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Abstract-It is dificult t o  define and evaluate a mean- 
ingful performance metric when many packets are gen- 
erated and exchanged concurrently in mesh-connected 
multicomputers equipped with wormhole switching and 
virtual channels. Thus, an approximate metric/cost 
function must be chosen so that when task modules are 
mapped b y  optimizing this function, the actual perfor- 
mance of the mapping is also optimized. Several low- 
complexity cost functions are evaluated using the sim- 
ulated annealing optimization process. The mappings 
found by optimizing these cost functions are then f e d  
into a flit-level simulator t o  evaluate their actual per- 
formance. One particular cost function is found to be 
very effective. 

1 Introduction 
Interconnection networks equipped with wormhole 

switching have been widely used for contemporary mul- 
ticomputers/parallel machines. In such a network, each 
pair of adjacent nodes is connected by a pair of uni- 
directional physical links/channels. A fixed number of 
virtual channels are time-multiplexed over each phys- 
ical channel. Though most of our discussion may ap- 
ply to  general networks, we will focus primarily on the 
mesh network topology, especially k-ary 2-cubes which 
have been widely used in evaluating the performance of 
virtual-channel networks. Particularly, we will concen- 
trate on the case where a substantial number of packets 
can be transmitted through the network (near) simulta- 
neously, thus possibly causing serious traffic congestion. 

Since internode communications largely depend on 
how communicating task modules are assigned to  the 
nodes, our task-mapping model will consider intertask 
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communications only, just like Model 5 in [l]. 

The delivery of these concurrently-transmitted pack- 
ets may not be mutually independent. In many cases, 
task execution cannot proceed until all packets arrive at 
their destinations. Therefore, in addition to the usual 
latency measurement, we will use the makespan of a sei 
of concurrently-sent packets for performance evaluation. 
The makespan of a set of packets is defined as the time 
span from the generation of the first packet until all the 
packets reach their destination. 

The paper is organized as follows. Basic terms and 
concepts necessary for our discussion are defined in Sec- 
tion 2. Simulation results are presented and discussed 
in Section 3. The paper concludes with Section 4. 

2 Preliminaries 
A k-ary n-cube consists of k" nodes arranged in 

an n-dimensional grid. Each node is connected to  
its Cartesian-coordinate neighbors in the grid. A 2- 
dimensional k x k flat mesh is a subgraph of a k-ary 
2-cube, is not a regular graph, and has less edges than 
the corresponding k-ary 2-cubes (no wrap links at its 
boundary nodes). For convenience, we will call a k-ary 
2-cube a wrapped mesh, or a w-mesh for short. Likewise, 
we will call a 2-dimensional flat mesh an f-mesh. 

Flow control in a virtual-channel network is per- 
formed at three levels: routing algorithms, packet- 
scheduling policies, and flit-multiplexing methods. 
Each of these can be implemented with a variety of al- 
gorithms. 

Routing:  We consider only oblivious routing. A packet 
is routed to  its destination via a fixed, shortest path. Is- 
sues related to  €ault-tolerance are not considered; phys- 
ical and virtual channels are assumed to  be fault-free. 
In f-meshes, e-cube routing is used. The address of 
each node is expressed in terms of X and Y coordi- 
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nates. A packet is routed first in the X-direction until 
the Y coordinate of the node matches that of its des- 
tination node. It is then routed in the Y-direction. In 
w-meshes, a modified version of e-cube routing is imple- 
mented to  utilize the extra communication links so that 
each packet is routed via a shortest path. Deadlock- 
freedom is ensured by using the scheme proposed in [ a ] .  
That  is, the virtual channels corresponding to each uni- 
directional physical channel are divided into high and 
low channels. Routing restrictions are then imposed 
such that either a high channel or a low channel, but 
not both, is allocated to  each given packet. The W- 

meshes need at least two virtual channels per physical 
channel to  achieve deadlock-freedom. 

Packet Scheduling: This determines which packet is 
allowed to  access a free virtual channel in case of con- 
tention. When the number of packets to access a phys- 
ical channel at the same time is larger than the number 
of available virtual channels, some of these packets have 
to be queued. So, we need to determine which packets 
are allowed to  access the virtual channels, and which 
packets to  be queued. When evaluating cost functions, 
we will mainly use the FIFO policy as a default, but 
other scheduling policies will also be tested when nec- 
essary. 

Flit Multiplexing: This determines the way packets 
are time-multiplexed over a physical channel. When 
there are multiple virtual channels per physical chan- 
nel, the packets allocated to  these virtual channels are 
multiplexed over the physical channel. Flit multiplexing 
determines the order for these flits from different virtual 
channels to  access the physical channel. In the round- 
robin (RR) multiplexing, virtual channels take turns in 
accessing the physical channel without using any net- 
work or packet information. RR multiplexing without 
any modification will henceforth be called strict RR. 
Demand-dr iven  (DD) allocation can be used to remedy 
the waste of physical bandwidth with strict RR. With 
DD allocation, virtual channels will contend for use of 
a physical channel only if they have flits to send. Fur- 
thermore, with CTS (Clear-To-Send) lookaheud, virtual 
channels only contend for use of a physical channel if 
each of them has a flit to  send and the receiving node 
has room for accepting it. This can further reduce the 
waste of physical bandwidth. Like packet sequencing, 
flit multiplexing can also be priority-based, as discussed 
in [3]. 

We will use the following assumptions 

1. All mappings are one-to-one, i.e., each processor 
can be assigned at most one task module. 

2.  

3.  

4. 

5. 

6. 

Accurate values of t i’s  (packet lengths in flits) are 
given. 

A physical channel takes one unit of time to  trans- 
mit a single flit. A unit of time is also called a 
physical-channel cycle. 

There is a single-flit buffer associated with each 
virtual channel. 

A packet arriving at its destination is consumed 
without waiting. 

There are an even number of virtual channels as- 
sociated with each physical channel in a w-mesh. 

Problem Statement: Given a set of task modules 
and a set P of packets to be exchanged among these 
modules, we want to  map these modules into the multi- 
computer so that the makespan and average latency to  
deliver all the packets in P may be minimized. 

To select one of a large number of possible mappings, 
there must be a certain function to determine the qual- 
ity of mapping. The most obvious choice is using the 
performance objective itself. In our case, the average 
latency of packets in the set P can be expressed as 

t i /  I P 1, where ti is the latency of packet pi. Their 
P t E P  
makespan can be expressed as max(tf +if), where ti” 

is the generation time of pi. In these equations, tt can 
be expressed as ti = tg + ( l / r i ) ( t i  - 1). The first term, 
t f ,  denotes the time span between the generation of p; 
at the source node and the arrival of its header flit at 
the destination node. t! consists of two components: 
the accumulated queueing delay tip and the accumu- 
lated header flit multiplexing delay t?. tj is the sum 
of queueing times at all nodes in the path waiting for 
an available virtual channel. tl is the sum of times pi’s 
header flit waits at the output buffers of nodes on its 
path for use of physical channels. The second term, 
(l/ri)(!i - l),  represents the time required for all other 
flits of pi to arrive at  the destination, which is deter- 
mined by &, which is the length of pi, and the trans- 
mission rate, r;, of the pipeline set up for pi. Depending 
on the flit-multiplexing method used and the network 
condition, ri may change with time during the trans- 
mission of p i .  Also, given a set of packets and a fixed 
number v of virtual channels over each physical link, 
tf will be affected by the underlying packet-sequencing 
scheme. Therefore, even when the exact values of ti’s 
are given, it is still very difficult to predict t f ’ s .  

Consider the simplest case of f-meshes using strict 
RR multiplexing without DD allocation or CTS looka- 
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head. We have ra = 1 / w  Vi, hence only tf needs to 
be calculated. Suppose w is large enough so that no 
packets will be blocked, then ti = 0, and t: = t f .  
However, tl E [0, ‘U c cl(af ,u~)] ,  where d ( a ~ , u : )  de- 
notes the Hamming distance between the source node 
address a: and the destination address U: of p i .  As 
v and d ( a i  , a:) become larger, it is more difficult to 
predict tp’s. Furthermore, when the number of con- 
current packets is large and blocking is inevitable, t; is 
no longer 0, and the value oft! be,comes even less pre- 
dictable. With DD allocation or CTS lookahead, ri is 
no longer a constant. It becomes even more complex in 
the case of w-meshes with partitioning of virtual chan- 
nels for deadlock-avoidance. Thus, direct optimization 
of the performance objective itself is not practical. We 
need to come up with a certain simplified function that, 
when mappings are derived by optimizing it, the re- 
sulting performance is also optimized. In this paper, 
we will investigate low-complexity cost functions whose 
computational complexities are of order e ( [  P I). 

A packet pi E P is characterized by its source and des- 
tination moduIes, 4 ,  and t f .  Of these parameters, the 
accurate packet-generation time, t4 , is the most difficult 
to obtain beforehand, since t; will be affected by the 
precedence relationship among modules, and is intrin- 
sically difficult for a compiler or loader to analyze be- 
fore actual execution. Even if the modules can be test- 
executed, packet-generation times can still vary with 
different executions of the same set of modules due to 
minor variations in the execution environment, such as 
clock-frequency drift. Besides, introducing time-related 
parameters into the optimization process can further 
complicate the problem by adding the scheduling into 
the picture. Since we are mostly interested in deal- 
ing with concurrently-communicating modules, the time 
window within which packets are generated, denoted by 
AT, should be relatively small. We therefore propose 
cost functions which ignore AT and assume ti“ = 0, 
‘dpi E P .  Nevertheless, as we will show in our simula- 
tions, the mappings obtained by optimizing a properly- 
chosen cost function still perform well when AT is large. 
Besides, the issues of packet scheduling can be handled 
at  run-time and, as we will demonstrate, can further 
improve the performance of a mapping. 

The following cost functions will be evaluated: 

f1: Let < x, y > denote the physical channel 
connecting node x and y, C,, denote the max- 
imum number of packets that share < x,y >, 
and L; denote the set of physical channels in the 
path of p i .  The estimated value of makespan 

max Cx,}(& -I), where z is the estimated time 
< X , Y > € L ,  
required for the header flit of pi to reach its destina- 
tion. z is computed as random() *C<x.,Y,EL, Fzy, 
where random() is a random number uniformly dis- 
tributed in (0 , l )  and F,, is the total number of 
flits that go through < x, y > during the execution 
of the task. The estimated makespan is computed 
by taking the maximum of e’s. Since ri assumes 
the lowest possible value, this will be a pessimistic 
estimate. 

e f2: Similar to f1 , except that the estimated average 
value of l:’s is computed. 

e f3: sum of length-distance products, i.e., the 
total physical bandwidth required by the pack- 
ets in P .  Formally, it can be expressed as 
Cp,€? 1; * d(af, a:). This cost function is shown to 
be quite effective in large-buffer, non-multiplexing 
networks [4]. However, in a virtual channel net- 
work with wormhole switching, apart from physical 
bandwidth, the usage of flit buffers is also a major 
factor in network performance. 

e f4: max C,,, the maximum number of packets 

to go through a physical channel, i.e., maximum 
congestion. 

O l x , y < M  

* f5: C,, , the sum of congestion on all phys- 
O < x , y < M  

ical channels. 

f6: P,EP max{ F,,}, the maximum number of 
< X . U > E L .  

flits to  go thiough a physical channel on the paths 
of all pi E P .  

f7: { F ~ , ) .  Similar to  f6 but summa- 

tion is taken instead. Note that f? is different from 
f3. In f7, a flit can be counted several times if the 
physical channel it goes through are shared by a 
number of paths. 

fs I f3: fs constaained by f3, i.e., a mapping is 
considcred better only if it has smaller values of fs 
and  f3. 

f7 1 f3: f7 constrained by f3. 

P , € P  <X,Y>€L, 

It is obvious that finding true optimal mappings with 
respect to each of the above cost functions is NP-hard, 
i.e., there are no known polynomial time algorithms. - .  - 

ti, denoted as cl is computed by z + min{w, Also, finding optimal mappings with respect to them 
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is not very meaningful since the cost functions them- 
selves are not the actual performance measure. There- 
fore, our goal is to  obtain good sub-optimal mappings 
with respect to  each cost function with a reasonable 
computing time, and the mappings will perform well at 
run-time and show significant improvements over ran- 
dom mappings. We will adopt the simulating annealing 
method for this purpose. 

The termination of a simulated annealing process is 
generally decided by the following parameters: the ini- 
tial temperature, the freezing point, the temperature 
updating function, and the exit criteria at each tem- 
perature. For each tested cost function, we carefully 
select these parameters so that for a given input traf- 
fic pattern and traffic density, the optimization process 
will terminate in approximately the same number of tri-  
als, denoted by nT. A trial is defined as an instance of 
randomly choosing two modules and exchanging their 
positions, followed by the evaluation of the cost func- 
tion. On a Sun IPX workstation, the compiled C pro- 
gram requires approximately 20 seconds of CPU time 
for 500 trials. For each given n T ,  only those inputs that 
the optimization process terminates after nT f 10% tri- 
als are used. The resulting mappings are collected and 
their average performance is calculated. Note that we 
do not artificially force the simulated annealing process 
to  stop. Instead, we choose the parameters carefully 
and discard inputs which can lead to  early or late ter- 
minations when using any of the above cost functions. 
By doing this, we can ensure fairness in comparing the 
effectiveness of cost functions. 

erformarace Evaluation 

The mappings optimized with respect to  the various 
cost functions are fed into a network simulation pro- 
gram. Under the following assumptions, we developed 
the program that simulates the flit-level communication 
behavior. The simulation results presented here were 
obtained using the following parameters: 

Transferring a flit between two nodes via a physical 
channel takes one unit of time. 

B) At any instant of time, all flits that have been allo- 
cated channels are transferred synchronously in a 
single physical channel cycle. 

Q Each virtual channel is assigned a single-flit buffer. 

e The default packet-scheduling policy is FIFO, and 
the default flit-multiplexing method is RR with 
demand-driven (DD) allocation, 

e Both w- and f- meshes are of size 16 x 16. Since 
performance trends are similar for f-meshes and w- 
meshes for the same P ,  unless stated otherwise, 
only the data obtained with w-meshes are plotted. 
The number of communicating modules is fixed at 
256, i.e., the same as the number of nodes in the 
network. The default number of virtual channels is 
21 = 4. 

0 Unless stated otherwise, all packets are 20 flits 
long. During the task execution, The probability, 
dens i t y ,  that node i sends a packet to  node j in 
the uniform traffic pattern is 0.01. In a 16 x 16 
network, the total number of concurrent packets 
during a mission is w 0.01. (16’ - 1)’. 

0 Unless stated otherwise, the traffic pattern is uni- 
form. In hot-spot traffic, 5 hot spots in the network 
are randomly chosen, with dens i t y  = 0.5 between 
any node and each of the hot spots. The default 
value of AT is 0. 

0 Each data point is obtained by averaging results 
from 10,000 mappings. Deviation from the mean 
values is found t o  be small (< 5%). 

In Figs. 1 and 2, the makespans of average latency 
of mappings optimized with respect to the various cost 
functions after 500 trials, (i.e., n~ = SOO) ,  are com- 
pared for different values of v. The performance of f1 

and fi are found to be very close to  that of f4 and f 6 ,  

and hence are not shown. fl and fz are only found to  be 
effective in the case of f-meshes with large U ’ S  and small 
d e n s i t y  values. This can be attributed to  the fact that  
only in these situations makespan and latency estimates 
are more accurate. 

From the results shown, it is obvious that f7, fs I f3 
and f7 I f3 perform better than the other cost func- 
tions in this case. Mappings optimized with respect to  
these functions are also more resilient to  the change of 
U ’ S .  On the other hand, mappings optimized with some 
functions (e.g., f.1 and f6) perform well with small v’s 
but become worse with larger U ’ S .  In the case of f4,  

mappings optimized with respect to  it improve over the 
random mappings when v 5 6, but actually perform 
worse than random mappings when v gets larger. A 
similar behavior can also be observed from mappings 
optimized with the other mini-max type cost function, 
f 6 ,  though to a less pronounced degree. 

In Figs. 3 and 4, the performance of mappings opti- 
mized with the various cost functions under uniformly- 
distributed traffic are evaluated with variable nT’s. The 
number of virtual channels is fixed at v = 4. A good 
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cost function should demonstrate a more predictable be- 
havior, i.e., better performance measurements and less 
fluctuations when 7 1 ~  is increased. Note that for each 
plotted curve, n~ = 0 corresponds to random mappings. 
Among the cost functions investigated, fi, fi, f 4  and f6 
all demonstrate highly unpredictable behaviors with in- 
creasing n ~ .  With more computing effort, mappings 
optimized with these cost functions can often worsen 
performance. This phenomenon is especially prominent 
with the makespan measurement. On the other hand, 
f3, f7, and their related functions like f5 I f3 and f7 I f3, 
all have more predictable performance, at least up to a 
much larger TLT than other cost functions. In makespan 
measurements, f3 shows continual improvement of map- 
pings up to nt = 3000, and f5 I f3 can improve up to 
nT = 4000. While f7 I f3 is found to improve map- 
pings continually up to n~ = 10,000. For average la- 
tency measurement, there are less fluctuations for all 
cost functions. However, mappings optimized with most 
cost functions stop making noticeable improvement af- 
ter nT 2 1000. Only f7, f5 I f3 and f7 I f3 show con- 
tinual improvement for nT > 1000, while f7 I f3 shows 
improvement even when nT > 8000. 

Figs. 5 and 6 compare the performance of mappings 
optimized with various cost functions under hot-spot 
traffic. For makespan measurement, almost each cost 
function becomes less predictable under hot-spot traffic. 
Except f5 I f3 and f7 I f3, mappings optimized with all 
other functions cease to improve after n~ > 500. f5 I f3 
starts to show fluctuations after nT > 4000. On the 
other hand, f7 I f3 still shows predictable improvements 
after nT > 5000. 

From the above results, we can conclude that map- 
pings optimized with respect to f7 1 f3 have the most 
predictable improvement under various traffic patterns. 
Thus, we will focus on evaluating this particular func- 
tion. 

Given the same PI the effect of increasing A T  is 
shown in Figs. 7 and 8. Mappings are optimized with 
f7 I f3 after 5,000 trials. It is obvious that mappings 
optimized with f7 1 f3 still improve over random map- 
pings with significant margins for large AT’S. It is found 
that even with AT = 250, the margin of improvement is 
still more than 20% for both makespans and average la- 
tency measurements. Note that, for random mappings, 
the makespan decreases monotonically with increasing 
A T  up to 180, showing that even when packets in P 
arrive in such a large time window, the network is still 
saturated. On the other hand, for mappings optimized 
with f7 I f3, the network becomes less congested when 
AT > 120 and makespan tilts upward slightly with in- 
creasing AT’S. 

In [3], we have shown that by employing appropriate 
packet-scheduling policies and flit-multiplexing meth- 
ods, the performance of a virtual-channel network un- 
der concurrent communication traffic can be greatly 
improved. Here we will demonstrate that by apply- 
ing these run-time flow-control mechanisms, the perfor- 
mance of mappings which are already optimized with 
f7 I f3, can be improved further. In Figs. 9 and 10, 
the performance measurements are shown for mappings 
optimized with f7 I f3 when executed on systems with 
various packet-scheduling and flit-multiplexing combi- 
nations. “SRBF” denotes the packet-scheduling policy 
which gives a higher priority to the packet with the 
smallest remaining bandwidth. “SRBP” denotes the 
flit-multiplexing method giving a higher priority to the 
same type of packets as in SRBF. These two schemes 
are shown in [3] to perform particularly well. Also, to 
prevent deadlock, CTS lookahead is implemented with 
SRBP multiplexing. 

These flow-control mechanisms can still improve the 
performance of mappings significantly. Though using 
SRBF scheduling alone can introduce some performance 
fluctuations when nT is increased, it can still improve 
makespans by at least 12% and average latency by at 
least 10%. The combination of SRBF and SRBP can 
further improve the performance, especially the aver- 
age latency. Also note that, when these flow-control 
mechanisms are used, the margin of improvement with 
increasing nT’s is narrowed. For example, mappings 
found with TIT = 5000 still outperform n~ = 1000, but 
when compared with the case using only FIFO-RR, the 
margin is greatly reduced. This shows that by using 
proper run-time flow controls, we may save some com- 
puting effort on finding optimized mappings. 

In Figs. 11 and 12 we show the effect of applying the 
mapping optimization process and flow-control mech- 
anisms on the performance of one set of communicat- 
ing modules under uniform and hot-spot traffic, respec- 
tively. The mapping is optimized with f7 I f3 and 
nT = 5000. It can be observed that given a mapping, 
different flow-control mechanisms will result in differ- 
ent rates of “energy” (remaining bandwidth) dissipation. 
Better flow-control not only results in a higher rate, but 
also a more linear behavior, and hence, a more pre- 
dictable task communication response time. Further- 
more, in the presence of hot-spot traffic, a good flit- 
multiplexing method like SRBP can reduce makespan 
dramatically by reducing the time the system spends in 
non-saturated regions, as shown in Fig. 12. 

On the other hand, the mapping optimization pro- 
cess leads to lower “initial energy,”, and reduces the 
time needed to dissipate it. Note that it can work in- 
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dependently of the flow-control mechanisms, and their 
improvements on the performance can be additive. It is 
also interesting to note that the amount of initial band- 
width is a good indication of the quality of mappings, 
especially when A T  is small. In most of our inputs 
used here, when AT < 70, a mapping with a smaller 
initial bandwidth almost always has a better makespan 
and average latency measurements. However, in most 
cases, given the same computing time, mapping opti- 
mized with f3 actually has a higher initial bandwidth 
than f71f3. The reason for this is that using f3 alone, 
the simulated annealing process can be “trapped” in a 
local optimum much more quickly than using f7 1 f3. 
4 Conclusion 

In this paper, we have addressed the problem of map- 
ping concurrently-communicating modules into mesh- 
connected multicomputers equipped with wormhole 
switching and virtual channels. Our objective is to opti- 
mize the makespan and average latency of these packets 
exchanged among modules. It has been shown that di- 
rect optimization of the performance objective is not 
practical. We investigated several simplified cost func- 
tions for the simulated annealing method. The effec- 
tiveness of these proposed cost functions are compared 
by using a flit-level simulation program to access the ac- 
tual run-time performance of the mappings optimized 
with each cost function when approximately the same 
amount of computing time is given. The cost function 
f7 I f3, has been found to be quite effective. Mappings 
optimized with it have been shown to be consistently 
outperform the others. Also, performance of mappings 
can be continually improved with the increase of com- 
puting time. We also showed that the run-time perfor- 
mance of optimized mappings can be further improved 
when on-line flow-control mechanisms are used. 

References 
[l] M. 6. Norman, “Models of machines and computation 

for mapping in multicomputers,” A CM Computing Sur- 
veys, vol. 25, no. 3, pp. 263-302, September 1993. 

[2] W. J. Dally, “Deadlock-free message routing in multipro- 
cessor interconnection networks,” IEEE Trans. on Com- 
puters, vol. C-36, no. 5, pp. 547-553, May 1987. 

[3] B.-R. Tsai and K.  G. Shin, “Sequencing of concur- 
rent communication traffic in mesh multicomputers with 
virtual channels,” in Proc. of the 23-rd International 
Conference on  Parallel Processing, pp. 126-133, August 
1994. 

[4] B.-R. Tsai and K.  G. Shin, “Communication-oriented 
assignment of task modules in hypercube multicomput- 
ers,” in Proc. 12-th Int’l Conf. on Distributed Comput. 
Syst., pp. 38-45, June 1992. 

0---0 rand 

0 - . - 0  fllf3 

0 4 8 12 16 
V 

Figure 1 : 
with various cost functions. 

Makespan comparison of mappings optimized 

0 
350.0 

g - 
M ‘ 300.0 - 

250.0 - 

200.0 - 

150.0 - 

100.0 - 
0 4 8 12 16 

V 

Figure 2: Average latency comparison of mappings opti- 
mized with various cost functions. 

498 



I I I I I 
1000 2000 3WO 4000 SO00 

300.0 

Number of tnals 

0 ----0 f l  
A---A n 
A . "  " 'A  n 

i 4  
-.-¤ f5 

x- - - x  P6 
0 ...... 0 f/ 

*.-..-* fSlB 
m ---a f7lB 

Figure 3: 
with various cost functions, uniform traffic. 

Makespan comparison of mappings optimized 

I I t I I 

I I I I 1 
1000 2000 3M)O 4000 5000 

100.0 I 
Numbcr of trials 

0 --.-o f l  

A . . . . .  ' A  fi 
A- - -A f2 

P 

0 --.-o f l  

125.0 

fSlR 
0 -.-m f710 

0 1000 2000 3WO 4000 5000 
75.0 

Numbcr of tnat 

Figure 6: Average latency comparison of mappings opti- 
mized with various cost functions, hot-spot traffic. 

*.-..-e f51B 
m - - . -0  i7lB 

o 20 40 60 a0 IOO 120 MO 160 iao 200 
200.0 

Delta T 

Figure 4: Average latency comparison of mappings opti- 
mized with various cost functions, uniform traffic. 

Figure 7: Makespan of mappings optimized with f7  I fa 
versus varying AT. 

~ 700.0 

600.0 

500.0 

............... ............. 
400.0 

1000 2000 3000 4000 5000 
300.0 

Numbcr of uiala 

0 - . -0  I1 
A---A M 

o-----o 14 
-.-# 15 

x- - - x  f6 
0 ...... 0 f7 

f5ln 
a --.-a f7lR 

...... 

0.0 
0 20 40 60 80 100 120 140 160 180 200 

=Ita T 

Figure 5: 
with various cost functions, hot-spot traffic. 

Makespan comparison of mappings optimized Figure 8: Average latency of mappings optimized with f7 I 
f3 versus varying AT. 

499 



I I I I I 
0 1000 2m 3000 4000 M O O  

200.0 

Figure 9: Makespan of mappings optimized with f7 I f3 
under different flow-control strategies. 

Figure 11: Plot of remaining bandwidth versus time, uni- 
form traffic. 

1000 2000 3MM 4000 5000 
50.0 

Numbcr of trialr 

Figure 10: 
f7 I f3 under different flow-control strategies. 

Average latency of mappings optimized with 

Figure 12: Plot of remaining bandwidth versus time, hot- 
spot traffic. 

500 


