
798 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 20, NO. IO, OCTOBER 1994

SWSL: A Synthetic Workload Specification
Language for Real-Time Systems

Daniel L. Kiskis and Kang G. Shin, Fellow, lEEE

Abstract-In this paper, we discuss the issues that must be
addressed in the specification and generation of synthetic work-
loads for distributed real-time systems. We describe a synthetic
workload specification language (SWSL) that defines a workload
in a form that can be compiled by a synthetic workload gen-
erator (SWG) to produce an executable synthetic workload. The
synthetic workload is then downloaded to the target machine and
executed while performance and dependability measurements are
made. SWSL defines the workload at the task level using a data
flow graph, and at the operation level using control constructs
and synthetic operations taken from a library. It is intended to be
easy to use, flexible, and capable of creating synthetic workloads
that are representative of real-time workloads. It provides a com-
pact, parameterized notation. It supports automatic replication
of objects to facilitate the specification of large workloads for
distributed real-time systems. It also provides extensive support
for the experimentation process.

Index Terms- Synthetic workloads, real-time workloads, dis-
tributed real-time systems, performance and dependability mea-
surement experiments

I. INTRODUCTION
SYNTHETIC WORKLOAD (SW) is a set of artificial A or synthetic programs that execute on a computer system

and produce resource demands on the system. The synthetic
programs are parameterized to allow the user to easily modify
their execution and resource consumption behavior. SW’s have
long been recognized as useful tools to be used during the
experimental evaluation of computer systems. The tasks, or
jobs, that make up the SW are selected to represent a particular
application domain for a certain class of computers. Early
SW’s were designed to represent typical business applications
running on a mainframe computer, e.g., [41, [171, [261, [361.
SW design was later studied extensively by Ferrari [8]-[101.
However, his work also concentrated on general purpose
uniprocessor computers.

Manuscript received January 4, 1992; revised April 8, 1993. This work was
supported in part by the National Science Foundation (NSF) under Grants
MIP-9012549 and MIP-9203895, in part by the National Aeronautics and
Space Administration (NASA) under Grant NAG-1-492, and in part by the
Office of Naval Research under Grant N00014-91-J-11 15. Recommended for
acceptance by R. LeBlanc.

D. L. Kiskis was with the Real-Time Computing Laboratory, Department
of Electrical Engineering and Computer Science, The University of Michigan,
Ann Arbor, Michigan 48109-2122. He is now with the Software Engineering
Section, Center for Computer High-Assurance Systems, U.S. Naval Research
Laboratory, Washington, DC, USA.

K.G. Shin is with the Real-Time Computing Laboratory, Department of
Electrical Engineering and Computer Science, The University of Michigan,
Ann Arbor, MI 48 109-2122 USA; e-mail: kgshin@eecs.umich.edu.

IEEE Log Number 9405268.

At the Real-Time Computing Laboratory of The University
of Michigan, Ann Arbor, USA, we are designing and building
the Hexagonal Architecture for Real-Time Systems (HARTS)
[28]. HARTS is a distributed real-time system consisting of
a number of multiprocessor nodes connected by a custom
hexagonal mesh interconnection network. HARTS is an ex-
perimental system that is to serve as a testbed for developing
and evaluating real-time communication, fault tolerance, and
operating system concepts. It was decided that an SW would be
a valuable tool for this evaluation process. An SW would allow
us to create a range of different workloads, each designed to
exercise the specific components under study.

The SW’s that have been developed for general purpose
systems are inadequate for use on a distributed real-time
system like HARTS. They are unable to accurately reproduce
the behaviors that are characteristic of real-time workloads.
Previous SW’s developed for real-time systems, e.g., one
for FTMP [7] and an early one for HARTS [37], were too
inflexible and had no provisions to exercise communication
facilities of a distributed system. An SW for a general purpose
distributed computer system was proposed by Singh and Segall
[29], [30]. Their system, called Pegasus, was to produce SW’s
for a distributed system. They defined a novel language, the
B-language, to describe the SW’s. However, no compiler for
the B-language was implemented [29], and thus the feasibility
and usefulness of the language for specifying SW’s for large
systems has not been demonstrated. Furthermore, the B-
language contains no support for specifying SW’s for real-time
systems.

Because there are no other sufficiently powerful SW’s
for distributed real-time systems, we have designed and im-
plemented our own SW [13], [14]. The SW operates in a
distributed manner. Each processor executes a set of synthetic
tasks and a driver process. The synthetic tasks produce the
resource demand for the SW. The driver process initializes and
activates the SW and generates stochastic events to simulate
random inputs to the workload. It also coordinates with
the drivers on the other processors to provide synchronized,
distributed control of the SW on the entire multiprocessor. To
be useful during experimentation of HARTS, the SW requires a
support tool, namely, a synthetic workload generator (SWG).
The SWG is needed because of the size of HARTS. Each
node on HARTS can have up to three processors for executing
application software. Our initial version of HARTS consists of
19 nodes. Hence, an SW for HARTS will consist of programs
for 57 processors. Since coding and debugging this number
of programs would be a tedious and error-prone undertaking,

0098-5589/94$04.00 0 1994 IEEE

mailto:kgshin@eecs.umich.edu

KlSKlS AND SHIN: SWSL 799

we have developed an SWG to automatically generate all the
programs for the distributed SW based on a compact high-level
language specification. Such a specification can be created and
debugged much more efficiently.

The SWG for HARTS has been completely implemented. It
executes on a workstation that is separate from HARTS. The
SWG produces C code for the SW and compiles it to produce
an executable image for each processor. The executable image
is then dowhloaded to HARTS and is executed there. While the
SW is executing, performance and reliability measurements
may be taken.

In this paper, we discuss the language that we have de-
veloped to specify SW’s. This language is the Synthetic
Workload Specification Language (SWSL). SWSL is based on
a workload model that accurately describes the structure and
behavior of real-time workloads executing on a distributed
system. It specifies the timing characteristics of tasks, the
interactions between tasks, and the intemal structure and
behavior of each task. Since SWSL is based on an abstract
workload model, it is not specific to HARTS and can be
used to specify SW’s for other systems. SWSL provides a
compact syntax to improve the ease with which experimenters
may develop and alter workload specifications. This feature
is particularly important if the target machine is composed of
a large number of processors. A relatively small specification
can be used to describe a workload consisting of many tasks.
Finally, SWSL is designed to support the experimentation
process. It contains features that allow the user to run a series
of statistically independent experiments in an efficient manner.

This paper is organized as follows. In the next section, we
describe the workload model upon which SWSL is based.
Section 111 discusses important issues in specifying SW’s that
are addressed by SWSL. In Section IV, we define SWSL in
the process of specifying an SW based on a submarine passive
sonar system. Section V describes how SWSL is used by our
SWG to produce SW’s. We conclude with Section VI.

11. WORKLOAD MODEL
Our workload model is intended to describe real-time work-

loads in sufficient detail to be used as the basis for generating
SW’s. To be an accurate representation of the workload, the
model must capture all relevant structural and behavioral
details of the workload. The structure and behavior of the
workload directly affect the values of the performance indices
that are measured during experiments. Changes in the work-
load cause changes in the values of the performance indices.
It is by characterizing these changes that one evaluates the
system. The workload model provides a formalism that allows
the user to express the connections between the workload, its
characteristics, and the measured performance indices.

In a real-time system, the value of a computation depends
not only on the logical correctness of the results but also
on the time when the results are produced. This definition
describes a class of systems with characteristics that set them
and their workloads apart from general purpose systems [SI,
[21], [31]. They are usually embedded in a larger system that
performs a particular function. The real-time system serves as

the controller computer for this larger system. The real-time
system is designed to execute specific application software
required to control the larger system. All tasks are predefined
and their parameters are usually known a priori. The control
activity consists of accepting frequent or continuously arriving
inputs from sensors and, in response, producing output to
actuators and/or display devices. These responses must occur
soon enough after the input to meet the physical constraints
of the system. The system must also accept inputs at random
times due to operator commands and exceptional conditions.
The hardware of the system may be distributed, consisting
of a number of processors each connected to a variety of
input-output (1-0) devices. Distributed systems exhibit great
potential for high performance and high reliability, two prop-
erties that are essential for real-time systems.

To provide the required services, the real-time workload
consists of a number of periodic tasks that handle the periodic
1-0 associated with process control. There are also sporadic
tasks that execute in response to the aperiodic events. The
requirements of the system are such that the responses to inputs
must occur within predetermined time intervals, i.e., responses
have deadlines. There may be a number of distinct states in
which the system operates. Tasks may behave differently de-
pending on the state. Although some of the tasks may execute
independently, they will often be required to communicate
with one another and exchange data.

Previous approaches to modeling workloads consisted of
capturing the behavior of the workload using queueing net-
works or describing the workload in terms of a vector quantify-
ing the workload characteristics [9]. However, the properties of
a real-time workload are not accurately modeled by a queueing
network or as a simple vector of workload parameters, because
these techniques model average-case performance. Therefore,
they cannot capture the details of the timing characteristics
of the workload. To model a real-time workload, we must
accurately describe the details of the workload that specif-
ically influence the time-related aspects of the system. The
model should express the tasks’ timing, resource usage, and
interaction characteristics. The timing characteristics include
task execution times, deadlines, and scheduling parameters.
The resource usage characteristics should include access pri-
orities, preemption policies, and the quantity of the resources
used along with the timing characteristics (e.g., pattem and
duration) of that usage. Task interactions include both direct
communication and resource sharing. Since standard queueing
models and simple vectors of workload parameters are neither
powerful nor expressive enough to model real-time workloads,
a different, more expressive model is needed.

A . Modeling Issues

We have constructed a model to accurately capture the
structure and behavior of a real-time workload. The workload
is described in terms of a data flow graph, a notation commonly
used to specify software for distributed real-time systems. The
model is a generalization of the rapid prototyping languages
such as PSDL [191, and structured analysis (SA) notations such
as ESML [3] and others [12], [33]. SA notations are commonly

800 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. IO, OCTOBER 1994

used in CASE twls to specify and analyze the requirements
and structure of real-time software. The data flow model
captures the basic aspects of the workload like parallelism
and interactions between tasks, and it allows for modeling
at multiple levels of abstraction. These features provide a
generality that makes our model flexible and thus more widely
applicable. So, it is capable of modeling the features of a
number of SA, rapid prototyping, and other notations like those
in 1111, [20], [24], and can be used to describe a wide range
of real-time workloads that have been specified using these
notations. Our model extends these notations to specify the
timing and resource usage properties of the workload.

The model was based on SA and rapid prototyping notations
for the following reasons.

At the time a prototype system is ready for evaluation, it
is likely that the system designers will have only a high-
level specification of the proposed application software,
e.g., the SA model. This model will generally be a
good approximation of the structure of the workload
1121. Thus, by using a similar model for our SW, we
can produce an SW that will closely approximate the
structure and behavior of the proposed software. The
experimental evaluations performed using this SW will
then provide useful and meaningful results. Similarly,
developers of experimental systems can make use of
published workload specifications [16], [181, [22], [351
to produce representative SW’s to be used to evaluate
their systems.
Since the workload is modeled at a high level of abstrac-
tion, the model is system-independent. The model does
not contain any information that is particular to a given
hardware architecture or operating system. Therefore, a
workload specified using our model is portable and may
be used to comparatively evaluate different systems.
As real-time software becomes more complex, the use of
structured methods of design the software will become
widespread. the design process will be supported by
computer-aided software engineering (CASE) tools [6],
[25]. Our approach allows the SWG to become an integral
part of a CASE tool. A number of CASE tools use
SA and similar notations. Hence, high-level software
designs created by CASE tools can be translated to our
model and used by the SWG to create SW’s. The SW’s
thus produced will be akin to a rapid prototype. The
difference is that though the rapid prototype is aimed at
demonstrating the functionality of the software from the
user’s viewpoint, the SW is aimed at demonstrating the
resource use behavior of the software from the system’s
viewpoint.

B. Formal Definition
A real-time workload is defined as a 5-tuple (T, S, R, F, D),

where T is a set of transformations, S is a set of stores, R
is a set of terminators, F is a set of flows, and D represents
data. These workload objects will be described in detail in
the following sections. The graphical representation of all
components are shown in Fig. 1. These symbols are taken
directly from the graphical representation for ESML [3].

TRANSFORMATION

l-LEEe2 TERMINATOR

U

FLOWS

Data
Conanuouty AMilabb

L

Fig. I . Graphical representation of model components.

Transformations: The set of transformations T represents
the work done by the workload. Transformations encapsulate
both the processing of data and the control logic of the
workload. We define T = {t 1 t = (I, O , p , $,TI, ... ,rn},
where I is the set of inputs, 0 is a set of outputs, p is a
processor identifier, I$ is a function, and r 1 , . - . , ~ ~ are N
system-specific parameters, where N is an integer whose value
depends on the target system. The transformation receives data
or control signals on its inputs, I, and produces data and/or
control signals on its outputs, 0.

The behavior of the transformation is determined by the
function 4. The transformation may represent any function for
data processing and/or any control structure. The combination
of data flow and control in a single transformation is a
generalization of the SA and rapid prototyping notations. This
control mechanism is more powerful than the mechanisms
defined for ESML, and more powerful than Singh and Segall’s
B-language. It is capable of modeling control constructs such
as state machines, control flows, and control transformations.
Thus, various mechanisms for specifying system state and
state-dependent operations may be modeled.

The p in the definition of t represents the assignment of
a transformation to a specific processor. All transformations
are considered unique. Therefore, replicated transformations
in fault-tolerant systems are modeled individually.

The timing and selection of inputs and outputs are deter-
mined by the intemal structure and behavior of the trans-
formation. Transformation behaviors are not restricted to the
model of “trigger, compute, produce output” that is common
to data flow specifications. Instead, transformations are free to
perform inputs and outputs at any time during their execution.
Based on their intemal logic, they are also able to select
whether to read a given input or produce a given output.
This flexibility in defining task interactions is necessary when
specifying SW’s for real-time systems. If the SW is to be
representative of real applications, the synthetic tasks must
accurately reproduce the complex timing and resource-sharing
dependencies between tasks. This accuracy cannot be obtained
from a simple data flow model [34]. It requires the more
detailed specifications allowed by this model.

The function specified by 4 is defined based on the D-
structures described by Ledgard and Marcotty [15]. The set
of D-structures is a small functionally complete set of control
constructs for programs. They consist of simple operations,
composition of D-structures, a conditional control construct,
and a loop construct. A simple operation is any computa-

KlSKlS AND SHIN: SWSL 80 I

tion, system call, or input or output statement, for example.
These are the smallest units of execution in the model.
Composition is the simple sequential execution of two D-
structures. For two D-structures s 1 and s2, composition is
represented as sl; s2. The conditional control construct
is the “ i f c o n d i t i o n t h e n sl else s2” construct.
The looping construct is the “whi l e c o n d i t i o n do s”
construct. With these constructs, all other control constructs
may be realized [151.

The complete specification of a transformation depends on
the system upon which it is to be implemented. Different
operating systems require different information to create and
schedule the implementation of the transformation. There-
fore, the transformation specification includes a number of
system-specific parameters, R,. These parameters may include
scheduling parameters, resource requirements functions for
exception handling, and so forth. The number of R, parameters,
and thus the value of N, depends on the target system.
The model defines as many R, parameters as are needed
to specify the implementation of transformations on a given
target system.

Stores model all objects that can contain data.
These objects include data structures, files, sockets, pipes, and
so forth. A transformation passes data to another transfor-
mation by placing the data in a store from which the other
transformation reads the data. Formally, we define S = {s I
s = (I , O , ~ , R ~ , ~ ~ ~ , R N) } , whereIisthesetofinputs,Oand
p is a set of outputs, p is a set of processors, and RI, . . . , RN
is a set of N system-specific parameters where N depends
on the target system. The I and 0 values have the same
meaning as they have in the definition of T. The R, values
define parameters required to specify the implementation of a
data structure modeled by the store. They define its storage
properties such as element size, storage policy, and access
policy. S may be divided into two disjoint subsets such that
s = s d U s,, where s d is the set of depletable stores and s,
is the set of nondepletahle stores. Depletable stores represent
objects such as stacks and queues where a data element is
removed from the store when it is read. A nondepletable store
represents an object like shared memory that retains the data
value after a read. The reader receives a copy of the data
without changing memory contents.

Terminators: Terminators serve as the interfaces between
the workload and the environment. We define R = R, U R,,
where R, is the set of input terminators and R, is the set
of output terminators. R, = { T I T = (O,~.R~,...,RN)}
and R, = { r 1 T = (I,~,TI,...,TN)}, where I is the set
of inputs, 0 is a set of outputs, p is a set of processors,
and TI, . . . , ~ T N is a set of N system-specific parameters. The
I , O , and p values have the same meaning as they have in
the definition of T. The T, values define parameters required
to specify the characteristics of the terminator. They specify
the interface between the workload and the environment.
They define the type of the interface, the size of the data
elements that it handles, and the minimum sampling interval
or minimum data acceptance interval.

The R, and R, terminators are referred to as sources
and sinks, respectively. A source terminator represents a

Stores:

point where data are received by the workload from an
extemal object. Typical examples of such objects are sensors
and operator controls. Sink terminators represent locations
where data or control signals are sent to an extemal object
by the workload. Actuators and displays are examples of
extemal objects that may be represented by sink terminators.
Terminators may also be paired to represent resources such as
extemal files or databases that have both inputs and outputs.

Flows: Flows are used to connect objects. Thus, we
defined F = { (s ,d) I s , d E T U S U R}, where s is
the source of the flow, and D is the flow’s destination.
Flows are the paths used to transfer data and control signals
from one object to another. We define three types of flows
in SWSL: F = F, U F, U Fe, where F, and F, are two
sets of value-bearing flows and Fe is the set of non-value-
bearing flows. The value-bearing flows are datajows. They
are distinguished according to whether the data values are
continuously available (F,) or intermittently available (Fz) ,
i.e., available only at discrete instances of time. These value-
bearing flows will be referred to as continuous data flows
and intermittent (or discrete) data flows, respectively. The
non-value-bearing flows (F e) are event flows, and they carry
intermittently available signais.

Data: “Data” is defined as the unit of information in the
system. We define D = { d I d = (v,s)}. Each unit of data
has a value, 71, and a size, s.

Construction of a workload with
our model is based on the construction of one using ESML
[3]. The model construction rules are specified formally by
the definitions of the flow types:

F, S (T x S,) U (S , x T) U (T x R,) U (R, x T) .

Continuous data flows may be used in either direction be-
tween transformations and nondepletable stores, and between
transformations and terminators:

Interconnection Rules:

F; (T X S) U (s d X T) U (T X Ro) U (R, X T) .

IntermittPnt data flows may be used to connect transformations
to any type of store, and are used to connect depletable
stores to transformations. They may also be used to connect
transformations and terminators in either direction:

(T x 7’) U (T x R,) U (R, x T) . Fe

Event flows may be used to connect transformations with
each other to connect transformatons with terminators in either
direction. There is only one additional rule that cannot be
defined using the notation above: A transformation must have
at least one input and one output flow.

111. SPECIFICATION OF SYNTHETIC WORKLOADS

Before discussing the details of SWSL, we first present the
underlying concepts of its design.

A . Abstraction
SWSL takes great advantage of the primary property of

SW’s: abstraction. SW’s are useful in experimental evaluation,

802 IEEE TRANSACTIONS ON SOITWARE ENGINEERING. VOL. 20. NO. IO. OCMBER 1994

because they . abstract details of a workload and produce
only those resource demands that are required for a given
evaluation. For example, to evaluate the scheduling policy
of a real-time operating system, each task in the SW might
abstract out the specific computations performed by a task in
an actual workload and simply reproduce the total amount of
central processing unit (CPU) time required for computation.
SWSL uses abstraction to achieve compactness and much of
the simplicity of the SW specification.

If a task in the SW is not performing the actual computations
of the workload, it cannot produce the correct results of the
computation for use by other tasks. Those tasks also abstract
computation, so the value of the data is irrelevant. Therefore,
the SW also abstracts data. In the SW, only the size of the
data is important, because we consider only the resources
required to store the data. The effect of data on the behavior
of the workload is modeled stochastically. An advantage of
this abstraction is that the SW can operate without requiring
actual input data, and tasks can produce the resource demands
because of computation without executing the exact algorithms
from the modeled workload. A disadvantage is that low-level
data-dependent behaviors of the workload are more difficult
to model using the SW. We provide mechanisms in SWSL to
allow the user to model these behaviors, but these mechanisms
require more information about the workload being modeled
and greater programming effort by the user.

B . Representativeness

By basing the SW on the workload model described in
Section 11, we improve the representativeness of the SW.
To measure representativeness, we use a performance-based
metric. By this metric, an SW is representative of a workload
if the performance of the system (as measured by a set of
performance indices) while executing the SW is the same as
the performance while executing the workload [101. However,
“[elxcept for ceratin cases. . ., this definition of [representa-
tiveness] does not directly suggest a method for designing
an artificial workload” [IO]. Given this observation, we use
a structure-based method for constructing a representative
SW. That is, the SW is specified and constructed such that
its structure models that of the workload. Other researchers
[2], [32] have successfully. produced sufficiently accurate and
flexible benchmark programs for uniprocessor systems by
modeling the structure of the actual workload. We expect the
technique to be successful for distributed systems as well. The
structure-based representation is complemented by selecting
the appropriate x; parameters for each object and assigning
appropriate values to the parameters. These parameters de-
termine the characteristics of the object as it is presented to
the system. Parameters specify the resource requirements and
the time-dependent behavior of the objects. By providing the
SW with the same structure as the workload being modeled,
and by tuning the parameters that determine the behavior,
we are able to produce a representative SW. The level of
representativeness may be measured by the performance-based
metric. The ability of SWSL to produce representative SW’s
is demonstrated in [14].

C. Flexibility

Flexibility is another important characteristic of SWSL. If
SWSL is to be useful for experimentation, it must be flexible.
The user must be able to easily change the values of specific
workload Characteristics. This ability requires that SWSL be
able to produce SW’s with a wide range of resource require-
ments and behaviors. Flexibility within a narrow range of
behaviors is of limited benefit. Flexibility is provided primarily
through the parameterization of the objects in the workload.
All significant workload characteristics may be controlled by
changing only the values of the proper parameters. In many
cases, the user can make significant changes to both the
structure and the behavior of the workload by changing a
few parameter values. More importantly, the user can produce
small, incremental changes to specific workload characteristics
with little effort. Many evaluations involve measuring the
performance of the system for various values of a given
workload characteristic. Changing the value of a workload
characteristic is often as easy as changing the value of one
parameter.

SWSL does not restrict which behaviors and structures can
be included in the workload. SWSL was developed with a
specific set of ri parameters needed to specify SW’s for the
target systems available to us. The user can add or delete
xi parameters in the specification of workload objects if
those parameters are needed to specify the implementations of
workload objects on their target system. In addition, the user
can specify exact C language code within the function for a
given synthetic task. This feature would be used to produce
behaviors at a lower level than can be specified by SWSL.

Flexibility is also improved by taking advantage of the
definition of transformations in the workload model. For each
transformation, the inputs, outputs, and function are defined
separately. The definitions of functions are decoupled from
the definitions of transformations. Therefore, the behavior of
a transformation may be altered very simply by specifying a
different function for it to execute. The only requirement is that
the function operate on the same number and types of inputs
and outputs as are defined for the transformation. Furthermore,
the functions executed by different transformations need not
be unique. A single function definition may suffice for a large
number of transformations, thus resulting in a more compact
and easily constructed SW specification.

D. Object Templates

The workload model defines each object uniquely. SWSL
makes the specification of objects more compact by providing
a simple mechanism whereby one can produce many instances
of an object from a single object femplale. All instances of the
object will have the same values of all the ri parameters.
There are two uses for object templates. The first is to specify
an object that represents a member of a class of objects with
similar parameters. This technique is common in workload
characterization [27] and has been used often to specify SW’s,
e.g., [l]. A set of n parameters are selected to define the
important characteristics of the workload tasks. For each task,
these parameters are measured, and the task is plotted in

KISKIS AND SHIN: SWSL 803

the n-dimensional space defined by the parameter vector. A
clustering analysis is performed to partition the tasks into
groups with sufficiently similar characteristics. Then a small
number of tasks from each group are selected to represent
that group. These representative tasks are used as templates.
The number of instances of the task that are produced is
proportional to the size of the cluster being represented relative
to the size of the entire workload. This technique reduces the
number of task specifications that must be written, and thus
makes the workload specification more compact. The second
reason for using templates is to represent objects that are
replicated for purposes of fault tolerance. In a fault-tolerant
real-time system, multiple copies of an object will execute on
separate processors. They perform the same calculations, and
the results are combined via voting. Using this technique, the
system can mask a given number of faulty processors.

E . Support for Experimentation

Experimental design is supported through several SWSL
features. First, we differentiate between the SW and the mea-
surement mechanisms used to collect data in the evaluation.
The only function of the SW is to serve as the workload for
the target system; it does not provide any mechanisms for
measuring performance. In this way, the SW is different from
a benchmark program, which not only exercises the system
but also measures the performance of the system while it is
being exercised. The SW is designed to work harmoniously
with performance evaluation mechanisms. Therefore, the user
is free to choose any appropriate measurement mechanism.
For example, if a software monitor that must be executed as
a user task is being used, the monitor can be specified as the
function for a transformation. The monitor will be compiled
into the SW and function normally on the target system.

Second, the typical experiment using the SW consists of a
number of runs, each of which is composed of the following
steps. The SW code is generated and compiled from the
specification, the executable code is downloaded to the target
computer, the SW is executed, measurements are made, and
data are collected. Most such experiments will be aimed
at measuring the performance of the system as a specific
workload parameter (or set of parameters) is varied. Under
the above scenario, each run of the experiment would involve
repeating the set of steps listed above for each new value
of the parameter(s). To reduce the time required to perform
such experiments, SWSL supports a multiple-run facility. For
each parameter of the SW, the user may specify a list of
values. When the SW is first invoked, the first value provided
for each parameter is used. Once the run is completed, the
SW pauses to allow time for measurement mechanisms to
be reset and initialized for the next run. To begin the next
run, it reinitializes and executes again. This time it uses the
nexr value in the list for each parameter. The reinitialization
between runs is necessary to ensure statistical independence of
values measured in consecutive runs. The only state preserved
between runs is the run count. This facility reduces the time-
consuming compilation and downloading processes to a single
compilation and download for a series of runs.

ydrophon
Standard Computer Resource

I
t

I

I clock r I rz1 U

I cc I
Fig. 2. Hardware architecture of passive sonar system.

Specifying the parameters for all runs at compile time is
preferred for use in real-time systems. Changing parameters at
run-time requires the presence of an agent that can interpret
user commands and make the appropriate changes to the
system and application data structures on the target machine.
The interference caused by the agent would adversely affect
the timing characteristics of the executing SW. In addition, the
agent would have to be custom-developed for each different
target architecture, because it would have to make use of the
communication and system functions that are peculiar to each.
This added effort reduces the ease with which the SW can be
ported to and used on a new system.

SWSL has additional mechanisms to support experimen-
tation that have been absent in previous SW’s: reproducible
experiments, independence of events within a given experi-
ment, and statistically independent experiments. As described
above, the SW reinitializes the experiment between runs. In
addition, it simulates data-dependent activities stochastically.
Each such activity makes use of a separate random number
generator stream. This technique allows independent objects
to exhibit reproducible, independent behavior. This feature
is especially important when evaluating multiprocessor sys-
tems, where nondeterministic behavior is common. Sharing
a random number stream would cause correlation between
actions that would be irreproducible in a nondeterministic
environment.

IV. AN EXAMPLE SW SPECIFICATION

We present the structure of SWSL in the context of an exam-
ple. The example system is the submarine passive sonar system
developed at IBM [23]. We have followed the specification in
[23] as closely as possible. In places where the specification
was vague or incomplete, we made assumptions and fabricated
details based on the informal descriptions in the specification.
We do not present the entire specification, but instead use
components from the system to demonstrate the features of
SWSL.

The passive sonar system assumes a hardware architecture
as shown in Fig. 2. The hardware consists of three processors
connected via a local area network. The peripheral hardware
components (console, hydrophones, and so forth) are each
connected to specific processors, and interaction with those
components is through agents on those processors. The com-

804 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. IO. OCTOBER 1994

Fig. 3 . Passive sonar specification

munication and processing loads are distributed among the
processors as shown in Fig. 3 . The workload is divided into
eight subsystems: Position Update, Timing Update, Signal
Acquisition, Tracker Loop, Analysis Request, Detection Dis-
play Cursor, Track Display Cursor, and Audio Steering. Each
subsystem consists of a number of communicating tasks.

The SW specification is apportioned among three differ-
ent input files. The three files specify the task graph, the
task functions, and the experimental parameters, respectively.
Although each file has its own particular syntax, there are
some constructs that are common to all the files. The SWSL
files are divided into sections that contain common language
features (declarations of locally and extemally defined objects
and constants) and sections that contain the specification of
the SW. SWSL supports simple arithmetic expressions where
operands are scalars, constants, or distributions. Distributions
are used in expressions to indicate that the value is to be
generated at run-time from a random number generator with
the specified distribution and parameters. A library of random
number generators with various distributions is provided with
SWSL.

A. Graph File

To demonstrate the details of the graph file, we specify only
the Track Display Cursor subsystem, which is shown in Fig.
4. We concentrate on this single subsystem for the sake of
brevity. The graph file defines the transformations, stores, and
terminators. along with the 4, I , 0, p , and 7ri parameters for
each objects. These parameters are discussed in the following
sections.

The complete graph file for the Track Display Cursor
subsystem is as follows.

GRAPH
EXTERNS
FUNC estimate-tracks-f;
FUNC update-cursor-tr-f;
FUNC forward-tracks-f;
PROC processor2;
PROC processorl;
PROC processor3;
CONSTANTS
/* Sonar parameters */
Nt = 5: / * Number of track beams * /
Na = 6; / * Number of audio beams * /
Nd = 50; / *Number of detection beams * /
Nc: = 5 : / Y Number of analysis beams * /
BF = 4/ * Beamformer rate * /
track-selects capacity = 3;
track-size = 16 * Nt;
OBJECTS
TERM console 1;
TRANS update-cursor-tr;
STORE track-selects;
TRANS estimate-tracks;
STORE tracks;
TERM beam-form-snk;
TRANS forward-tracks;
TERM cic;
DEFINITIONS
/ * TERM * / consolel[

OUTPUT = update-cursor-tr : discrete;
PROCESSOR = processor2;
TYPE = source;
ELEMENT-SIZE = 48:

KlSKIS AND SHIN: SWSL
805

L I EstimetrTmI

1 Processor 1

Form
Cuslorn

Hardware

\
\

Fig. 4. Passive sonar specification: Track display cursor subsystem.

RATE = 100;
START-TIME = I ;

/ * TRANS * / update-cursor-tr[
I;

FUNCTION = updaterursor-tr-f();
INPUT = console1 : discrete;
OUTPUT = trackselects : discrete;
PROCESSOR = processor2;
PERIOD = 100,75, 5 0
DEADLINE = 100;
START-TIME = 1;
ACTIVE = true;
PRIORITY = 3;

I;
/ * STORE * / track-selects[

INPUT = update-cursor-tr : discrete;
OUTPUT = estimate-tracks : discrete;
PROCESSOR = processorl;
TYPE = depletable;
ELEMENT-SIZE = 24;
CAPACITY = track-selects-capacity;
POLICY = fifo;

I;
/ * TRANS * / estimate-tracks[

FUNCTION = estimate-tracks-f()
INPUT = trackselects : discrete;
OUTPUT = tracks : discrete;
OUTPUT = beam-form-snk : discrete;
PROCESSOR = processorl;
PERIOD = 250;
DEADLINE = 250;
START-TIME = 1;

updaie cunor \

ACTIVE = true;
PRIORITY = 12:

I;
/ * STORE * / tracks[

INPUT = estimate-tracks : discrete;
OUTPUT = forward-tracks : discrete;
PROCESSOR = processor3;
TYPE = depletable;
ELEMENT-SIZE = track-size;
CAPACITY = 1;
POLICY = fifo;

I;
/ * TERM * / beam-form-snk

INPUT = estimate-tracks : discrete;
PROCESSOR = processorl;
TYPE = sink;
ELEMENT-SIZE = track-size;
RATE = 100;
START-TIME = 1;

I;
/ * TRANS * / forward-tracks[

FUNCTIONS = forward-tracks-f();
INPUT = tracks : discrete;
OUTPUT = cic : discrete;
PROCESSOR = processor3;
PEP,IOD = 250;
DEADLINE = 250;
START-TIME = 1;
ACTIVE = true;
PRIORITY = 10;

I:
/ * TERM * / cic[

. ;_.

SO6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. IO, OCTOBER 1994

INPUT = forward-tracks : discrete;
PROCESSOR = processor3;
TYPE = sink;
ELEMENT-SIZE = track-size;
RATE = 250;
START-TIME = 1;

I;
The 4 Function: The 4 functions for transformations are

declared using the F U N C T I O N parameter keyword followed
by the list of names of the functions to be executed in each
run. These functions are defined in the functions, file, which
is discussed in Section IV-B.

The I , 0, and p Parameters: Specifications of I , 0, and p
for each object use the parameters INPUT, OUTPUT, and
PROCESSOR, respectively. To form a data flow graph, the
objects in the workload must be connected by flows. A flow is
specified implicitly using the OUTPUT parameter of the source
object and the INPUT parameter of the destination object.
Each INPUT, OUTPUT pair denotes a separate connection
between the objects.

In software specification languages such as ESML [3] , Ward
and Mellor’s transformation schema [33] , and PSDL 1191, all
transformations must be connected by flows to other objects.
A transformation that does not receive data from other objects
is useless; it cannot do useful work. In contrast, in the SW,
no transformation does useful work. All transformations only
behave like they are doing something useful; they do not
operate on real data. Therefore, we do not require that a
transformation be connected to other objects. In some cases,
the user may want to define a task that executes independently
of other tasks. An example of this case is when specifying
SW’s to study scheduling algorithms without considering task
interactions. The workload would consist of a number of
independent tasks whose only workload characteristic was
the amount of CPU time required. For this case, we do
not require that the I N P U T and OUTPUT parameters be
defined. However, in most cases, the user will be interested
in the effects of task interactions on system performance.
Hence, most transformations will be connected to others
and will have INPUT and OUTPUT parameters assigned to
them.

The two parameters for flows are flow type and the size
of the data elements that pass along the flow. Because of the
model construction rules (see Section 11-B), we can always
determine the element size for a data flow from the compo-
nents that it is connecting. A data flow must be attached at
one end to either a store or a terminator, each of which has an
ELEMENT-SIZE parameter. Hence, the flow can inherit this
parameter from the object. Event flows carry no data, and thus
require no size specification. Because the data element size can
always be determined for a flow, we need to be able to specify
only the type of the flow in the SWSL specification. Since
flows have only a single parameter, we include the flow type
in the specification of the INPUT and OUTPUT parameters for
objects. The flow types are DISCRETE, CONTINUOUS, and
EVENT, corresponding to intermittent data flows, continuous
data flows, and event flows, respectively.

The Parameters: The xi parameters are specified in the
body of each object definition. As shown in the specification of
transformation update-cursor-t r, the P E R I O D parameter
has values of 100, 75, and 50. The zth value in the list is
the value that the parameter is to take on for the ith run.
If fewer values are listed than the number of runs, then the
last value in the list will be used for its corresponding run
and all subsequent runs. This feature is used to compactly
specify parameter values that remain constant across runs. For
example, the period of transformation e s t imat e -t racks
is 250 ms during each run. Therefore, the value needs to
be specified only once, and that value will be used for all
runs. Currently, all time values in SWSL are measured in
milliseconds. Therefore, no indication of time unit is necessary
in the specification.

The 7ri parameters for the transformations, stores, and
terminators are shown in plain (nonbold) text in the SWSL
listing. Transformation parameters indicate the transforma-
tion’s scheduling requirements. The store parameters specify
the type of data in the store and the access methods to
be used. Stores represent all information repositories and
data channels. Thus, the parameters have been selected such
that they are orthogonal, and combinations of values may
be used to represent different storage objects. Similarly, for
terminators, we have chosen parameters to allow a range of
terminator types.

The selection of ~i parameters is not fixed. We selected
these parameters to specify the system-dependent characteris-
tics of real-time workloads on HARTS. If required, parameters
may be added to the language by updating the list of recog-
nized parameters in the SWG source code.

Object Templates: An object template is specified by using
the PROCESSOR parameter in conjunction with the INPUT
and OUTPUT parameters. By providing multiple values for
the PROCESSOR parameter, the user specifies that an instance
of an object is to be assigned to each of a number of
processors. Each instance of the object will be assigned
the same 7r; parameter values. The INPUT and OUTPUT
parameters will differ, depending on the objects to which
the copies of the object are connected. The connectivity of
these objects is defined by using a special syntax for the
INPUT and OUTPUT parameters. We present the syntax for
object templates by considering the Timing Update subsystem.
The Timing Update subsystem is shown in Fig. 5. In this
subsystem, bui Id- t imemsg sends identical messages to
the time stores on each of the other two processors. Identical
adjust -t i m e tasks read these messages and update their
respective local clocks. A graph file containing only the
specification of this subsystem is as follows.

GRAPH
EXTERNS
FUNC adjust-clock-f;
FUNC build-time-msg-f;
PROC processor2;
PROC processorl;
PROC processof;
CONSTANTS

KlSKIS AND SHIN: SWSL 807

Fig. 5. Passive sonar specification: Timing Update subsystem.

clockxate = 125;
OBJECTS
TERM master-clock;
TRANS build-time-msg;
STORE time;
TRANS adjust-clock;
TERM slave-clock;
DEFINITIONS
/* TERM */ master-clock[

OUTPUT = build-time-msg: discrete;
TYPE = source;
ELEMENT-SIZE = 1;
PROCESSOR = processor3;
RATE = clockxate;
START-TIME = 1;

I ;
/ * TRANS * / build-timemsg[

SPORADIC = 0;
DEADLINE = clockxate;
FUNCTION = build-timemsg-f();
START-TIME = 1;
INPUT = master-clock : discrete;
OUTPUT = time.processorl.0 : discrete;
OUTPUT = time.processor2.0: discrete;
PROCESSOR = processor3;
ACTIVE = true;
PRIORITY = 12;

I ;
/ * STORE * / time[

TYPE = nondepletable;
ELEMENT-SIZE = 8;
INPUT = build-time-msg : discrete;

OUTPUT = adjust-clock : continuous;
PROCESSOR = processorl, processor2;
CAPACITY = 1;
POLICY = fifo;

I;
/ * TRANS * / adjust-clock[

PERIOD = clocklate;
DEADLINE = clocklate;
FUNCTION = adjust-clockf();
START-TIME = 1;
INPUT = time : continuous;
OUTPUT = slave-clock.processor1 : discrete I

PROCESOR = processorl, processor2;
ACTIVE = true;
PRIORITY = 9;

slave-clock.processor2 : discrete;

I;
/ * TERM * / slave-clock[

TYPE = sink;
ELEMENT-SIZE = 1;
INPUT = adjust-clock : discrete;
PROCESSOR = processorl, processor2;
RATE = clockxate;
START-TIME = 1;

I;
In the following discussion, the object for which the inputs

and outputs are being defined is referred to as the current
object. The objects to which it is connected by flows from the
inputs and outputs are referred to as the connected objects.

Transformation inputs and outputs are mapped one-to-one
and in-order to function inputs and outputs. (See the discussion
of the functions file below.) Therefore, the order in which

808 IEEE TRANSACTIONS ON SOmWARE ENGINEERING, VOL. 20, NO. 10. OCTOBER 1994

inputs and outputs are specified is important. Furthermore,
because SWSL supports object templates, the connected object
may be one of many instances of an object. Hence, to
accurately specify the connected object for an OUTPUT, for
example, requires four pieces of information: the name of the
connected object, the processor on which it is located, which
I N P U T of the connected object defines the other end of this
flow, and the flow type.

Since the current object specification may also be a template,
the specification of inputs and outputs is somewhat complex.
However, simple, compact specifications are possible in most
cases. The SWG makes some assumptions about how objects
will be connected. It follows a set of rules based on these
assumptions to fill in missing information in the simplified
specification. At the minimum, the name of the connected
object and the flow type are required. The other fields may
be omitted if their values can be inferred by the SWG. The
Timing Update subsystem example demonstrates both the full
form of the syntax and the compact form. The specifica-
tion of build-timemsg shows the complete form of the
specification. It completely specifies that the flows connect to
the copies of store time that are located on processor1
and processor2, respectively, and that the flow is the
first input (using zero-based counting) of time . time
and adjust-clock use compact forms. The specification
indicates that time is to be connected to the corresponding
copy of adjust-clock. The objects are paired based on the
order of the processors in the PROCESSOR parameter list.

In this case, objects that reside on the same processor
are paired. The specification of the connection between ad-
just-clock and slave-clock demonstrates the full form
of the syntax for connecting objects from templates. The
vertical bars (1) separate specifications for the same INPUT or
OUTPUT on different copies of the object. These specifications
correspond positionwise to processor specifications in the
PROCESSOR parameter list.

3. Functions File

example of a function file follows.

FUNCTIONS
EXTERNS
OPER kinst;
OPER sread:
OPER swrite;
CONSTANTS
CODE
estimate-tracks-f{

This file defines the 4 functions for the transformations. An

INPUT = selects: discrete;
OUTPUT = tracks: discrete;
OUTPUT = beam form: discrete;
BEGIN
LOOP track-selects-capacity

SWITCH
I

62 : {
{

sread(selects, NOWAIT, 0);
kinst(10 * Nt/BF);
swrite(tracks. WAIT, 3 , i O) ;
swrite (beam-form, WAIT, 3, 10);

remaining: {
1;

kinst(5 * Nt/BF);
swrite(tracks, WAIT, 3, IO);

1;
};
END;

> r
This example shows the definition of the

estimate-t racks-f function. The other functions
would have to be provided in order for this to be a complete
specification. The first part of the specification is a listing
of the input and output flows of the function. These flows
are given symbolic names that are used within the function.
At compile time, the symbolic name is mapped to the
corresponding INPUT or OUTPUT of the transformation
that executes the function. In the example, s e l e c t s
will be mapped to the t r ack - se l ec t s input of the
est imate-tracks transformation. The code that is
executed by the function is defined between the BEGIN and
END keywords. During each periodic or sporadic invocation
of the transformation, the code between the B E G I N and END
keywords is executed exactly once.

The operations and control constructs from the workload
model have been adapted for specifying SW’s. Computation
and communication are implemented with synthetic opera-
tions. Synthetic operations exercise specific resources in a
predefined manner. The use of synthetic operations has been
described in (21, [30], [32]. The synthetic operations are
located in a library of operations. Synthetic operations are im-
plemented as C functions. These functions are parameterized
so the user can control their behavior. By defining them as
functions, we hide the implementation details. Hence, the SW
function specifications are made target system-independent.
All system dependencies are contained in the implementation
of the operations.

We have collected a number of synthetic operations for the
library. Some of these were taken from the publicly available
Bell Labs Benchmark suite and the dhrystone benchmark.
They perform functions such as Ackerman’s function, floating-
point arithmetic, and word counts that exercise specific system
functionalities. The operations are parameterized to control the
number of iterations of each function. Additional operations
may easily be added to the library.

In this example, k ins t () , sread () , and swr i te () are
synthetic operations. A call to k i n s t (n) executes n x 1000
integer operations. This synthetic operation is used to produce
the desired computation load, which is specified in Kiloin-
structions in [23]. The sread and swr i te operations are
particularly important. They are defined to be generic input and
output operations. The primary parameter for these functions
is the symbolic name of the input or output. The user need
not specify any information about the object with which the

KISKIS AND SHIN: SWSL 809

function is communicating via the operation. The operations
take information generated by the SWG for each input and
output of the function and determine the appropriate system
call(s) on the target system to use to perform the appropriate
reading or writing operation. Therefore, they may be used in
any function, regardless of the transformation that executes
it and regardless of the objects to which the transformation is
connected. These operations increase flexibility by introducing
the capability ‘for plug-in functions. During normal use of
SWSL and the SWG, it is anticipated that the user will code
a number of functions with different behaviors representing
different types of tasks. These functions will be “plugged in”
to transformations as needed for the particular application.
Thus, SW’s can be quickly constructed from components with
known characteristics.

Control flow within a function is achieved by using sequen-
tial execution and the LOOP and SWITCH constructs. Both of
these constructs are demonstated in the example Functions file.
LOOP is an adaptation of the while-do loop in the workload
model. It is a single-entry, single-exit looping construct. The
parameter after the LOOP keyword specifies the loop count.
The LOOP may be made to execute a constant number of times
for each run, or it may execute a random number of times by
specifying a distribution function as the loop count. By looping
a random number of times, the loop simulates the behavior of
data-dependent loops in the workload being modeled.

Branching is accomplished using the SWITCH construct. It
is a generalization of the if-then-else construct in the
workload model. It is derived from the SWITCH operation in
[30]. In the SWITCH statement, the user specifies alternate
blocks of code to be executed. Probability values are assigned
to each block. Each time the SWITCH is executed, one block
is selected at random based on the probability value assigned
to the block. By branching probabilistically, it simulates the
behavior of real applications that branch based on data values.
The example specifies that 62%) of the time the first block is
to be executed, and that for the remaining percentage of the
time, the second block is to be executed. If the percentage do
not add to 100% and there is no remaining case, then the
remaining percentage of the time, no operations are performed.

C code may be inserted at any point in the CODE section
using a verbatim/endverbatim block. This C code is
copied directly to the C code being generated for the function
by the SWG. An SWSL function may contain any combination
of synthetic operations and user code.

C . Experiment File

The graph and functions files define the structure of the
workload. The experiment file defines the behavior of the SW
in the context of an evaluation experiment. Suppose that we
are conducting an experiment to measure the effect on system
performance causes by the different PERIOD values defined
for transformation update-cur sor-t r. We would use the
following experiment file.

EXPERIMENT
CONSTANTS
Runs = 3:

PARAMETERS
processor 1 [

TIMING = true;
TIMELIMIT = 2000;
SEED = 98752342;
SEED-RESET = TRUE;

I ;
DEFAULT [

TIMING = true;
TIMELIMIT = 2000;
SEED = 12348712;
SEED-RESET = TRUE;

I ;
We want to execute three runs, so we set the value of the

Runs constant to 3. This parameter applies to all processors in
the experiment. The other experiment parameters are defined
on a perprocessor basis, to account for differences between
processors. The first set of parameters apply to proces sorl
only. The DEFAULT entry defines the parameters for all
processors for which there is no explicit entry. In this example,
we are specifying that processor1 is to use a different seed
for its random number generator than is used by the other
processors.

Two of the experiment parameters indicate whether the ex-
periment is to be timed and define the duration of the execution
interval. The other parameters provide control of the statistical
properties of the stochastic behavior of the SW. They define
the seeds of the random number generators. Each value of the
SEED parameter defines a separate random number generator
with the specified initial seed value. Each distribution function
in the graph and function files can calculate its values from a
separate stream. In this way, consecutive values generated by
the distribution will be independent. The result is statistically
independent events in the SW’s execution. The SEED-RESET
parameter may be used to reset the seed values at the beginning
of each run. In this way, the behavior of individual streams
may be reproduced. As with the 7rL parameters in the graph
file, a list of values for the experiment parameters indicates
the values to be used for each run.

V. SYNTHETIC WORKLOAD GENERATION

We have designed and implemented the SWG that compiles
SWSL. The SWG completely automates the generation of
SW’s. The synthetic workload generation process is shown in
Fig. 6. The SWG compiles the SWSL graph file to produce an
internal representation of the task graph. It checks the graph for
compliance to the connection rules. It then processes the inputs
and outputs of the components to expand any specifications
that use the simplified specification notation. Next it compiles
the experiment file. Then it compiles the functions file and
produces C language code for each function. While producing
these files, it uses information from the task graph to expand
the input and output labels in the functions. Then it generates
files containing tables of the parameter values for the objects
on each processor. The files for the SW on each processor
are then compiled and linked to create an executable image.
Compilation of the SW files is controlled by the SWG, which

810

-
Experiment Task Functions
Parameters

Task Graph Description

Run-length
Seeds
Time-unit

End; End ;

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. IO, OCTOBER 1994

I Synthetic Workload Generator I
Parameter r l tasks C code

I Distributions I
Executable Synthetic

Workload

Fig. 6. Synthetic workload generation.

uses the processor assignment information from the graph file
to direct the make utility.

VI. SUMMARY AND PkOSPECTS FOR FUTURE WORK

SWSL is a language for specifying synthetic workloads for
distributed real-time systems. It is designed to be easy to use
while providing compact and flexible specifications. It is based
on a workload model that makes it compatible with commonly
used software specification notations. Hence, it is capable of
accurately modeling real workloads. The language includes
facilities for experiment support such as support for multiple
runs, replication of objects, multiple random number generator
streams, and modeling of stochastic behavior.

The SWG has been developed and implemented. It supports
all features described in this paper. It has been used to produce
SW’s for the initial testing and evaluation of H A R T S . In
another study, a robot control system was modeled. An SWSL
specification was created based on this model, and an SW was
generated for the robot control computer. Based on statistical

comparison, the SW was shown to be representative of the
actual control software. The SWG was also used to evaluate
the performance of the communication subsystem of HARTS
under different workloads [141.

Enhancements to the language are being considered. One is
to simplify the naming conventions for objects. In particular,
we would devise a naming scheme that would allow multiple
instantiations of an object from a template to reside on
the same processor. This feature would reduce the need for
redundant specifications in some instances. We also need to
expand the number of synthetic operations that are available
to the user.

REFERENCES

[I] A. K. Agrawala, J. M. Mohr, and R. M. Bryant, “An approach to the
workload characterization problem.” lEEE Comput., vol. 9, no. 6, pp.
18-32, June 1976.

(21 R. Baird, “APET: A versatile tool for estimating computer application
performance,” Sofrwuc-e: Prucrice und E.rperience, vol. 3, pp. 385-39.5,
1973.

KISKIS AND SHIN: SWSL R I 1

W. Bruyn, R. Jensen, D. Deskar, and P. Ward, “ESML: An extended
systems modeling language based on the data flow diagram,” ACM
Software Eng. Notes, vol. 13, pp. 58-67, 1988.
W. Buchholz, “A synthetic job for measuring system performance,” IBM
Syst. J., vol. 8, no. 4, pp. 309-318, 1969.
R. M. Cohen, “Formal specifications for real-time systems,” in Proc.
Texas Conf. Computing Sysf. , 1978, pp. 1.1-1.8.
H. Falk, “CASE tools emerge to handle real-time systems,” Comput.
Design, vol. 27, pp. 53-74, Jan. 1988.
F. Feather, D. Siewiorek, and 2. Segall, “Validation of a fault-tolerant
multiprocessor: Synthetic workload implementation,” in Proc. Int. Conf
on Distrih. Co,mpuring Syst., 1986. pp. 303-312.
D. Ferrari, “Workload characterization and selection in computer per-
formance measurement,” lEEE Comput., vol. 5 , no. 4, pp. 18-24, July
1972.
-, Computer Systems Performance Evaluation . Englewood
Cliffs, NJ: Prentice-Hall, 1978.
-, “On the foundations of artificial workload design,” in Proc.
1984 ACM SIC-METRICS Conf. Measurement and Modeling Comput.

H. Gomaa, “A software design method for real-time systems,’’ Commun.
ACM, vol. 27, no. 9, pp. 938-949, Sept. 1984.
D. J. Hatley and I. A. Pribhai, Strafegies for Real-Time System Specifi-
cation.
D.L. Kiskis and K.G. Shin, “A synthetic workload for real-time
systems,” in Proc. 7th IEEE Workshop on Real-Time Operating Syst.
and Softwure, 1990, pp. 77-81.
D. L. Kiskis, “Generation of synthetic workloads for distributed real-
time computing systems,” Ph.D. dissertation, Univ. of Michigan, Ann
Arbor, USA, Aug. 1992.
H. F. Ledgard and M. Marcotty, “A genealogy of control structures;,”
Commun. ACM, vol. 18, no. 1 I , pp. 629439, Nov. 1975.
C. D. Locke, “Generic avionic software,” IBM Syst. Integration Div.,
DRAIT, Oct. 1988.
H. C. Lucas, “Synthetic program specifications for performance evalua-
tion,” in Proc. ACM Ann. Conf., 1972, pp. 1041-1058.
G. A. Ludgate, B. Haley, L. Lee, and Y. N. Miles, “The use of structured
analysis and design in the engineering of the TRIUMF data acquisition
and analysis system,” lEEE Trans. Nucl. Sci., vol. NS-34, no. 1, pp.
157-161, Feb. 1987.
Luqi, V. Berzins, and R. T. Yeh, “A prototyping language for real-time
software,” lEEE Trans. Sof?ware Eng. , vol. 14, pp. 1409-1423, Oct.
1988.
H. G. Mendelbaum and D. Finkelman, “CASDA: Synthesized graphic
design of real-time system,” IEEE Compur. Graphics and Applic. , vol.
9, pp. 4046, Jan. 1989.
A.K. Mok, “The design of real-time programming systems based on
process models,” in Proc. Real- Time Syst. Symp., 1984, pp. 5-17.
J. Molini, S. Maimon, and P. Watson, “Real time distributed system
studies/scenarios,” in ONR 3rd Ann. Workshop: Foundations of Real-
Time Computing, 1990, pp. 187-209.
J. J. Molini, S . K. Maimon, and P. H. Watson, “Real-time system sce-
narios,” in Proc. Real-Time Syst. Symp., 1990, pp. 214-225.
A. H. Muntz and R. W. Lichota, “A requirements specification method
for adaptive real-time systems,’’ in Pro(,. Real-Time Syst. Symp., 1991,
pp. 264-273.
P. W. Oman, “CASE analysis and design tools,” IEEE Sofiware, vol. 7,
pp. 3 7 4 3 , May 1990.
H. D. Schwetman and J. C. Brown, “An experimental study of computer
system performance,” in Proc. ACM Ann. Conf., 1972, pp. 693-703.
G. Serazzi, Ed., Workload Characterization of Computer Systems and
Computer Networks. Amsterdam, Netherlands: North-Holland, 1985.
K. G. Shin, “HARTS: A distributed real-time architecture,” IEEE Com-
pur., vol. 24, pp. 25-35, May 1991.
A. Singh, “Pegasus: A controllable, interactive, workload generator for
multiprocessors,” M.S. thesis, Camegie Mellon Univ., Pittsburgh, PA,
USA, Dec. 1981.
A. Singh and Z. Segall, “Synthetic workload generation for experimenta-
tion with multiprocessors,” in Proc . lnt. Conf. Distrih. Computing Sysr.,
1982, pp. 778-785.
J. A. Stankovic, “Misconceptions about real-time computing: A serious
problem for next-generation systems,” IEEE Comput., vol. 21, pp.
10-19, Oct. 1988.
R. E. Walters, “Benchmark techniques: A constructive approach,” Com-
pur. J., vol. 19, no. 1 . pp. 50-55, Feb. 1976.
P.T. Ward and S . 3. Mellor, Structured Development for Real-Time
Systems, vols. 1-3.

SYS., 1984, pp. 8-14.

New York: Dorset House, 1987.

Englewood Cliffs, NJ: Yourdon, 1986.

1341 S . M. White and J. Z. Lavi, “Embedded computer system requirements
workshop,” IEEE Comput., vol. 18, no. 4, pp. 67-70, Apr. 1985.

1351 B. E. Withers, D. C. Rich, D. S . Lowman, and R. C. Buckland, “Software
requirements: Guidance and control software development specifica-
tion,” NASA Contractor Rrp. 182058, Research Triangle Inst., Durham,
NC, USA, June 1990.

[36] D.C. Wood and E.H. Forman, “Throughput measurement using a
synthetic iob stream,’’ in AFlPS Full Joint Comput. Conf , vol. 39.
pp. 51-55, Nov. 1971.

(371 M. H. Woodbury, “Workload characterization of real-time computing
systems,” Ph.D. dissertation, Univ. of Michigan, Ann Arbor, USA, Aug.
1988.

D.L. Kiskis received the B.S. degree (with highest
honors) in mathematics and computer science from
Denison University, Granville, OH, USA, in 1986,
and the M.S. and Ph.D. degrees in computer science
and engineering from the University of Michigan,
Ann Arbor, MI, USA, in 1989 and 1992, respec-
tively.

Since September 1992, he has been working in
the Software Engineering Section of the Center
for Computer High-Assurance Systems at the U.S.
Naval Research Laboratory. Washington, DC, USA.

His current research interests include distributed real-time systems, workload
characterization, requirements specification, and software engineering pro-
cesses.

Dr. Kiskis is a member of the IEEE Computer Society, Sigma Xi, and Phi
Beta Kappa.

K. G. Shin (S’75-M’78-SM’83-F’92) received the
B.S. degree in electronics engineering from Seoul
National University, Seoul, Republic of Korea, in
1970, and the M.S. and Ph.D. degrees in electrical
engineering from Comell University, Ithaca, NY,
USA, in 1976 and 1978, respectively.

He is a Professor of Electrical Engineering and
Computer Science for the Computer Science and
Engineering Division, The University of Michigan,
Ann Arbor, MI, USA. He also chaired the CSE
Division for three years beginning 1991. From 1978

to 1982, he was on the faculty of Rensselaer Polytechnic Institute, Troy. NY.
USA. He has held visiting positions at the U.S. Airforce Flight Dynamics
Laboratory, AT&T Bell Laboratories, Computer Science Division, within the
Department of Electrical Engineering and Computer Science, University of
Califomia at Berkeley, USA, and International Computer Science Institute,
Berkeley, CA, USA. Hc has also been applying the basic research results of
real-time computing to manufacturing-related applications ranging from the
control of robots and machine tools to the development of open architectures
for manufacturing equipment and processes. Recently. he has initiated research
on the open-architecture Information Base for machine tool controllers.

Dr. Shin has authored or coauthored over 270 technical papers (about
130 of these in archival journals) and several book chapters in the area
of distributed real-time computing and control, fault-tolerant computing,
computer architecture, robotics and automation, and intelligent manufacturing.
In 1987, he received the Outstanding IEEE Transactions on Automatic Control
Paper Award for a paper on robot trajectory planning. In 1989, he also
received the Research Excellence Award from The University of Michigan.
In 1985, he founded the Real-Time Computing Laboratory, where he and his
colleagues are currently building a 19-node hexagonal mesh multicomputer.
called HARTS, to validate various architectures and analytic results in the
area of distributed real-time computing. He was the Program Chairman of the
1986 IEEE Real-Time Systems Symposium (RTSS). the General Chairman of
the 1987 RTSS, the Guest Editor of ihe 1987 August special issue of IEEE
TRANSACTIONSON COMPLTERS on Real-Time Systems, a Program Co-chair
for the I992 Infernational Conference on Parallel Processing. and served
numerous technical program committees. He also chaired the IEEE Technical
Committee on Real-Time Systems during 1991-93, is a Distinguished Visitor
of the Computer Society of the IEEE, an Editor of IEEE TRANSACTIONSON
PARALLELAND DISTRIBUTED COMPUTING. and an Area Editor onlnternarional
fournal of Timu-Criric,al Compuring Systems.

