
1331 IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 11, NOVEMBER 1996 

Sequencing Tasks to Minimize the Effects 
of Near-Coincident Faults 

in TMR Controller Computers 

Hagbae Kim, Member, IEEE, and Kang G. Shin, Fellow, IEEE 

Abstract-Although Triple Modular Redundancy (TMR) has been 
widely used to mask the effects of a single faulty module, it cannot 
tolerate coincident faults in multiple modules caused by a common 
source, such as an environmental disruption or malfunction of a shared 
component. We propose a method to eliminate or alleviate the effects 
of (near) coincident faults by sequencing tasks on different modules in 
a TMR system. Specifically, we develop an effective sequencing of 
tasks to simply place an “optimal” distance (in the sense of minimizing 
the mean number of faulty tasks due to TMR failures) between the 
copies of a task to be executed on different modules. Several 
examples are presented, showing significant improvements in reducing 
TMR failures with the proposed task sequencing. 

Index Terms-TMR failure; common-cause and independent faults; 
conventional, random, and effective sequencing of tasks; Task Interval 
(TI), task distance. 

+ 
1 INTRODUCTION 
TRIPLE Modular Redundancy (TMR) is one of the most popular fault- 
tolerance methods and uses the simplest form of static spatial redun- 
dancy. TMR can be applied to a component, subsystem, or system 
level. In the subsystem level, a nonredundant system is partitioned 
into a number of modules which are then triplicated, and majority 
voters are placed at module interfaces. Errors generated by any single 
faulty module are masked by a simple majority voter. However, TMR 
is effective only if (Al) the voter is fault-tolerant, (A2) module faults 
are statistically independent, and (A31 additional detection and recov- 
ery schemes are available to retain its fault masking capability, or pre- 
vent a TMR failure that results from sequentially-occurring faults in 
different modules. (A TMX failure is said to occur if the TMR system 
fails to form a majority of its module outputs.) 

A1 can be satisfied by triplicating the voter [11, [91 and thus 
overcoming any critical single-point fault in the voter. Most TMR 
systems in the field are based on A2 and adopt appropriate 
schemes to repair/replace the faulty module (whose effects are 
masked) before a next module fault occurs, thus meeting A3. In 
FTMP [31, JPL-STAR [Z], and C.vmp [ill, disagreement detectors 
operate in parallel with the voters and compare the outputs of 
individual modules with the voted output so as to give an early 
warning of module exhaustion and invoke a subsequent recovery 
action, eg., module replacement. The authors of [121 considered 
periodically-synchronizing sequences in a TMR system to tolerate 
multiple transient faults spaced out in time. In [lo], we also pro- 
posed a method for recovering TMR failures caused by sequen- 
tially-arriving faults in different modules. Unlike the policies 
treating multiple faults only as sequential fault occurrences (under 
A2), we cannot ignore faults (near-) coincidentally occurring in 
different modules under certain circumstances, especially when 

H.  Kim is with the Department of Electrical Engineering, Yonsei Uniuer- 

K.G. Shin is with the Real-Time Computing Laboratory, Department of 
sity, 134 Shinchon-Dong, Sudaemoon-Ku, Seoul 120-749, Korea. 

Electrical Engineering and Computer Sciences, the University of Michigan, 
A n n  Arbor, MI  48109-2122. E-mail: kgshin@eecs.umich.edu. 

Manuscript accepted Jan. 27,1996. 
For information on obtaining reprints of this article, please send e-mail to: 
transcomQcomputer.org, and reference IEEECS Log Number C96086. 

the system is exposed to a harsh environment and/or the system is 
required to have very high reliability. For example, faults caused 
by electromagnetic interferences (EMI) are likely to induce coinci- 
dent faults (or common-cause faults) in different modules of a TMR 
system, causing a TMR failure [51. Although a dependent-fault- 
tolerant operating chart was produced by executing different pro- 
grams on different CPUs in [4] and an optimal instruction-retry 
policy was proposed to recover from TMR failures due to coinci- 
dent faults in [71, these approaches still focused on the behavior of 
independent faults, and did not present any adequate means of 
tolerating, or minimizing the effects of, coincident faults. 

The key idea of this paper is based on the observation that 
multiple coincident module faults in a TMR system will not result 
in a TMR failure if 

1) at any given time all three processor modules execute difer- 

2) the source of the multiple coincident module faults does not 

3) tasks are independent of one another. 

ent tasks, 

last long, and 

(Condition 3 is relaxed later in Section 3.3.) This observation implies 
that some TMR failures can be avoided by properly sequencing tasks 
on the three modules of a TMR system. Such task sequencing will be 
able to deal with coincident faults induced by transient environ- 
mental disruptions like EMI. We first verify this idea by comparing 
the mean numbers of TMR failures for a random tusk sequencing, in 
which tasks are randomly selected for execution, and the conventional 
task sequencing, in which all three modules execute the same task. 
We, then, develop an effective task sequencing to simply place an op- 
timal distance (in the sense of minimizing the mean number of TMR 
failures) between the copies of a task to be executed on different 
modules. We will not consider the effects of faults occurring during 
voting, which usually do not affect much the comparative numbers 
of TMR failures for both task-sequencing methods. (The voters are 
generally implemented with simple combinational logic components 
[13] and the time required for voting is relatively small compared to 
task execution times, and therefore, the probability of multiple fault 
occurrences during the voting process is very small.) 

The rest of the paper is organized as follows. In Section 2, we dis- 
cuss fault and task models along with the assumptions used. In Sec- 
tion 3, we analyze the effects of independent and common-cause 
faults on both the random and the conventional sequencing of tasks 
by computing the mean number of tasks producing incorrect execu- 
tions results. An effective sequencing is also developed there. Section 
4 presents demonstrative examples. Section 5 concludes the paper. 

2 BASIC MODEL AND ASSUMPTIONS 
While independent module faults usually result from physical 
defects during manufacture or component-aging effects, common- 
cause faults occur due mainly to environmental disruptions af- 
fecting the entire system. Let F,(t) and gc(t)  (F,(t) and g, ( t ) )  be the 
Probability Distribution Function (PDF) of occurrences of com- 
mon-cause (independent) faults and the probability density func- 
tion ($0 of durations of external disruptions inducing these faults, 
respectively. We approximate error/failure occurrences and dura- 
tions using the knowledge of fault-occurrence/duration informa- 
tion. (Both are not always equal though, because a fault may dis- 
appear without causing any error/failure or the latter may persist 
even after the former‘s disappearance.) 

We define a task interval (TI), a basic time unit, as the time re- 
quired to execute a task, the set of which composes a misszon phase. 
Beginning with a basic task model having all independent tasks 
with an identical execution time (= one TI = Af), we further cover 
realistic tasks of various execution times and/or dependent tasks 
in Section 3.3. 

0018-9340/96$05.00 01996 IEEE 

mailto:kgshin@eecs.umich.edu
http://transcomQcomputer.org


1332 

Sequencing method\N 5 10 15 
Conventional 1 .I 50e - 4 3.008e - 4 5.001 e - 4 

Random 8.051 e - 5 1.691 e - 4 2.652e - 4 
Method of [4] 9.475e - 5 2.374e - 4 3.879e - 4 

~ 

IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 11, NOVEMBER 1996 

20 25 
7.01 8e  - 4 
3.541% - 4 
5.400e - 4 

9.041 e - 4 
4.286e - 4 
6.923e - 4 

When the three modules execute different tasks during each TI 
according to a certain sequencing policy, it is not so simple to de- 
termine when to vote on the execution results as the conventional 
sequencing that relies on immediate voting. To circumvent this 
difficulty, we assume that all task execution results are saved and 
voted on later. Our idea and analysis are based on the assumption 
that the saved data is made immune to faults during the wait for 
voting through well-developed memory fault-tolerance schemes 
like error detection and correction codes (EDCCs). Tasks with tight 
timing constraints will be given priority to be executed early and 
their execution results will be voted on immediately. (More on this 
will be discussed in Section 3.4.) 

3 TASK SEQUENCING POLIC~ES 
Let a mission phase consist of N tasks and Nf  be the number of 
tasks producing incorrect results in the presence of TMR failures. 
Occurrences of TMR failures depend on fault behaviors as well as 
on the method of sequencing tasks. We consider only one occur- 
rence of common-cause or coincidentally-occurring independent 
faults during the time interval of interest due to the rareness of 
their multiple occurrences. (Fault interarrival times are much 
larger than the interval of interest.) 

Let PI; be the probability that a TMR failure occurs in the jth TI 

and the duration of common-cause faults (including permanent 
ones) to induce this TMR failure is between ( k  - 1)At and kat (i.e., k 

TIS). Then, by using F,(t) and g,(t), PI: can be derived for 1 5 j 5 N - 1 

and 15  k < N -  j +  1 as: 

' 

At 1 kAt-x P i  =(F,(lAt)-F,((j-l)At))! 0 -! At (k-])At-x g,(t)dtdx fo r25kSN- j .  (3.1) 

where P i  and P' are also obtained by integrating t for [O, At] 

and [(N - j)At - x, -1, respectively. If F, and gc are replaced with Fi 
and gi, respectively, all of the above are also applicable to inde- 
pendent faults, resulting in $. We now consider the simplest task 

model having independent tasks with an identical execution time 

and an arbitrary execution order as It,, t,, ..., tNl, which will be 
extended to more general cases. 

3.1 Comparison of Conventional and Random Task 
Sequencing 

1(N-1+1) 

First, we derive and compare the mean of Nf  (defined by E(Nf)) for 
the conventional task sequencing and the random task sequencing 
to show the effects/benefits of sequencing tasks. To do this, we 
compute the probability mass functions (pmf, of Nf and let e be a 
dummy variable for Ni. 

In the conventional sequencing, the Nf due to common-cause 
faults is simply equal to k (i.e., & = k )  because only one possible 
occurrence of those faults was assumed during the mission phase. 

A TI of a module Mi is said to be faulty if Mi is faulty during that 

TI. The Nf due to coincidentally-occurring independent faults is 
the number of TIS during which two or three' modules are faulty 

1. We ignore the rare case of all three modules (near-) simultaneously 
becoming faulty due to independent faults with little loss of accuracy. 

(oveulapped faulty). Let 5; and Pin be the probabilities of independ- 

ent faults occurring in two modules. For any pair of j and k,  when 
u 5 j ,  & = D - j + u for 1 5 & 5 k - 1, and all faults lasting longer than 
( j  - u + k )  TIS cause e (= k )  TMR failures. When u > j, e = v for 1 5 
5 k - u + j - 1, and all faults lasting longer than (k - u + j )  TIS cause 
e (= k - u + j )  TMR failures. Thus, by using l$ and PI;, the pmf of 

Nf is obtained as: 

where &(l, k) is a rectangular function of & over [l, k]  (i.e., rIe(1, k )  
= 1 if e E 11, 2, k }  and 0 otherwise), and &(k) is a delta function 
such that 6e(k) = 1 if & = k and 0 otherwise. 

In the random task sequencing, the Nf  due to common-cause 
faults is an integer smaller than, or equal to, k.  That is, the pmf of Nf 
due to common-cause faults is derived as: 

(3.3) 
]=I k=! 

where P(k, e) is the probability that any pair of modules executes e 
tasks during k consecutive faulty TIS, as derived in the Appendix. 
The Nf  due to coincidentally-occurring independent faults is also 
an integer not greater than the number of overlapped-faulty TIS. 
The pmf of Nf  is thus derived from (3.2) and (3.3) as: 

where P(k, v,  e) is the probability of & TMR failures during any 
pair of modules' k and v faulty TIS, as derived in the Appendix. 
Using the pmf of Np we finally compute E(NJ as 

The examples of Table 1, which compute E(N$ under some 
characteristics of faults (governed by Poisson processes with par- 
ticular parameters), indicate not only the possibility that certain 
methods of sequencing tasks may be able to deal with coincident 
faults but also the existence of more effective task sequences with a 
smaller E(Nf). 

3.2 Proposed Task Sequencing 
We now consider a simple and efficient sequencing strategy to 
maintain a fixed distance (in time), dAt, called task dzstance (TD), 
between the copies of a task to be executed on different modules. 
Then we want to develop an effective sequence of task copies 
separated by the optimal distance so as to minimize E(NI). Such a 
sequence is more complex to build but yields more reliable task 
execution results than the random and conventional sequencing. 
Let MI, M2, and M, be the first, the second, and the third modules 
labeled arbitrarily in a TMR system. The proposed strategy is 
stated as follows. 



IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 11, NOVEMBER 1996 1333 

In MI, N tasks are assigned to N different TIS in an arbitrary 
order and let t, denote the task assigned to the jth TI. 
In M, and M3, t j  is assigned to the ( j  + d),,,,th TI and the 
( j  + 2dImodNth TI, respectively. 

The symbol +modN represents that the ath TI is wrapped around 
the Nth TI if a> N, like {t5, t,, ..., tIoJ in Fig. ZA, because we con- 
sider only N consecutive TIS for executing all copies of N tasks on 
the three modules. (If a 5 N then &,dN is equal to a, else N - a,) 
TD should not be smaller than d even after wrap-around, like t5 in 
Fig. 1A. Since wrap-around happens earlier in M3 than M,, the 
following condition must hold for M3 to guarantee TD not to be 
smaller than d after wrap-around in both M2 and M3: 

(3.5) 

We now want to derive E(Nf ( d ) )  in this sequencing strategy and 

find an integer do,, that minimizes E(Nf (d) )  for 0 S d S Tu]. Let S, 

be the subset of tasks which are not wrapped around ({tl, t2, ..., tN-& 
S, be the subset of tasks wrapped around only in M3 ({tN-2d+l, tN-Z+, 

..., tN-d]), and S3 be the subset of tasks wrapped around in both M 2  

and M3 ({tN-d+l, tN-d+, ..., tN)). Let N;, NI, and Nf" be the numbers 

of TMR failures occurred during the execution of tasks in SI, S,, 
and S3, respectively. Using c:=,Ni = Ni, the pmf of Nf can be 

obtained by convolving the pmfs of Nj, N; , and N; : 

j -  (j + 2d -All 2 d w 3d S N .  

P ( N ~  = e) = P(N; = e) * P(N; = e) c P(N; = e). (3.6) 

P(N; = t ) for  i E (1, 2, 3 )  can be derived by adding the pmfs of 

common-cause and independent faults, which are derived sepa- 
rately and presented in the Appendix. (Occurrences of common- 
cause and independent faults are also exclusive to each other due 
to the assumption of at most one fault occurrence.) 

By using the constraint of d in (3.5) and the pmf of N derived as 
a function of d, we can determine dopt minimizing E(N,J. 4 

3.3 General Model for Different-Size and Dependent Tasks 
Consider a general model for tasks with a variety of execution 

times. Let {tl, t2, t,) be an ordered set of m tasks, and let rii be 

the execution time of ti such that ni = N . Suppose the same 

sequencing strategy as the basic task model is used as in Fig. 1B. 
Then, unlike the case of basic task model, when placing the copies 
of t, in the module schedules, one is likely to encounter a case 

where 2d + ~ ~ ~ , ' n i  < N on M,, or 

d + ck-'nl < N but d + ck ni > N on M2. That is, none of the 

remaining tasks, t ,  tkil, ..., t,, can be executed before, or at the end 

of, the Nth TI of M ,  or M3. Since we cannot generally divide a task 
arbitrarily, we have to extend the execution of each of these tasks 

beyond the Nth TI. For example, on M3, t, is executed from the 

(2d + z,k-'n,)th i=1 TI to the (2d + z:=,nj)th TI, and tk+* is not 
wrapped around to the first TI but extended to the 
(2d + ck ni - N) th TI, as shown in Fig. 1B. This extends the cu- 

mulative execution time of tasks t,, ..., t k  from N TIS to 

but 2d +Ek ni > N 
*=I 

I=' 1=1 

,=I 

2. Although it is impossible to derive d,, in a closed-form, we can 

determine dopt numerically, i.e., computing E(NJ for every d 
( 0  I d I T:]).] 

Module 1 @=lo) 

Module 2 

A 

idle time of M1 
nk-N+2d+nl+. . .+n(k-l) N ~ 2d+nl+, , ,+nk 

- 
N l C  -J -711 

~ M3 ! 
nk-N+Zd+nl+. . .+n(k-1) : idle time oEM3 

B 

Fig. 1. A: Wrapping tasks around in M3 with N = 20 and d = 3; B: Se- 

quencing fk such that 2d + c" 'n ,  < N but 2d + ck n, > N in 111, 

by shifting time to the right by (2d + ~ 6 , n ,  - N ) T k  

, = I  , = I  

(2d + c:=, n,) TIS, by adding idle TIS. Unlike the arbitrary order- 

ing of tasks in the basic task model, we now develop an ordering 
algorithm for m tasks by minimizing the extra TIS as follows: 

Select any task and call it tl (i = 1). 
Step 1: i := i + 1 (sequence tasks until tasks on M3 need to be 

wrapped around) 
If any task has n, = N - 2d - c:,:: n, , then call it t, and go 

to Step 2 

Else if any task has n, < N - 2d - ~ ~ , ~ b . ,  , then call it ti and 

go to Step 1 

Else select a task having ni minimizing 2d + E"' n .  + ni - N 

and call it t ,  and go to Step 2 
Step 2: i := i + 1 (from i = a and until tasks on M ,  need to be 

wrapped around) 
If any task has ni = N - d - xi-' n . ,  then call it tb and go to 

Step 3 
Else if any task has n, < N - d -Ei:' n-  , then call it ti and 

go to Step 2 

Else select a task ni minimizing d + E':' n + ni - N and call 

it t b  and go to Step 3 

]=o 1 

]=0 1 

]=o I 

j = o  1 

Step 3: Sequence the remaining tasks (from t,,,) in arbitrary order 

Let nd be the number of TMR failures in this task model. When 
a mission phase is composed of N TIs3 and m tasks, we can derive 

3. The effects of the extra TIS required to handle different size tasks 
are not considered, because 1) 2d + nl + ... + nk - N is smaller than the 
execution time of any remaining task, 2) the total number of TIS during 
which tasks are actually executed in each module is still N, and 3) the 
number of the extra TIS depends on the given task set and thus is diffi- 
cult to determine. Since N >> 2d + nl + . .' + nk - N t 0, this approxima- 



1334 IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 11, NOVEMBER 1996 

the pmf of nd by using P(Nf = 0 derived for N TIS from (3.6) and 
considering that any TI is assigned to a task having an execution 

time of nj TIS with a uniform distribution (probability 3) accord- 
ing to the proposed ordering algorithm. Note that a task would 
have an erroneous output if any TI composing the task is faulty. 

Given Ni = e, the conditional probability of nd = Y is obtained 
similarly to "sampling balls without replacement" in the urn con- 
taining N balls with m different colors. Since there are e faulty TIS, 
we draw e balls from the urn and derive the pmf for the number, r,  
of different colors among drawn balls. Let S," be a set including 
all possible subsets of task sizes, each subset consisting of Y task 

sizes nSl, ns2 ..., nsr such that z:=,nsi 2 e .  The number of subsets 

each consisting of Y tasks is &, from which we obtain the set Sp. 
The probability that at least one ball is drawn from every color 
group corresponding to a task in the subset (n,,, ns2 '. ', nsr 1 E Sp is: 

which contains all the cases of Y different color balls drawn by 
using r summations as well as all combinations of e - Y balls se- 
lected from the remaining balls in each case (Le., from cy=l (n, - balls), which can be obtained by avoiding repeated 

cases. The pmf of nd is thus derived as: 

As a result, we compute all E(nd)s for 0 5 d 5 and determine 

dopi that minimizes E(n,) numerically as we did for the basic task 
model. In [81, we also proposed an efficient method to reduce the 
amount of computation required for (3.8), which increases rapidly 
as m and N increase. 

We also consider a task model in which some tasks are de- 
pendent on others, Le., there are precedence constraints among the 
tasks. We define a new task by merging all dependent tasks into 
consecutive TIS to meet the constraints, thus obtaining a set of new 
tasks. The size of a new task is equal to the sum of sizes of all tasks 
merged into the task. The problem of effectively sequencing tasks 
in such a newly-combined set is then equivalent to a different-size 
task model, while keeping same N but reduced m. However, even 
when no task is fitted in the remaining TIS (= N - 2d - ~ ~ ~ , l n l  or 

N - d - c"-'nt ) on M3 or MZ, no extra TIS may be required unlike 
the different-size task model. Since a newly-defined task was 
made by merging some dependent tasks, a task t k  can be sliced in a 
way that its parts are sequenced during both the TIS near the Nth 
TI and the TIS near the first TI after wrap-around without violating 
the precedence constraints. 

3.4 Tasks with Timing Constraints 
The TMR system may have to deal with certain tasks with tight 
timing constraints; for example, the delay in executing tasks for an 
aircraft should be kept below a certain limit called the contvol sys- 
tem deadline (CSD) in [6]. Under such timing constraints, we may 
need to adopt a more complicated voting process-those task re- 
sults must be voted on as soon as all three copies are completed. 

i=1 

tion makes little difference 

We can still apply the proposed method (to alleviate the effects of 
short-lived coincidentally-occurring faults) for those tasks by 
slightly modifying the case in the absence of timing constraints. 

For example, when tasks ti have deadlines D, for 1 5 i 5 m, the task 
with a shorter deadline is assigned earlier in the sequence, instead 
of trying to minimize the extra TIS as was done in Section 3.3. We 
then derive dopi as before. To prevent certain tasks from missing 
deadlines according to this do,,, we first assign the tasks with tight 

deadlines d 5 I?], where Ii is the time to start executing ti in 

the first module. We then go on applying the proposed sequencing 

method for the remaining tasks meeting deadlines through d = do,*, 
Although this is a somewhat ad hoc variation of the proposed algo- 
rithm in Section 3.3, it will perform better than the conventional 
sequence in reducing the number of TMR failures. 

4 NUMERICAL EXAMPLES 
We again assume fault behaviors governed by Poisson processes 
and the mean rates of fault occurrence and duration given as IC = 

,uc = 1/6, and pi = 1/6, all in number of TIS. Al- 
though independent faults occur more frequently than common- 
cause faults in each individual module, TMR failures are caused 
mainly by common-cause faults, as shown in Fig. 2A. Coincident 
independent faults occur significantly less than common-cause 
faults. Thus, if a large number of TMR failures occur during a cer- 
tain period, their main causes are likely to be common-cause faults 
as shown in Fig. 2A. In Fig. 2B, the mean numbers of TMR failures 
are derived for several sequencing methods while varying the 
number of tasks. The conventional task sequencing turns out to be 
the worst, i.e., it has the largest E(N) for any N and the fastest in- 
crease of E(Nf) as N increases. Clearly, the proposed sequencing 
method with dopi(= {8,10,11,13,15, 16,18,20,211 for each N on x- 
axis) performs much better than both the method in [41 (which is 
similar to the special case of d = 1 of our method) and the random 
sequencing. We found the case of 6 I d 5 dopt working better than 
the random sequencing. 

In Fig. 3A, to investigate the effects of d on E(NJ under differ- 
ent fault-occurrence conditions, we computed E(N+ while vary- 
ing d from 0 to dopt (with fixed N = 30) for both the basic task 
model and the general task model, in which tasks within a pair of 
parentheses are dependent on each other due to the precedence 
constraints, and thus, a new task set (6, 3, 4, 6, 5, 81 is defined by 
merging dependent tasks. Cases (b) and (d), in which common- 
cause faults occur more frequently than cases (a) and (c), have 
shown relatively significant improvements in reducing the effects 
of coincidentally-occurring faults by using a better choice of d 
value. In other words, the use of a better d achieves more when the 
effects of common-cause faults are severer. In Fig. 3B, we also 
dealt with two task sets for different size models, Tl = {l, 2,4, 3, 2, 
4, 1, 1, 3, 2,4, 3)  and T2 = (3 ,  5, 7, 5, 4, 6 ) ,  which have same N = 30 
but different number of tasks, ml = 12 and m2 = 6. Although E(NJ 
is the same for both cases, Tl suffers more TMR failures (larger 
E(nd)) because m, > m2. However, the difference of E(nd)s in the 
two~task sets decreases as d increases. This is because the increase 
of E(n& as a result of increasing m becomes less pronounced as d 
approaches dopt, which is shown similarly in Fig. 2B (increasing M. 

4 = 

5 CONCLUSION 
In this paper, we have developed a new method for sequencing 
task copies in a TMR system (at a component, subsystem, or sys- 
tem level) in order to alleviate the effects of common- 
cause/coincident faults, the main source of TMR failures. We first 
proposed a simple and efficient sequencing strategy in which three 
copies of each task are executed on the three modules of a TMR 



IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 11, NOVEMBER 1996 1335 

l e - 0 5  l t i  

l e  - 06 

P [ N f ] l e  - 07 

r l e  - 08 

l e  - 09 
1 2 3 4 5 6 7 8 9 1 0  

A: Number of Fmlty Tasks ( N f )  

0.0005 

0.00045 

0.0004 

0.00035 

0.0003 

h'(Nf)0.00025 

0.0002 

0.00015 

0.0001 

5e ~ 05 

0.0016 

0.0013 

0.00013 

5e - 05 
0 1 2  3 4 5 6 7 8 9 10 

A: 1'D(= d )  [TIS] 

I I I I I I I 

25 30 35 40 45 50 55 60 65 

B: Number of Tasks ( N )  

Fig. 2. A: Pmfof Nf due to (a) both faults with P(Nf = 0) = 0.99988, (b) 
only common-cause ones with P(Nf = 0) = 0.9999, and (c) only inde- 
pendent ones with P(Nf  = 0) = 0.99998; B: €(NJ while varying N for 
various sequencing methods. 

system with TD = d, and then derived numerically the optimal d to 
minimize the mean number of TMR failures. Through numerical 
examples while varying N and d, we showed that the proposed 
sequencing strategy can significantly decrease the number of TMR 
failures under various conditions, especially when common-cause 
faults are likely to occur. 

Although we dealt only with TMR systems, we can extend the 
proposed approach to the problem of sequencing tasks in NMR 
systems. We can also include the effects of unreliable voting, 
which requires a more complicated sequencing strategy to mini- 
mize the mean number of NMR failures. 

APPENDIX 
DERIVATION OF KEY pmfs 

We present a concise derivation of P(k, 0, P(k, v, e), and 
P(N;  = e ) .  (See [8 ]  for full explanation.) Consider a pair of mod- 

ules, say M,/M,, contributing e, TMR failures. Make k tasks exe- 

cuted during faulty TIS of M I  distinguishable from the remaining 

N - k tasks. The random task sequencing on M2 is, then, casted 
into the problem of sampling of balls withuut replacement in an urn 

1 

0 00015 

0.0001 

5r - (15 
0 1 2  3 4 5 6 7 8 9 10 

B: TD(= d )  [TIS] 

Fig. 3. A: €(Nf) vs. d for the basic task model having N = 30 under (a) 
I ,=  and (b) I ,=  
(3), (3, l ) ,  (4, 2& (5), (3, 5)) (m = 11 and N =  33), under (c) IC= 10- 
and (d) IC= 10- ; B: €(n,) vs. dfor the different size model under (a) a 
task set T, = {I ,  2, 4, 3, 2 ,  4, 1, 1, 3, 2, 4, 3) and 1, = IOw6, (b) T, and 
IC = and (d) T2 
and IC= 10- . 

(M2) containing k black balls and N - k white balls, where k balls 

are drawn from the urn. The probability of drawing e, black balls 

is simply derived as P(k ,  e, ) = k  C,, N-kCk-e,  / N  C, for 2k - N I e, 
5 k. Let e2 be the number of TMR failures contributed by the other 

pairs, M2/M3 and M l / M 3 ,  then e = e, + e,. Again, suppose 2(N - 

e,) faulty tasks (black balls) of M ,  and M2 are distinguishable from 

the remaining N - 2(N - e,) tasks (white balls) in Ma. The condi- 
tional probability that black balls are selected among k balls 

drawn from M3 holding k black balls given e, is derived as 

P(k ,  ez I e ,  1 = z(N-e,lC,, 2e1-NCk-,, / NCk for k + N - 2e, I (2 I 

2(N - e,). From the above P(k, e,, e2) = P(k, e,)P(k, e2 I e,) is computed, 
and thus P ( k ,  e) = E, _,P(k ,  e , ,  - e,  1. Similarly, P(k, II, e) is 

obtained as the probability that e black balls are selected among z, 
(or k) balls drawn from the urn (the other module), because there 
are ZI (or k )  faulty TIS of the other module. Consequently, 

and for a generaltask set having {(l, 4, 

(cJ a task set T2 = (3, 5, 7, 5, 4, 6) and IC = 

e 
1- 



1336 IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 11, NOVEMBER 1996 

P(k,  u, e) = kCe N-kC,-, / NCv fork + v - N I e 5 k. 

In deriving P(N; = Ofor 1 I i I 3, first consider the tasks af- 

fected by common-cause faults. In SI, the TD of a task is d for all 

pairs of task copies on Ml/M2 and M2/M3. When 1 I j I d, if k > N 
- d then 42 = N -  2d, otherwise e = k -  d for 1 I e < N-'2d - 1. When 
d + 1 < j  < N -  d ,  = k -  d for 1 5  e 5  N - d  - j + 1, similar to the 
above. Thus, 

d /  N-i+l 

In S2, the TDs of task copies in module pairs Ml/M2, M2/Mj, and 
M,/M, are d ,  N - d, and N - 2d, respectively. When 1 I j I d ,  = k - 
N + 2d only in M3/M1. When d + 1 I j  5 N -  2d, if k > N -  d - j then 
e = k - N +  d + j -  1 only inM,/M,. When N -  2d + 1 < j I N -  d ,  we 
get = k - d (I N - j - d + 1). Thus, similar to (5.1), we obtain: 

a /  N-i+l  

In S,, the TDs of task copies on module pairs Ml/M2, M2/M3, and 
M,/M, are N - d, d ,  and N - 2d, respectively. When 1 I j 5 d, e is 
equal to k - d, 2d - j + 1, k - N + 2d, and d, respectively, for d < k < 
2d - j,2d - j  < k I N- d -j c l , N -  d - j + 1 < k < N - d ,  and N- d I 
k <: N -  j + 1. Whend + 1 2  j 5 2d, e = k -  N + 2d only inMj/M,. 
Considering the above facts, we have: 

In case of a, > 1, we should also deal with two cases of j :  
1) 1 5 j l a , - l a n d  
2) a,<j%b,.  

We can compute the probabilities of Case 2 just like (5.4). Only for 

k > a, - j + 1 of Case 1, we again deal with two cases according to u; 

when 1 < u l a , -  1, i fv  > a2- u + r, then[ = r,, otherwise = v-a2+ u 

for 1 I e 5 r, - 1, where r, = min{k - (a, - j ) ,  b, - u,], and when a2 I u I rq, 
where r4( = r,) = min(u, + ( k  - a, + j) - 1, b21, if u > r6 then e = r6, oth- 

erwise e = u for 1 I e 5 r3- 1, where u6 = min(k - (a, - j) - (u - a>), b, - a,}. 
Thus, we have the pmfof Nr(Ij) E (N)(23),N;(12),Ng(31)}: 

N-d-/+l Since TMR failures in one module pair is treated exclusively to 
those of other pairs, we can get: + C p;6t(d - i + 1) + p1~N-2~+$t(d - I + 2,d - 1) 

+ N 2 ' P ; 6 e ( d ) ]  k=N-d + i=d+l  2 Pi"(N-2d+e)TIt(l, 2d - I + 1). (5.3) 

k=Zd-j+l 
P ( N ;  = e) = P(N;(iz) = e) + P(N#~)  = e) + P(N@I)  = e) 

k E (1, 2, 3). (5.6) 

Consider the effects of independent faults, i.e., N; TMR fail- (a1 a2 h l  h2) 

ures, similarly except for separately treating three pairs, MI /M2, 
M2/M3, and M3/M,. As shown in Fig. 4, suppose tasks in a subset, 

say S,, are sequenced between the u,th TI and the b,th TI on one 

module, say M,, and sequenced between the a,th TI and the b,th TI 

on the other module, say M2. Then, TD = c = u2- a,. Let Pik ( P i D )  be 

the probabilities that an independent fault occurs in M, (Mi) dur- 
ing the ith (uth) TI with an active duration of kAt (vAt). The values 

of [a,, a2, b,, b2] of three pairs of modules are given in Fig. 4. Let 

N;(ij) = t be the number of TMR failures for the tasks of S, due to 
independent faults occurring coincidentally in a pair of modules 

",/Mi. First, consider the case of al = 1. When 1 5 u l c + j, if k,  v > 
c + j -  u + y2 then e = y2, otherwise 8 = v - c - j  + u for 1 < e  I y 2 -  1, 

where r2 = min(k, b, - j + 11. When c + j + 1 I u I Y,, where r1 = 

min(c + j  + k -  1, b2], if k, u > r, then e = y3, otherwise e = u for 1 I e I 
r3- 1, where r, = min(k - u + c + j ,  b, - j + 11. Consequently, we have 
the pmfof N;(ij) E {Nj(12), N)(31), N;(23), N;(31), NQ(12), N;(23)1: 

1 

1 ~ SI  

(l,d+l,N-ZdN-d) 
~ 1 1 ~ 2  SZ (N-Zd+l,N-d+l,N-d,N) 

S3 (l.N-d+l,d,N) 

S1 (d+l,Zd+l,N-d,N) 
MUM3 g? (1,N-d+l,d,N) 

(1,dcl ,d,2d) 

i 
. .. .. 

U,Zd+l,N-Zd,N) ~ 1 l J ~  A Task Subset I M3/MI ~ i i (I,N-Zd+l,d,N-d) 
I Faulty TI'S (dt1.N-d+l,Zd,N) 

Fig. 4. An example of Z when u I c + j and (a,, a,, b,, b2). 

ACKNOWLEDGMENTS 
The work reported was supported in part by the U.S. Office of 
Naval Research under Grant NOOO14-91-J-1115 and by NASA 
under Grant NAG-1-1120. Any opinions, findings, and conclu- 
sions or recommendations expressed in this paper are those of the 
authors and do not necessarily reflect the view of the funding 
agencies. 

REFERENCES 
[1] J.A. Abraham and D.P. Siewiorek, "An Algorithm for the Accu- 

rate Reliability Evaluation of Triple Modular Redundancy Net- 
works," IEEE Truns. Computers, vol. 23, no. 7, pp. 682-692, July 
1974. 



IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 11, NOVEMBER 1996 1337 

A. Avizienis and G.C. Gilley, ”The STAR (Self-Testing and Re- 
pairing) Computer: An Investigation of Theory and Practice of 
Fault-Tolerant Computer Design,” IEEE Trans. Computers, vol. 20, 
no. 11, pp. 1,312-1,321, Nov. 1971. 
A.L. Hopkins Jr., T.B. Smith 111, and J.H. Lala, ”FTMP-A Highly 
Fault-Tolerant Multiprocessor for Aircraft,” Proc. IEEE, vol. 66, 
no. 10, pp. 1,221-1,239, Oct. 1978. 
M. Kameyama and T. Higuchi, ”Design of Dependent-Failure- 
Tolerant Microcomputer Systems Using Triple-Modular Redun- 
dancy,” IEEE Trans. Computers, vol. 29, no. 2, pp. 202-205, Feb. 
1980. 
H. Kim and K.G. Shin, “Modeling Externally-Induced Faults in 
Controller Computers,” Proc. 13th IEEEIAIAA Digital Avionics Sys- 
tems Conf., pp. 402-407, Phoenix, Ariz., Oct. 1994. 
H. Kim and K.G. Shin, “On the Maximum Feedback Delay in a 
Linear/Nonlinear Control System with Input Disturbances 
Caused by Controller-Computer Failures,” IEEE Trans. Control 
Systems Technology, vol. 2, no. 2, pp. 110-122, June 1994. 
H. Kim and K.G. Shin, “Design and Analysis of an Optimal In- 
struction-Retry Policy for TMR Controller Computer,” IEEE 
Trans. Computers, vol. 45, no. 11, pp. 1,217-1,225, Nov. 1996. 
H. Kim, ”Design and Evaluation of Real-Time Fault-Tolerant 
Control Systems,” PhD thesis, Univ. of Michigan, Ann Arbor, July 
1994. 
V.B. Pradsad, ”Fault-Tolerant Digital Systems,” IEEE, pp. 17-21, 
Feb. 1989. 
K.G. Shin and H. Kim, “A Time Redundancy Approach to TMR 
Failures Using Fault-State Likelihoods,” IEEE Trans. Computers, 
vol. 43, no. 10, pp. 1,151-1,162, Oct. 1994. 
D.P. Siewiorek, V. Kini, and H. Mashburn, “A Case Study of 
C.mmp, Cm*, and C.vmp: Part I-Experiences with Fault Tolerance 
in Multiprocessor Systems,” Proc. IEEE, vol. 66, no. 10, pp. 1,178- 
1,199, Oct. 1978. 
J.F. Wakerly, “Transient Failures in Triple Modular Redundancy 
Systems with Sequential Modules,” IEEE Trans. Computers, vol. 
24, no. 5, pp. 570-573, May 1975. 
X.-Y. Zhuo and S.-L. Li, ”A New Design Method of Voter in Fault- 
Tolerant Redundancy Multiple-Module Multi-Microcomputer 
System,” Digest of Papers, FTCS-13, pp. 472-475, June 1983. 

Counting Two-State 
Transition-Tour Sequences 

Nirmal R. Saxena and Edward J. McCluskey 

Abstract-This paper develops a closed-form formula, (k) ,  to count 
the number of transition-tour sequences of length kfor bistable 
machines. It is shown that the function (k )  is related to Fibonacci 
numbers. Some applications of the results in this paper are in the 
areas of testable sequential machine designs, random testing of 
register data paths, and qualification tests for random pattern 
generators. 

Index Terms-Transition-tours, sequential machine testing, Fibonacci 
numbers, checking experiments, testable synthesis. 

1 INTRODUCTION 
A transition-tour sequence is a binary sequence that includes all four 
transitions between adjacent binary bits. For example, 01100 is a 
transition-tour sequence because it has all four transitions 0 4 1, 
1 -+ 0, 1 -+ 1, and 0 4 0 between adjacent bits. The definition of 
transition-tour is consistent with the general definition of transition 
tours defined for finite state machines in [l], [21, [31, [41, [51. We 
want to find a function, f(k),  that counts the number of distinct 
length k transition-tour sequences. 

An application of transition-tour sequences in testing registers 
(for data path designs) and memory elements for finite state machines 
has been shown in 161. Transition-tour sequences relate to checking 
experiments 171, and checking experiments can be used for an 
exhaustive test of sequential machines. Registers and memory 
elements in data path designs [6] generally model the behavior of 
D flip-flops or D latches [8 ] .  In 161, transition-tour sequences were 
called checking sequences. There were two reasons for this change 
in terminology. First, the use of transition-tour sequence is consis- 
tent with earlier definitions in references [l], [2], [3], [4], [51. Second, 
the term checking sequence is likely to be considered a synonym 
for checking experiments. Although it is argued in [61 that check- 
ing sequences for D-latches (without considering clock signals) are 
checking experiments, the consideration of clock signal as an explicit 
input to the D-latch (as shown in [9]) results in checking experi- 
ments that are different from checking sequences (as defined in 161). 
However, it is important to point out that transihon-tour sequence is 
an important part of the checking experiment because it includes 
all state-transitions. 

The sequence 01100 is a shortest transition-tour sequence that takes 
the D latch or flip-flop (Fig. 1) from an initial state (0) through all four 
transitions. The other three shortest transition-tour sequences are: 
10011,00110,11001. 

D = 0 1  1 0 0  1 

Fig. 1. D flip-flop/latch transition-tour sequence. 

The authors are with Center for Reliable Computing, Department of Electrical 
Engineering, Stanford University, Stanford, C A  94305. 
E-mail: nsaxenaQabel.mti.sgi.com. 

Manuscript received Aug. 26,1994; revised Nov. 16,1995. 
For information on obtaining reprints of this article, please send e-mail to: 
transcom@computer.org, and reference IEEECS Log Number C96082. 

0018-9340/96$05.00 01996 IEEE 

http://nsaxenaQabel.mti.sgi.com
mailto:transcom@computer.org

