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Abstract

The degreeto which a planner succeedsand meets
responsedeadlines dependson the correctnessand
completeness dfs modelswhich describeeventsand
actions that change the world state. It is often
unrealistic to expect perfect models, splannermust
be able to detectand respondto statesit had not
planned to handle. In this paper, we characterize
different classes of these "unhandled" states and
describeplanning algorithmsto build tests for, and
later respondto them. We have implementedthese
unhandledstate detectionand responsealgorithmsin
the Cooperative Intelligent Real-time Control
Architecture (CIRCA), which combinean Al planner
with a separatereal-time system so that plans are
built, scheduled,and then executedwith real-time
guaranteesTestresultsfrom flight simulation show
the new algorithm enables a fully-automated aird@ft
react appropriately to certain classesof unhandled
states,averting failure and giving the aircraft a new
chanceto achieveits goals. We analyze CIRCA'’s
capability to accommodate challenging domain
characteristics, and presdhight simulation examples
to illustrate how CIRCA handles each.

1 Introduction

Autonomous control systenfer real-world applications
require extensive domain knowledge and efficient
information processingo build and executesituationally-
relevantplansof action. To enableguaranteesbout safe
system operation, domain knowledge must be complete
correct, plans must contain actions accounting for all
possibleworld states,andresponsdimes to critical states
must have real-time guarantees. Practically speakiege
conditions cannot bmet in complexdomains,whereit is
infeasible topreplanfor all configurationsof the world, if
indeed they could even be enumerated. Realistic
autonomoussystemsuse heuristicsto boundthe expanded
world state set, coupled with reactive mechanismsto
compensate when unexpected situations occur.

In this paper,we focus on the questionof how an
autonomoussystem can know when it is no longer
preparedor the world in which it finds itself, and how it
can respond. We assume limited sensory and
computationakapabilities,and that a systemwill devote
available resources to the accomplishmeritofasks. As
a consequencesuch a systemwill not notice unexpected
occurrencesn the world unlessit explicitly hasa task of
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looking for them. In other wordshe systemmust satisfy
absolute guarantees about saferationin expectedstates,
and must also be readyto recognizeand respondto the
unexpected.

To ground our discussionand empirically validate our
solutions, we will consider issues in dealing with
unexpected occurrencesvithin  the context of the
Cooperative Intelligent Real-time Control Architecture
(CIRCA) applied to the aircraft domairCIRCA combines
a traditional Al planner, scheduler,and real-time plan
execution module to provide guaranteed performéaicéhe
control of complex real-world systems[Musliner]. With
sufficient resources and accurate domain knowledge,
CIRCA can build and schedulecontrol plans that, when
executedare assuredf respondingquickly enoughto any
eventsso that CIRCA remainssafe(its primary task) and
whenever possible reaches its goals.

When faced with imprecise knowledge and limited
resources, a CIRCA plan may not jpaeparedo handleall
possible states. CIRCA may have planned actions to

assure safety in some state but may not be able reach a go

state. Or, it may have anticipateda state but, due to
resource limitations, chogs®t to scheduleactionsto keep
it safein that state. Or, it may not even haveanticipated
that statebecauseof knowledgebaseimperfections. The
contributionof this paperis to articulate, more precisely,
such different classesof unhandledstates(Section3), to
describemethodsto detectwhen a systemreachesone of
these states (Section 4), and to respond appropriately
(Section5). We highlight how our algorithmsimprove
CIRCA’s performance for simulated aircraft control
(Section 6), and discusshow CIRCA handles each of
several challenging domain characteristics (Section 7).

2 Background

Ideally, a plannerwould examineall world statesand
build a universalplan [Schoppers]to handleall possible
situations.  However, this procedure may require
exponential executiotime [Ginsberg]land may not handle
all situations when imperfednowledgeexists. Executive
architecturessuch as CYPRESS [Wilkins] have been
applied to problems similar to those discussedin this
paper. CYPRESS concentrateson limiting planner
execution time by restricting the plannecisoicesto high-
level actions then requires runtime low-level action
selection, so no response guarantees are possible.
Conversely,CIRCA contains a deliberative planner that
limits planning time by considering only those states



reachablgrom the initial state.CIRCA spendsmoretime
up-front building plans, assumingthe set of reachable
statesis sufficiently small to reasonablybound execution
time. However,CIRCA producesplans that are executed
with real-time guaranteesecauseall planned responses
have been carefully scheduled in advance.

Figure 1 showsthe generalarchitectureof the CIRCA
system. The Al subsyste(AlS) containsthe plannerand
scheduler. The "shell" aroundAIS operationsconsistsof
meta-rules controlling knowledge areas, similatite PRS
architecture [Ingrand].Working memory containstasksto
be executed,including planning, scheduling,downloading
plans from AIS to real-time subsystem (RTS), and
processing RTS feedback.

Knowledge Bas

temporal/action transitio|
initial state / goal
S~ —
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control commanc

. N
Real-Time Subsyste TAP
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(Environment Interface Fu nct@
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( Meta-level Control Knowletﬁ

feedback ( Planne )
data ( Schedule )
.

CIRCA Architecture.

The CIRCA domainknowledgebasespecifiessubgoals
which, whenachievedin order,enablethe systemto reach
its final goal. CIRCA plans separatelyfor eachgoal in
this list. During planning, the world model is created
incrementallybasedon initial state(s)and available state
transitions. The planner uses traditional methods of
selectingactionsbasedon estimated'cost vs. benefit" and
backtracks ifthe actiondoesnot ultimately help achievea
goal or avoid failure. CIRCA minimizes memory atiithe
usageby expandingonly statesproducedby transitions
from initial statesor their descendants. State expansion
terminatesvhenthe goal hasbeenreachedwvhile avoiding
failure states.

Figure 1.

A CIRCA knowledge base contains two transition types:

action and temporal. Action transitions correspondwith
commands explicitly executed blye RTS, while temporal
transitions represent state changesinitiated by CIRCA.
Eachtemporaltransition has a probability function that
modelsthat transition’slikelihood as a function of time,
starting at the moment all preconditions become true.
Time remaining until a transitiowill occuris particularly
importantwhentransitionto failure is involved. In this
case, CIRCA must schedule aationthat is guaranteedo
execute before the temporal occurs, preempting the
transitionto failure. CIRCA "plays it safe" by assuming
the action must occur beforethe transition has more than
small probability e. The use of probabilistic modelsin
CIRCA is described in [Atkins].

CIRCA's control plans are represented as cyclic

schedules of test-action pairs (TAPs). Typical tests involve

readingsensorsand comparingsensedvalueswith certain
preset thresholds, while actions involzetuatorcommands
or data transfer between CIRCA modules. When the
plannercreatesa TAP, it storesan associatedexecution

deadline, which is usely a deadline-driverschedulefLiu]

to createa periodic TAP scheduleto guaranteesystem
safety. If the schedulerannotcreatea scheduleto support
all deadlinesthe AIS backtrackgo the planner. For the
next iteration, the lowest probability temporaltransitions
are removed to reduce the number of actions planndtie If
scheduleffails when only high-probability transitionsare
considered,the CIRCA planner fails, leaving the RTS
executingits last plan which will ideally keepthe system
"safe" but never reach the goal.

Presumingthe plannerand schedulerare successfulthe
AIS downloads the TAP plato the RTS. During normal
operation,the RTS sendsonly handshakingmessageso
the AIS. This paperdescribesthe introduction of RTS
statefeaturefeedbackto prompt AIS replanningwhen an
unhandled state is detected.

3 Unhandled State Classes

Figure 2 showsthe relationshipbetweensubclasse®f
possibleworld states. Modeledstateshave distinguishing
featuresandvaluesrepresentedh the planner’'sknowledge
base. Because the planner cannot consider unmostated
without a feature discovery algorithmnmodeledstatesare

beyond the scope of this paper. “Planned-for" states include

thosethe plannerhas expanded. This setis divided into

two parts: "handled" states which avoid failure and can reach

the goal, and "deadend"states which avoid failure but
cannot reach the goal with the current plan.

All World States
@ Modelec A
Planned-fo
"Handled" -- Imrninen
Deadenc can reach go Failure
( )
\_ \_ World States Actually Reached) )
Figure 2. World State Classification Diagram.

A variety of other statesare modelableby the planner.
Such states include those identified as reachable, but
“removed” becauseattending to them along with the
“planned-for” states exceedssystem capabilities. Other
modeled states include those that indicate “imminent
failure;” if the system enters these states, likisly to fail
shortly thereafter. Note that some statesmight be both
“removed” and “imminent-failure”, as illustrated in Figure
2. Finally, some modeled states might not fialb any of
thesecategoriessuchasthe statesthe plannerconsidered
unreachable but that are nmcessarilydangerous. We are
working to find other important classesor else show no
other modelablestate classesare critical to detect. As
illustrated by the boldly outlined regian Figure 2, states
actually reachedmay include any subclass. To assure
safety,the setshouldonly haveelementsn the “planned-
for” region. When the set has elements outsidertg#on,
safety and performanadependon classifyingthe new state
and respondingppropriately. For this reasonwe provide
more detailed definitions of the most important classes.



A "deadend"stateresultswhen a transition path leads
from an initial state to a state that cannot reactgtiad, as
shown in Figure 3. The deadesthteis safebecausehere
is no transitionto failure. However,the plannerhas not
selected an action that leads froimns statevia any pathto
the goal. As illustrated by a flight simulation example
(Section6), deadendstatesproducedbecauseno action can
lead to a goal are called "by-necessity", while those
producedbecausethe planner simply did not choosean
action leading to the goal are called "by-choice”.

Initial
State

temporal 0
action

"Deadend state" illustration.

Figure 3.

A planner that generates real-timentrol plans needsto
backtrackwheneverschedulingfails. When backtracking,

schedulera betterchanceof success. A flight simulation
example with removed states is shown in Section 6.

During plan development,all temporal transitions to
failure (TTF) from reachablestates are preempted by
guaranteedactions. If preemptionis not possible, the
plannerfails. However,the plannerdoesnot worry about
TTF from any statesit considersunreachablefrom the
initial state set. The setof all modelablestatesconsidered
unreachablethat also lead via one modeled temporal
transition to failure are labeled "imminent-failure"?
Actually reaching onef the recognizablémminent-failure
statesindicateseitherthat the planner'sknowledgebaseis
incompleteor incorrect(i.e., it failed to model a possible
sequence of states), or that ffilannerchoseto ignorethis
state in order to make other guarantees.

Figure 5 shows diagramof a reachablestateset along
with an isolated state (labeled“Imminent-failure”) leading
via onetemporaltransitionto failure. This state has no
incoming transitions from eeachablestate,so the planner
will not considerit during state expansion. However, if
this state is reached,the system may soon fail. The
imminent-failure unhandledstatesare importantto detect
becauseavoiding system failure is consideredCIRCA’s

the planner selects different actions while maintaining those Primary goal. - Examplesof imminent-failure statesfrom

requiredto avoid failure. However, even after exhaustive
backtracking,a plannermay fail to find actionsthat meet
all objectives while still beingchedulable. One option is
ignoring somereachablestates,thus not planning actions
for them. A control plan so constructed cannot clainbe
foolproof. However,for real-timecontrol applications,it
may be moreimportantto make timing guaranteesinder
assumptionghat exceptionalcaseswill not occur than to

make no guarantees about a more inclusive set of cases.

One heuristic for selecting states to priméo overlook
the most unlikely states.A "removed"statesetis created
when the planner has purposefully removedthe set of
lowest probability stateduring backtrackingasillustrated
in Figure4. In thefirst planneriteration, all stateswith
nonzero probability are considered,as depicted by the
"Before Pruning" illustration. A lovprobability transition
leadsto a statewhich transitionsto failure. This failure
transition is preempted by a guaranteed action.

low probability
temporal
(€ <prob<< 1

preemptive
action

temporal or
action
(€ <prob<1)

Goal
State

After Pruning

Initial
State
temporal or
action

(E<prob<1)

Goal
State

Before Pruning

Figure 4. "Removed state" illustration.

Suppose the scheduler fail§.he plannerwill backtrack
andbuild a new plan without low-probability states. The
resultingstatediagram-- "After Pruning" -- is shownin
Figure 4. Due to the low probability transition, all
downstreamstatesare removedfrom consideration. The
preemptive action is no longer required, giving the

flight simulation tests are described in Section 6.
@ mminen
- Failure
tate
State
terr_lporal or
action
(€ <prob<1) State

Figure 5. "Imminent-failure state" illustration.

tempora

4 Detecting Unhandled States in CIRCA

A critical premisein our work is that a plannercannot
be expectedo somehowjust “know” whenit hasdeviated
from plans---it must explicitly plan actions and allocate
resources to detect sudeviations. For exampleto make
real-time guarantees, CIRCAMS must specifyall TAPs
to be executed,including any to detect and react to
unhandled statesn our implementation after the planner
builds its normalplan, it builds TAPs to detectdeadend,
removed, and imminent-failure states. Other unhandled
states,suchasthose“modeled” but outside “planned-for”,
“removed”, and “imminent-failure” regioni& Figure 2, are
not detected by CIRCA. If reaching onetbéseunhandled
statesthat is not detectedby CIRCA, the system may
eventually transition bacto a planned-forstate(wherethe
original plan executes properly), transition toiamminent-
failure state (wher€IRCA will detectthe stateandreact),
or simply remain safe forever without reachingthe goal.
The algorithmsto build lists for deadend,;removed, and

2 Note that it is also possible that states that are unmodelable could lead
directly to failure with a known transition, or that states that are
modelable could lead directly to failure with transitions that are not
known to the planner, or that states that are not modelable could lead
directly to failure with an unknown transition. We exclude these cases
from the “imminent-failure” set because the planner is incapable of
classifying them in this way.



imminent-failure statesare describedbelow. TAPs could

include explicit tests for every set of featuresin that
unhandledstate list, but thesetests would be repeated
frequently during plan execution and may be time-

consuming,asin PRS [Ingrand], where context checking
could involve a large, non-minimal number of tests,
including updates from sensortr CIRCA, onceeachlist

is completed,the plannercalls ID3 [Quinlan] with that
unhandledstatelist asthe setof positive examplesand a
subset of the reachable states (dependimgnhandledstate
type) as the set afegativeexamples. ID3 returnswhat it

considersa minimal test set, which is thenusedto detect
that unhandled state class.

When any of the three unhandledstate detection TAP
tests are active, the RTS feeds back curstatefeaturesto
the AIS along with a message stating the typardfandled
state detected. The AIS then builds a rié&P plan which
will handlethis state. The algorithm by which the AIS
replans is described in Section 5.

Deadendstatescannotleadto a goal state. To identify
this stateset, CIRCA follows transition links from each
statein searchof a goal state. If no goal is found, that
state is labeled "deadend" whilee reachablestatesalong a
goal path are labeled "non-deadend™he deadendstatesare
used as positive ID8xampleswhile non-deadendeachable
states are used as negative examples.

Whenever backtracking due to schedulifficulties or
the planner's inabilityo find a valid plan, low-probability
statesarepruned. To build this "removed"” statelist, the
planner executesits state expansionroutine using the
reachablestate set as "initial states”. Planned action
transitions are used to buiftew states. The result of this
state expansionis a list of statescontaining both the
original reachablestatesand the new low-probability or
"removed"statesthat were not consideredn the original
plan. To build the removedstate detectiontests, ID3 is
called with this “removed” statelist (minus the original
reachable states) used positive examplesandall original
reachable states used as negative examples.

While the plannershouldlook for deadendand removed
statesbecausethey are more likely to occur than other
unhandledstates,likelihood is not the only criterion for
allocating resources to detectioNo matterhow unlikely,
detectingimminent-failure statesis important becauseof
the potentially catastrophicconsequencesf beingin such
states. When building imminent-failure state sets, we
assumehe modeledset of temporaltransitionsto failure
(TTFs) is complete andorrect, everthoughreachingsuch
a state implies some other transition is not accurately
modeled.The AIS beginswith a list of all precondition
feature sets from TTFs. This list is expandedto fully
enumerateall possible states that would match these
preconditions. Anyeachablestatesare removedfrom this
list. Minimized imminent-failure detectionTAP tests are
then built with this list asID3 positive examplesandthe
reachablestates as negative examples. Note that a
completelist of fully-instantiatedstatescanbe large with
generalpreconditionsleading to failure, so we hope to
employ a Monte Carlo method tild an approximateset
of ID3 examples,then use an anytime algorithm [Dean]
with ID3 to truncateclassificationtree building when a
planning deadline approaches. The generaged test will

not be 100% accurate,but we believe estimates are
necessarysince the alternative is possible exponential
execution time.

5 System Reaction to an Unhandled State

Regardles®f whetherit is a "deadend","removed”, or
"imminent-failure" state, any unhandled state has the
potentialto preventthe RTS from everreachingits goal.
Additionally, removed or imminent-failure states will likely
result insystemfailure if no actionis taken. To increase
CIRCA's goal achievemenandfailure avoidancethe AIS
replans whenever unhandled states are detected.

Whenone of the special TAPs describedin Section 4
detects any class of unhandled state Rii& feedsbackall
state featuresto the AIS.2 The AIS generatesthe
equivalentof an interrupt that is quickly servicedin the
following sequence. First, th&lS readsfeedbackmessage
type (e.g., "deadend”). Next, the AIS readsthe uplinked
state features, selects a subgoal with preconditions
matchingthe uplinked state features,and then runsthe
planner state expansion module, using state feature feedbac
as the initial state, all temporal transitions, and the
executingplan's TAPs as actiontransitions. The returned
statelist containsall possiblestatesthe RTS could reach
while the AIS is replanningthus each is @ossibleinitial
statewhenthe new plan beginsexecuting. The AIS then
replans using thipotentially largeinitial statesetandthe
selected subgoal. This new plan is downloatbethe RTS
which canthenreactto the previously unhandledstateand
its descendants (i.e., the constructed initial state set).

By detecting all unhandled states which may reach
failure® the systemwill always be able to initiate a
reactionto avoid impending doom. However, this is
predicated on the planner being able to retucorarol plan
to avertdisasterfasterthan disastercould strike. For the
purposes of examples in this papsg assumehat this is
the case: in the aircraft domaine assumehe planeis at
sufficient altitude and distancefrom the runway that the
new plan is constructed before the plane crastéswyever,
in other situations the systemight havelessopportunity
to postpondlisaster. We are currentlyworking to build a
more robust imminent-failure handling systemby adding
failure-avoidanceactions to a control plan whenever
possible and by limiting replanning time.

6 Flight Simulation Testing

We testedour unhandledstate classification,detection,
andreactionideasin an aircraftflight simulator. Perhaps
the main attraction to the aircraft domain is tbatinuous
real-time operation is essential -- an aircraft nawer"stop
andremainsafe indefinitely” onceit hasleft the ground.
The fully-automatedflight problem has only beensolved
when an aircraft is restrictedto certain regions of state-
space. The "solved" part of flight can be modeledin a

3 Even though the RTS senses feature values in sequence, we assume
none will change before the state is uniquely determined.

4 We assume no further modeling errors during this state expansion, thus
no possible initial states are ignored.

5 Presuming we have modeled all actual transitions to failure.



CIRCA domain knowledgebase,then CIRCA's AIS can
createplans that issue commandsto a low-level control
system. With the addition of unhandledstate feedback,
CIRCA begins to reach beyond traditional autopilots,
allowing the systemto selecta new plan (e.g., trajectory)
which may not reachthe previousgoal but that canavoid
failure and divert to a new location if necessary. We
interfacedthe ACM F-16 flight simulator [Rainey] to a
Proportional-Derivative(P-D) controller [Rowland] that
calculatesactuatorcommandgo achievea specific altitude
and heading. Modeled state features include altitude,
heading,location (or “FIX"), gearand traffic status, and
navigationsensordata. CIRCA successfullycontrolledthe
aircraft during normal pattern flight (illustrated kigure 6)
from takeoff through landing.

-

FIX

x
=Y

FIX1

Figure 6. Flight pattern flown during testing.

We havetestedour algorithms using two emergencies:
“gear fails on final approach”,and“collision-coursetraffic
on final approach”. In either situation, failure to notarel

when combinedwith other approach-to-landingperations
wastoo time-consuming. The plannerthen prunedlow-

probability states, and they became “removed” states.
Figure 8 shows a partial state diagram illustrating

simplifications due to low-probability state removal.

INITIAL
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temporal

EMOVE
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"descent”
temporal

"descent”

"gear down"
temporal

action

GOAL AILURE
(gear down (gear up)
(alt zero) . alt zero) ..

Before Prunin After Pruninc

Figure 8. Flight simulation -- Removed State.

An imminent-failure"gearup” stateset was createdby
having an initial state with gear down and omitting
temporal transitions from "gear down" to "gear up”.
Without a temporal transition to "gear uphe plannerhad
no reasorto expandstateswith a "gearup" feature,so no
"gear up" action was planned. However, since attribute
"gearup” led directly to failure, an imminent-failure-state
detection TAP was built sthe RTS could detectthe "gear

react to the problem will cause a crash. We included featureup" state if it occurred. Figur@ showsthe reachablestate

“gear” with values“up” and “down”, and feature “traffic”
with values “yes” and “no”. Note that more complex
featureswould work, but these examplesillustrate the
utility of our algorithms. We will discussonly the “gear
failure” emergencyhere; similar results from “collision-
course traffic” are discussed in [Atkins].

During normalflight, the gearwasleft down. A TTF
occurredwith gear "up" when landing to simulate the
impending crash. Proper reactitima “gear up” emergency

is to execute a go-around (i.e., continue around the pattern a

secondtime to avoid an immediatecrash),performingany
available actions such agcling the gearleverto help the

gear extend. A deaderigearup” statewas createdusing a

temporal transition with precondition "gear down" and

postcondition"gearup"”. Figure 7 illustratesthe deadend
statewith action"hold positive altitude" to avoid failure.

For brevity, two of seven state features are listed.

"gear up" DEADEND

high-probability | (gear up) "hold altitude"

temporal (alt pos) ... action
INITIAL

(gear down
(alt pos) ...

GOAL

"altitude descent’ (gear down
temporal (alt zero) ..,
Figure 7. Flight Simulation -- Deadend State.

A removed'gearup" statesetwas createdwith a low-
probability "gear up" temporal transition and a time-
consumingactionto put the gearbackdown. The initial
AIS plan included dgearup" temporalalong with a "gear
down" action. This action was guaranteedfor the final
approach region, and the scheddéled becausehe action

set and "gear up" imminent-failure state.

INITIAL _— —_— = IMMINENT
(gear down unmodeled FAILURE
It "gear up"

(alt pos) ... temporal (gear up)
"descent" . -
temporal descent

temporal

FAILURE

(gear up)
(alt zero) ..

(alt zero) ..,

Figure 9. Flight Simulation --
Imminent-failure States.

Test results for each unhandled state subclass are
summarizedn Table 1. For eachtest, the aircraft flew
around thepattern,andthe gearunexpectedlywent up just
after starting final approach past FIXZhe table describes
eventsoccurringafter the geargoesup. Rows represent
test runs, while columns describe test features. "Gaan
action" and "Gear up temporal" columns depict whether
those transitions were presentin the knowledge base.
Column 4 indicates whether unhandledstate algorithms
were used, followed by the "Detectedstate type" column
indicating which unhandled state class (if anygs detected.
Output columns showesultsand an indication of whether
the plane crashed or landed safely. siimmary,whenever
“gear up” occurredbut went undetectedtests1 and?2), the
aircraft crashed. If “gear up” was deadend'by necessity”
(tests3 and4), the aircraft lands safely after a go-around

only if gear serendipitously extends (which has happened or

occasion). In all other cases(tests5 - 7), detectingand
reactingto the problemenablesCIRCA to executea go-
aroundand subsequentgear down” action, resultingin a
successful landing.



Table 1. Simulation Test Results with "Gear Up" Emergency.
Input Output:
Test | "Gear- "Gear up" | Detection | Detected
# down" temporal | algorithm | state type | Result Crash?
action used
1 N/A No No None Lands "gear up" on runway Yes
2 N/A Yes No None Flies straight ahead, avoiding| Yes
"gear-up” landing until out of fuel
3 No Yes Yes Deadendby | Gear never extendglane executes| Yes
necessity go-arounds until out of fuel
4 No Yes Yes Deadendby | Gear locks itself during go-| No
necessity around(s)
5 Yes Yes Yes Deadend Planeexecutes'gear down" during | No
by choice go-around
6 Yes -- Yes -- Yes Removed Planeexecutes'gear down" during | No
slow low go-around
execution | probability
7 Yes No Yes Imminent- | Planeexecutes'gear down" during | No
failure go-around

As shownin Table 1, detectingthe "gear up" problem
only increaseghe aircraft's chanceto successfullyland,
particularly when the “gear down” action is functiorthlus
this simple example clearly illustrates how CIRCA
performancecan improve with unhandledstate detection.
However, "gear up" and “collision-coursgmffic” anomalies
arerelatively simple to model. We are working to show
that CIRCA functions properly whedlynamicallycomplex
or interrelatedfeaturesproduce unhandled states. This
requires modification of the P-Bontroller becauseextreme
flight attitudesare not controllable with such a simple
linear system.

Despitenumerousmprovementgo be madebeforeour
aircraft is “ready-to-fly” exceptin simulation, our tests
demonstrate thadvantage®sf our algorithmsto detectand
respondto unhandledstates. We expectflight simulation
to provide many challenges during future testing.

7 Domain Characteristics in CIRCA

The following paragraphssummarize how CIRCA
performs with respect to each domain characteristic
identified for this symposium. Thigaperhasconcentrated
on improving CIRCA'’s performancan complexdomains,
so “complexity” is not discussed here.

Dynamism

As discussedin Section 2 and [Musliner], CIRCA
domain knowledge bases contain two types of state
transitions: action and temporal. Temporal transitions
explicitly model world changes due to either other agents
exogenousgvents. Thesetransitionshave attributesthat
specify when they can occur (preconditions),how state
featureschange(postconditions)andtheir probability as a
function of time. Our flightsimulation examplecontained
many temporal transitions, such as the [improbable]
transition from “gear down” to “gear up”.

Concurrency

CIRCA handles action/event and event/event
concurrency,but not action/actionconcurrency,since it
requiressome nonzeroaction executiontime and uses a
single processor for plan execution. As an exampleoof

CIRCA handlesconcurrencysupposean actionis selected
(or temporaltransition occurs)from somestate(“Statel”),
resultingin a new state(“State2”). However,supposean
immediate and inevitable (probability=1.0 at time=0)
temporal transition leads from State2 to another state
(“State3”). Since the system spends no timé&tate2,the
plannerconsidersno alternatepathsfrom State2,and the
resulting plan is identical to that with a “concurrent”
transitionfrom Stateldirectly to State3. We modeledno
concurrent action/event (or event/event)during testing;
however, we coul@asily modelsuchpairs. For example,
supposeCIRCA selectedan action to extendthe aircraft
flaps when the aircraft velocity is above V{ieever exceed
speed”). Thereis nearly 100% probability that the event
“flaps rip off” will immediately occur, thus the planner will
effectively consider a pattiirectly from “Statel: flaps up,
speedVne” to “State3: flaps ripped-ofspeedVne”, since
“State2: flaps down, speedne” will occur for zero time.

Uncertainty

As describedin Section 2 and [Atkins], we model
uncertaintyvia temporaltransition probabilities. We do
not explicitly modelaction uncertainty;we assumeaction
postconditionsbecome true if the action is initiated.
However, if an action does not execute properly, the
postconditions may be different than those speclfigdhat
transition. We can indirectly handle action execution
uncertaintyin a mannersimilar to that for concurrency.
Rather than associatke uncertaintywith the actiontaken
to proceed from “Statel” to “State2”, we wouttbdelit as
one (or more) immediate probabilistic temporal
transition(s) from “State2”. Such a transitioould leadto
a “State3” that reflects action misexecutionresults. For
example, if the action simply did not execute, Statedld
be the same as Statel. This model for action uncertainty
not elegant,so we are interestedin alternativesthat will
also preserve the time-dependenttemporal transition
uncertainties we handle now.

GoalVariabilit
Typically, goal states with no matching temporal
transitions -- “achievement goals” becatisey remaintrue



indefinitely -- require no actions, exceptterminating plan
execution. We had such a goal during our simulatiésts.
The aircraft successfullyreacheghe “safe” state of sitting
motionlesson the ground after completing “flight around
the pattern”. Because the planédafe” andimmobile, no
actions are required so plan execution terminates.

The other extreme involves “maintenance” gealthose
that are reachable but require subsequentactions to
maintain. In CIRCA the planneridentifies suchgoalsby
noticing outgoingtemporaltransitions. The plannerthen
examines downstreastatesand selectsa set of actionsto
eventually returrthe systemto a goal state. To illustrate
how CIRCA would handle this goal type, considerthe
aircraft task “execute a holding pattern”. An ideal pattern
a point in space,but an aircraft must keep a forward
velocity to stay aloft, so the goal is maintainedby flying

efficiency. We have identified important classesof such
unexpectedsituations,including “deadend”,“removed”, and
“imminent-failure”, and for each of these classeshave
described a means by which detection tests can be generate
When thesdestsdetectan unhandledstate,featuresare fed
back to the planner, triggering replanning. We have
implementedhesealgorithmsin CIRCA and testedthem

in flight simulation. Tests demonstrated that the aircraft had
a betterchanceto land safely when unhandledstateswere
detected rather than being ignored.

CIRCA's reactionto unhandledstatesis coincidentally
real-time,but this may not be acceptablevhen unhandled
statesquickly lead to failure. Timely reactionsmay be
achievedeither by bounding replanning and rescheduling
executiontimes or by building reactionsin advance. As
planning technology progresses, marehitecturegemploy

in a constant-altitude pattern, similar in shape to the patternmethods for bounding plannexecution([Dean], [Ingrand],

in Figure 6. CIRCAwould select,say, a goal location of
FIX4. After reachingFIX4, actionsareselectedo fly to
FIX1, FIX2, FIX3, then FIX4 (the goal)cyclically until
the aircraft is cleared to land.

ChangingObjectives

For normal operation, CIRCA assumesthe set of
prespecified knowledge base goals is sufficientthereare
no algorithmsfor changingobjectives. CIRCA’s planner

[Zilberstein]). We hopeto enhanceCIRCA’s capabilities
using such ideas.
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