set of actions to take if all the tests return true, data about
the sensing and actuating resources the TAP requires, and worst-case timing data on
how long it takes to test the preconditions and execute the actions. During the pro-
cess of building control plans (to be discussed in detail in Section 5)) individual TAPS
are automatically composed from primitive descriptions of actions and tests. The plan-
ning process also assigns each TAP a maximum period, fixing the longest time interval
allowed between invocations of the TAP. A control plan (TAP schedule) is guaran-
teed to execute its component TAPS at least as frequently as their maximum periods
require.

Fig. 3 shows an example TAP generated automatically for our example robot task.
The TEST specifies that the TAP is executed only if the robot has grasped the part,
and knows that the part is rectangular. If these conditions are true, the robot places
the part into the box. Testing and executing this TAP takes a maximum of 2.7 seconds

D.J. Musher et al./Art@cial Intelligence 74 (1995) 83-127 91

(TEST-TIME + ACTION-TIME), and the AIS’ planning process has determined that it
must be run at least every 11.2 seconds (MAX-PERIOD) to guarantee that the current
part will be processed by the time the next part arrives (thus avoiding failure).

In addition to the cyclic schedule of guaranteed TAT%, a control plan may also include
a list of unguaranteed or “best-effort” TAPS. These TAPS implement reactions that are
desirable, but cannot be guaranteed due to the system’s bounded reactivity. If the test
expression of a guaranteed TAP in the cyclic schedule returns false, then an unguaranteed
TAP may be executed in the time scheduled for that guaranteed TAP’s action.

To facilitate our discussion, we introduce a functional notation for referencing features
of a TAP 7. The function tests(r) refers to the TAP’s tests, and actions(~) refers to
the actions the TAP implements. We use wcet(tests(r)) to refer to the worst-case
execution time of the TAP’s tests, and likewise wcet(actions(7)) for the worst-case
execution time of the TAP’s actions. These are the values represented by the TEST-TIME
and ACTION-TIME slots in the TAP structure. The worst-case execution time for the
whole TAP is thus wcet(r) = wcet(tests(7)) + wcet(actions(T)). The best-case and
actual execution times are similarly referenced by the functions beet(r) and et(r). We
introduce these last two notations only for the discussion in Section 4; CIRCA does not
represent or reason about them.

3.2. Operations

CIRCA’s operation can be viewed as a pipeline in which control plans are derived
in the AIS, scheduled in the Scheduler, and then executed on the RTS. These three
operations can occur simultaneously on different control plans, so that while the AIS
and the Scheduler are cooperatively developing the next control plans, the RTS is
executing the previous control plan and maintaining system safety. However, data flow
is not strictly unidirectional through the pipeline: feedback information can flow from
the RTS and Scheduler to the AIS, so that changes in the world can affect the generation
of control plans. For example, the arrival of a part of an unfamiliar type will cause the
RTS to temporarily stack the part on the table and notify the AIS. In response, the AIS
will develop a new plan for packing the new type of part into the box.

CIRCA’s primary architectural feature is the separation of real-time and non-real-time
subsystems. The RTS and AIS serve different purposes within the system, and their
interaction must be carefully controlled. The RTS is responsible for executing control
plans in a completely predictable fashion, so that their execution matches the model
used by the AIS and Scheduler. The RTS meets this criterion for TAP execution because
it has no other function; it simply loops over the cyclic schedule of TAPS, testing and
executing them repeatedly. Even communication in and out of the RTS is encapsulated
within TAPS, so that all RTS activity is scheduled explicitly.3 Thus control plans that
make guarantees in the modeled world are executed accurately, and the model guarantees
are equally valid in the real world.

The AlS and Scheduler, on the other hand, perform the complex, unpredictable rea-
soning required to develop guaranteed control plans, and the performance of these

3 For more details on the RTS, see [3 11.

92 D.J. Musliner et ul. /Artijiciul Intelligence 74 (1995) 83-127

subsystems must not interfere with the RTS’ predictable execution. To achieve this iso-
lation, each control plan executed on the RTS is designed both to achieve a short-term
goal and to ensure system safety throughout the range of environmental states that may

occur during and after the accomplishment of this goal. The effect of the latter crite-
rion, which will be explained in detail in Section 4, is to allow the RTS to keep the
system safe while the AIS and Scheduler try to build the next control plan; the planning

operation is nut constrained to meet domain deadlines.
The planning processes of the AIS can be divided into two main levels: the planning

that builds control plans (TAP schedules) to accomplish some short-term goal, and the

higher-level abstraction planning that decomposes long-term goals into short-term goals
for which control plans will be built. This paper is primarily concerned with the AIS

planning processes that build control plans.
These control plans can implement sequential behavior, such as the series of actions

required for the Puma to pick up a part from the conveyor, move to the box, and place
the part in the box. Longer-term sequential behavior is achieved by downloading new

control plans to the RTS. For example, if the Puma must move full boxes onto a second
conveyor, the set of control reactions required for that task might form a separate TAP
schedule, downloaded to the RTS when a box is filled.4 Control is transferred to a
new plan only when the system detects that it is in an acceptable state which the new

plan has also been built to handle. Clearly, to implement sequential behavior in this

way, the planner must decompose the task so that consecutive control plans have no
hard real-time constraints between them. That is, the planner must develop consecutive
control plans whose common states for transitions between the plans can be maintained
or re-achieved indefinitely.

In a less-repetitive domain such as mobile robot navigation, this type of sequential
activation of control plans is even more intuitive. For example, a mobile robot might
be given one control plan that moves it along a hallway to a doorway, another plan
to move through the doorway into a room, and another to perform some task once at
a workstation in the room. These separate control plans would each use the robot’s
limited sensors, processors, and actuators in different ways during the different phases
of operation. The system would transfer between control plans only when the mobile

robot was in a safe (halted) state, so there would be no hard deadlines dictating the
time by which each control plan must be built.

3.3. Control-level versus task-level

The dichotomy between CIRCA’s real-time and non-real-time subsystems relies on
the distinction between two classes of goals: control-level goals and task-level goals.
CIRCA is designed to guarantee its control-level goals via the predictable execution of
the RTS. Task-level goals, on the other hand, are achieved on a best-effort basis; that
is, the system tries to achieve task-level goals when possible, but if time pressure or

4This example raises the obvious possibility of caching and reusing TAP schedules-we expect that this

approach could provide significant benefits, but this paper focuses on how to produce these schedules in the
first place.

D.J. Musher et al. /Artijcial Intelligence 74 (1995) 83-127 93

other restrictions make this impossible, the system is still considered successful. In real-
time systems terminology, control-level goals correspond to hard deadlines. Frequently,
control-level goals are related to system safety. For example, in our robot arm domain,
the system has a control-level goal of preventing arriving parts from falling off the
end of the moving conveyor belt, because parts may be fragile or explosive, and thus
dropping them is considered a catastrophic failure. Task-level goals can be violated (or
not achieved) without such drastic results. For example, the robot arm system is given a
task-level goal to stack arriving parts in the box. However, if the emergency light goes
on during that operation, it is acceptable for the system to quickly place the part on
the table (instead of in the box) and respond to the emergency, In this example, it is
acceptable for the system to not achieve its task-level goal, and no deadline is given.

We can also conceive of task-level goals that have deadlines, but those deadlines must
be “soft” or negotiable. Task-level deadlines frequently result from commitments to other
agents, while control-level deadlines are derived from physical relationships between an
agent and its environment. For example, a mobile robot may have a deadline for a
task-level goal of arriving at some location, but missing that deadline may only require
the agent to renegotiate a rendezvous with another agent at some later time. The same
mobile robot, however, will have control-level goals to avoid collisions, and the actions
that achieve those goals must always meet their deadlines, or the robot may be damaged.
Accordingly, the system always gives priority to scheduling and guaranteeing actions
that achieve control-level goals.

The distinction between task-level and control-level goals is made automatically by
CIRCA, based on its analysis of the domain model, resource limitations, and prioritized
goals specified by the system designer. 5 Examining this information, CIRCA can derive
deadlines for the actions which achieve the various goals, and can try to maximize
the number of goals it will achieve given its bounded reactivity. CIRCA may also
dynamically decide that it does not have the resources required to guarantee that it
will achieve all of its control-level goals. In that case, the system automatically makes
performance tradeoffs which may leave some control-level goals unguaranteed, treating
them essentially the same as task-level goals. Thus control-level goals are those that the
system should try to guarantee, but this may not always be possible.

Linking control-level goals to system safety is a crucial concept, because it shows
how the RTS and AIS can be truly isolated. Since the AIS and RTS run on separate
processors, the AIS’ reasoning is largely separated from the system’s actual interactions
with the environment. The only way that the AIS’ processing affects the world (directly,
not through the RTS) is in the fact that it takes up time-that is, while the AIS is building
a control plan, the world “keeps going”. However, even this effect can be factored out
because the RTS continues interacting with the world, enforcing the guarantees on
control-level goals. If those guarantees ensure the system’s safety, the RTS can continue
keeping the system safe for an indefinite amount of time while the AIS generates the
next control plan.

CIRCA’s unguaranteed TAP list provides best-effort reactions that are not guaranteed
to meet any deadlines, but may run when the system has extra time available. Unguar-

5 Currently, our implementation only deals with two priorities: critical and not.

94 D.J. Musher et ul. /Artificial Inrelligence 74 (1995) 83-127

anteed TAPS typically achieve task-level goals, and in tightly constrained circumstances
they will also provide best-effort attempts to achieve control-level goals. In the degener-
ate case when all reactions are best-effort because the system lacks the resources needed
to guarantee any, CIRCA behaves just like most other reactive systems, executing as
fast as it can, with no reason to believe this speed will meet the demands of its environ-
ment. We claim that CIRCA’s automatically-guaranteed control performance is superior

in many ways to unguaranteed control.

3.4. The value of guarantees

One main benefit of providing control-level guarantees is the a priori knowledge of

the suitability of the control system; if CIRCA can build a guaranteed control plan, we
may confidently use that plan in situations where failure is not acceptable. If CIRCA
cannot provide a guaranteed control plan, this is an indication that the system does

not have sufficient resources to cope with its control-level goals in the environment.
In that case, CIRCA has the ability to modify its high-level plans or goals to try to

build an acceptable plan. For example, the system could alter the way it decomposes a
long-term goal into short-term goals, so that the timing constraints on difficult processes
are relaxed. In our example domain, the system might allocate more time to the process
of packing parts into the box by slowing down the conveyor belt. The key point is that

CIRCA is aware of its own capacity to deal with a specific combination of goals and
environment. This is analogous to the cognizant failure stressed by Gat [131. Guaranteed

control plans also play a crucial role in isolating the unpredictable performance of the
AIS from the rigid, real-time guarantees of the RTS, as discussed above.

Of course, CIRCA’s guarantees are based on several assumptions about the generally

uncertain, unpredictable real world. However, there is no better way to build a control
system: all systems are designed with certain environments in mind, and if they can be
proven to manage the specified environments that is only for the better. The uncertainty
inherent in the real world makes no difference for this argument. To paraphrase Stankovic
[49], the fact that the system may not function correctly or that the world may differ
from our environment model with a nonzero probability does not give us license to
increase the odds of failure by not trying to guarantee performance.

Consider this didactic example: we must transmit vital digital information across a

network, and we can use either a simple one-shot transmission or an error-correcting
protocol that is guaranteed to correct all known types of errors. Ignoring efficiency (or
cost), the error-correcting protocol is clearly the preferable choice, because it has a
performance guarantee that the one-shot transmission lacks. This guarantee has value
despite the fact that we acknowledge that the protocol is only guaranteed to work for
known errors. In fact, we can never hope to do better. The task as given is to transmit
over a particular network, and the error-correcting protocol has been optimized for that
task.

To determine the net value of performance guarantees, we must also examine their
two fundamental costs: the one-time cost of making the guarantee and the recurring cost
of potentially low utilization. In the case of the error-correcting protocol, these costs
might be represented by the time-consuming process of coding the protocol, and the

D.J. Musliner et al./Artijkial Intelligence 74 (1995) 83-127 95

decreased transmission bandwidth available while using the protocol. By both of these
measures the error-correcting protocol costs more, but it may be worth the cost to ensure
that we really can transmit the information correctly. If the survival of the Space Shuttle
depends on the transmitted data, the complex protocol is definitely worth these costs.

One confusing issue is flexibility: is a guaranteed system less flexible than an unguar-
anteed system? Not necessarily-flexibility and utilization are traded off in guaranteed
systems. A complete guaranteed system is maximally flexible because it must deal with
all possible occurrences. This guarantee leads to lower utilization when the environment
does not exhibit all of the worst-case behaviors that must be monitored. On the other
hand, a system may guarantee to handle only some of the possible occurrences, and in
return it could have higher utilization. The flexibility/utilization tradeoff is not unique
to guaranteed systems, it is a feature of all bounded-resource systems. The tradeoff is
clarified by the fact that guarantees provide a stricter definition of flexibility: a guaran-
teed system’s flexibility can be seen as the fraction of the possible worlds the system is
known to be capable of handling. By that definition, an unguaranteed system can only
establish flexibility through testing.

In sum, CIRCA’s guarantees are only as good as its environment model, and its
control plans do incur higher costs than other plans that do not deal with all possible
environmental occurrences. On the other hand, CIRCA’s control plans have known
properties such as correctness and timeliness that can be used in a priori analyses,
which may in turn lead to modifications in the system’s plans and goals. We postulate
that, in many complex control tasks, the advantages of guaranteed performance outweigh
its costs.

This paper focuses on CIRCA’s methods for deriving its safety-guaranteeing con-
trol plans. In the following section, we show how the architecture’s model of
agent/environment interactions forms the basis for these guarantees.

4. The world model

An efficient world model should represent precisely the information necessary to de-
rive plans, and no more. Since our goal is to derive control plans that are guaranteed
to meet domain deadlines, these plans must be able to succeed even through the en-
vironment’s worst-case behavior. Thus the world model we have developed to derive
TAP plans is not intended to be a complete, perfect representation of the world’s actual
behavior; instead, the model represents the world’s worst-case behavior, and it is used
to build plans that can cope with the worst-case. This distinction is extremely important,
because it simplifies some aspects of world modeling and motivates the model form we
have chosen.

Informally, the world model represents the behavior of the world (including the
controlled agent) as movement between states via transitions. States contain descriptions
of the features of the world at some instant, and transitions describe how those features
can change. Ongoing processes in the world are represented by “state-encoding”-
the status of a process is considered a feature of the world (a “fluent” [28]), and
is explicitly encoded into the representation of a state. Important changes in process

96 D.J. Musliner et al. /Artificial Intelligence 74 (1995) 83-127

status thus correspond to transitions between states. Any passage of time that does not
lead to significant changes in process status is not represented explicitly: essentially,
when no transition occurs the world remains in the same state, where that state may

indicate that some process is currently occurring. For example, as the robot arm moves

towards the box, the status of this process is encoded into the features (ROBOT-STATUS
MOVING-OVER-BOX) (ROBOT-POSITION CHANGING). Just continuing to move does not
lead to a state change, and thus there is no associated transition. However, when the
robot arrives at its destination, the process finishes, the status will change, and the
world model will represent this change by a transition to a new state with the features

(ROBOT-STAT~S HALTED) (ROBOT-POSITION OVER-BOX).

In [341 we briefly introduced a formal representation of the world model as a directed
graph. In this paper, we greatly extend the formal representation, showing precisely how
control plans can be proven to guarantee the system’s safety. The formal world model

has five elements (S, F, TE, TA , TT) :
(1) A finite set of “states” S = {St, &, . . . , S,,}, where each state Si represents a

description of relevant features of the world.
(2) A distinguished failure state F, which subsumes all states that violate domain

constraints or control-level goals (e.g., system survival). The system strives to
avoid the failure state.

(3) A finite set of “event transitions” TE = {TEl, TEE,. . . , TE,,}, that represent world

occurrences as instantaneous state changes.

(4) A finite set of “action transitions” TA = {TAI , TAZ, . . . , T,+,}, that represent actions

performed by the RTS.
(5) A finite set of “temporal transitions” TT = {TTI, TTZ.. . . , TQ}, that represent the

progression of time. We represent only the significant temporal transitions which

lead to state changes.
Each transition c E T = TE U TA U TT is a mapping between states; E : S + S. The

functions D : T t S and R : T ---f S determine the domain and range of a transition;
T; : D(Ti) -+ R(Ti).

Fig. 4 shows an abstracted portion of the graph model for our robot arm domain.

Solid single arrows represent event transitions TEE, dashed single arrows represent action
transitions TAi, and double arrows represent temporal transitions Tn. State A in the

figure represents the world state in which the robot has picked up a part from the
conveyor and is moving to place it into the box. The double arrow to state B represents
the continuation of that process until the robot reaches its destination. When the robot
arrives over the box, the control system senses that state and halts the motion process,
as represented by the dashed arrow to state C.

The single solid arrow from state A to state D represents the possibility that the emer-
gency light may go on while the robot is in motion. 6 From state D, the double arrow to
state F (failure) represents the deadline for reacting to the emergency and pushing the
button. The dashed arrows to states E, G, and H represent the planned actions to avoid
that failure, quickly halting, placing the part on the table, and moving to push the but-

6 We have omitted other instances of the same event that may occur from state B and state C

Fig. 4. An abstracted portion of the graph model for the robot arm domain. For clarity, many states, state
features, and transitions have been omitted.

ton. Note that we have modeled these three actions (HALT, PLACE-PART-ON-TABLE, and
PUSH-EMEFtGENCY-BUTTON) as atomic-no event can intervene. Before we can explain
why this is necessary, we must first clarify the semantics of state transitions.

4.1. Transitions

At any particular time, the world is considered to occupy a single state in the model,
conceptually marked by a unique token w. The token moves instantly along a transition
from its domain state to its range state when the transition “fires”. A transition may
fire any time the token is in its domain state and the transition is “enabled”. When
the token enters a new state, the transitions out of that state are enabled for some
interval of time following the transition into that state, as indicated by the function
enabled : T x If8 + (0, 1). The fu nc ions mind : T + JR and muxd : T --) W represent t
the endpoints of the enabled interval as the minimum and maximum delays after the
state is entered. So if to is the time at which w enters state Si, and Ti is a transition
leading out of Si (i.e., D(c) = Si), then enabled(z, t) = 1 for all times t such that
to + minA(T) < t < to + muxA(Z) .

The different types of transitions have different general forms for their enabled in-
tervals, as shown in Table 2. Since event transitions represent asynchronous and in-
stantaneous external events, which may occur any time the world is in their domain
state, their mind is zero and their muxd is infinity. Both event transitions and temporal
transitions are modeled as uncertain; i.e., they may never fire. This feature prevents
the system from building plans that depend on external events or unguaranteed pro-
cesses for the accomplishment of control-level goals; such dependencies would prohibit
any performance guarantees. This is the reason the PUSH-EMERGENCY-BUTTON action
(among others) must be an atomic transition, rather than a state-encoded process; we

98 D.J. Musher et al. /Artificial Intelligence 74 (1995) 83-127

Table 2

Enabled interval definitions

Transition type mind maxd

Event 0

Temporal >O

Action bcet(7)

co

cc

P(7) + wet(T)

must guarantee to push the button to avoid a control-level failure, so the action must

itself be guaranteed.
Temporal transitions, by definition, represent the passage of time, and the significant

state changes that can occur as processes continue. Temporal transitions have a mind

determined by the rate at which the corresponding process is running. In the example
of Fig. 4, the mind for the temporal transition from state A to state B depends on how
fast the robot is moving, as well as how far it has to move. In this case, the transition’s
mind represents the earliest possible time the robot could ever arrive over the box (and

thus enter state B).
Action transitions represent the intentional activity of the RTS, and thus can have

more rigorously defined temporal behavior. In particular, since an action is implemented

by a TAP running with a fixed period, we can compute values for the minimum and

maximum delay between the time the world enters a state and the time the TAP fires,
sensing that state and executing the action. We assume, as a worst case, that a TAP’s tests

take a “snapshot” of the world when they are first run and spend the rest of et(tests(7))

processing that captured data. We also assume that the TAP’s actions do not actually
affect the world until the very end of et(actions(~)). Thus the minimum delay between
entering a state and completing a relevant TAP’s actions is bcet(r), as illustrated in
Fig. 5. In the figure, the upper time-line shows the occurrence of an event that moves

the world from state X to state Y. Below that, the mind case is illustrated by a TAP
whose tests begin just as the new state is entered. Below that example, another periodic

TAP is shown just missing the state transition (its tests started just before the event). In
that case, the TAP will not correctly sense the new world state until its next invocation,
and thus the action transition implemented by that TAP has a maxd = P(7) + wcet(T),

where P (7) is the period of the TAP

4.2. Proving safety

Given this understanding of the dynamics of the world model, we are now in a position
to lend rigor to the notion that some control plans can “cope” with the world. First we
will define the goal of a control plan as keeping the world restricted to a particular
subset of states, and then we will show how that goal can be provably achieved.

We define an “event-closed” set of states SEC C S as a set of states for which every
event transition from every state in the set leads to a state that is also in the set. That is,

~TEI E TE 1 D(TE~) $ SEC V R(TEi) E SEC.

In other words, instantaneous events cannot move the system out of the event-closed set
of states; only actions and temporal transitions can leave the event-closed set.

D.J. Musher et al. /Artificial Intelligence 74 (1995) 83-127 99

event
state X I state Y

i tests 1 actions
bcet(T)

6 w
minA ’

j tests 1 actions

: :
: P(r) (TAP period)
!M

?IUXA

tests 1 actions
wcet(z)

’

Fig. 5. Deriving the mind and maxA for an action transition implemented by a periodic TAP 7.

An event-closed set of states with no events leading to the failure state is called a
“safe” set of states:

Note that a safe set of states can still lead to the failure state through temporal transi-
tions (i.e., it is possible that 3Tn E TT 1 II E Sde A R(Tn) = F). These temporal
transitions to failure correspond exactly to violating the hard real-time domain con-
straints: if the system fails to react to a state before a hard deadline, then in the worst
case it will enter the failure state via a temporal transition. By “waiting too long” to
react, the system fails. In the context of real-time computing, this is known as a riming
failure.

The definition of a safe set of states is not particularly restrictive, since it only
prohibits event transitions to failure and event transitions that lead out of the set. The
former requirement is necessary because no system can guarantee to avoid failure if it
has no time to react to an event before failure occurs. The latter requirement is intended
to allow the system to use action transitions to keep the world within the safe set, never
moving to a state from which failure is possible via an event transition. In essence, the
existence of a safe set of states only constrains the environment such that an agent must
always have some minimum time to react before a failure occurs.

Finally, we can define a “safely-controlled” set of states Ssc as a safe set which also
has no temporal transitions to failure or out of the set, i.e.,

fin E TT 1 DU-n) $ &cV(Wid E &z~R(Tn) # F).

The goal of a control plan is to ensure that the world remains in a safely-controlled
set of states, so that failure can never occur. This is analogous to a stable closed-loop
control policy [46] which is known to restrict the operation of a controlled system
to a desirable range of states. To show how a control plan can make a safe set of
states a safely-controlled set, we now introduce a simple set of correctness-preserving
model transformations. These transformations prune out unreachable states [121, and

100 D.J. Musher et ul./Artijicial Intelligence 74 (1995) 83-127

thus allow us to prove safety properties by showing that certain control plans can restrict
the world so that no failure states are reachable.

4.3. Model transformations

We must first define the concept of reachability in our world model. We repre-
sent reachability, or the possibility of the world entering a given state, as a predicate

reachable : S + (0, l}, where

reachable(S;) = I

if 3z E T, 3Sj E S 1 reachable A D(T) = Sj A R(C) = &.

This recursive definition merely says that a state is reachable if there is a transition to

that state from another reachable state. We ground the recursion by defining a set of
initial world states I C S such that VI, E I 1 reachable(Ii) = 1. For any initial state
I,, the transitive closure of reachability from that state yields RI,, the set of all states
reachable from that initial state. In general we do not distinguish among possible initial
states, and thus when we speak of the set of reachable world states we mean the union

of the reachable sets from each initial state: RI = U,,E, RI,.

The “correctness” of a world mode1 is determined by how accurately it represents

the behavior of the world. In our case, the mode1 is intended to represent all of the

worst-case possible behaviors, so the set of all reachable world states RI is the crucial
factor in determining the correctness of our model. If the world mode1 predicts exactly

the same states that are possible in the real world, it is most correct. If the model
predicts those correct states plus some additional states, the only problem is inefficiency
because the system may plan actions to account for states that can actually never occur.

However, if the model fails to predict some possible world state, the system may not
plan a necessary control action, leading to failure during plan execution. Thus the mode1
transformations we use preserve the model’s correctness by never removing mode1 states
unless those states can never be reached.

The first, most powerful transformation simply involves removing transitions that are

preempted, that is, transitions which can never fire because some other transition will
always fire first. In terms of our representation, a transition Ti preempts another transition
7” if maxA < minA(7”). Since events have mind = 0, nothing can preempt an event.

Temporal transitions have non-zero mind, and thus we can design action transitions
(whose maxd depends on the frequency we choose for the corresponding TAPS) that
will meet the preemption criterion. A preempted transition never becomes enabled and
thus can never fire, so it can be removed from the graph mode1 without affecting the
correctness of the model.

Two other simple transformations complete the required set. First, it is obvious that
any non-initial state that has no transitions leading into it is unreachable, and thus can
be removed from the mode1 without affecting correctness. Finally, all transitions leading
out of states that are unreachable can also be removed, since they will never fire either.
Table 3 summarizes the conditions for these mode1 transformations.

D.J. Musher et al. /Artificial Intelligence 74 (1995) 83-127

Table 3
Conditions for removing world model states and transitions

VSiES-II, VCET

101

preempted(c) E3Tj E T 1 mu.ul(Tj) < minA(l;:) A D(Tj) = D(c)

unreadtable E R(Ti) # Si

unfireable(Ti) ~unreachable(D(c))

By propagating the preemptive effects of planned control actions into the removal of
states from the world model, these transformations show how control plans can force
the world to remain within a safely-controlled set of states. Control plans that meet this
criterion are called “complete” control plans, and they guarantee that the system will
avoid failure.

Beyond this, however, complete control plans also provide one other feature critical to
CIRCA’s operation. We have previously noted that resource restrictions generally make
it impossible to produce a single control plan that will guarantee safety and achieve all
task-level goals. Thus CIRCA breaks task-level goals into subgoals and tries to build
complete control plans for each subgoal. It is essential that these control plans guarantee
to avoid failure and also guarantee to avoid moving out of the safely-controlled set of
states for which they were planned, so that the system can continue running a complete
control plan for an indeterminate amount of time without risk of violating its control-
level goals. Thus the AIS can utilize unpredictable or high-variance AI techniques to
build control plans, because while it is building one, the previous control plan is running
on the RTS and keeping the system safe.

4.4. Relationship to Petri-Net models

It is useful to compare this type of state-based model with models based on Petri
Nets (PNs) and their variations [381. In PN models, “places” represent the status
of world features, and transitions connect places, representing the way features can
change. Multiple tokens can be spread among the places, and the complete state of the
modeled world at any instant is defined by the distribution of those tokens, known as
the “marking” of the net. Thus in PNs the set of world states that can be reached from
any initial world state is represented by the set of net markings that can be reached from
an initial marking. In contrast, each state of our world model is a complete description
of the world, and the set of world states that can be reached from an initial state is
represented by the set of model states reachable from that initial state. In other words,
the explicit state enumeration of our world model makes the set of reachable world
states extremely easy to recognize.

This feature is desirable because, as we have just shown, reachability is the key to
proving safety. In the process of building the world model, it is trivial for the AIS to
recognize when a failure state is reachable, because it will actually create a state with the
(FAILURE T) feature. Thus, while building the world model, the AIS can immediately
plan actions to avoid failures. Planning for a world model represented as a PN would
be considerably more difficult, because the effects of actions on the reachability of
particular world states are much harder to determine. In effect, our state-based world

102 D.J. Musher et al. /Art#cial Intelligence 74 (1995) 83-127

model trades the storage space cost of enumerating world states against the computation
time cost of determining reachability in a more compact PN model.

4.5. Worst-case simplifications: uncertainty, determinism, and time

Because our world model need only represent the worst-case behavior of the envi-
ronment, several potentially complex representation issues are simplified. For example,
a great deal of research has been focused on methods for explicitly representing and

propagating uncertainty about the likelihood of various events. Our world model has no

need of that information: any possible transitions between world states must be included
in the world model, no matter how improbable they are, because in the worst case they

just might occur. However, if the system eventually does need to make compromises
because it cannot guarantee all of its control-level goals, then having information on

the likelihood of various states leading to failure might help the system make intelligent
choices about which control-level goals can best be left unguaranteed.

Similarly, uncertainty about the world’s initial state is not explicitly represented.
Instead, the initial world features specified by the AIS are assumed to match a set of
initial model states I, and control plans must be built to deal with all of the states
reachable from each of those potential initial states.

As for uncertainty about information from sensors during runtime, the system is
required to be able to sufficiently distinguish the current world state whenever an action

has been planned. This minimal capability is required by any system claiming guaranteed

performance. Note that this does not mean that the precise, complete world state must
be determined for action (because some subset of world features may be sufficient to
determine the appropriate action-see Section 5.2), nor does it mean that the control
system must be able to perfectly track the progression of states in the environment [411.
In fact the system never needs to know the world’s state if it does not need to take any

action; thus, the world can traverse many transitions but cause no change in the control
system. The RTS’ internal representation of the world can become quite outdated, but
only in non-critical ways.

For example, while the robot arm is responding to an emergency alert, the next part
may arrive on the conveyor belt. However, the system may not immediately recognize

this event, because it is in the middle of the actions responding to the emergency. These
emergency-response actions are scheduled at a higher frequency than the actions that
deal with arriving parts. The response latency and the resulting temporarily “out-of-

date” internal state of the RTS are non-critical because, even if the system had seen the
new part immediately, it would have had to continue the ongoing reactions to avoid a
timing failure from the emergency. In the process of building the control plan, the AIS
has already examined this sequence of events and has guaranteed that the control plan
functions correctly.

We have described the world model transitions with unique range states, but this
does not mean that the world or the model must be deterministic. Transitions can also
specify multiple possible range states. Again, because all possible states must be handled,
nondeterminism does not add complexity: nondeterministic transitions are equivalent to
multiple transitions with identical domains and different range states.

D.J. Musher et ai./Amjkial Intelligence 74 (1995) 83-127 103

L J
Fig. 6. A world model subset showing the representation of potentially simultaneous events.

As we have seen, the worst-case criterion also removes the need for any detailed
representation of time. Complex temporal logics have been developed for reasoning
about the relationships between asynchronous external events, simultaneous actions,
and the regular passage of “wall clock” time [2,7,16,28,50]. So far the only timing
information we have shown for our world model is the simple worst-case values needed
to recognize preempted transitions. There is no need to explicitly represent or reason
about the different possible orders of events or actions, because all of those orders are
considered equally likely (in the worst case).

Instantaneous events allow our model to represent simultaneity, but they do so by
enumerating sequences of states that can occur without the passage of time. For example,
in Fig. 6 we see that event transitions El and E2 are both applicable to state A.
A complex temporal world model might include constraints on the ordering of those
events, but that information is of no use to us because the worst case may include any
order of occurrence, even simultaneity. Note that the possibility of El and E2 occurring
simultaneously is explicitly represented by state C: since the events have mind = 0, state
C can be entered at the same instant state A is entered.

4.6. Dependent temporal tmnsitions

The world model has one difficulty with its minimalist representation of time: depen-
dencies between temporal transitions. To illustrate the problem, Fig. 7 repeats a portion
of the robot arm domain shown earlier. Beginning with the event EMEFlGENCY-ALERT
entering state D, the robot has thirty seconds to push the emergency button before
failure occurs, as represented by the temporal transition to failure. We can see that
taking the necessary actions HALT and PLACE-PART-ON-TABLE does not remove the
threat of failure from the emergency condition. Thus state E and state G still have tem-
poral transitions to failure. The difficulty is that the minimum time until failure along
these transitions is no longer thirty seconds, because the emergency began in state D,
and some amount of time passed before we halted and moved to state E. Thus the
real minimum time to failure from state E depends on the sojourn time in state D.
We call this situation a dependent temporal transition, and it complicates the process
of reasoning about the world model, as we shall see. However, dependent temporal
transitions are still manageable because the worst-case mind for a dependent temporal
transition is easy to determine: if TTj is dependent on Tn leading out of state 4, then
minA(TTj) = minA(Tn) - maxd(T~ij), where TAij is the action taken to move between
states Si and Sj. In the figure, the temporal transition from state E has mind = 30 minus
the maxd of the TAP implementing the action from state D to state E.

104 D.J. Musher et (11. /Art@cial Intelligence 74 (199.5) 83-127

4.7. Action loops

Mixing action transitions and temporal transitions can lead to one type of pathological
subgraph called an action loop. In an action loop, actions join a cycle of states without
any intervening events or temporal transitions. For example, Fig. 8 shows an action
loop that the system might propose while building a plan for the robot arm problem.
In the figure, the system has planned to halt in state D, transitioning to state E. But it

has also planned that, once in state E, it will immediately resume motion. There are

two problems with this action loop. First, the loop can lead to a timing failure because
each time the world loops back into state D, the time remaining until failure is not the
original thirty seconds, but depends on how long it has been since the emergency alert
first occurred. CIRCA has no way to recognize when the loop has been executed many
times and failure is imminent.

The second problem with action loops is that they accomplish nothing. In many

classical planning systems, an action loop might have a valid purpose because the

Fig. 8. An action loop that might be generated for the robot arm domain.

D.J. Musliner et al./Art@cial Intelligence 74 (1995) 83-127 105

event

I state x
event

state Y

TAP :
tests 1 actions

Fig. 9. An inappropriate action.

representation of states is incomplete, and thus side-effects are possible. In our complete
state representation, side-effects do not exist, so looping back into a previous state
means that the world is exactly the way it was (except for the wall clock time). Thus
a sequence of actions leading out of a state and then back into that same state will not
accomplish any goal. Note that a loop of states including event or temporal transitions is
quite reasonable, because these transitions represent environmental behaviors that may
move the world away from desired states, and the system should plan actions to restore
those goals.

4.8. Predictive su#iciency

Fig. 9 shows how “inappropriate” TAP actions may be executed if an event occurs
between the time a TAP senses the world state and performs its actions. In some cases
inappropriate actions do not matter, and in some cases they can lead to catastrophic
failure. Consider an example in which a TAP is used to detonate explosive charges that
will demolish a building. Sensors have been installed on the building’s doors to make
sure that nobody is in the building when it is destroyed. But, as in Fig. 9, someone might
enter the building just after the sensors are checked, and before the explosives detonate.
Since events are instantaneous and asynchronous, the system itself cannot prevent this
type of failure. If failure may result from an inappropriate action, we must ensure that
the sensors have “predictive sufficiency”. That is, a sensor reading must indicate both
that a particular condition exists, and that it will continue to exist long enough for the
response action to occur (wcet(7) in the worst case).

In the demolition example, one solution is to place a ring of sensors several me-
ters from the building, so that people entering the building will first pass through the
perimeter sensors. We can then interpret the actual information returned by the sensors
(“nobody has crossed the perimeter”) to mean that “nobody could enter the building
in the next K seconds”. The semantics of the sensor data are altered by adding domain
knowledge (the perimeter distance and maximum human speed) to yield predictive
information, or knowledge about possible future states. We are currently formalizing
and implementing techniques by which CIRCA can reason explicitly about the need for
predictive sufficiency [351.

4.9. Summary of agent/environment characterization for guarantees

While we stressed the value of guarantees in Section 3, in this section we
have identified critical pieces of information that an agent needs in order to make

106 D.J. Musliner et ul. /Artificial Intelligence 74 (1995) 83-127

guarantees about its performance in its environment. The characteristics of the
agent/environment interaction that an intelligent, flexible agent must be able to model

include:
l features of the world relevant to the agent, including failure conditions;

l possible external events, and how they move the world to new states;
l transitions that are caused by the passage of time, including the minimum time

until the transition can occur in the worst case (mind) ;
l all sensing primitives, including their worst-case execution times; sensed data must

have predictive sufficiency (as discussed in Section 4.8);
l all action transitions, including their worst-case execution times; actions and sensing

primitives must be guaranteed to succeed;
l the set of possible initial states, which must all be safe (or else the agent could

fail before it ever begins) ;
l the actions that preempt temporal transitions, to keep the system in a safely-

controlled set of states.
These requirements are not specific to CIRCA’s approach to real-time AI; any system

seeking to make similar real-time response guarantees must have this information. For
example, any system that is attempting to guarantee the timeliness of its behaviors must
already have some guarantee that its primitive actions (or some combination of them)
will succeed. If primitives are not guaranteed, then it does not matter whether the system

decides to act in time, because the action it takes might not affect the environment in
the desired way. Similarly, if an agent hopes to avoid failing due to delays, it must

be assured that it can take an action between an event and a temporal transition to
failure; no system can make safety guarantees in a world with instantaneous transitions

to failure.
Guaranteed real-time agent/environment interactions must therefore be characterized

as we have described to assure that an agent can achieve its control-level goals in
its environment. CIRCA’s model captures this characterization and embodies it in a
specific architecture. In the context of CIRCA’s approach to making guarantees with
limited resources, we can also add one more requirement on the agent/environment in-
teractions: it must be possible to partition the state space into safely-controlled sets
of states for which the system has sufficient resources. In other words, the RTS
is given a control plan that uses limited resources to deal with the contingencies
that may arise in a limited set of situations, and we must therefore ensure that the
world can be restricted to those handled situations. Intuitively, this means that the do-
main must afford the opportunity for “stalling” or cycling behavior, where the agent
can remain safe by continuing to execute a fixed, limited set of reactions while the
AIS is generating the next control plan. For example, a mobile robot can halt and
wait for instructions, and remain safe from obstacle collisions with a relatively sim-
ple set of reactions. Likewise, in our Puma example, the robot can stack unknown
parts on the table, still avoiding failure while it waits for details on how to pack
those parts. If this type of task decomposition is not possible, and remaining safe
in the environment requires an agent to be continually monitoring for all possible

situations, then there is no need for CIRCA’s intelligent resource allocation mecha-
nisms.

D.J. Musher et al. /Artificial Intelligence 74 (1995) 83-127 107

4.10. Appropriate domains for CIRCA

Given that CIRCA must model the characteristics listed above, what types of
agent/environment combinations will CIRCA be appropriate for? The simple answer
is “ones that can be characterized as above”, but to get a more intuitive sense, let us
reduce the number of criteria. Because CIRCA’s world model representation corresponds
loosely with the representation of states and transitions in discrete event systems [401,
we will employ two terms from that field: controllability and observability. We will use
controllability to reflect the degree to which the intelligent control system can change
its current state to another state. Three qualitative levels of controllability are: fully
controllable (the system can take actions to reach any desired state); partially control-
lable (the system can take actions to avoid undesirable states, but may not have control
over all state changes); and uncontrollable (the system has no control over what state it
might find itself in). Observability reflects the degree to which the system can determine
which state it is in based on its observations/measurements. The qualitative levels here
are: fully observable (the system can make adequate observations to uniquely decide
which state it is in 7) ; and partially observable (the system might only restrict the set
of states it believes it might be in).

Finally, because any system has only limited resources, we define a third dimension
called capacity, which reflects the degree to which a system has enough resource capacity
to handle all of the demands placed on it. We will use two qualitative levels of capacity:
limited and unlimited.

Along these dimensions, CIRCA is most appropriate for agent/environment inter-
actions characterized as partially controllable, fully observable, and having limited ca-
pacity. Examples of such systems include agile manufacturing systems, robotic sys-
tems acting in dynamic physical environments (where physical laws impose con-
straints that allow some controllability), and distributed computing systems. Varying
the controllability dimension, CIRCA would also work in fully controllable domains
such as control of simple manufacturing robots. However, the complexity of CIRCA
could be overkill; a simpler, traditional sequencer should be sufficient to allocate re-
sources as it moves the system deterministically through states. In an uncontrollable
system, CIRCA would still be able to guarantee some level of performance given pre-
dicted events, but the certainty of these predictions would be limited, and CIRCA’s
actions might not achieve their goals. Thus, a more reactive approach, like Univer-
sal Plans [47]-where more inputs and unguaranteed responses are considered, and
outputs are never assumed to be correct-might be more appropriate for such situa-
tions. Modeling domains as fully uncontrollable is fairly rare, since that implies that
the agent cannot necessarily take actions to preserve its own safety or achieve its
goals.

Because CIRCA has been designed specifically to handle limitations in sensing and
processing resources by allocating them intelligently, CIRCA would not be an appro-

’ Note that this implies both the ability for sensing to be sufficiently discriminating and for observations to
be sufficiently predictive.

108 D.J. Musher et al. /Artificial Intelligence 74 (1995) 83-127

priate choice when there are unlimited resources. A single, powerful controller would
be more appropriate. In situations where full observability is not assured, making any

guarantees on control is problematic. CIRCA could work in such domains by making
guarantees based on assumptions about what might be observed, but such guarantees

would be inherently probabilistic.

5. Building and using the world model: implementation details

With this understanding of how control plans can be shown to keep the system safe, we
now present CIRCA’s implementation of the world model and its methods for developing
complete control plans. Our goal here is to describe the unusual features necessary to
build real-time control plans using our model of agent/environment interactions. We

describe algorithms that successfully implement these features, but we do not contend
that these are the most efficient or novel mechanisms possible. Note that this section
describes only the low-level control planning done in the AIS; more complex high-level

reasoning is done by a different process. The prototype high-level reasoning mechanism,
described fully in [311, is based largely on PRS [14,201.

From the description of the world model above, we might derive a simple approach
in which the entire world model state space is enumerated and then actions are planned

to reduce the graph to a safely-controlled subset. Of course, the immediate objection to
this approach is that it involves generating and storing a complete enumeration of the
state space, which is exponential in the number of world features. Furthermore, since
planning a single action can make large sections of the world model’s entire graph

unreachable, much of that enumeration might be wasted.
Therefore, we have developed an algorithm that dynamically interleaves the construc-

tion of the world model and the planning of control actions. The control plans (TAP
schedules) that are run on the RTS are developed by five processing phases, outlined
below and described in more detail in the following sections.

In the first phase (planning actions), the AIS builds up a list of actions that must
be taken to make all failure states in the world model unreachable. This phase actually

builds and manipulates the world model states on-the-fly, as it is planning actions and
simulating transitions. Associated with each planned action is a list of the states to
which that action must be applied and the associated temporal transitions which it has
been planned to preempt.

In the second phase of processing (minimiz,ing tests), the AIS attempts to maximally
generalize the preconditions for each action, so that as few tests as possible are necessary
to decide when to apply the action. The third phase (planning sensing) builds TAPS
that perform the tests using selected sensing actions. The fourth phase (assigning TAP
periods) chooses TAP periods so that they will always preempt their associated temporal
transitions, and the final phase (scheduling TAPS) invokes the Scheduler to build a cyclic
TAP schedule that meets all of the TAP timing requirements.

These processing phases do not operate in a purely feed-forward manner; rather, con-
trol and information can flow back from later phases when problems are detected in the

D.J. Musliner et al. /Arh@ial Intelligence 74 (1995) 83-127 109

developing TAPS. For example, when phase three runs to plan sensing actions it may
find that the sensing actions required to test a particular planned action’s preconditions
are so complex and time-consuming that the action can never preempt the temporal
transition it was designed for (i.e., wcet(tests(r)) + wcet(actions(r)) > mind(T,)).
This condition was not detected earlier because the sensing actions cannot be planned
until the second phase has minimized the set of feature tests required. Since the tem-
poral transition is no longer preempted, the world model is no longer safe, and the
system must backtrack to choose different sensing actions or even different actions
altogether.

To allow control (backtracking) to propagate between these different processing
phases, we have implemented them in an explicit-stack state machine, illustrated in
Fig. 10. The action planning and postprocessing phases are cast in the form of individ-
ual functions for each decision process-every decision made by the system maps to a
function call. The main loop of the system chooses which decision function to run next
based on a global mode variable. Each decision function computes its decision, pushes
the alternative choices for that decision onto a choice-stuck, sets the mode variable to
select the next decision that should be run, and returns a boolean indicating whether
backtracking should be initiated. For example, the basic action-planning decision func-
tion looks at the world model state currently being examined, chooses an action to apply
to that state, pushes the alternative actions onto the choice-stack, and returns true. Or,
if there are no more action alternatives for the current state, the function returns nil, in-
dicating that backtracking is required. Backtracking affects the world model, the choice
stack, and the stack that maintains the state of the decision loop (including the current
mode and the current world model state).

By casting the main processing loop in this form, we have made the system highly
modular, so that additional decision processes (like postprocessing phases) can be added
easily. The explicit stack of this implementation also has an advantage over recursive
implementations, because in this formulation it is fairly easy to interrupt and resume the
control-level planner.

5.1. Planning actions

Because the world model state space is exponential in the number of world features,
the AIS mechanisms that build TAP plans are actually given a much more compact
representation of the world. The input to these mechanisms is divided into three types
of information: transition descriptions, initial state descriptions, and goal descriptions.
Transition descriptions are simple production rules that detail the changes the world can
undergo, much like STRIPS operators [361. Fig. 11 shows example rules from the robot
arm domain. Note that the preconditions and postconditions need not fully specify all
features of the states to which the transitions apply. These descriptions are implicitly
generalized by the lack of certain feature specifications. Action transition descriptions
also include information about their worst-case execution times and the required actuator
resources.

Goal descriptions also do not usually specify the entire state of the desired world:
in fact, many describe just a single feature (such as (PART-STATUS IN-BOX)). These

110 D.J. Musliner et al. /Art$cial Intelligence 74 (1995) 83-127

(defun run-control-planner (taux result)
(do-until (equal *mode* 'end)

(setf result
(case

(if (null

mode
(plan-action (plan-action))
(check-intermediate-plan
(check-intermediate-plan))

(generalize-tests (generalize-tests))
(assign-sensors (assign-sensors))
(build-taps (build-taps))
(schedule-taps (schedule-taps))))
result) (backtrack-all))))

Fig. 10. The main loop for the AIS control-level planner.

EVENT emergency-alert
PRECONDS: ((emergency nil>>
POSTCONDS: ((emergency T))

TEMPORAL emergency-failure
PRECONDS: ((emergency T))
POSTCONDS: ((failure T))
MIN-DELAY: 30 [seconds]

ACTION push-emergency-button
PRECONDS: ((robot-status free) (gripper-status free))
POSTCONDS: ((emergency nil))
RESOURCES: (arm>
WCET: 3.5 [seconds]

Fig. I 1. Example transition descriptions given to the AIS.

partial descriptions are not expanded into an explicit set of acceptable states; instead,
the AIS uses the descriptions as litmus tests for states which it generates on-the-fly, as
detailed below.

5.1. I. The planning algorithm
Given this input information, the AIS dynamically constructs the graph model and

the plan of actions together in a single depth-first search process, essentially similar to
a forward-chaining STRIPS planner [36]. This process operates on a stack of states
(the state-stack), examining each state in turn and planning actions that achieve goals
and preempt temporal transitions that lead to failure. To initiate the processing, each of
the completely-specified initial states is pushed onto the state-stack. Then, as long as

D.J. Musher et al./Artij?cial Intelligence 74 (1995) 83-127 111

the stack is not empty, the AIS pops a state off the stack and considers it the current
state. If the current state is unreachable, * the AIS will ignore it and pop the next state
off the stack. If the current state is reachable, the AIS finds all the event transitions
and temporal transitions that apply to the current state. The applicable transitions are
simulated by substituting their postconditions into the current state description, yielding
either new states that have not been examined yet or old states that have already been
processed (i.e., states for which actions have already been planned). New states are
pushed onto the state stack, while old states are simply updated with the information
that they have a new source state.

The AIS then finds all the acceptable action transitions that could be taken from the
current state. If there are no temporal transitions to failure from the current state,
then all action transitions that apply to the current state are acceptable, including
the null action NO-OP. If there are any temporal transitions to failure, only action
transitions that can be implemented quickly enough to preempt the failure are con-
sidered acceptable. The AIS chooses from amongst the acceptable actions the one
that leads to the best next state, as determined by a heuristic scoring function (de-
scribed below). The other acceptable actions are retained on the choice-stack, so that
the next-best alternative will be chosen if the system later backtracks to this point in the
search.

Chronological backtracking is initiated when one of two conditions is satisfied. First,
the system backtracks when it detects an action loop (see Section 4.7). Whenever
a planned action leads to a state &Id that has already been processed, the system
searches for action loops by looking back recursively along the action transitions lead-
ing to the current state, checking to see if any originated at &Id. The second con-
dition for backtracking is the recognition that there are no remaining action choices
for the current state. In that case, it is clear that the planner has found an unavoid-
able failure: either there are no acceptable actions to preempt a temporal transition to
failure from the current state, or the system must have explored all possible worlds
beyond this state and backtracked to reach this state, otherwise NO-OP would be a
choice.

By running the planning process until the state-stack is empty, the AIS simulates out
all of the paths the world might feasibly take while the agent is controlled by a particular
set of action transitions. More importantly, that set of action transitions is dynamically
defined as the AIS works, in response to the recognition that a failure state is reachable.
The basic action-planning algorithm terminates when no failure state is reachable. Using
chronological backtracking to consider every applicable action at each state, the AIS
can perform a complete search of the set of action plans.

5. I .2. Complexity
We noted earlier that the complexity of some environments may make it impractical to

enumerate all possible situations. This is one of the arguments frequently used against ad
hoc real-time systems that are simply tested exhaustively to demonstrate that they meet

8 A non-initial state on the stack may become unreachable if actions am. planned to preempt every temporal
transition leading into that state, and no event or planned action transitions lead into that state.

112 D.J. Musher et al. /ArtQicial Inielligence 74 (1995) 83-127

hard deadlines [491. How, then, does CIRCA’s enumerative world modeling technique
differ?

The most important difference is that the AIS does not enumerate the entire domain

state space. As discussed earlier, the AIS’ high-level planning explicitly divides long-
term goals into shorter-term subgoals, which are then separately implemented by control
plans. This restricted context means that the state space of the control planner is not the
entire set of states the system and world can ever enter.

Furthermore, the planner avoids enumerating even this restricted space because, while
it is generating the world model, it is also generating the plan of actions. Each time an

action is planned, it restricts the world’s behavior and thus prunes out states that the

AIS never even considers. In our Puma domain, one of the problem variations has a
complete model space of over 5100 world states. To build a complete control plan that
guarantees all control-level goals and also achieves the task-level goals, the AIS only
enumerates 330 unique states. The final plan restricts the world to a safely-controlled
set of 158 possible (reachable) states. For a problem in which the world is described
by eleven different features, and eight actions are planned for 144 different states, the
size of the space actually searched seems quite reasonable.

Even if the system searches as much as possible and cannot produce a complete control
plan, it is highly unlikely that the entire search space will ever be enumerated. The reason
is simply that CIRCA only enumerates possible world states. In most realistic worlds, the

structure of the external world makes many combinations of world features impossible.
This is reflected in the AIS’ world model by the fact that many combinations of state

features are not reachable, even without any planned actions. In our example domain, it
is not possible for the features (OBJECT-STATUS IN-GRIPPER) and (GRIPPER-STATUS
FREE) to coexist. This fact is not explicitly represented, and the AIS never generates a
state with those features and then realizes it violates a domain rule; instead, the system
simply cannot generate that state because it is not possible with the given transition

descriptions.
In general, any system making guarantees must somehow ensure that those guarantees

hold for all possible worlds. This requires either an exponential enumeration of states
or some dependency information that allows the system to extend guarantees made for
one state to other states without examining the others individually. Recent work by

Godefroid and Kabanza [151 illustrates one way in which such dependency information
can reduce search spaces; their results allow a system to examine only a single ordering
of independent actions, rather than enumerating all possible orderings. These results are
not immediately applicable to CIRCA, because their world model does not include ex-
ternal events. This omission simplifies the concept of action independence to a condition

on the action descriptions. In the CIRCA model, this condition alone is not sufficient
to determine if actions are independent: by enabling or disabling event transitions, an
action can affect another even if its description includes no overlapping terms. We are
actively investigating ways of deriving independence conditions in CIRCA’s model of
agent/environment interactions.

However, the most important point to remember is that the planning done by CIRCA’s
AIS is isolated from the real-time domain deadlines. The AIS does not need to meet
deadlines while producing control plans, so the complexity of the planner is decoupled

D.J. Musher et al. /Artificial Intelligence 74 (1995) 83-127 113

from the agent’s interactions with the world. In fact, the complexity of planning is one
of the fundamental motivations for CIRCA’s distinction between the AIS and RTS: the
high-variance search for plans to achieve goals must be isolated from ongoing, real-time
interactions with the environment.

51.3. Incremental improvement
Currently, the system makes only a crude distinction between control-level and task-

level goals. All control-level goals must be achieved, or the system backtracks. If some
task-level goals are not achieved by a control plan, the system may still consider the plan
acceptable. In the future, we may add more information so that the system can make
intelligent decisions about risk-taking in the pursuit of task-level goals. This information
might include criticality ratings for goals and event probabilities, so that the system
could compute the utility of guaranteeing different subsets of control-level goals. In
general, however, our initial focus on guaranteed behavior has led us to ignore such
difficult information; we have concentrated instead on developing a system that can
make rigid, complete guarantees within the scope of its limited knowledge. Given that
most rigorous capability, we can easily modify the system so that it can forgo various
goals when necessitated by resource restrictions [341.

With the action-planning algorithm described above, we can derive every possible
action plan that guarantees to avoid control-level failure. What we really want, if pos-
sible, is a plan that guarantees the control-level goals and also either guarantees or
at least makes possible the task-level goals. To find those plans, we have formed the
action-planning algorithm as an imprecise computation [24,321 that will continue gen-
erating new plans until no more are available, or until a plan that achieves all of the
task-level goals is found. In the current implementation, a plan is considered to achieve
a task-level goal if any state satisfying that goal is reachable. The decision function
check-intermediate-plan, illustrated in Fig. 12, is placed in the loop shown in
Fig. 10, to be run after the plan-action phase runs out of states to plan for. If the
current plan does not achieve all of the control-level goals and make the task-level goals
at least reachable, the decision function returns nil and the system backtracks to find a
better plan. A more restrictive criterion might test to make sure that task-level goals are
reachable from all states in the world model, or that the control plan always drives the
system towards the task-level goals.

If the AIS decides, based on task-level time pressures, that it needs to produce the
next control plan quickly, it can interrupt the planning loop of Fig. 10 and use the
current acceptable plan stored in *stored-plan*. If the AIS has more time available,
it can continue producing plans for as much time as is convenient, and then use the
best plan stored so far. In this way, the AIS can itself implement an any-time planning
algorithm [8,431. This feature is useful because, although achieving control-level goals
is never dependent on timely responses from the AIS, achieving non-critical, task-level
goals may be. For example, in our box-packing scenario, the system implements the
control-level goal of making sure that nothing falls off the conveyor belt by (in the worst
case) putting the part it is currently holding down on the table. The control plan must
also be able to stop the conveyor when the table is full. When that happens, the robot
will continue to satisfy its control-level goals (even easier with the conveyor stopped!),

114 D.J. Musher et al./Artijicial Intelligence 74 (1995) 83-127

(defun check-intermediate-plan ()

(let ((plan (find-all-planned-actions))

(states (remove-if-not #Jstate-is-reachable-p

(find-all-states)))

(goals-done 0))

(dolist (goal *goals*) ;;; Count goals that are reachable.

(if (any #'state-has-feature-p states goal)

(++ goals-done)))

;;; If current plan did better than stored, or have none

;;; stored yet, store this one. Stored in global as a

;;; list (plan goals-done).

(if (or (not *stored-plan*) (> goals-done (second *stored-plan*)))

(setf *stored-plan* (list plan goals-done)))

(cond ((= goals-done

(length *goals*)) ;;; If all goals reachable,

(setf *mode*

'generalize-tests) ;;; move on to next phase

T) ;;; and don't backtrack.

(T nil>>>> ;;; Else, backtrack for new plan.

Fig, 12. The check-intermediate-plan decision function, implementing an incremental improvement

method.

and no catastrophes will occur. However, the faster the AIS figures out how to pack
the articles sitting on the table, the faster the system will achieve its task-level goal of

generating a packed box.

5.1.4. The scoring heuristic

The scoring function used to choose actions is the only heuristic knowledge currently
used by the control-level action planner. The heuristic performs a recursive N-step
lookahead, returning a value corresponding to the best state reachable in Iv’ transitions
from the current state. The scoring function expresses preferences for states based

on how completely they satisfy the system’s control-level and task-level goals. Since
control-level goals are defined to be those which the system is trying to guarantee, they
are weighted as more important than task-level goals. In fact, we consider violations
of control-level goals to be equivalent to risking the safety of the system, and thus a
violation of any single control-level goal is considered worse even than a violation of

all the system’s task-level goals.
The planner may choose an action that leads into a state from which a temporal

transition leads to failure. Clearly, the longer the mind of that temporal transition to
failure, the easier it will be to avoid failure by taking another action. Thus the scoring

D.J. Musliner et al./ArtiJ?cial Intelligence 74 (1995) 83-127 115

function also expresses a preference for states which have the longest possible delays
until failure occurs. To guide the system towards choosing the shortest path to success,
the scoring function also takes into account the number of transitions which must be
traversed to reach a state with a desirable set of features.

5.2. Minimizing tests

Because an action may be useful in several world states, we do not build up complete
TAPS with sensing requirements as soon as an action is planned: if the action applies
to several states, we would end up with multiple TAPS implementing the same action
with different, but probably similar tests. This would make the scheduling operation
much harder. Instead, we wait until all of the actions have been planned, and we have a
full description of their sets of domain states. Then, in the second phase of processing,
the AIS attempts to maximally generalize the preconditions for each action, so that as
few tests as possible are necessary to decide when to apply the action. This phase is
especially crucial when actions are applied to several states: the minimization phase can
eliminate the need to test some specified features if the omission of those tests will not
allow the action to be applied to a state for which it was not planned.

The test minimization process is essentially equivalent to the minimization of switch-
ing circuits [221. Each action can be considered separately as a circuit whose minterms
are the features of the states for which it has been planned. All states that are not
reachable in the world model are considered “don’t-cares”, because it does not mat-
ter whether the final testing expression includes their features or not, they can never
occur.

For example, in the robot arm domain, the planner initially plans to take the ac-
tion PUSH-EMERGENCY-BUTTON in four states, each of which has eleven features.
After minimization, the action is associated only with tests for ((EMERGENCY T)
(GRIPPER-STATUS FREE)). The new tests do not check all eleven state features, so
they will take less time to execute. Of course, with only those two preconditions, the
resulting TAP will match many more than the originally planned four world states. How-
ever, the minimization algorithm has determined that none of those additional matching
states are reachable, and thus they do not matter. Note that the minimization phase can
even remove preconditions that are required to execute the action. In this example, the
PUSH-EMERGENCY-BUTTON action transition description in Fig. 11 included the precon-
dition (ROBOT-STATUS FREE), but that precondition was removed during minimization
because it is not needed to distinguish the four planned states.

The general test minimization problem is NP-complete, so we have avoided using a
complete algorithm. Instead, the minimization phase is implemented using the heuristic
ID3 program 9 [391, which is given the states for which an action has been planned
as positive examples and all the other planned (possible) states as negative examples.
ID3 incrementally builds a decision tree to distinguish the positive examples from the
negative examples. While this approach does not guarantee an optimally small decision
tree, it yields reasonable results with very little processing.

9 Marcel Schoppers suggested this approach.

116 D.J. Musher et ul. /Artificial Intelligence 74 (1995) 83-127

SENSOR overhead-camera

DETECTS: (part-seen part-type robot-position)

WCET: . 1 [seconds]

V-SENSOR robot-status?

DETECTS: (robot-status)

P-WCET : .02 [seconds]
USES: ((overhead-camera I> (moving? 1) >

Fig. 13. Example sensor and virtual sensor descriptions.

5.3. Planning sensing

Once the action preconditions have been minimized, the AIS plans sensing actions to

implement the precondition tests. To plan sensing actions, the AIS examines descriptions
of the system’s sensors that include what world features the sensor detects and its worst-

case execution time. Fig. 13 shows two example sensor descriptions.
The first example describes a physical sensor in the system, the overhead camera

that returns information about arriving parts and the position of the robot. The second

example describes a “virtual sensor”, a software construct that may access several

physical sensors (and/or several readings from a single sensor) and combine their
values. In the example, the virtual sensor robot-status? combines single readings from
the camera and another virtual sensor (moving?) to determine the robot’s status. The

worst-case execution time for the virtual sensor is determined by adding the time needed
to access the component sensor values to the worst-case processing time, indicated by
P-WCET.

Virtual sensors can also access the limited RTS world model, which is essentially
a set of storage locations that hold status information. For example, the virtual sensor
moving? accesses an RTS storage location to determine whether the robot is currently

moving. The actions that start and stop motion also set the value of this storage location.
No physical sensor readings are required, and thus the moving? virtual sensor executes

very quickly.
One of the areas in which CIRCA is currently being extended is the automatic

assignment of additional internal storage locations to buffer physical sensor readings
that will be useful to future precondition tests. If a physical sensor reading is fairly
costly to acquire and its value is known to persist for a sufficient time, then several
actions that test that value in their preconditions could instead access the stored result of
a single physical sensor execution. This automatic planning of the use of internal storage
to avoid excessive sensing could greatly enhance the system’s efficiency, allowing the
AIS to produce TAP schedules for domains which would otherwise be too demanding.

Some systems may have multiple sensors capable of detecting a particular world
feature, and some sensors may detect multiple world features. Thus the task of assigning
sensors to action preconditions is a covering problem, involving finding a minimal set
of sensing actions that will test all the preconditions. The AIS could solve this problem

D.J. Musliner et al. /Am@ial Inrelligence 74 (1995) 83-127 117

T.____!!_____y _.‘;___if____^-____>

Fig. 14. Example actions dealing with dependent temporal transitions.

via a depth-first search process over all the possible covering sets. Each covering set
would be checked to make sure that, when combined into a TAP, the resulting worst-
case execution time does not exceed the mind of the temporal transition the action has
been planned to preempt. If it does, the system would backtrack to try the next possible
covering set of sensing actions. If no set of sensing actions could be built to yield
a sufficiently short TAP, then the backtracking would propagate back to the previous
processing phases, and the system would search for a different control plan.

Currently, the sensor-planning functionality has been implemented in the Puma domain
in a simplified form. Rather than performing a search, an association list is used to
map abstract world model state features to different combinations of sensed real-world
features. The higher-level AIS processing can modify this association list as necessary,
bypassing the search processing that might otherwise be used to perform sensor planning.

5.4. Assigning TAP periods

Once the sensing actions have been chosen, the complete set of TAPS is built and
their worst-case execution times are available. In the final phases of processing, the AIS
assigns periods to the TAPS and builds schedules that meet those periodic constraints.
Assigning TAP periods is largely a trivial task, except for TAPS that deal with dependent
temporal transitions, For other TAPS, the preemption equation described earlier shows
that each TAP’s period should be just less than the corresponding temporal transition’s
mind minus the TAP’s worst-case execution time.

For TAPS dealing with dependent temporal transitions, the problem is complicated by
the dependencies between TAP periods. For example, Fig. 14 shows a chain of temporal
transitions where TTI is the initial temporal transition applicable to state X, and the
actions Al and A2 do not remove the cause of the temporal transition. Thus dependent
versions of the temporal transition apply to the succeeding states Y and 2. As presented
earlier, it is easy to compute the minimum delays until the dependent transitions are
enabled:

minA(TT2) = minA(TT1) - P(TA~) - wcet(7Al>,

minA(TT3) = minA(Tn) - P(7~2) - wcet(TM)

= minA(TT1) - P(TA1) - wcet(TA1) - P(7A2) - wcef(7,&,

where 7~1 and 7.~2 are the TAPS that implement the respective actions. In the general
case, where n actions are needed to end the chain of dependent temporal transitions, we

118 D.J. Musher et al./Art@cial Intelligence 74 (1995) 83-127

see that

n-l

minA(T~,) = minA(T~1) - c [P(T,Q) + wcet(TAi)] .
i=l

We also know that, for the preemption condition to hold for the final action An that
terminates the chain, we must have minA(TT,,) > P(TA~) + wcet(TA,).

Substituting, we see that

minA(TT1) > c [p(7,4~) + wcet(TA;)] .

This equation essentially shows that the mind of the initial temporal transition must be
long enough to accommodate all TAPS invoked in the dependent chain. Rearranging the
equation to solve for the periods, we have

kP(?-Aj) < minA(TT1) - ewcet(TA,),
i=l i=l

In other words, the sum of the TAP periods must be less than the total slack time
remaining in the original temporal transition when all of the TAPS use their worst-

case execution time. Unfortunately, we cannot solve this equation alone for the TAP

periods because there are n free variables and only one independent equation. Thus

additional constraint equations must be added. We synthesize those constraints based
on the observation that scheduling periodic tasks is easier if their utilization is low;
that is, if their execution times are relatively small compared to their periods. To keep
each TAP’s utilization low, the choice of each TAP’s period should be influenced by

the length of the TAP’s execution. For example, assigning a short period to a complex,
costly TAP will leave little slack time between its invocations for the other TAPS to
run. Thus longer TAPS should be given longer periods, and shorter TAPS can be given

shorter periods without leading to excessively high utilization. To achieve this effect,
we distribute the total slack time among the TAP periods in proportion to each TAP’s
worst-case execution time:

p(TAi) < ,,
wcet(7Ai)

minA(TT1) - 2 wcet(TAj) .

C wcet(TAj)
j=l 1 J=l

So, for chains of states with dependent temporal transitions, the system adds up the total
worst-case execution time for the TAPS in the chain, subtracts that from the mind of the
first temporal transition in the chain, and divides the remaining slack time proportionally
among all of the TAPS. This distribution has the effect of making each TAP have the
same utilization.

Unfortunately, the intuitive motivation for this equal-utilization strategy is not entirely
accurate: it is not always best to have TAPS with equal utilizations, particularly when

D.J. Musher et al. IArtijcial Intelligence 74 (I 995) 83-127 119

TAPS may have widely-varying worst-case execution times. For example, consider two
TAPS, A and B, with worst-case execution times of 10 and 100 milliseconds respectively.
Suppose that these two TAPS are required to preempt a dependent temporal transition
chain with minA(TTI) = 500 milliseconds, as described above. Using the equal-utilization
strategy, TAP A would be assigned a period of (10/l 10) * (500 - 110) M 35 ms. lo
However, it is immediately obvious that this will not lead to a feasible schedule, because
wet(B) > P(A). No schedule will ever be possible if this condition holds, because
any invocation of TAP B would immediately imply that TAP A had missed its deadline.

Therefore, it is clear that every TAP must have a period that is at least greater than
the maximum worst-case TAP execution time (wcet(TM)) that will be scheduled. We
can incorporate that requirement into our period assignment strategy by pre-allocating
at least that much time to each TAP period:

P(r&) < wcet(TM)

wcet(rAi)
+” minA(TT1) - 2 WCet(7Aj) - n * WCef(TM)

c
wcet(TAj) j=l 1

.

j=l
For the example TAPS, this results in setting P(A) = 100 + (10/l 10) * (500 - 110 -
2* 100) % 117 and P(B) = 272. These period assignments lead easily to the simple
feasible schedule AB.

While this simple two-TAP example works well, experiments have shown that, when
more TAPS are being scheduled, the TAP periods may still be assigned so that shorter
TAPS have periods that are too short to allow enough other TAPS to execute between
invocations. Thus it has proven useful to increase the pre-allocation of time to all TAPS
above and beyond the required WC&(?%). The amount of this increased allocation is
determined by multiplying wcet(TM) by a value greater than one. For the Puma domain, a
multiplicative factor of 1.2 has provided the best performance, although experimentation
was limited to a few scheduling problems.

While this approach to assigning TAP periods is designed to make scheduling the
TAPS as easy as possible, other considerations might usefully influence the period-
assignment phase. For instance, if the various states in the chain have different levels
of desirability, it might be preferable to bias the TAP periods so that the system spends
more time in the preferred states. In the example of Fig. 14, if an event led from state Y
to a highly-valued new state, it might make sense to increase the period of 7.~2, so that
the system might remain in state Y longer, giving more time for the beneficial event to
occur.

5.5. Scheduling TAPS

In the final phase of generating TAP control plans, the AIS sends the accumulated
information about the TAPS to the Scheduler module. The Scheduler tries to build

lo Note that we truncate the actual computed value to maintain the required inequality.

120 D. J. Musliner et al. /Art@ial Intelligence 74 (1995) 83-127

a cyclic schedule that runs TAPS at least as frequently as their periods require. In
the current implementation, the RTS can run only one TAP at a time, and TAPS are

not interruptible, so the Scheduler does not need to consider TAP preemption. The
Scheduler uses a modified deadline-driven scheduling algorithm [25] to derive a TAP

schedule. The basic deadline-driven algorithm specifies that, each time the system can
choose which TAP to run, it should run the available TAP with the closest deadline.

To derive a cyclic schedule with this criterion, the Scheduler simulates the operation
of a dynamic scheduler, incrementing a time counter and deciding which TAPS to run
as simulated time passes. After the simulation has progressed far enough to invoke the

TAP with the maximum MAX-PERIOD, the Scheduler begins scanning the trace of the

simulation, attempting to extract a loop of TAP invocations which meets all TAP timing
requirements. The maximum possible loop size is equal to the least common multiple
of the TAP MAX-PERIODS. If the Scheduler cannot build a successful schedule to
guarantee all the TAP timing constraints, the AIS backtracks to generate a different

proposed TAP plan.

6. Related work

In this section, we discuss several research projects that relate closely to CIRCA’s

world-modeling methods and the way CIRCA generates performance guarantees. A more
general comparison to related work on combining AI and real-time control appears in
[341, and a survey of the entire field appears in [231.

While a number of recent research projects have focused on interactions with the
real world, and even with combining traditional strategic planners with reactive systems,
relatively few of these projects have made any mention of the real-time nature of their

environments. Most reactive systems simply execute as fast as they can, and they are
engineered to perform “fast enough” for a given environment. As we argued in the
Introduction, a general architecture for intelligent real-world interactions should provide

greater flexibility by proving that a particular system has sufficient capacity to meet its

environment’s deadlines.
CIRCA’s mechanisms for providing these proofs are the result of combining two fun-

damental techniques. First, the RTS provides a predictable basis for real-time guarantees
by running low-variance reactions in a fixed schedule. Second, the AIS generates those
schedules of reactions and proves that they will maintain the system’s control-level

goals.

6. I, Predictable execution

In this section we discuss the rare AI systems that have been interfaced to the
real world and have dealt with the concepts of hard deadlines and predictable execution.
These systems variously rely on real-time operating systems, constant-cycle-time circuits,
or any-time algorithms to enforce guaranteed, predictable execution.

D.J. Musher et al./Art$cial Intelligence 74 (1995) 83-127

61.1. DWMARUTI

121

Hendler and Agrawala [191 are integrating an enhanced Dynamic Reaction (DR)
system and the MARUTI operating system to implement guaranteed real-time reactive
reasoning in a manner very similar to CIRCA’s guaranteed TAP schedules. The DR
system sets up asynchronous monitor processes to check conditions on specific world
model features: signals from these monitors drive changes in reactive activities. The
MARUTI operating system provides explicit support for scheduling hard real-time tasks
on distributed systems, guaranteeing the execution of jobs that are accepted. By using
MARUTI to schedule and execute the reactive elements of DR, the combined system
can make performance guarantees similar to those CIRCA provides for its control-level
goals.

Higher levels of planning have been added to the DR model using the notion of
abstraction: the reactive system reasons about detailed information in very small units of
time, while higher levels of reasoning use more abstract data and larger time scales [181.
Complex reasoning is implemented by reactive elements that are triggered by abstract
information in the world model. The enhanced DR model thus attempts to smoothly
integrate reactive reasoning and higher-level reasoning within a single processing model,
unlike the abrupt distinction CIRCA makes between task-level and control-level goals.
While this integration is desirable, it blurs the notion of guaranteed execution, because
it is not clear which reactive elements must be guaranteed and which not. By separating
the AIS and RTS, CIRCA avoids this issue but must carefully limit the communication
between the subsystems to avoid jeopardizing its performance guarantees.

DR/MARUTI currently does not reason about its scheduling requirements: it does
not generate them, and it cannot revise them if sufficient resources are not available.
However, Hendler and Agrawala have expressed interest in methods for internally de-
riving the scheduling requirements of the system [191, much as CIRCA reasons about
TAP requirements. They discuss the need to increase the flexibility of DR/MARUTI
so that it may include non-real-time jobs, just as CIRCA provides the unguaranteed
TAP list. They also note that a “context-switching” approach might be used to switch
between predetermined reactive schedules based on environmental data. This is precisely
the way in which CIRCA operates continuously: it builds TAP schedules off-line from
the execution unit (in the concurrent AIS) and the RTS executes each schedule when
the environment has reached the appropriate point in the plan.

61.2. CROPS5
CROPS5 is a C-based parallel implementation of the 0PS5 production system [371.

The production system is encapsulated within an “AI server” program that runs under
a real-time operating system, allowing the production system to run only when other,
guaranteed real-time control tasks are not using the processor. The AI server thus isolates
the potentially high-variance CROPS5 problem-solving from the real-time tasks. In the
CROPS5 architecture, the problem-solving mechanism does not explicitly control the
guaranteed real-time tasks. Instead, the production system has separate tasks to perform,
and the goal is to ensure that they will also be completed on-time despite running within
the best-effort AI server.

122 D.J. Musher et ul. /Artificial Intelligence 74 (1995) 83-127

Research on CROPS5 has focused on reducing the variance in its processing time,
using both enhanced context-switching mechanisms and structuring of the problem space.
While performance guarantees have been verified by hand for the system, it does not yet
include internal mechanisms for reasoning about its own timeliness or problem-solving
capacity. The system does not reason about a model of agent/environment interactions
to create its own performance guarantees.

6.1.3. RedGapps

Research into the formal relationship between a system’s internal model of the

world and the real world has been fruitfully implemented in the Rex/Gapps system

[41,421. Rex is a language used to describe digital machines that can be viewed
as reactive systems. Rex programs are compiled into automata descriptions (usually
implemented on a general purpose computer) that perform a constant-time mapping

between inputs (sensors) and outputs (actuators). The theory underlying Rex has
been used to show that the information stored within a Rex machine can have a
fixed relationship to the true state of the world. Thus Rex machines provide pre-

dictable execution and support the types of performance guarantees enforced by CIRCA’s
RTS.

Gapps [2 1] is a system for compiling declarative descriptions of agent behaviors into

Rex machines. Gapps takes as input the agent’s top-level goal and a set of goal-reduction
rules that describe how to transform goals into smaller goals or Rex-machine primitives.

Because Gapps compiles this input into a static Rex machine, it generates large reactive
systems that exhibit goal-directed behavior but do not perform lookahead planning,
search, or adaptation. Rex/Gapps is used to specify an agent’s control mechanisms
directly, as in a robot programming language. CIRCA, on the other hand, plans those
control mechanisms automatically given a description of goals, primitive capabilities,
and the environment.

6.1.4. Any-time algorithms

One technique for combining high-variance methods with hard deadlines has recently
become popular in both the AI and real-time communities. “Any-time” algorithms [81

are incremental methods that can be interrupted at any time, yielding a result that
may have reduced precision, confidence, accuracy, etc. These techniques are naturally
successful at making timeliness guarantees: they ensure that some result will be available

by a deadline. However, the quality or correctness of that result cannot be guaranteed
[321. Thus any-time algorithms sacrifice correctness for timeliness, while CIRCA strives
to guarantee both. Furthermore, by reasoning explicitly about its goals, capabilities, and
deadlines, CIRCA can trade off the guarantees it chooses to enforce when constrained
by limited resources.

The “imprecise computation” paradigm [241 is a modification of the any-time method
in which some minimum amount of processing is guaranteed, so that the algorithm will
always produce a result with a minimally acceptable result. This is the technique used
by CIRCA in generating TAP plans (see Section 5.1.3), where a minimally acceptable
plan achieves only the control-level goals.

61.5. PRS

D.J. Musher et al./AmJ?cial Intelligence 74 (1995) 83-127 123

CIRCA’s AIS is derived from PRS [14,201, which itself has some features making
it suited to real-time applications. Ingrand and Georgeff have shown that, given certain
assumptions about event frequencies and the form of the system’s procedural knowledge,
PRS can be guaranteed to notice (or begin reacting to) every world event within
a bounded time. This guarantee is based on the fact that PRS processing is highly
interruptible. However, “noticing” an event is distinguished from responding to the event.
PRS does not make guarantees that it will respond to an event by a certain deadline,
because it does not (yet) have the ability to reason internally about its own level of
reactivity. PRS cannot focus its attention and ignore unnecessary sensor information
completely; instead, the world model is constantly updated. Thus the system’s response
to a particular event can be arbitrarily interrupted by the arrival of other events, and the
response to those events can delay the initial processing.

It is possible to limit the system’s inferencing capabilities and make guarantees about
overall response time [201. This approach leads to a complete embedding of the AI sys-
tem within the real-time application environment [341, and requires either low utilization
or engineering out the high-variance unpredictability that distinguishes AI techniques
from simple algorithms. The guarantees that PRS makes are external to the system’s
operation.

6.2. Planned reactions, proven safety

As noted earlier, many reactive AI systems have been composed of manually-
engineered reaction “plans”. Some systems have been designed with higher-level rea-
soning processes that select which of the available reactive elements are active [3,6,
13,17,30]. Other reactive systems are designed, like CIRCA, to automatically generate
reaction plans from primitive component descriptions [291. Performing this type of re-
action planning is similar to classical planning in the sense that it is done before the
plan is executed, and usually involves projecting the effects of proposed reactions in a
world model. With such explicit reasoning about the results of plans, it is possible to
prove that they will achieve some safety or stability criterion when executed reliably.

4.2. I. Universal Plans
Schoppers’ research on the automatic generation of Universal Plans (UPS) [44,471

resembles our work, with the notable exception that CIRCA relies on a restricted world
model and emphasizes timeliness issues. UPS are generated without considering precisely
which world states are possible and which are not; UPS specify reactions for all states of
the world, possible or not. This approach has the advantage that it makes no assumptions
about the success of its own actions or the behavior of the external world. However,
lacking those assumptions, UPS cannot provide any performance guarantees. CIRCA’s
control plans can be viewed as “partial Universal Plans”, in the sense that they specify
reactions, as necessary, for all possible worlds. The possibility of a world state, of
course, is dependent on the world model assumptions.

We have described how CIRCA’s control plans are intended to actively restrict the
world to a safely-controlled set of states, maintaining its safety while making progress

124 D.J. Musher et al./Artificial Intelligence 74 (1995) 83-127

towards its goals. Schoppers [46] has recently discussed how UPS can similarly lead
to stable “closed-loop dynamics”. This concept of stable closed-loop control requires

that, given sensed data within some bounds (input), the controlled system will produce
world behaviors (output) within some bounds. CIRCA reasons explicitly about its
ability to meet or alter those bounds, as well as the metric timing information required
for guaranteed performance. UPS do not yet handle this type of metric information or
the introspective reasoning required to internally verify or alter system goals.

6.2.2. RS
Lyons et al. [26,271 are investigating the Robot Schemas (Rs) plan representation

with many of the same goals as our work on CIRCA. In the Rs model, robot plans are

represented as concurrent communicating processes. Rs provides operators to compose
larger systems from various combinations of processes. These composition operators are

capable of representing on-line decision-making, concurrent actions, sequential actions,
and preconditions. The l?S model can be used to represent both the capabilities of

a control system and its environment, just as in CIRCA. Rewrite rules describe the
evolution of 7?!S systems, and these rules can be used to derive proofs that systems will
meet their goals [261.

RS research began by describing static, hand-coded robot control systems. An ex-
ecution environment is now being developed to allow the system to run its schemas

with predictable, guaranteed timeliness [271. A planning technique has also been pro-

posed [271, in which a concurrent planning process incrementally modifies the reactive
schemas running on the execution system.

7. Summary and future work

We have described how CIRCA reasons about a principled characterization of
agent/environment interactions to generate reactive control plans that are guaranteed
to keep the agent safe and, if possible, to drive the system towards its goals. The char-
acterization of agent/environment interactions takes the form of a state-transition model

of the world. Borrowing from the real-time computing literature, the model includes
explicit worst-case timing information that is used to derive the required rate of reac-

tion for various world conditions. By reasoning about this explicit model of the world,
CIRCA is also able to recognize when it does not have sufficient resources to guarantee
that it will achieve a particular goal within some environment. In that case, CIRCA may
choose to leave the goal unguaranteed but still try to achieve it (best effort), or it may

alter its high-level plans or goals.
Combining these control-plan generation methods with CIRCA’s architectural isolation

of the AIS from the RTS yields a system uniquely capable of building and predictably
executing control plans that are guaranteed to be timely and correct.

Earlier prototypes of CIRCA controlled a Hero mobile robot navigating through
hallways. CIRCA currently controls a simulated robot arm performing the box-packing
example discussed throughout this paper. The simulation, written in Deneb Robotics’
Igrip system, correctly models the robot’s kinematic behavior. However, the prototype

D.J. Musher et al. /Arnjicial Intelligence 74 (1995) 83-127 125

real-time subsystem (written in C) runs on a UNIX platform, and thus cannot rigidly
enforce execution timing constraints. We are currently porting the RTS to execute on
the MARUTI real-time operating system, which will provide a predictable execution
environment.

Our experience with the current prototype system indicates that the Scheduler module
is the weak link, because it uses such a simple algorithm. A more powerful Scheduler,
able to take into account dependencies between TAPS (such as precedence and mutual
exclusion), would be tremendously helpful, because it would allow CIRCA to schedule
and guarantee more TAPS, yielding higher utilization of RTS resources. This improved
capacity would, in turn, make it more likely that the system will have sufficient resources
for a given problem domain. We are also considering extensions to the Scheduler that
will allow it to provide more useful, intelligent feedback to the AIS when resource
restrictions prohibit the Scheduler from building a complete TAP schedule.

Acknowledgment

The authors would like to thank Phil Agre, Jim Dolter, Vie Lortz, Melissa Musliner,
Jennifer Rexford, Marcel Schoppers, and the anonymous reviewers for their insightful
comments on this work. Many thanks are also due to Clare Congdon, Marc Huber, and
Mike Hucka for their work on taming Igrip.

The work reported in this paper was supported in part by the National Science Foun-
dation under Grants E&9209031 and IRI-9158473, by a NSF Graduate Fellowship, by
the Office of Naval Research under Grant NOOO14-91-J-1115, and by the Arpa/Rome
Laboratory Planning Initiative (F30602-93-C-0039). The opinions, findings, and recom-
mendations expressed in this publication are those of the authors, and do not necessarily
reflect the views of the funding agencies. This paper was written when David Musliner
was a graduate student at the University of Michigan, Ann Arbor.

[l] RE. Agre and D. Chapman, Pengi: an implementation of a theory of activity, in: Proceedings AAAI-87,
Seattle, WA (1987) 268-272.

[2] J.P. Allen, Maintaining knowledge about temporal intervals, Commun. ACM 26 (11) (1983) 832-843.
[3] R.C. Arkin, Integrating behavioral, perceptual, and world knowledge in reactive navigation, in: Rob.

Auiononwus Sysr. 6 (1990) 105-122.
[4] R.A. Brooks, A robust layered control system for a mobile robot, IEEE J. Rob. Automation 2 (1) (1986)

14-22.
[51 D. Chapman, Planning for conjunctive goals, Ariif: InteN. 32 (3) (1987) 333-374.
[61 J. Connell and R Viola, Cooperative control of a semi-autonomous mobile robot, in: Proceedings IEEE

Inrernational Conference on Robotics and Automation (1990) 1118-l 121.
[71 T.L. Dean, Intractability and time-dependent planning, in: Proceedings of he 1986 Workshop on

Reasoning about Actions and Plans (Morgan Kaufmann, San Mateo, CA, 1987) 245-266.
[8] T.L. Dean and M. Boddy, An analysis of time-dependent planning, in: Proceedings AAAf-88, St. Paul,

MN (1988) 49-54.
[9] E.H. Durfee, A cooperative approach to planning for n&time control, in: Proceedings Workshop on

Innovahve Approaches io Planning, Scheduling, and Conirol (1990) 277-283.

126 D.J. Musliner et al./Arttficial Intelligence 74 (1995) 83-127

1 lo] K. Erol, D. Nau and V.S. Subrahmanian, When is planning decidable?, in: Proceedings International
Conference on Arttjicial Intelligence Planning Systems (1992) 222-227.

[111 R.J. Firby, An investigation into reactive planning in complex domains, in: Proceedings AAAI-87, Seattle,

WA (1987) 202-206.

1 I2 1 M.K. Franklin and A. Gabrielian, A transformational method for verifying safety properties in real-time

systems, in: Proceedings Real-‘lime Systems Symposium (1989) 112-123.

[131 E. Gat, Reliable goal directed reactive control for autonomous mobile robots, Ph.D. Thesis, Virginia

Polytechnic Institute, Blacksburg, VA (1991).

1 141 MI? Geotgeff and FE Ingrand, Decision-making in an embedded reasoning system, in: Proceedings
IJCAI-89, Detroit, MI (1989) 972-978.

[15 1 P. Godefroid and E Kabanza, An efficient reactive planner for synthesizing reactive plans, in: Proceedings
AAAI-91, Anaheim, CA (1991) 640-645.

[161 S. Hanks, Practical temporal projection, in: Proceedings AAAI-90, Boston, MA (1990).

1 17 1 S. Hanks and R.J. Firby, Issues and architectures for planning and execution, in: Proceedings Workshop
on Innovative Approaches to Planning, Scheduling, and Control (1990) 59-70.

1 18 1 J. Hendler, Abstraction and reaction, in: Proceedings AAAI Spring Symposium on Planning in Uncertain,
Unpredictable, or Changing Environments (1990).

[19] J. Hendler and A. Agrawala, Mission critical planning: AI on the MARUTI real-time operating system,

in: Proceedings Workshop on Innovative Approaches to Planning, Scheduling, and Control (1990)
77-84.

[201 FF. Ingrand and MI? Georgeff, Managing deliberation and reasoning in real-time AI systems, in:

Proceedings Workshop on Innovative Approaches to Planning, Scheduling, and Control (1990) 284-
291.

1211 L.P. Kaelbling and S.J. Rosenschein, Action and planning in embedded agents, in: Rob. Autonomous

Sysr. 6 (1990) 35-48.

1221 Z. Kohavi, Switching and Finite Automata Theory (McGraw-Hill, New York, 1978).

123) T.J. Laffey, PA. Cox, J.L. Schmidt, S.M. Kao and J.Y. Read, Real-time knowledge-based systems, AI
Msg. 9 (1) (1988) 27-45.

1241 K.J. Lin, S. Natarajan and J.W.S. Liu, Imprecise results: utilizing pattial computations in real-time

systems, in: Proceedings Real-Time Systems Symposium (1987) 210-217.
I25 1 C.L. Liu and J.W. Layland, Scheduling algorithms for multiprogramming in a hard real-time environment,

J. ACM 20 (1) (1973) 46-61.
I26 I D.M. Lyons, A process-based approach to task plan representation, in: Proceedings IEEE International

Conference on Robotics and Automation (1990) 2142-2147.
I27) D.M. Lyons, A.J. Hendriks and S. Mehta, Achieving robustness by casting planning as adaptation of

a reactive system, in: Proceedings IEEE International Conference on Robotics and Automation (1991)
198-203.

I28 J D. McDermott, A temporal logic for reasoning about processes and plans, Cogn. Sci. 6 (1982) 10 I- 155.

I29] D. McDermott, Planning reactive behavior: a progress report, in: Proceedings Workshop on Innovative
Approaches to Planning, Scheduling, and Control (1990) 450-458.

130) D.P Miller and E. Gat, Exploiting known topologies to navigate with low-computation sensing, in:

Proceedings SPIE Sensor Fusion Conference (1990).
1311 D.J. Musliner, CIRCA: the Cooperative Intelligent Real-time Control Architecture, Ph.D. Thesis,

Technical Report CSE-TR-175-93, The University of Michigan, Ann Arbor, MI (1993).

1321 D.J. Musliner, E.H. Durfee and K.G. Shin, Any-dimension algorithms, in: Proceedings Workshop on
Real-‘lime Operating Systems and Sofhvare (1992) 78-8 1.

1331 D.J. Musliner, E.H. Durfee and K.G. Shin, Reasoning about bounded reactivity to achieve real-time

guarantees, in: Working Notes of the AAAI Spring Symposium on Selective Perception (1992) 104107.
[341 D.J. Musliner, E.H. Durfee and K.G. Shin, CIRCA: a cooperative intelligent real-time control

architecture, IEEE Trans. Syst. Man Cybern. 23 (6) (1993).
[351 D.J. Musliner, E.H. Durfee and K.G. Shin, Predictive sufficiency and the use of stored internal state, in:

Proceedings AIAA/h!ASA Conference on Intelligent Robots in Field, Factory, Service, and Space (1994).
I 36 1 N.J. Nilsson, Principles of Artificial Intelligence (Tioga Press, Palo Alto, CA, 1980).

D.J. Musliner et al./Artificial Intelligence 74 (1995) 83-127 127

[37] C.J. Paul, A. Acharya, B. Black and J.K. Strosnider, Reducing problem-solving variance to improve
predictability, Commun. ACM 34 (8) (1991) 81-93.

[38] J.L. Peterson, Petri Net Theory and the Modeling of Systems (Prentice-Hall, Englewood Cliffs, NJ,
1981).

[39] J.R. Quiulan, Induction of decision trees, Mach. Learn. 1 (1986) 81-106.
[40] P.J.G. Ramadge and W.M. Wonham, The control of discrete event systems, Proc. IEEE 77 (1) (1989)

81-98.
(411 S.J. Rosenschein, Synthesizing information-tracking automata from environment descriptions, Technical

Report 2, Teleos Research (1989).
[42] S.J. Rosenschein and L.P. Kaelblmg, The synthesis of digital machines with provable epistemic

properties, in: Proceedings Conference Theoretical Aspects of Reasoning about Knowledge, Monterey,
CA (1986) 83-98.

[43] S.J. Russell and S. Zilberstein, Composing teal-time systems, in: Proceedings NCAI-91, Sydney,
Australia (1991) 212-217.

[44] M.J. Schoppers, Automatic synthesis of perception driven discrete event control laws, in: Proceedings
5th IEEE International Symposium on Intelligent Control (1990) 410-416.

[451 M.J. Schoppers, Introduction to special edition on real-time knowledge-based control systems, Commun.
ACM 34 (8) (1991) 27-30.

[46] M.J. Schoppem, Representing the plan monitoring needs and resources of robotic systems, in:
Proceedings Annual Conference on AI, Simulation, and Planning in High Autonomy Systems (1992).

[47] M.J. Schoppers, Universal plans for reactive robots in unpredictable environments, in: Proceedings
IJCAI-87, Milan, Italy (1987).

[48] H.A. Simon, Models of Bounded Rationality (The MIT Press, Cambridge, MA, 1982).
[49] J.A. Stankovic, Misconceptions about real-time computing: A serious problem for next-generation

systems, IEEE Comput. 21 (10) (1988) 10-19.
[SO] S. Vere, Temporal scope of assertions and window cutoff, in: Proceedings IJCAI-85, Los Angeles, CA

(1985) 1055-1059.

