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SWSL: A Synthetic Workload Specification 
Language for Real-Time Systems 

Daniel L. Kiskis and Kang G. Shin, Fellow, lEEE 

Abstract-In this paper, we discuss the issues that must be 
addressed in the specification and generation of synthetic work- 
loads for distributed real-time systems. We describe a synthetic 
workload specification language (SWSL) that defines a workload 
in a form that can be compiled by a synthetic workload gen- 
erator (SWG) to produce an executable synthetic workload. The 
synthetic workload is then downloaded to the target machine and 
executed while performance and dependability measurements are 
made. SWSL defines the workload at the task level using a data 
flow graph, and at the operation level using control constructs 
and synthetic operations taken from a library. It is intended to be 
easy to use, flexible, and capable of creating synthetic workloads 
that are representative of real-time workloads. It provides a com- 
pact, parameterized notation. It supports automatic replication 
of objects to facilitate the specification of large workloads for 
distributed real-time systems. It also provides extensive support 
for the experimentation process. 

Index Terms- Synthetic workloads, real-time workloads, dis- 
tributed real-time systems, performance and dependability mea- 
surement experiments 

I. INTRODUCTION 
SYNTHETIC WORKLOAD (SW) is a set of artificial A or synthetic programs that execute on a computer system 

and produce resource demands on the system. The synthetic 
programs are parameterized to allow the user to easily modify 
their execution and resource consumption behavior. SW’s have 
long been recognized as useful tools to be used during the 
experimental evaluation of computer systems. The tasks, or 
jobs, that make up the SW are selected to represent a particular 
application domain for a certain class of computers. Early 
SW’s were designed to represent typical business applications 
running on a mainframe computer, e.g., [41, [171, [261, [361. 
SW design was later studied extensively by Ferrari [8]-[ 101. 
However, his work also concentrated on general purpose 
uniprocessor computers. 
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At the Real-Time Computing Laboratory of The University 
of Michigan, Ann Arbor, USA, we are designing and building 
the Hexagonal Architecture for Real-Time Systems (HARTS) 
[28]. HARTS is a distributed real-time system consisting of 
a number of multiprocessor nodes connected by a custom 
hexagonal mesh interconnection network. HARTS is an ex- 
perimental system that is to serve as a testbed for developing 
and evaluating real-time communication, fault tolerance, and 
operating system concepts. It was decided that an SW would be 
a valuable tool for this evaluation process. An SW would allow 
us to create a range of different workloads, each designed to 
exercise the specific components under study. 

The SW’s that have been developed for general purpose 
systems are inadequate for use on a distributed real-time 
system like HARTS. They are unable to accurately reproduce 
the behaviors that are characteristic of real-time workloads. 
Previous SW’s developed for real-time systems, e.g., one 
for FTMP [7] and an early one for HARTS [37], were too 
inflexible and had no provisions to exercise communication 
facilities of a distributed system. An SW for a general purpose 
distributed computer system was proposed by Singh and Segall 
[29], [30]. Their system, called Pegasus, was to produce SW’s 
for a distributed system. They defined a novel language, the 
B-language, to describe the SW’s. However, no compiler for 
the B-language was implemented [29], and thus the feasibility 
and usefulness of the language for specifying SW’s for large 
systems has not been demonstrated. Furthermore, the B- 
language contains no support for specifying SW’s for real-time 
systems. 

Because there are no other sufficiently powerful SW’s 
for distributed real-time systems, we have designed and im- 
plemented our own SW [13], [14]. The SW operates in a 
distributed manner. Each processor executes a set of synthetic 
tasks and a driver process. The synthetic tasks produce the 
resource demand for the SW. The driver process initializes and 
activates the SW and generates stochastic events to simulate 
random inputs to the workload. It  also coordinates with 
the drivers on the other processors to provide synchronized, 
distributed control of the SW on the entire multiprocessor. To 
be useful during experimentation of HARTS, the SW requires a 
support tool, namely, a synthetic workload generator (SWG). 
The SWG is needed because of the size of HARTS. Each 
node on HARTS can have up to three processors for executing 
application software. Our initial version of HARTS consists of 
19 nodes. Hence, an SW for HARTS will consist of programs 
for 57 processors. Since coding and debugging this number 
of programs would be a tedious and error-prone undertaking, 
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we have developed an SWG to automatically generate all the 
programs for the distributed SW based on a compact high-level 
language specification. Such a specification can be created and 
debugged much more efficiently. 

The SWG for HARTS has been completely implemented. It 
executes on a workstation that is separate from HARTS. The 
SWG produces C code for the SW and compiles it to produce 
an executable image for each processor. The executable image 
is then dowhloaded to HARTS and is executed there. While the 
SW is executing, performance and reliability measurements 
may be taken. 

In this paper, we discuss the language that we have de- 
veloped to specify SW’s. This language is the Synthetic 
Workload Specification Language (SWSL). SWSL is based on 
a workload model that accurately describes the structure and 
behavior of real-time workloads executing on a distributed 
system. It specifies the timing characteristics of tasks, the 
interactions between tasks, and the intemal structure and 
behavior of each task. Since SWSL is based on an abstract 
workload model, it is not specific to HARTS and can be 
used to specify SW’s for other systems. SWSL provides a 
compact syntax to improve the ease with which experimenters 
may develop and alter workload specifications. This feature 
is particularly important if the target machine is composed of 
a large number of processors. A relatively small specification 
can be used to describe a workload consisting of many tasks. 
Finally, SWSL is designed to support the experimentation 
process. It contains features that allow the user to run a series 
of statistically independent experiments in an efficient manner. 

This paper is organized as follows. In the next section, we 
describe the workload model upon which SWSL is based. 
Section 111 discusses important issues in specifying SW’s that 
are addressed by SWSL. In Section IV, we define SWSL in 
the process of specifying an SW based on a submarine passive 
sonar system. Section V describes how SWSL is used by our 
SWG to produce SW’s. We conclude with Section VI. 

11. WORKLOAD MODEL 
Our workload model is intended to describe real-time work- 

loads in sufficient detail to be used as the basis for generating 
SW’s. To be an accurate representation of the workload, the 
model must capture all relevant structural and behavioral 
details of the workload. The structure and behavior of the 
workload directly affect the values of the performance indices 
that are measured during experiments. Changes in the work- 
load cause changes in the values of the performance indices. 
It is by characterizing these changes that one evaluates the 
system. The workload model provides a formalism that allows 
the user to express the connections between the workload, its 
characteristics, and the measured performance indices. 

In a real-time system, the value of a computation depends 
not only on the logical correctness of the results but also 
on the time when the results are produced. This definition 
describes a class of systems with characteristics that set them 
and their workloads apart from general purpose systems [SI, 
[21], [31]. They are usually embedded in a larger system that 
performs a particular function. The real-time system serves as 

the controller computer for this larger system. The real-time 
system is designed to execute specific application software 
required to control the larger system. All tasks are predefined 
and their parameters are usually known a priori. The control 
activity consists of accepting frequent or continuously arriving 
inputs from sensors and, in response, producing output to 
actuators and/or display devices. These responses must occur 
soon enough after the input to meet the physical constraints 
of the system. The system must also accept inputs at random 
times due to operator commands and exceptional conditions. 
The hardware of the system may be distributed, consisting 
of a number of processors each connected to a variety of 
input-output (1-0) devices. Distributed systems exhibit great 
potential for high performance and high reliability, two prop- 
erties that are essential for real-time systems. 

To provide the required services, the real-time workload 
consists of a number of periodic tasks that handle the periodic 
1-0 associated with process control. There are also sporadic 
tasks that execute in response to the aperiodic events. The 
requirements of the system are such that the responses to inputs 
must occur within predetermined time intervals, i.e., responses 
have deadlines. There may be a number of distinct states in 
which the system operates. Tasks may behave differently de- 
pending on the state. Although some of the tasks may execute 
independently, they will often be required to communicate 
with one another and exchange data. 

Previous approaches to modeling workloads consisted of 
capturing the behavior of the workload using queueing net- 
works or describing the workload in terms of a vector quantify- 
ing the workload characteristics [9]. However, the properties of 
a real-time workload are not accurately modeled by a queueing 
network or as a simple vector of workload parameters, because 
these techniques model average-case performance. Therefore, 
they cannot capture the details of the timing characteristics 
of the workload. To model a real-time workload, we must 
accurately describe the details of the workload that specif- 
ically influence the time-related aspects of the system. The 
model should express the tasks’ timing, resource usage, and 
interaction characteristics. The timing characteristics include 
task execution times, deadlines, and scheduling parameters. 
The resource usage characteristics should include access pri- 
orities, preemption policies, and the quantity of the resources 
used along with the timing characteristics (e.g., pattem and 
duration) of that usage. Task interactions include both direct 
communication and resource sharing. Since standard queueing 
models and simple vectors of workload parameters are neither 
powerful nor expressive enough to model real-time workloads, 
a different, more expressive model is needed. 

A .  Modeling Issues 

We have constructed a model to accurately capture the 
structure and behavior of a real-time workload. The workload 
is described in terms of a data flow graph, a notation commonly 
used to specify software for distributed real-time systems. The 
model is a generalization of the rapid prototyping languages 
such as PSDL [ 191, and structured analysis (SA) notations such 
as ESML [3] and others [12], [33]. SA notations are commonly 
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used in CASE twls to specify and analyze the requirements 
and structure of real-time software. The data flow model 
captures the basic aspects of the workload like parallelism 
and interactions between tasks, and it allows for modeling 
at multiple levels of abstraction. These features provide a 
generality that makes our model flexible and thus more widely 
applicable. So, it is capable of modeling the features of a 
number of SA, rapid prototyping, and other notations like those 
in 1111, [20], [24], and can be used to describe a wide range 
of real-time workloads that have been specified using these 
notations. Our model extends these notations to specify the 
timing and resource usage properties of the workload. 

The model was based on SA and rapid prototyping notations 
for the following reasons. 

At the time a prototype system is ready for evaluation, it 
is likely that the system designers will have only a high- 
level specification of the proposed application software, 
e.g., the SA model. This model will generally be a 
good approximation of the structure of the workload 
1121. Thus, by using a similar model for our SW, we 
can produce an SW that will closely approximate the 
structure and behavior of the proposed software. The 
experimental evaluations performed using this SW will 
then provide useful and meaningful results. Similarly, 
developers of experimental systems can make use of 
published workload specifications [16], [ 181, [22], [351 
to produce representative SW’s to be used to evaluate 
their systems. 
Since the workload is modeled at a high level of abstrac- 
tion, the model is system-independent. The model does 
not contain any information that is particular to a given 
hardware architecture or operating system. Therefore, a 
workload specified using our model is portable and may 
be used to comparatively evaluate different systems. 
As real-time software becomes more complex, the use of 
structured methods of design the software will become 
widespread. the design process will be supported by 
computer-aided software engineering (CASE) tools [6], 
[25]. Our approach allows the SWG to become an integral 
part of a CASE tool. A number of CASE tools use 
SA and similar notations. Hence, high-level software 
designs created by CASE tools can be translated to our 
model and used by the SWG to create SW’s. The SW’s 
thus produced will be akin to a rapid prototype. The 
difference is that though the rapid prototype is aimed at 
demonstrating the functionality of the software from the 
user’s viewpoint, the SW is aimed at demonstrating the 
resource use behavior of the software from the system’s 
viewpoint. 

B.  Formal Definition 
A real-time workload is defined as a 5-tuple (T, S, R, F, D), 

where T is a set of transformations, S is a set of stores, R 
is a set of terminators, F is a set of flows, and D represents 
data. These workload objects will be described in detail in 
the following sections. The graphical representation of all 
components are shown in Fig. 1. These symbols are taken 
directly from the graphical representation for ESML [3]. 

TRANSFORMATION 
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Fig. I .  Graphical representation of model components. 

Transformations: The set of transformations T represents 
the work done by the workload. Transformations encapsulate 
both the processing of data and the control logic of the 
workload. We define T = {t 1 t = (I, O , p ,  $,TI, ... ,rn}, 
where I is the set of inputs, 0 is a set of outputs, p is a 
processor identifier, I$ is a function, and r 1 , . - . , ~ ~  are N 
system-specific parameters, where N is an integer whose value 
depends on the target system. The transformation receives data 
or control signals on its inputs, I, and produces data and/or 
control signals on its outputs, 0. 

The behavior of the transformation is determined by the 
function 4. The transformation may represent any function for 
data processing and/or any control structure. The combination 
of data flow and control in a single transformation is a 
generalization of the SA and rapid prototyping notations. This 
control mechanism is more powerful than the mechanisms 
defined for ESML, and more powerful than Singh and Segall’s 
B-language. It is capable of modeling control constructs such 
as state machines, control flows, and control transformations. 
Thus, various mechanisms for specifying system state and 
state-dependent operations may be modeled. 

The p in the definition of t represents the assignment of 
a transformation to a specific processor. All transformations 
are considered unique. Therefore, replicated transformations 
in fault-tolerant systems are modeled individually. 

The timing and selection of inputs and outputs are deter- 
mined by the intemal structure and behavior of the trans- 
formation. Transformation behaviors are not restricted to the 
model of “trigger, compute, produce output” that is common 
to data flow specifications. Instead, transformations are free to 
perform inputs and outputs at any time during their execution. 
Based on their intemal logic, they are also able to select 
whether to read a given input or produce a given output. 
This flexibility in defining task interactions is necessary when 
specifying SW’s for real-time systems. If the SW is to be 
representative of real applications, the synthetic tasks must 
accurately reproduce the complex timing and resource-sharing 
dependencies between tasks. This accuracy cannot be obtained 
from a simple data flow model [34]. It requires the more 
detailed specifications allowed by this model. 

The function specified by 4 is defined based on the D- 
structures described by Ledgard and Marcotty [15]. The set 
of D-structures is a small functionally complete set of control 
constructs for programs. They consist of simple operations, 
composition of D-structures, a conditional control construct, 
and a loop construct. A simple operation is any computa- 
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tion, system call, or input or output statement, for example. 
These are the smallest units of execution in the model. 
Composition is the simple sequential execution of two D- 
structures. For two D-structures s 1 and s2,  composition is 
represented as sl; s2. The conditional control construct 
is the “ i f  c o n d i t i o n  t h e n  sl else s2” construct. 
The looping construct is the “whi l e  c o n d i t i o n  do s” 
construct. With these constructs, all other control constructs 
may be realized [ 151. 

The complete specification of a transformation depends on 
the system upon which it is to be implemented. Different 
operating systems require different information to create and 
schedule the implementation of the transformation. There- 
fore, the transformation specification includes a number of 
system-specific parameters, R,. These parameters may include 
scheduling parameters, resource requirements functions for 
exception handling, and so forth. The number of R, parameters, 
and thus the value of N, depends on the target system. 
The model defines as many R, parameters as are needed 
to specify the implementation of transformations on a given 
target system. 

Stores model all objects that can contain data. 
These objects include data structures, files, sockets, pipes, and 
so forth. A transformation passes data to another transfor- 
mation by placing the data in a store from which the other 
transformation reads the data. Formally, we define S = {s I 
s = ( I , O , ~ , R ~ , ~ ~ ~ , R N ) } ,  whereIisthesetofinputs,Oand 
p is a set of outputs, p is a set of processors, and RI, . . . , RN 
is a set of N system-specific parameters where N depends 
on the target system. The I and 0 values have the same 
meaning as they have in the definition of T. The R, values 
define parameters required to specify the implementation of a 
data structure modeled by the store. They define its storage 
properties such as element size, storage policy, and access 
policy. S may be divided into two disjoint subsets such that 
s = s d  U s,, where s d  is the set of depletable stores and s, 
is the set of nondepletahle stores. Depletable stores represent 
objects such as stacks and queues where a data element is 
removed from the store when it is read. A nondepletable store 
represents an object like shared memory that retains the data 
value after a read. The reader receives a copy of the data 
without changing memory contents. 

Terminators: Terminators serve as the interfaces between 
the workload and the environment. We define R = R, U R,, 
where R, is the set of input terminators and R, is the set 
of output terminators. R, = { T  I T = (O,~.R~,...,RN)} 
and R, = { r  1 T = (I,~,TI,...,TN)}, where I is the set 
of inputs, 0 is a set of outputs, p is a set of processors, 
and TI, . . . , ~ T N  is a set of N system-specific parameters. The 
I , O ,  and p values have the same meaning as they have in 
the definition of T. The T, values define parameters required 
to specify the characteristics of the terminator. They specify 
the interface between the workload and the environment. 
They define the type of the interface, the size of the data 
elements that it handles, and the minimum sampling interval 
or minimum data acceptance interval. 

The R, and R, terminators are referred to as sources 
and sinks, respectively. A source terminator represents a 

Stores: 

point where data are received by the workload from an 
extemal object. Typical examples of such objects are sensors 
and operator controls. Sink terminators represent locations 
where data or control signals are sent to an extemal object 
by the workload. Actuators and displays are examples of 
extemal objects that may be represented by sink terminators. 
Terminators may also be paired to represent resources such as 
extemal files or databases that have both inputs and outputs. 

Flows: Flows are used to connect objects. Thus, we 
defined F = { ( s ,d )  I s , d  E T U S U R}, where s is 
the source of the flow, and D is the flow’s destination. 
Flows are the paths used to transfer data and control signals 
from one object to another. We define three types of flows 
in SWSL: F = F, U F, U Fe, where F, and F, are two 
sets of value-bearing flows and Fe is the set of non-value- 
bearing flows. The value-bearing flows are datajows.  They 
are distinguished according to whether the data values are 
continuously available (F,) or intermittently available ( Fz) ,  
i.e., available only at discrete instances of time. These value- 
bearing flows will be referred to as continuous data flows 
and intermittent (or discrete) data flows, respectively. The 
non-value-bearing flows ( F e )  are event flows, and they carry 
intermittently available signais. 

Data: “Data” is defined as the unit of information in the 
system. We define D = { d  I d = (v,s)}. Each unit of data 
has a value, 71, and a size, s. 

Construction of a workload with 
our model is based on the construction of one using ESML 
[3]. The model construction rules are specified formally by 
the definitions of the flow types: 

F, S (T x S,) U (S ,  x T )  U (T x R,) U (R,  x T ) .  

Continuous data flows may be used in either direction be- 
tween transformations and nondepletable stores, and between 
transformations and terminators: 

Interconnection Rules: 

F; (T X S )  U ( s d  X T )  U (T X Ro) U (R,  X T ) .  

IntermittPnt data flows may be used to connect transformations 
to any type of store, and are used to connect depletable 
stores to transformations. They may also be used to connect 
transformations and terminators in either direction: 

(T x 7’) U (T x R,) U (R, x T ) .  Fe 

Event flows may be used to connect transformations with 
each other to connect transformatons with terminators in either 
direction. There is only one additional rule that cannot be 
defined using the notation above: A transformation must have 
at least one input and one output flow. 

111. SPECIFICATION OF SYNTHETIC WORKLOADS 

Before discussing the details of SWSL, we first present the 
underlying concepts of its design. 

A .  Abstraction 
SWSL takes great advantage of the primary property of 

SW’s: abstraction. SW’s are useful in experimental evaluation, 
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because they . abstract details of a workload and produce 
only those resource demands that are required for a given 
evaluation. For example, to evaluate the scheduling policy 
of a real-time operating system, each task in the SW might 
abstract out the specific computations performed by a task in 
an actual workload and simply reproduce the total amount of 
central processing unit (CPU) time required for computation. 
SWSL uses abstraction to achieve compactness and much of 
the simplicity of the SW specification. 

If a task in the SW is not performing the actual computations 
of the workload, it cannot produce the correct results of the 
computation for use by other tasks. Those tasks also abstract 
computation, so the value of the data is irrelevant. Therefore, 
the SW also abstracts data. In the SW, only the size of the 
data is important, because we consider only the resources 
required to store the data. The effect of data on the behavior 
of the workload is modeled stochastically. An advantage of 
this abstraction is that the SW can operate without requiring 
actual input data, and tasks can produce the resource demands 
because of computation without executing the exact algorithms 
from the modeled workload. A disadvantage is that low-level 
data-dependent behaviors of the workload are more difficult 
to model using the SW. We provide mechanisms in SWSL to 
allow the user to model these behaviors, but these mechanisms 
require more information about the workload being modeled 
and greater programming effort by the user. 

B .  Representativeness 

By basing the SW on the workload model described in 
Section 11, we improve the representativeness of the SW. 
To measure representativeness, we use a performance-based 
metric. By this metric, an SW is representative of a workload 
if the performance of the system (as measured by a set of 
performance indices) while executing the SW is the same as 
the performance while executing the workload [ 101. However, 
“[elxcept for ceratin cases. . ., this definition of [representa- 
tiveness] does not directly suggest a method for designing 
an artificial workload” [IO]. Given this observation, we use 
a structure-based method for constructing a representative 
SW. That is, the SW is specified and constructed such that 
its structure models that of the workload. Other researchers 
[2], [32] have successfully. produced sufficiently accurate and 
flexible benchmark programs for uniprocessor systems by 
modeling the structure of the actual workload. We expect the 
technique to be successful for distributed systems as well. The 
structure-based representation is complemented by selecting 
the appropriate x; parameters for each object and assigning 
appropriate values to the parameters. These parameters de- 
termine the characteristics of the object as it is presented to 
the system. Parameters specify the resource requirements and 
the time-dependent behavior of the objects. By providing the 
SW with the same structure as the workload being modeled, 
and by tuning the parameters that determine the behavior, 
we are able to produce a representative SW. The level of 
representativeness may be measured by the performance-based 
metric. The ability of SWSL to produce representative SW’s 
is demonstrated in [14]. 

C. Flexibility 

Flexibility is another important characteristic of SWSL. If 
SWSL is to be useful for experimentation, it must be flexible. 
The user must be able to easily change the values of specific 
workload Characteristics. This ability requires that SWSL be 
able to produce SW’s with a wide range of resource require- 
ments and behaviors. Flexibility within a narrow range of 
behaviors is of limited benefit. Flexibility is provided primarily 
through the parameterization of the objects in the workload. 
All significant workload characteristics may be controlled by 
changing only the values of the proper parameters. In many 
cases, the user can make significant changes to both the 
structure and the behavior of the workload by changing a 
few parameter values. More importantly, the user can produce 
small, incremental changes to specific workload characteristics 
with little effort. Many evaluations involve measuring the 
performance of the system for various values of a given 
workload characteristic. Changing the value of a workload 
characteristic is often as easy as changing the value of one 
parameter. 

SWSL does not restrict which behaviors and structures can 
be included in the workload. SWSL was developed with a 
specific set of ri parameters needed to specify SW’s for the 
target systems available to us. The user can add or delete 
xi parameters in the specification of workload objects if 
those parameters are needed to specify the implementations of 
workload objects on their target system. In addition, the user 
can specify exact C language code within the function for a 
given synthetic task. This feature would be used to produce 
behaviors at a lower level than can be specified by SWSL. 

Flexibility is also improved by taking advantage of the 
definition of transformations in the workload model. For each 
transformation, the inputs, outputs, and function are defined 
separately. The definitions of functions are decoupled from 
the definitions of transformations. Therefore, the behavior of 
a transformation may be altered very simply by specifying a 
different function for it to execute. The only requirement is that 
the function operate on the same number and types of inputs 
and outputs as are defined for the transformation. Furthermore, 
the functions executed by different transformations need not 
be unique. A single function definition may suffice for a large 
number of transformations, thus resulting in a more compact 
and easily constructed SW specification. 

D. Object Templates 

The workload model defines each object uniquely. SWSL 
makes the specification of objects more compact by providing 
a simple mechanism whereby one can produce many instances 
of an object from a single object femplale. All instances of the 
object will have the same values of all the ri parameters. 
There are two uses for object templates. The first is to specify 
an object that represents a member of a class of objects with 
similar parameters. This technique is common in workload 
characterization [27] and has been used often to specify SW’s, 
e.g., [l]. A set of n parameters are selected to define the 
important characteristics of the workload tasks. For each task, 
these parameters are measured, and the task is plotted in 
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the n-dimensional space defined by the parameter vector. A 
clustering analysis is performed to partition the tasks into 
groups with sufficiently similar characteristics. Then a small 
number of tasks from each group are selected to represent 
that group. These representative tasks are used as templates. 
The number of instances of the task that are produced is 
proportional to the size of the cluster being represented relative 
to the size of the entire workload. This technique reduces the 
number of task specifications that must be written, and thus 
makes the workload specification more compact. The second 
reason for using templates is to represent objects that are 
replicated for purposes of fault tolerance. In a fault-tolerant 
real-time system, multiple copies of an object will execute on 
separate processors. They perform the same calculations, and 
the results are combined via voting. Using this technique, the 
system can mask a given number of faulty processors. 

E .  Support for Experimentation 

Experimental design is supported through several SWSL 
features. First, we differentiate between the SW and the mea- 
surement mechanisms used to collect data in the evaluation. 
The only function of the SW is to serve as the workload for 
the target system; it does not provide any mechanisms for 
measuring performance. In this way, the SW is different from 
a benchmark program, which not only exercises the system 
but also measures the performance of the system while it is 
being exercised. The SW is designed to work harmoniously 
with performance evaluation mechanisms. Therefore, the user 
is free to choose any appropriate measurement mechanism. 
For example, if a software monitor that must be executed as 
a user task is being used, the monitor can be specified as the 
function for a transformation. The monitor will be compiled 
into the SW and function normally on the target system. 

Second, the typical experiment using the SW consists of a 
number of runs, each of which is composed of the following 
steps. The SW code is generated and compiled from the 
specification, the executable code is downloaded to the target 
computer, the SW is executed, measurements are made, and 
data are collected. Most such experiments will be aimed 
at measuring the performance of the system as a specific 
workload parameter (or set of parameters) is varied. Under 
the above scenario, each run of the experiment would involve 
repeating the set of steps listed above for each new value 
of the parameter(s). To reduce the time required to perform 
such experiments, SWSL supports a multiple-run facility. For 
each parameter of the SW, the user may specify a list of 
values. When the SW is first invoked, the first value provided 
for each parameter is used. Once the run is completed, the 
SW pauses to allow time for measurement mechanisms to 
be reset and initialized for the next run. To begin the next 
run, it reinitializes and executes again. This time it uses the 
nexr value in the list for each parameter. The reinitialization 
between runs is necessary to ensure statistical independence of 
values measured in consecutive runs. The only state preserved 
between runs is the run count. This facility reduces the time- 
consuming compilation and downloading processes to a single 
compilation and download for a series of runs. 

ydrophon 
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Fig. 2. Hardware architecture of passive sonar system. 

Specifying the parameters for all runs at compile time is 
preferred for use in real-time systems. Changing parameters at 
run-time requires the presence of an agent that can interpret 
user commands and make the appropriate changes to the 
system and application data structures on the target machine. 
The interference caused by the agent would adversely affect 
the timing characteristics of the executing SW. In addition, the 
agent would have to be custom-developed for each different 
target architecture, because it would have to make use of the 
communication and system functions that are peculiar to each. 
This added effort reduces the ease with which the SW can be 
ported to and used on a new system. 

SWSL has additional mechanisms to support experimen- 
tation that have been absent in previous SW’s: reproducible 
experiments, independence of events within a given experi- 
ment, and statistically independent experiments. As described 
above, the SW reinitializes the experiment between runs. In 
addition, it simulates data-dependent activities stochastically. 
Each such activity makes use of a separate random number 
generator stream. This technique allows independent objects 
to exhibit reproducible, independent behavior. This feature 
is especially important when evaluating multiprocessor sys- 
tems, where nondeterministic behavior is common. Sharing 
a random number stream would cause correlation between 
actions that would be irreproducible in a nondeterministic 
environment. 

IV. AN EXAMPLE SW SPECIFICATION 

We present the structure of SWSL in the context of an exam- 
ple. The example system is the submarine passive sonar system 
developed at IBM [23]. We have followed the specification in 
[23] as closely as possible. In places where the specification 
was vague or incomplete, we made assumptions and fabricated 
details based on the informal descriptions in the specification. 
We do not present the entire specification, but instead use 
components from the system to demonstrate the features of 
SWSL. 

The passive sonar system assumes a hardware architecture 
as shown in Fig. 2. The hardware consists of three processors 
connected via a local area network. The peripheral hardware 
components (console, hydrophones, and so forth) are each 
connected to specific processors, and interaction with those 
components is through agents on those processors. The com- 
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Fig. 3 .  Passive sonar specification 

munication and processing loads are distributed among the 
processors as shown in Fig. 3 .  The workload is divided into 
eight subsystems: Position Update, Timing Update, Signal 
Acquisition, Tracker Loop, Analysis Request, Detection Dis- 
play Cursor, Track Display Cursor, and Audio Steering. Each 
subsystem consists of a number of communicating tasks. 

The SW specification is apportioned among three differ- 
ent input files. The three files specify the task graph, the 
task functions, and the experimental parameters, respectively. 
Although each file has its own particular syntax, there are 
some constructs that are common to all the files. The SWSL 
files are divided into sections that contain common language 
features (declarations of locally and extemally defined objects 
and constants) and sections that contain the specification of 
the SW. SWSL supports simple arithmetic expressions where 
operands are scalars, constants, or distributions. Distributions 
are used in expressions to indicate that the value is to be 
generated at run-time from a random number generator with 
the specified distribution and parameters. A library of random 
number generators with various distributions is provided with 
SWSL. 

A. Graph File 

To demonstrate the details of the graph file, we specify only 
the Track Display Cursor subsystem, which is shown in Fig. 
4. We concentrate on this single subsystem for the sake of 
brevity. The graph file defines the transformations, stores, and 
terminators. along with the 4, I ,  0, p ,  and 7ri parameters for 
each objects. These parameters are discussed in the following 
sections. 

The complete graph file for the Track Display Cursor 
subsystem is as follows. 

GRAPH 
EXTERNS 
FUNC estimate-tracks-f; 
FUNC update-cursor-tr-f; 
FUNC forward-tracks-f; 
PROC processor2; 
PROC processorl; 
PROC processor3; 
CONSTANTS 
/* Sonar parameters */ 
Nt = 5: / * Number of track beams * / 
Na = 6; / * Number of audio beams * / 
Nd = 50; / *Number of detection beams * / 
Nc: = 5 :  / Y Number of analysis beams * / 
BF = 4/ * Beamformer rate * / 
track-selects capacity = 3; 
track-size = 16 * Nt; 
OBJECTS 
TERM console 1; 
TRANS update-cursor-tr; 
STORE track-selects; 
TRANS estimate-tracks; 
STORE tracks; 
TERM beam-form-snk; 
TRANS forward-tracks; 
TERM cic; 
DEFINITIONS 
/ * TERM * / consolel[ 

OUTPUT = update-cursor-tr : discrete; 
PROCESSOR = processor2; 
TYPE = source; 
ELEMENT-SIZE = 48: 
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Fig. 4. Passive sonar specification: Track display cursor subsystem. 

RATE = 100; 
START-TIME = I ;  

/ * TRANS * / update-cursor-tr[ 
I; 

FUNCTION = updaterursor-tr-f(); 
INPUT = console1 : discrete; 
OUTPUT = trackselects : discrete; 
PROCESSOR = processor2; 
PERIOD = 100,75, 5 0  
DEADLINE = 100; 
START-TIME = 1; 
ACTIVE = true; 
PRIORITY = 3; 

I;  
/ * STORE * / track-selects[ 

INPUT = update-cursor-tr : discrete; 
OUTPUT = estimate-tracks : discrete; 
PROCESSOR = processorl; 
TYPE = depletable; 
ELEMENT-SIZE = 24; 
CAPACITY = track-selects-capacity; 
POLICY = fifo; 

I; 
/ * TRANS * / estimate-tracks[ 

FUNCTION = estimate-tracks-f() 
INPUT = trackselects : discrete; 
OUTPUT = tracks : discrete; 
OUTPUT = beam-form-snk : discrete; 
PROCESSOR = processorl; 
PERIOD = 250; 
DEADLINE = 250; 
START-TIME = 1;  

updaie cunor \ 

ACTIVE = true; 
PRIORITY = 12: 

I; 
/ * STORE * / tracks[ 

INPUT = estimate-tracks : discrete; 
OUTPUT = forward-tracks : discrete; 
PROCESSOR = processor3; 
TYPE = depletable; 
ELEMENT-SIZE = track-size; 
CAPACITY = 1; 
POLICY = fifo; 

I; 
/ * TERM * / beam-form-snk 

INPUT = estimate-tracks : discrete; 
PROCESSOR = processorl; 
TYPE = sink; 
ELEMENT-SIZE = track-size; 
RATE = 100; 
START-TIME = 1; 

I; 
/ * TRANS * / forward-tracks[ 

FUNCTIONS = forward-tracks-f(); 
INPUT = tracks : discrete; 
OUTPUT = cic : discrete; 
PROCESSOR = processor3; 
PEP,IOD = 250; 
DEADLINE = 250; 
START-TIME = 1; 
ACTIVE = true; 
PRIORITY = 10; 

I: 
/ * TERM * / cic[ 

. ;_. 
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INPUT = forward-tracks : discrete; 
PROCESSOR = processor3; 
TYPE = sink; 
ELEMENT-SIZE = track-size; 
RATE = 250; 
START-TIME = 1; 

I; 
The 4 Function: The 4 functions for transformations are 

declared using the F U N C T I O N  parameter keyword followed 
by the list of names of the functions to be executed in each 
run. These functions are defined in the functions, file, which 
is discussed in Section IV-B. 

The I ,  0, and p Parameters: Specifications of I ,  0, and p 
for each object use the parameters INPUT, OUTPUT, and 
PROCESSOR, respectively. To form a data flow graph, the 
objects in the workload must be connected by flows. A flow is 
specified implicitly using the OUTPUT parameter of the source 
object and the INPUT parameter of the destination object. 
Each INPUT, OUTPUT pair denotes a separate connection 
between the objects. 

In software specification languages such as ESML [ 3 ] ,  Ward 
and Mellor’s transformation schema [33] ,  and PSDL 1191, all 
transformations must be connected by flows to other objects. 
A transformation that does not receive data from other objects 
is useless; it cannot do useful work. In contrast, in the SW, 
no transformation does useful work. All transformations only 
behave like they are doing something useful; they do not 
operate on real data. Therefore, we do not require that a 
transformation be connected to other objects. In some cases, 
the user may want to define a task that executes independently 
of other tasks. An example of this case is when specifying 
SW’s to study scheduling algorithms without considering task 
interactions. The workload would consist of a number of 
independent tasks whose only workload characteristic was 
the amount of CPU time required. For this case, we do 
not require that the I N P U T  and OUTPUT parameters be 
defined. However, in most cases, the user will be interested 
in the effects of task interactions on system performance. 
Hence, most transformations will be connected to others 
and will have INPUT and OUTPUT parameters assigned to 
them. 

The two parameters for flows are flow type and the size 
of the data elements that pass along the flow. Because of the 
model construction rules (see Section 11-B), we can always 
determine the element size for a data flow from the compo- 
nents that it is connecting. A data flow must be attached at 
one end to either a store or a terminator, each of which has an 
ELEMENT-SIZE parameter. Hence, the flow can inherit this 
parameter from the object. Event flows carry no data, and thus 
require no size specification. Because the data element size can 
always be determined for a flow, we need to be able to specify 
only the type of the flow in the SWSL specification. Since 
flows have only a single parameter, we include the flow type 
in the specification of the INPUT and OUTPUT parameters for 
objects. The flow types are DISCRETE, CONTINUOUS, and 
EVENT, corresponding to intermittent data flows, continuous 
data flows, and event flows, respectively. 

The Parameters: The xi parameters are specified in the 
body of each object definition. As shown in the specification of 
transformation update-cursor-t r, the P E R I O D  parameter 
has values of 100, 75, and 50. The zth value in the list is 
the value that the parameter is to take on for the ith run. 
If fewer values are listed than the number of runs, then the 
last value in the list will be used for its corresponding run 
and all subsequent runs. This feature is used to compactly 
specify parameter values that remain constant across runs. For 
example, the period of transformation e s t imat e -t racks 
is 250 ms during each run. Therefore, the value needs to 
be specified only once, and that value will be used for all 
runs. Currently, all time values in SWSL are measured in 
milliseconds. Therefore, no indication of time unit is necessary 
in the specification. 

The 7ri parameters for the transformations, stores, and 
terminators are shown in plain (nonbold) text in the SWSL 
listing. Transformation parameters indicate the transforma- 
tion’s scheduling requirements. The store parameters specify 
the type of data in the store and the access methods to 
be used. Stores represent all information repositories and 
data channels. Thus, the parameters have been selected such 
that they are orthogonal, and combinations of values may 
be used to represent different storage objects. Similarly, for 
terminators, we have chosen parameters to allow a range of 
terminator types. 

The selection of ~i parameters is not fixed. We selected 
these parameters to specify the system-dependent characteris- 
tics of real-time workloads on HARTS. If required, parameters 
may be added to the language by updating the list of recog- 
nized parameters in the SWG source code. 

Object Templates: An object template is specified by using 
the PROCESSOR parameter in conjunction with the INPUT 
and OUTPUT parameters. By providing multiple values for 
the PROCESSOR parameter, the user specifies that an instance 
of an object is to be assigned to each of a number of 
processors. Each instance of the object will be assigned 
the same 7r; parameter values. The INPUT and OUTPUT 
parameters will differ, depending on the objects to which 
the copies of the object are connected. The connectivity of 
these objects is defined by using a special syntax for the 
INPUT and OUTPUT parameters. We present the syntax for 
object templates by considering the Timing Update subsystem. 
The Timing Update subsystem is shown in Fig. 5. In this 
subsystem, bui Id- t  imemsg sends identical messages to 
the time stores on each of the other two processors. Identical 
adjust  -t i m e  tasks read these messages and update their 
respective local clocks. A graph file containing only the 
specification of this subsystem is as follows. 

GRAPH 
EXTERNS 
FUNC adjust-clock-f; 
FUNC build-time-msg-f; 
PROC processor2; 
PROC processorl; 
PROC processof; 
CONSTANTS 
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Fig. 5. Passive sonar specification: Timing Update subsystem. 

clockxate = 125; 
OBJECTS 
TERM master-clock; 
TRANS build-time-msg; 
STORE time; 
TRANS adjust-clock; 
TERM slave-clock; 
DEFINITIONS 
/* TERM */ master-clock[ 

OUTPUT = build-time-msg: discrete; 
TYPE = source; 
ELEMENT-SIZE = 1; 
PROCESSOR = processor3; 
RATE = clockxate; 
START-TIME = 1; 

I ;  
/ * TRANS * / build-timemsg[ 

SPORADIC = 0; 
DEADLINE = clockxate; 
FUNCTION = build-timemsg-f(); 
START-TIME = 1; 
INPUT = master-clock : discrete; 
OUTPUT = time.processorl.0 : discrete; 
OUTPUT = time.processor2.0: discrete; 
PROCESSOR = processor3; 
ACTIVE = true; 
PRIORITY = 12; 

I ;  
/ * STORE * / time[ 

TYPE = nondepletable; 
ELEMENT-SIZE = 8; 
INPUT = build-time-msg : discrete; 

OUTPUT = adjust-clock : continuous; 
PROCESSOR = processorl, processor2; 
CAPACITY = 1; 
POLICY = fifo; 

I;  
/ * TRANS * / adjust-clock[ 

PERIOD = clocklate; 
DEADLINE = clocklate; 
FUNCTION = adjust-clockf(); 
START-TIME = 1; 
INPUT = time : continuous; 
OUTPUT = slave-clock.processor1 : discrete I 

PROCESOR = processorl, processor2; 
ACTIVE = true; 
PRIORITY = 9; 

slave-clock.processor2 : discrete; 

I;  
/ * TERM * / slave-clock[ 

TYPE = sink; 
ELEMENT-SIZE = 1; 
INPUT = adjust-clock : discrete; 
PROCESSOR = processorl, processor2; 
RATE = clockxate; 
START-TIME = 1; 

I; 
In the following discussion, the object for which the inputs 

and outputs are being defined is referred to as the current 
object. The objects to which it is connected by flows from the 
inputs and outputs are referred to as the connected objects. 

Transformation inputs and outputs are mapped one-to-one 
and in-order to function inputs and outputs. (See the discussion 
of the functions file below.) Therefore, the order in which 
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inputs and outputs are specified is important. Furthermore, 
because SWSL supports object templates, the connected object 
may be one of many instances of an object. Hence, to 
accurately specify the connected object for an OUTPUT, for 
example, requires four pieces of information: the name of the 
connected object, the processor on which it is located, which 
I N P U T  of the connected object defines the other end of this 
flow, and the flow type. 

Since the current object specification may also be a template, 
the specification of inputs and outputs is somewhat complex. 
However, simple, compact specifications are possible in most 
cases. The SWG makes some assumptions about how objects 
will be connected. It follows a set of rules based on these 
assumptions to fill in missing information in the simplified 
specification. At the minimum, the name of the connected 
object and the flow type are required. The other fields may 
be omitted if their values can be inferred by the SWG. The 
Timing Update subsystem example demonstrates both the full 
form of the syntax and the compact form. The specifica- 
tion of build-timemsg shows the complete form of the 
specification. It completely specifies that the flows connect to 
the copies of store time that are located on processor1 
and processor2, respectively, and that the flow is the 
first input (using zero-based counting) of time . time 
and adjust-clock use compact forms. The specification 
indicates that time is to be connected to the corresponding 
copy of adjust-clock. The objects are paired based on the 
order of the processors in the PROCESSOR parameter list. 

In this case, objects that reside on the same processor 
are paired. The specification of the connection between ad- 
just-clock and slave-clock demonstrates the full form 
of the syntax for connecting objects from templates. The 
vertical bars ( 1 )  separate specifications for the same INPUT or 
OUTPUT on different copies of the object. These specifications 
correspond positionwise to processor specifications in the 
PROCESSOR parameter list. 

3. Functions File 

example of a function file follows. 

FUNCTIONS 
EXTERNS 
OPER kinst; 
OPER sread: 
OPER swrite; 
CONSTANTS 
CODE 
estimate-tracks-f{ 

This file defines the 4 functions for the transformations. An 

INPUT = selects: discrete; 
OUTPUT = tracks: discrete; 
OUTPUT = beam form: discrete; 
BEGIN 
LOOP track-selects-capacity 

SWITCH 
I 

62 : { 
{ 

sread(selects, NOWAIT, 0); 
kinst( 10 * Nt/BF); 
swrite(tracks. WAIT, 3 , i O ) ;  
swrite (beam-form, WAIT, 3, 10); 

remaining: { 
1; 

kinst(5 * Nt/BF); 
swrite(tracks, WAIT, 3, IO); 

1; 
}; 
END; 

> r  
This example shows the definition of the 

estimate-t racks-f function. The other functions 
would have to be provided in order for this to be a complete 
specification. The first part of the specification is a listing 
of the input and output flows of the function. These flows 
are given symbolic names that are used within the function. 
At compile time, the symbolic name is mapped to the 
corresponding INPUT or OUTPUT of the transformation 
that executes the function. In the example, s e l e c t s  
will be mapped to the t r ack - se l ec t s  input of the 
est imate-tracks transformation. The code that is 
executed by the function is defined between the BEGIN and 
END keywords. During each periodic or sporadic invocation 
of the transformation, the code between the B E G I N  and END 
keywords is executed exactly once. 

The operations and control constructs from the workload 
model have been adapted for specifying SW’s. Computation 
and communication are implemented with synthetic opera- 
tions. Synthetic operations exercise specific resources in a 
predefined manner. The use of synthetic operations has been 
described in (21, [30], [32]. The synthetic operations are 
located in a library of operations. Synthetic operations are im- 
plemented as C functions. These functions are parameterized 
so the user can control their behavior. By defining them as 
functions, we hide the implementation details. Hence, the SW 
function specifications are made target system-independent. 
All system dependencies are contained in the implementation 
of the operations. 

We have collected a number of synthetic operations for the 
library. Some of these were taken from the publicly available 
Bell Labs Benchmark suite and the dhrystone benchmark. 
They perform functions such as Ackerman’s function, floating- 
point arithmetic, and word counts that exercise specific system 
functionalities. The operations are parameterized to control the 
number of iterations of each function. Additional operations 
may easily be added to the library. 

In this example, k ins t  ( ) ,  sread ( ) ,  and swr i te  ( )  are 
synthetic operations. A call to k i n s t  ( n )  executes n x 1000 
integer operations. This synthetic operation is used to produce 
the desired computation load, which is specified in Kiloin- 
structions in [23]. The sread and swr i te  operations are 
particularly important. They are defined to be generic input and 
output operations. The primary parameter for these functions 
is the symbolic name of the input or output. The user need 
not specify any information about the object with which the 
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function is communicating via the operation. The operations 
take information generated by the SWG for each input and 
output of the function and determine the appropriate system 
call(s) on the target system to use to perform the appropriate 
reading or writing operation. Therefore, they may be used in 
any function, regardless of the transformation that executes 
it and regardless of the objects to which the transformation is 
connected. These operations increase flexibility by introducing 
the capability ‘for plug-in functions. During normal use of 
SWSL and the SWG, it is anticipated that the user will code 
a number of functions with different behaviors representing 
different types of tasks. These functions will be “plugged in” 
to transformations as needed for the particular application. 
Thus, SW’s can be quickly constructed from components with 
known characteristics. 

Control flow within a function is achieved by using sequen- 
tial execution and the LOOP and SWITCH constructs. Both of 
these constructs are demonstated in the example Functions file. 
LOOP is an adaptation of the while-do loop in the workload 
model. It is a single-entry, single-exit looping construct. The 
parameter after the LOOP keyword specifies the loop count. 
The LOOP may be made to execute a constant number of times 
for each run, or it may execute a random number of times by 
specifying a distribution function as the loop count. By looping 
a random number of times, the loop simulates the behavior of 
data-dependent loops in the workload being modeled. 

Branching is accomplished using the SWITCH construct. It 
is a generalization of the if-then-else construct in the 
workload model. It is derived from the SWITCH operation in 
[30]. In the SWITCH statement, the user specifies alternate 
blocks of code to be executed. Probability values are assigned 
to each block. Each time the SWITCH is executed, one block 
is selected at random based on the probability value assigned 
to the block. By branching probabilistically, it simulates the 
behavior of real applications that branch based on data values. 
The example specifies that 62%) of the time the first block is 
to be executed, and that for the remaining percentage of the 
time, the second block is to be executed. If the percentage do 
not add to 100% and there is no remaining case, then the 
remaining percentage of the time, no operations are performed. 

C code may be inserted at any point in the CODE section 
using a verbatim/endverbatim block. This C code is 
copied directly to the C code being generated for the function 
by the SWG. An SWSL function may contain any combination 
of synthetic operations and user code. 

C .  Experiment File 

The graph and functions files define the structure of the 
workload. The experiment file defines the behavior of the SW 
in the context of an evaluation experiment. Suppose that we 
are conducting an experiment to measure the effect on system 
performance causes by the different PERIOD values defined 
for transformation update-cur sor-t r. We would use the 
following experiment file. 

EXPERIMENT 
CONSTANTS 
Runs = 3: 

PARAMETERS 
processor 1 [ 

TIMING = true; 
TIMELIMIT = 2000; 
SEED = 98752342; 
SEED-RESET = TRUE; 

I ;  
DEFAULT [ 

TIMING = true; 
TIMELIMIT = 2000; 
SEED = 12348712; 
SEED-RESET = TRUE; 

I ;  
We want to execute three runs, so we set the value of the 

Runs constant to 3. This parameter applies to all processors in 
the experiment. The other experiment parameters are defined 
on a perprocessor basis, to account for differences between 
processors. The first set of parameters apply to proces sorl 
only. The DEFAULT entry defines the parameters for all 
processors for which there is no explicit entry. In this example, 
we are specifying that processor1 is to use a different seed 
for its random number generator than is used by the other 
processors. 

Two of the experiment parameters indicate whether the ex- 
periment is to be timed and define the duration of the execution 
interval. The other parameters provide control of the statistical 
properties of the stochastic behavior of the SW. They define 
the seeds of the random number generators. Each value of the 
SEED parameter defines a separate random number generator 
with the specified initial seed value. Each distribution function 
in the graph and function files can calculate its values from a 
separate stream. In this way, consecutive values generated by 
the distribution will be independent. The result is statistically 
independent events in the SW’s execution. The SEED-RESET 
parameter may be used to reset the seed values at the beginning 
of each run. In this way, the behavior of individual streams 
may be reproduced. As with the 7rL parameters in the graph 
file, a list of values for the experiment parameters indicates 
the values to be used for each run. 

V. SYNTHETIC WORKLOAD GENERATION 

We have designed and implemented the SWG that compiles 
SWSL. The SWG completely automates the generation of 
SW’s. The synthetic workload generation process is shown in 
Fig. 6. The SWG compiles the SWSL graph file to produce an 
internal representation of the task graph. It checks the graph for 
compliance to the connection rules. It then processes the inputs 
and outputs of the components to expand any specifications 
that use the simplified specification notation. Next it compiles 
the experiment file. Then it compiles the functions file and 
produces C language code for each function. While producing 
these files, it uses information from the task graph to expand 
the input and output labels in the functions. Then it generates 
files containing tables of the parameter values for the objects 
on each processor. The files for the SW on each processor 
are then compiled and linked to create an executable image. 
Compilation of the SW files is controlled by the SWG, which 
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Fig. 6. Synthetic workload generation. 

uses the processor assignment information from the graph file 
to direct the make utility. 

VI. SUMMARY AND PkOSPECTS FOR FUTURE WORK 

SWSL is a language for specifying synthetic workloads for 
distributed real-time systems. It is designed to be easy to use 
while providing compact and flexible specifications. It is based 
on a workload model that makes it compatible with commonly 
used software specification notations. Hence, it is capable of 
accurately modeling real workloads. The language includes 
facilities for experiment support such as support for multiple 
runs, replication of objects, multiple random number generator 
streams, and modeling of stochastic behavior. 

The SWG has been developed and implemented. It supports 
all features described in this paper. It has been used to produce 
SW’s for the initial testing and evaluation of H A R T S .  In 
another study, a robot control system was modeled. An SWSL 
specification was created based on this model, and an SW was 
generated for the robot control computer. Based on statistical 

comparison, the SW was shown to be representative of the 
actual control software. The SWG was also used to evaluate 
the performance of the communication subsystem of HARTS 
under different workloads [ 141. 

Enhancements to the language are being considered. One is 
to simplify the naming conventions for objects. In particular, 
we would devise a naming scheme that would allow multiple 
instantiations of an object from a template to reside on 
the same processor. This feature would reduce the need for 
redundant specifications in some instances. We also need to 
expand the number of synthetic operations that are available 
to the user. 
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