
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/2422131

Detecting and Reacting to Unplanned-for World States

Article · May 1997

Source: CiteSeer

CITATIONS

30
READS

21

3 authors, including:

Some of the authors of this publication are also working on these related projects:

Multiagent Constraint-based Scheduling View project

Cloud-enabled automotive decision-making systems View project

Ella M Atkins

University of Michigan

263 PUBLICATIONS 5,882 CITATIONS

SEE PROFILE

Edmund H. Durfee

University of Michigan

345 PUBLICATIONS 9,082 CITATIONS

SEE PROFILE

All content following this page was uploaded by Ella M Atkins on 15 August 2013.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/2422131_Detecting_and_Reacting_to_Unplanned-for_World_States?enrichId=rgreq-66db593d8fad5c159c1c37af1fc69b2d-XXX&enrichSource=Y292ZXJQYWdlOzI0MjIxMzE7QVM6OTkwNTMwMDYyMjk1MjNAMTQwMDYyNzQ4NTc0OQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/2422131_Detecting_and_Reacting_to_Unplanned-for_World_States?enrichId=rgreq-66db593d8fad5c159c1c37af1fc69b2d-XXX&enrichSource=Y292ZXJQYWdlOzI0MjIxMzE7QVM6OTkwNTMwMDYyMjk1MjNAMTQwMDYyNzQ4NTc0OQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Multiagent-Constraint-based-Scheduling?enrichId=rgreq-66db593d8fad5c159c1c37af1fc69b2d-XXX&enrichSource=Y292ZXJQYWdlOzI0MjIxMzE7QVM6OTkwNTMwMDYyMjk1MjNAMTQwMDYyNzQ4NTc0OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Cloud-enabled-automotive-decision-making-systems?enrichId=rgreq-66db593d8fad5c159c1c37af1fc69b2d-XXX&enrichSource=Y292ZXJQYWdlOzI0MjIxMzE7QVM6OTkwNTMwMDYyMjk1MjNAMTQwMDYyNzQ4NTc0OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-66db593d8fad5c159c1c37af1fc69b2d-XXX&enrichSource=Y292ZXJQYWdlOzI0MjIxMzE7QVM6OTkwNTMwMDYyMjk1MjNAMTQwMDYyNzQ4NTc0OQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ella_Atkins?enrichId=rgreq-66db593d8fad5c159c1c37af1fc69b2d-XXX&enrichSource=Y292ZXJQYWdlOzI0MjIxMzE7QVM6OTkwNTMwMDYyMjk1MjNAMTQwMDYyNzQ4NTc0OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ella_Atkins?enrichId=rgreq-66db593d8fad5c159c1c37af1fc69b2d-XXX&enrichSource=Y292ZXJQYWdlOzI0MjIxMzE7QVM6OTkwNTMwMDYyMjk1MjNAMTQwMDYyNzQ4NTc0OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Michigan?enrichId=rgreq-66db593d8fad5c159c1c37af1fc69b2d-XXX&enrichSource=Y292ZXJQYWdlOzI0MjIxMzE7QVM6OTkwNTMwMDYyMjk1MjNAMTQwMDYyNzQ4NTc0OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ella_Atkins?enrichId=rgreq-66db593d8fad5c159c1c37af1fc69b2d-XXX&enrichSource=Y292ZXJQYWdlOzI0MjIxMzE7QVM6OTkwNTMwMDYyMjk1MjNAMTQwMDYyNzQ4NTc0OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Edmund_Durfee?enrichId=rgreq-66db593d8fad5c159c1c37af1fc69b2d-XXX&enrichSource=Y292ZXJQYWdlOzI0MjIxMzE7QVM6OTkwNTMwMDYyMjk1MjNAMTQwMDYyNzQ4NTc0OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Edmund_Durfee?enrichId=rgreq-66db593d8fad5c159c1c37af1fc69b2d-XXX&enrichSource=Y292ZXJQYWdlOzI0MjIxMzE7QVM6OTkwNTMwMDYyMjk1MjNAMTQwMDYyNzQ4NTc0OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Michigan?enrichId=rgreq-66db593d8fad5c159c1c37af1fc69b2d-XXX&enrichSource=Y292ZXJQYWdlOzI0MjIxMzE7QVM6OTkwNTMwMDYyMjk1MjNAMTQwMDYyNzQ4NTc0OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Edmund_Durfee?enrichId=rgreq-66db593d8fad5c159c1c37af1fc69b2d-XXX&enrichSource=Y292ZXJQYWdlOzI0MjIxMzE7QVM6OTkwNTMwMDYyMjk1MjNAMTQwMDYyNzQ4NTc0OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ella_Atkins?enrichId=rgreq-66db593d8fad5c159c1c37af1fc69b2d-XXX&enrichSource=Y292ZXJQYWdlOzI0MjIxMzE7QVM6OTkwNTMwMDYyMjk1MjNAMTQwMDYyNzQ4NTc0OQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Detecting and Reacting to Unplanned-for World States1

Ella M. Atkins Edmund H. Durfee Kang G. Shin

University of Michigan AI Lab
1101 Beal Ave.

Ann Arbor, MI 48109
{marbles, durfee, kgshin}@umich.edu

1 This research was supported by NSF Grant IRI-9209031.

Abstract

The degree to which a planner succeeds and meets
response deadlines depends on the correctness and
completeness of its models which describe events and
actions that change the world state. It is often
unrealistic to expect perfect models, so a planner must
be able to detect and respond to states it had not
planned to handle. In this paper, we characterize
different classes of these "unhandled" states and
describe planning algorithms to build tests for, and
later respond to them. We have implemented these
unhandled state detection and response algorithms in
the Cooperative Intelligent Real-time Control
Architecture (CIRCA), which combines an AI planner
with a separate real-time system so that plans are
built, scheduled, and then executed with real-time
guarantees. Test results from flight simulation show
the new algorithm enables a fully-automated aircraft to
react appropriately to certain classes of unhandled
states, averting failure and giving the aircraft a new
chance to achieve its goals. We analyze CIRCA’s
capability to accommodate challenging domain
characteristics, and present flight simulation examples
to illustrate how CIRCA handles each.

1 Introduction

Autonomous control systems for real-world applications
require extensive domain knowledge and efficient
information processing to build and execute situationally-
relevant plans of action. To enable guarantees about safe
system operation, domain knowledge must be complete and
correct, plans must contain actions accounting for all
possible world states, and response times to critical states
must have real-time guarantees. Practically speaking, these
conditions cannot be met in complex domains, where it is
infeasible to preplan for all configurations of the world, if
indeed they could even be enumerated. Realistic
autonomous systems use heuristics to bound the expanded
world state set, coupled with reactive mechanisms to
compensate when unexpected situations occur.

In this paper, we focus on the question of how an
autonomous system can know when it is no longer
prepared for the world in which it finds itself, and how it
can respond. We assume limited sensory and
computational capabilities, and that a system will devote
available resources to the accomplishment of its tasks. As
a consequence, such a system will not notice unexpected
occurrences in the world unless it explicitly has a task of

looking for them. In other words, the system must satisfy
absolute guarantees about safe operation in expected states,
and must also be ready to recognize and respond to the
unexpected.

To ground our discussion and empirically validate our
solutions, we will consider issues in dealing with
unexpected occurrences within the context of the
Cooperative Intelligent Real-time Control Architecture
(CIRCA) applied to the aircraft domain. CIRCA combines
a traditional AI planner, scheduler, and real-time plan
execution module to provide guaranteed performance for the
control of complex real-world systems [Musliner]. With
sufficient resources and accurate domain knowledge,
CIRCA can build and schedule control plans that, when
executed, are assured of responding quickly enough to any
events so that CIRCA remains safe (its primary task) and
whenever possible reaches its goals.

When faced with imprecise knowledge and limited
resources, a CIRCA plan may not be prepared to handle all
possible states. CIRCA may have planned actions to
assure safety in some state but may not be able reach a goal
state. Or, it may have anticipated a state but, due to
resource limitations, chose not to schedule actions to keep
it safe in that state. Or, it may not even have anticipated
that state because of knowledge base imperfections. The
contribution of this paper is to articulate, more precisely,
such different classes of unhandled states (Section 3), to
describe methods to detect when a system reaches one of
these states (Section 4), and to respond appropriately
(Section 5). We highlight how our algorithms improve
CIRCA’s performance for simulated aircraft control
(Section 6), and discuss how CIRCA handles each of
several challenging domain characteristics (Section 7).

2 Background

Ideally, a planner would examine all world states and
build a universal plan [Schoppers] to handle all possible
situations. However, this procedure may require
exponential execution time [Ginsberg] and may not handle
all situations when imperfect knowledge exists. Executive
architectures such as CYPRESS [Wilkins] have been
applied to problems similar to those discussed in this
paper. CYPRESS concentrates on limiting planner
execution time by restricting the planner’s choices to high-
level actions then requires runtime low-level action
selection, so no response guarantees are possible.
Conversely, CIRCA contains a deliberative planner that
limits planning time by considering only those states

reachable from the initial state. CIRCA spends more time
up-front building plans, assuming the set of reachable
states is sufficiently small to reasonably bound execution
time. However, CIRCA produces plans that are executed
with real-time guarantees because all planned responses
have been carefully scheduled in advance.

Figure 1 shows the general architecture of the CIRCA
system. The AI subsystem (AIS) contains the planner and
scheduler. The "shell" around AIS operations consists of
meta-rules controlling knowledge areas, similar to the PRS
architecture [Ingrand]. Working memory contains tasks to
be executed, including planning, scheduling, downloading
plans from AIS to real-time subsystem (RTS), and
processing RTS feedback.

Real-Time Subsystem

TAP Schedule

Environment Interface Functions

TAP
schedules

feedback
data

data control commands

Environment

Sensors Actuators

AI Subsystem

Planner

Scheduler

Meta-level Control Knowledge

Knowledge Base

initial state / goals

temporal/action transitions

Figure 1. CIRCA Architecture.

The CIRCA domain knowledge base specifies subgoals
which, when achieved in order, enable the system to reach
its final goal. CIRCA plans separately for each goal in
this list. During planning, the world model is created
incrementally based on initial state(s) and available state
transitions. The planner uses traditional methods of
selecting actions based on estimated "cost vs. benefit" and
backtracks if the action does not ultimately help achieve a
goal or avoid failure. CIRCA minimizes memory and time
usage by expanding only states produced by transitions
from initial states or their descendants. State expansion
terminates when the goal has been reached while avoiding
failure states.

A CIRCA knowledge base contains two transition types:
action and temporal. Action transitions correspond with
commands explicitly executed by the RTS, while temporal
transitions represent state changes not initiated by CIRCA.
Each temporal transition has a probability function that
models that transition’s likelihood as a function of time,
starting at the moment all preconditions become true.
Time remaining until a transition will occur is particularly
important when transition to failure is involved. In this
case, CIRCA must schedule an action that is guaranteed to
execute before the temporal occurs, preempting the
transition to failure. CIRCA "plays it safe" by assuming
the action must occur before the transition has more than
small probability ε. The use of probabilistic models in
CIRCA is described in [Atkins].

CIRCA's control plans are represented as cyclic
schedules of test-action pairs (TAPs). Typical tests involve
reading sensors and comparing sensed values with certain
preset thresholds, while actions involve actuator commands
or data transfer between CIRCA modules. When the
planner creates a TAP, it stores an associated execution

deadline, which is used by a deadline-driven scheduler [Liu]
to create a periodic TAP schedule to guarantee system
safety. If the scheduler cannot create a schedule to support
all deadlines, the AIS backtracks to the planner. For the
next iteration, the lowest probability temporal transitions
are removed to reduce the number of actions planned. If the
scheduler fails when only high-probability transitions are
considered, the CIRCA planner fails, leaving the RTS
executing its last plan which will ideally keep the system
"safe" but never reach the goal.

Presuming the planner and scheduler are successful, the
AIS downloads the TAP plan to the RTS. During normal
operation, the RTS sends only handshaking messages to
the AIS. This paper describes the introduction of RTS
state feature feedback to prompt AIS replanning when an
unhandled state is detected.

3 Unhandled State Classes

Figure 2 shows the relationship between subclasses of
possible world states. Modeled states have distinguishing
features and values represented in the planner’s knowledge
base. Because the planner cannot consider unmodeled states
without a feature discovery algorithm, unmodeled states are
beyond the scope of this paper. “Planned-for" states include
those the planner has expanded. This set is divided into
two parts: "handled" states which avoid failure and can reach
the goal, and "deadend" states which avoid failure but
cannot reach the goal with the current plan.

All World States
Modeled

Planned-for

"Handled" --
can reach goalDeadend

Removed
Imminent
 Failure

World States Actually Reached

Figure 2. World State Classification Diagram.

A variety of other states are modelable by the planner.
Such states include those identified as reachable, but
“removed” because attending to them along with the
“planned-for” states exceeds system capabilities. Other
modeled states include those that indicate “imminent
failure;” if the system enters these states, it is likely to fail
shortly thereafter. Note that some states might be both
“removed” and “imminent-failure”, as illustrated in Figure
2. Finally, some modeled states might not fall into any of
these categories, such as the states the planner considered
unreachable but that are not necessarily dangerous. We are
working to find other important classes or else show no
other modelable state classes are critical to detect. As
illustrated by the boldly outlined region in Figure 2, states
actually reached may include any subclass. To assure
safety, the set should only have elements in the “planned-
for” region. When the set has elements outside this region,
safety and performance depend on classifying the new state
and responding appropriately. For this reason, we provide
more detailed definitions of the most important classes.

A "deadend" state results when a transition path leads
from an initial state to a state that cannot reach the goal, as
shown in Figure 3. The deadend state is safe because there
is no transition to failure. However, the planner has not
selected an action that leads from this state via any path to
the goal. As illustrated by a flight simulation example
(Section 6), deadend states produced because no action can
lead to a goal are called "by-necessity", while those
produced because the planner simply did not choose an
action leading to the goal are called "by-choice”.

Initial
State

Deadend
 State

... Goal
State

temporal

temporal or
action

Figure 3. "Deadend state" illustration.

A planner that generates real-time control plans needs to
backtrack whenever scheduling fails. When backtracking,
the planner selects different actions while maintaining those
required to avoid failure. However, even after exhaustive
backtracking, a planner may fail to find actions that meet
all objectives while still being schedulable. One option is
ignoring some reachable states, thus not planning actions
for them. A control plan so constructed cannot claim to be
foolproof. However, for real-time control applications, it
may be more important to make timing guarantees under
assumptions that exceptional cases will not occur than to
make no guarantees about a more inclusive set of cases.

One heuristic for selecting states to prune is to overlook
the most unlikely states. A "removed" state set is created
when the planner has purposefully removed the set of
lowest probability states during backtracking, as illustrated
in Figure 4. In the first planner iteration, all states with
nonzero probability are considered, as depicted by the
"Before Pruning" illustration. A low probability transition
leads to a state which transitions to failure. This failure
transition is preempted by a guaranteed action.

Before Pruning After Pruning

Removed
 State

low probability
 temporal

 (< prob << 1)

Failure
 State

...

temporal

preemptive
 action

Initial
State

... Goal
State

temporal or
action
(< prob < 1)

Initial
State

... Goal
State

temporal or
action
(< prob < 1)

 Removed
downstream
 states

ε

ε

ε

Figure 4. "Removed state" illustration.

Suppose the scheduler fails. The planner will backtrack
and build a new plan without low-probability states. The
resulting state diagram -- "After Pruning" -- is shown in
Figure 4. Due to the low probability transition, all
downstream states are removed from consideration. The
preemptive action is no longer required, giving the

scheduler a better chance of success. A flight simulation
example with removed states is shown in Section 6.

During plan development, all temporal transitions to
failure (TTF) from reachable states are preempted by
guaranteed actions. If preemption is not possible, the
planner fails. However, the planner does not worry about
TTF from any states it considers unreachable from the
initial state set. The set of all modelable states considered
unreachable that also lead via one modeled temporal
transition to failure are labeled "imminent-failure".2

Actually reaching one of the recognizable imminent-failure
states indicates either that the planner’s knowledge base is
incomplete or incorrect (i.e., it failed to model a possible
sequence of states), or that the planner chose to ignore this
state in order to make other guarantees.

Figure 5 shows a diagram of a reachable state set along
with an isolated state (labeled “Imminent-failure”) leading
via one temporal transition to failure. This state has no
incoming transitions from a reachable state, so the planner
will not consider it during state expansion. However, if
this state is reached, the system may soon fail. The
imminent-failure unhandled states are important to detect
because avoiding system failure is considered CIRCA’s
primary goal. Examples of imminent-failure states from
flight simulation tests are described in Section 6.

 Initial
 State

Goal
State

temporal or
action
(< prob < 1)

Failure
 State

Imminent
 Failure
 State

temporal

...

...
ε

Figure 5. "Imminent-failure state" illustration.

4 Detecting Unhandled States in CIRCA

A critical premise in our work is that a planner cannot
be expected to somehow just “know” when it has deviated
from plans---it must explicitly plan actions and allocate
resources to detect such deviations. For example, to make
real-time guarantees, CIRCA's AIS must specify all TAPs
to be executed, including any to detect and react to
unhandled states. In our implementation, after the planner
builds its normal plan, it builds TAPs to detect deadend,
removed, and imminent-failure states. Other unhandled
states, such as those “modeled” but outside “planned-for”,
“removed”, and “imminent-failure” regions in Figure 2, are
not detected by CIRCA. If reaching one of these unhandled
states that is not detected by CIRCA, the system may
eventually transition back to a planned-for state (where the
original plan executes properly), transition to an imminent-
failure state (where CIRCA will detect the state and react),
or simply remain safe forever without reaching the goal.
The algorithms to build lists for deadend, removed, and

2 Note that it is also possible that states that are unmodelable could lead
directly to failure with a known transition, or that states that are
modelable could lead directly to failure with transitions that are not
known to the planner, or that states that are not modelable could lead
directly to failure with an unknown transition. We exclude these cases
from the “imminent-failure” set because the planner is incapable of
classifying them in this way.

imminent-failure states are described below. TAPs could
include explicit tests for every set of features in that
unhandled state list, but these tests would be repeated
frequently during plan execution and may be time-
consuming, as in PRS [Ingrand], where context checking
could involve a large, non-minimal number of tests,
including updates from sensors. In CIRCA, once each list
is completed, the planner calls ID3 [Quinlan] with that
unhandled state list as the set of positive examples and a
subset of the reachable states (depending on unhandled state
type) as the set of negative examples. ID3 returns what it
considers a minimal test set, which is then used to detect
that unhandled state class.

When any of the three unhandled state detection TAP
tests are active, the RTS feeds back current state features to
the AIS along with a message stating the type of unhandled
state detected. The AIS then builds a new TAP plan which
will handle this state. The algorithm by which the AIS
replans is described in Section 5.

Deadend states cannot lead to a goal state. To identify
this state set, CIRCA follows transition links from each
state in search of a goal state. If no goal is found, that
state is labeled "deadend" while the reachable states along a
goal path are labeled "non-deadend". The deadend states are
used as positive ID3 examples while non-deadend reachable
states are used as negative examples.

 Whenever backtracking due to scheduling difficulties or
the planner's inability to find a valid plan, low-probability
states are pruned. To build this "removed" state list, the
planner executes its state expansion routine using the
reachable state set as "initial states”. Planned action
transitions are used to build new states. The result of this
state expansion is a list of states containing both the
original reachable states and the new low-probability or
"removed" states that were not considered in the original
plan. To build the removed state detection tests, ID3 is
called with this “removed” state list (minus the original
reachable states) used as positive examples and all original
reachable states used as negative examples.

While the planner should look for deadend and removed
states because they are more likely to occur than other
unhandled states, likelihood is not the only criterion for
allocating resources to detection. No matter how unlikely,
detecting imminent-failure states is important because of
the potentially catastrophic consequences of being in such
states. When building imminent-failure state sets, we
assume the modeled set of temporal transitions to failure
(TTFs) is complete and correct, even though reaching such
a state implies some other transition is not accurately
modeled. The AIS begins with a list of all precondition
feature sets from TTFs. This list is expanded to fully
enumerate all possible states that would match these
preconditions. Any reachable states are removed from this
list. Minimized imminent-failure detection TAP tests are
then built with this list as ID3 positive examples and the
reachable states as negative examples. Note that a
complete list of fully-instantiated states can be large with
general preconditions leading to failure, so we hope to
employ a Monte Carlo method to build an approximate set
of ID3 examples, then use an anytime algorithm [Dean]
with ID3 to truncate classification tree building when a
planning deadline approaches. The generated TAP test will

not be 100% accurate, but we believe estimates are
necessary since the alternative is possible exponential
execution time.

5 System Reaction to an Unhandled State

Regardless of whether it is a "deadend", "removed", or
"imminent-failure" state, any unhandled state has the
potential to prevent the RTS from ever reaching its goal.
Additionally, removed or imminent-failure states will likely
result in system failure if no action is taken. To increase
CIRCA's goal achievement and failure avoidance, the AIS
replans whenever unhandled states are detected.

When one of the special TAPs described in Section 4
detects any class of unhandled state, the RTS feeds back all
state features to the AIS.3 The AIS generates the
equivalent of an interrupt that is quickly serviced in the
following sequence. First, the AIS reads feedback message
type (e.g., "deadend”). Next, the AIS reads the uplinked
state features, selects a subgoal with preconditions
matching the uplinked state features, and then runs the
planner state expansion module, using state feature feedback
as the initial state, all temporal transitions, and the
executing plan's TAPs as action transitions. The returned
state list contains all possible states the RTS could reach
while the AIS is replanning,4 thus each is a possible initial
state when the new plan begins executing. The AIS then
replans using this potentially large initial state set and the
selected subgoal. This new plan is downloaded to the RTS
which can then react to the previously unhandled state and
its descendants (i.e., the constructed initial state set).

By detecting all unhandled states which may reach
failure,5 the system will always be able to initiate a
reaction to avoid impending doom. However, this is
predicated on the planner being able to return a control plan
to avert disaster faster than disaster could strike. For the
purposes of examples in this paper, we assume that this is
the case: in the aircraft domain, we assume the plane is at
sufficient altitude and distance from the runway that the
new plan is constructed before the plane crashes. However,
in other situations the system might have less opportunity
to postpone disaster. We are currently working to build a
more robust imminent-failure handling system by adding
failure-avoidance actions to a control plan whenever
possible and by limiting replanning time.

6 Flight Simulation Testing

We tested our unhandled state classification, detection,
and reaction ideas in an aircraft flight simulator. Perhaps
the main attraction to the aircraft domain is that continuous
real-time operation is essential -- an aircraft can never "stop
and remain safe indefinitely" once it has left the ground.
The fully-automated flight problem has only been solved
when an aircraft is restricted to certain regions of state-
space. The "solved" part of flight can be modeled in a

3 Even though the RTS senses feature values in sequence, we assume
none will change before the state is uniquely determined.
4 We assume no further modeling errors during this state expansion, thus
no possible initial states are ignored.
5 Presuming we have modeled all actual transitions to failure.

CIRCA domain knowledge base, then CIRCA's AIS can
create plans that issue commands to a low-level control
system. With the addition of unhandled state feedback,
CIRCA begins to reach beyond traditional autopilots,
allowing the system to select a new plan (e.g., trajectory)
which may not reach the previous goal but that can avoid
failure and divert to a new location if necessary. We
interfaced the ACM F-16 flight simulator [Rainey] to a
Proportional-Derivative (P-D) controller [Rowland] that
calculates actuator commands to achieve a specific altitude
and heading. Modeled state features include altitude,
heading, location (or “FIX”), gear and traffic status, and
navigation sensor data. CIRCA successfully controlled the
aircraft during normal pattern flight (illustrated in Figure 6)
from takeoff through landing.

FIX4

1
8 3

6

Navigation AidRunway

FIX0

N S

E

W

FIX1

FIX2

final
approach

FIX3

Figure 6. Flight pattern flown during testing.

We have tested our algorithms using two emergencies:
“gear fails on final approach”, and “collision-course traffic
on final approach”. In either situation, failure to notice and
react to the problem will cause a crash. We included feature
“gear” with values “up” and “down”, and feature “traffic”
with values “yes” and “no”. Note that more complex
features would work, but these examples illustrate the
utility of our algorithms. We will discuss only the “gear
failure” emergency here; similar results from “collision-
course traffic” are discussed in [Atkins].

During normal flight, the gear was left down. A TTF
occurred with gear "up" when landing to simulate the
impending crash. Proper reaction to a “gear up” emergency
is to execute a go-around (i.e., continue around the pattern a
second time to avoid an immediate crash), performing any
available actions such as cycling the gear lever to help the
gear extend. A deadend "gear up" state was created using a
temporal transition with precondition "gear down" and
postcondition "gear up". Figure 7 illustrates the deadend
state with action "hold positive altitude" to avoid failure.
For brevity, two of seven state features are listed.

"gear up"
high-probability
temporal

INITIAL
(gear down)
(alt pos) ...

"altitude descent"
 temporal

DEADEND
(gear up)
(alt pos) ...

GOAL
(gear down)
(alt zero) ...

"hold altitude"
 action

Figure 7. Flight Simulation -- Deadend State.

A removed "gear up" state set was created with a low-
probability "gear up" temporal transition and a time-
consuming action to put the gear back down. The initial
AIS plan included a "gear up" temporal along with a "gear
down" action. This action was guaranteed for the final
approach region, and the scheduler failed because the action

when combined with other approach-to-landing operations
was too time-consuming. The planner then pruned low-
probability states, and they became “removed” states.
Figure 8 shows a partial state diagram illustrating
simplifications due to low-probability state removal.

"gear up"
(<< 1)ε

Before Pruning After Pruning

REMOVED
(gear up)
(alt pos) ...

"gear down"
 action

INITIAL
(gear down)
(alt pos) ...

GOAL
(gear down)
(alt zero) ...

"descent"
 temporal

INITIAL
(gear down)
(alt pos) ...

GOAL
(gear down)
(alt zero) ...

"descent"
 temporal

"descent"
temporal

FAILURE
(gear up)
(alt zero) ...

Figure 8. Flight simulation -- Removed State.

An imminent-failure "gear up" state set was created by
having an initial state with gear down and omitting
temporal transitions from "gear down" to "gear up”.
Without a temporal transition to "gear up", the planner had
no reason to expand states with a "gear up" feature, so no
"gear up" action was planned. However, since attribute
"gear up" led directly to failure, an imminent-failure-state
detection TAP was built so the RTS could detect the "gear
up" state if it occurred. Figure 9 shows the reachable state
set and "gear up" imminent-failure state.

INITIAL
(gear down)
(alt pos) ...

GOAL
(gear down)
(alt zero) ...

"descent"
 temporal

IMMINENT
FAILURE
(gear up)
(alt pos) ...

FAILURE
(gear up)
(alt zero) ...

unmodeled
"gear up"
temporal

"descent"
 temporal

Figure 9. Flight Simulation --
 Imminent-failure States.

Test results for each unhandled state subclass are
summarized in Table 1. For each test, the aircraft flew
around the pattern, and the gear unexpectedly went up just
after starting final approach past FIX4. The table describes
events occurring after the gear goes up. Rows represent
test runs, while columns describe test features. "Gear down
action" and "Gear up temporal" columns depict whether
those transitions were present in the knowledge base.
Column 4 indicates whether unhandled state algorithms
were used, followed by the "Detected state type" column
indicating which unhandled state class (if any) was detected.
Output columns show results and an indication of whether
the plane crashed or landed safely. In summary, whenever
“gear up” occurred but went undetected (tests 1 and 2), the
aircraft crashed. If “gear up” was deadend “by necessity”
(tests 3 and 4), the aircraft lands safely after a go-around
only if gear serendipitously extends (which has happened on
occasion). In all other cases (tests 5 - 7), detecting and
reacting to the problem enables CIRCA to execute a go-
around and subsequent “gear down” action, resulting in a
successful landing.

Table 1. Simulation Test Results with "Gear Up" Emergency.

Input Output:
Test
#

"Gear-
down"
action

"Gear up"
temporal

Detection
algorithm
used

Detected
state type Result Crash?

1 N/A No No None Lands "gear up" on runway Yes
2 N/A Yes No None Flies straight ahead, avoiding

"gear-up" landing until out of fuel
Yes

3 No Yes Yes Deadend by
necessity

Gear never extends; plane executes
go-arounds until out of fuel

Yes

4 No Yes Yes Deadend by
necessity

Gear locks itself during go-
around(s)

No

5 Yes Yes Yes Deadend
by choice

Plane executes "gear down" during
go-around

No

6 Yes --
slow
execution

Yes --
low
probability

Yes Removed Plane executes "gear down" during
go-around

No

7 Yes No Yes Imminent-
failure

Plane executes "gear down" during
go-around

No

As shown in Table 1, detecting the "gear up" problem
only increases the aircraft's chance to successfully land,
particularly when the “gear down” action is functional, thus
this simple example clearly illustrates how CIRCA
performance can improve with unhandled state detection.
However, "gear up" and “collision-course traffic” anomalies
are relatively simple to model. We are working to show
that CIRCA functions properly when dynamically complex
or interrelated features produce unhandled states. This
requires modification of the P-D controller because extreme
flight attitudes are not controllable with such a simple
linear system.

Despite numerous improvements to be made before our
aircraft is “ready-to-fly” except in simulation, our tests
demonstrate the advantages of our algorithms to detect and
respond to unhandled states. We expect flight simulation
to provide many challenges during future testing.

7 Domain Characteristics in CIRCA

The following paragraphs summarize how CIRCA
performs with respect to each domain characteristic
identified for this symposium. This paper has concentrated
on improving CIRCA’s performance in complex domains,
so “complexity” is not discussed here.

 Dynamism
As discussed in Section 2 and [Musliner], CIRCA

domain knowledge bases contain two types of state
transitions: action and temporal. Temporal transitions
explicitly model world changes due to either other agents or
exogenous events. These transitions have attributes that
specify when they can occur (preconditions), how state
features change (postconditions), and their probability as a
function of time. Our flight simulation example contained
many temporal transitions, such as the [improbable]
transition from “gear down” to “gear up”.

 Concurrency
CIRCA handles action/event and event/event

concurrency, but not action/action concurrency, since it
requires some nonzero action execution time and uses a
single processor for plan execution. As an example of how

CIRCA handles concurrency, suppose an action is selected
(or temporal transition occurs) from some state (“State1”),
resulting in a new state (“State2”). However, suppose an
immediate and inevitable (probability=1.0 at time=0)
temporal transition leads from State2 to another state
(“State3”). Since the system spends no time in State2, the
planner considers no alternate paths from State2, and the
resulting plan is identical to that with a “concurrent”
transition from State1 directly to State3. We modeled no
concurrent action/event (or event/event) during testing;
however, we could easily model such pairs. For example,
suppose CIRCA selected an action to extend the aircraft
flaps when the aircraft velocity is above Vne (“never exceed
speed”). There is nearly 100% probability that the event
“flaps rip off” will immediately occur, thus the planner will
effectively consider a path directly from “State1: flaps up,
speed>Vne” to “State3: flaps ripped-off, speed>Vne”, since
“State2: flaps down, speed>Vne” will occur for zero time.

 Uncertainty
As described in Section 2 and [Atkins], we model

uncertainty via temporal transition probabilities. We do
not explicitly model action uncertainty; we assume action
postconditions become true if the action is initiated.
However, if an action does not execute properly, the
postconditions may be different than those specified by that
transition. We can indirectly handle action execution
uncertainty in a manner similar to that for concurrency.
Rather than associate the uncertainty with the action taken
to proceed from “State1” to “State2”, we would model it as
one (or more) immediate probabilistic temporal
transition(s) from “State2”. Such a transition could lead to
a “State3” that reflects action misexecution results. For
example, if the action simply did not execute, State3 would
be the same as State1. This model for action uncertainty is
not elegant, so we are interested in alternatives that will
also preserve the time-dependent temporal transition
uncertainties we handle now.

 Goal Variability
Typically, goal states with no matching temporal

transitions -- “achievement goals” because they remain true

indefinitely -- require no actions, except terminating plan
execution. We had such a goal during our simulation tests.
The aircraft successfully reaches the “safe” state of sitting
motionless on the ground after completing “flight around
the pattern”. Because the plane is “safe” and immobile, no
actions are required so plan execution terminates.

The other extreme involves “maintenance” goals -- those
that are reachable but require subsequent actions to
maintain. In CIRCA, the planner identifies such goals by
noticing outgoing temporal transitions. The planner then
examines downstream states and selects a set of actions to
eventually return the system to a goal state. To illustrate
how CIRCA would handle this goal type, consider the
aircraft task “execute a holding pattern”. An ideal pattern is
a point in space, but an aircraft must keep a forward
velocity to stay aloft, so the goal is maintained by flying
in a constant-altitude pattern, similar in shape to the pattern
in Figure 6. CIRCA would select, say, a goal location of
FIX4. After reaching FIX4, actions are selected to fly to
FIX1, FIX2, FIX3, then FIX4 (the goal) cyclically until
the aircraft is cleared to land.

 Changing Objectives
For normal operation, CIRCA assumes the set of

prespecified knowledge base goals is sufficient, so there are
no algorithms for changing objectives. CIRCA’s planner
cannot dynamically change objectives during plan execution
because it has little knowledge of the current world state,
except when a goal state is reached or an unplanned-for state
is fed back. We have incorporated one method for changing
objectives when an unplanned-for state is detected. When
encountering such a state, it is possible that the original
goal is unreachable, so CIRCA’s AIS may select a different
goal that is reachable from the unplanned-for state. This
situation is illustrated by the “gear up” tests in Section 6.
The original “final approach” goal was to successfully land
on the runway. However, when the gear retracted, this goal
was no longer directly achievable because the airplane
would crash, so the planner selected the new goal of flying
to FIX1, then continuing around the pattern a second time.

We would like to incorporate more elegant methods for
changing objectives, such as dynamically defining goals
that are not in the knowledge base, particularly when the
planner finds it difficult to reach any specified goal.

 Action Interruptibility
In CIRCA, an action is executed whenever the current

state matches the TAP test for that action. We currently
execute actions by calling non-interruptable functions on
CIRCA’s RTS. Although we could add an interrupt
capability we have no immediate plans to do so; since we
know worst-case action execution delays (required for plan
scheduling), any plan will contain only actions guaranteed
to complete before any other plan execution deadlines pass.
A prohibitively time-consuming action could never be part
of a scheduled plan, so if such an action were absolutely
required, CIRCA’s AIS would simply fail.

8 Summary

Plans built for complex domains may not handle all
possible states due to either imperfections in domain
knowledge or approximations made to enhance planner

efficiency. We have identified important classes of such
unexpected situations, including “deadend”, “removed”, and
“imminent-failure”, and for each of these classes have
described a means by which detection tests can be generated.
When these tests detect an unhandled state, features are fed
back to the planner, triggering replanning. We have
implemented these algorithms in CIRCA and tested them
in flight simulation. Tests demonstrated that the aircraft had
a better chance to land safely when unhandled states were
detected rather than being ignored.

CIRCA's reaction to unhandled states is coincidentally
real-time, but this may not be acceptable when unhandled
states quickly lead to failure. Timely reactions may be
achieved either by bounding replanning and rescheduling
execution times or by building reactions in advance. As
planning technology progresses, more architectures employ
methods for bounding planner execution ([Dean], [Ingrand],
[Zilberstein]). We hope to enhance CIRCA’s capabilities
using such ideas.

9 References
E. M. Atkins, E. H. Durfee, and K. G. Shin, "Plan Development
in CIRCA using Local Probabilistic Models," to appear in
Uncertainty in Artificial Intelligence: Proceedings of the
Twelfth Conference, August, 1996.

T. Dean, L. P. Kaelbling, J. Kirman, and A. Nicholson,
“Planning with Deadlines in Stochastic Domains,” Proc. o f
AAAI, pp. 574-579, July 1993.

M. L. Ginsberg, "Universal Planning: An (Almost)
Universally Bad Idea," AI Magazine, vol. 10, no. 4, 1989.

F. F. Ingrand and M. P. Georgeff, "Managing Deliberation and
Reasoning in Real-Time AI Systems," in Proc. Workshop on
Innovative Approaches to Planning, Scheduling and Control,
pp. 284-291, November 1990.

C. L. Liu and J. W. Layland, "Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment," Journal
of the ACM, vol. 20, no. 1, pp. 46-61, January 1973.

D.J. Musliner, E.H. Durfee, and K.G. Shin, "World Modeling
for the Dynamic Construction of Real-Time Control Plans",
Artificial Intelligence, vol. 74, pp. 83-127, 1995.

J. R. Quinlan, "Induction of Decision Trees," Machine
Learning, vol. 1, pp. 81-106, 1986.

R. Rainey, ACM: The Aerial Combat Simulation for X11.
February 1994.

J. R. Rowland, Linear Control Systems: Modeling, Analysis,
and Design, Wiley, 1986.

M. J. Schoppers, "Universal Plans for Reactive Robots in
Unpredictable Environments," in Proc. Int'l Joint Conf. on
Artificial Intelligence, pp. 1039-1046, 1987.

D. E. Wilkins, K. L. Myers, J. D. Lowrance, and L. P. Wesley,
"Planning and reacting in uncertain and dynamic
environments," Journal of Experimental and Theoretical AI,
vol. 7, no. 1, pp. 197-227, 1995.

S. Zilberstein, "Real-Time Robot Deliberation by Compilation
and Monitoring of Anytime Algorithms," AAAI Conference,
pp. 799-809, 1994.

View publication statsView publication stats

https://www.researchgate.net/publication/2422131

