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Abstract 

This paper focuses on bridging the gap between theory 
and practice in the management of host CPU and link re- 
sources for real-time communication. Using our implemen- 
tation of real-time channels, a paradigm for real-time com- 
munication in packet-switched networks, we illustrate the 
tradeoff between resource capacity and channel admissi- 
bility, which determines the number and type of real-time 
channels that can be accepted for  service and the perfor- 
mance delivered to best-effort trajjic. We demonstrate that 
this tradeoff is affected signijicantly by the choice of imple- 
mentation paradigms and the grain at which CPU and link 
resources are multiplexed amongst active channels. To ac- 
count f o r  this effect, we extend the admission controlproce- 
dure for real-time channels originally proposed using ideal- 
ized resource models. Our results show that practical con- 
siderations signijicantly reduce channel admissibility com- 
pared to idealized resource models. Furthel; the optimum 
choice of multiplexing grain depends on several factors such 
as resource preemption overheads, the relationship between 
CPU and link bandwidth, and the interaction between link 
bandwidth allocation and CPU bandwidth allocation. 

I. Introduction 

The advent of high-speed networks has generated an in- 
creasing demand for a new class of distributed applica- 
tions that require certain quality-of-service (QoS) guaran- 
tees from the underlying network. QoS guarantees may be 
specified in terms of several parameters such as end-to-end 
delay, delay jitter, and bandwidth delivered on each active 
connection; additional requirements regarding packet loss 
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and in-order delivery can also be specified. Examples of 
such applications include distributed multimedia applica- 
tions (e.g., video conferencing, video-on-demand) and dis- 
tributed real-time command/controI systems. To support 
these applications, both the communication subsystem in 
end hosts and the network must be designed to provide QoS 
guarantees on individual connections. 

Given appropriate support within the network, host com- 
munication resources must be managed in a QoS-sensitive 
fashion, i.e., according to the relative importance of the con- 
nections requesting service. For a sending host,' communi- 
cation resources include CPU bandwidth for protocol pro- 
cessing and link bandwidth for packet transmissions, as- 
suming sufficient availability of buffer space. QoS-sensitive 
management of communication resources necessitates ad- 
mission control and resource scheduling policies to ensure 
that each connection obtains at least its required QoS. These 
resource management policies are typically formulated us- 
ing idealized models of the resources being managed. For 
example, it may be assumed that a given resource is im- 
mediately preemptible or the cost of preemption is negligi- 
ble. More importantly, it may be assumed that a required 
set of resources can be accessed, and hence allocated, inde- 
pendent of one another. However, the above assumptions 
can be violated when implementing resource management 
policies, since the performance characteristics of the hard- 
ware and software components employed can deviate sig- 
nificantly from those of the idealized resource models. 

In this paper, we focus on bridging the gap between the- 
ory and practice in the management of host CPU and link 
resources for real-time communication. For this purpose we 
utilize real-time channels, a paradigm for real-time commu- 
nication in packet-switched networks 1121, similar to other 
proposals for guaranteed-QoS connections [2].  Using our 
implementation of real-time channels [ 161, we illustrate the 
tradeoff between useful resource capacity, which is the pro- 
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portion of the raw resource capacity that can be utilized ef- 
fectively, and channel admissibility. In the context of real- 
time channels, useful resource capacity determines the num- 
ber and type of real-time channels accepted for service and 
the performance delivered to best-effort traffic. 

A channel requires a portion of the available CPU band- 
width to process each generated message and packetize it. 
Similarly, it requires a portion of the available link band- 
width to transmit each packet on the link. Since these two 
resources typically differ in their performance characteris- 
tics, they present different tradeoffs for resource manage- 
ment. We demonstrate that these tradeoffs are affected sig- 
nificantly by the choice of implementation paradigms and 
the (temporal) grain at which CPU and link resources are 
multiplexed amongst active channels. To account for this 
effect, we extend the admission control procedure for real- 
time channels originally proposed using idealized resource 
models. Our results show that, compared to idealized re- 
source models, practical considerations significantly reduce 
channel admissibility. Further, the optimum choice of the 
multiplexing grain depends on several factors such as re- 
source preemption overheads, the relationship between CPU 
and link bandwidth, and the interaction between CPU band- 
width allocation and link bandwidth allocation. 

The rest of the paper is organized as follows. Section 2 
provides a brief description of guaranteed-QoS communica- 
tion using real-time channels. Section 3 discusses the issues 
involved in managing CPU and link bandwidth for QoS- 
sensitive protocol processing and packet transmissions, re- 
spectively. The modifications required in the admission con- 
trol procedure to manage CPU and link bandwidth simul- 
taneously are presented in Section 4. Section 5 studies the 
tradeoff between useful resource capacity and channel ad- 
missibility. Our work is contrasted with related work in Sec- 
tion 6. Finally, Section 7 concludes the paper. 

2. Real-Time Channels 

A real-time channel is a simplex, fixed-route, virtual con- 
nection between a source and destination host, with se- 
quenced messages and associated performance guarantees 
on message delivery. The data flow on real-time channels is 
unidirectional, from source to sink via intermediate nodes, 
with successive messages delivered in the order they were 
generated. Corrupted, delayed, or lost data is of little value; 
with a continuous flow of time-sensitive data, there is not 
sufficient time to recover from errors. Data transfer on real- 
time channels has unreliable-datagram semantics, i.e., oc- 
curs without acknowledgements and retransmissions. 

2.1. Traffic Generation and QoS 

Traffic generation on real-time channels is based on a lin- 
ear boundedarrivalprocess [7, 11 characterized by three pa- 
rameters: maximum message size (S,,, bytes), maximum 
message rate (R,,, messagedsecond), and maximum burst 
size (B,,, messages). The notion of logical arrival time is 

used to enforce a minimum separation Imin between mes- 
sages on the same real-time channel. This ensures that a 
channel does not use more resources than it reserved at the 
expense of other channels’ QoS guarantees. The QoS on a 
real-time channel is specified as the desired deterministic, 
worst-case bound on the end-to-end delay experienced by a 
message. See [ 121 for more details. 

2.2. Resource Management 

As with other proposals for guaranteed-QoS communica- 
tion [2 ] ,  there are two related aspects to resource manage- 
ment for real-time channels: admission control and (run- 
time) scheduling. Admission control for real-time channels 
is provided by Algorithm D-order [12], which uses fixed- 
priority scheduling for computing the worst-case delay ex- 
perienced by a channel at a link. When a channel is to be 
established at a link, the worst-case response time for a mes- 
sage (when the message completes transmission on the link) 
on this channel is estimated based on non-preemptive fixed- 
priority scheduling of packet transmissions. The total re- 
sponse time, which is the sum of the response times over all 
the links on the route of the channel, is checked against the 
maximum permissible message delay and the channel can 
be established only if the latter is greater. Contrary to the 
approach for admission control, run-time link scheduling is 
governed by a variation of the multi-class earliest-deadline- 
first policy [12]. The overheads and effectiveness of link 
scheduling in our implementation are discussed in [16]. 

The above approach only accounts for management of 
link bandwidth at the host. As discussed in Section 3, it can- 
not be applied directly to CPU bandwidth management. 

2.3. Implementation 

We have implemented a QoS-sensitive communication sub- 
system architecture featuring real-time channels [ 161. Our 
implementation employs a communication executive de- 
rived from 2-kernel 3.1 1111 exercising complete control 
over a Motorola 68040 CPU. 
QoS-Sensitive CPU and Link Scheduling: The imple- 
mentation provides a process-per-channel model of proto- 
col processing adapted from the process-per-message model 
provided by x-kernel. In this model, a unique handler 
is associated with each channel to perform protocol pro- 
cessing for all messages generated on the channel. Chan- 
nel handlers are scheduled for execution using a multi- 
class earliest-deadline-first (EDF) scheduler layered above 
the z-kernel scheduler (which provides fixed-priority non- 
preemptive scheduling with 32 priority levels). Since all 
channel handlers execute within a single (kernel) address 
space, the preemption model employed for handler execu- 
tion is that of cooperative preemption. That is, the cur- 
rently executing handler yields the CPU to a waiting higher- 
priority handler after processing up to a certain (config- 
urable) number of packets (the preemption granularity). Be- 
sides bounding CPU access latency, this allows us to study 
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the influence of preemption granularity and overheads on 
channel admissibility. 

In order to support real-time communication, network 
adapters must provide a bounded, predictable transmission 
time for a packet of a given size. Since network adapters are 
typically best-effort in nature, their design is optimized for 
throughput and may be unsuitable for real-time communica- 
tion, even with a bounded and predictable packet transmis- 
sion time. Even when explicit support for real-time com- 
munication is provided, on-board buffer space limitations 
may necessitate staging of outgoing traffic in host memory, 
for subsequent transfer to the adapter. To support real-time 
communication on these adapters, link scheduling must be 
provided in software on the host processor. In our imple- 
mentation, packets created by channel handlers are sched- 
uled for transmission by a non-preemptive multi-class EDF 
link scheduler. See [16] for more details of the protocol 
stack and the real-time channel implementation. 
Null Network Device: In order to explore the effects of the 
relationship between CPU and link bandwidth, we have im- 
plemented a device emulator, referred to as the null device, 
that can be configured to emulate any desired packet trans- 
mission time C,. C, is the minimum time that must elapse 
between successive packet transmissions on the link. Thus, 
it suffices to ensure that successive packet transmissions can 
be invoked every C, time units apart. This can be achieved 
by emulating the behavior of a network adapter such that C, 
time units are consumed for each packet being transmitted. 

The device emulator is simply a thread that, once sig- 
nalled, tracks time by consuming CPU resources for C, time 
units before signalling completion of packet transmission. 
This emulator is implemented on a separate processor that is 
connected via a backplane system bus to the processor im- 
plementing the communication subsystem (the host proces- 
sor). Upon expiry of C, time units (completion of packet 
transmission), the emulator issues an interrupt to the host 
processor, similar to the mechanism employed in typical 
network adapters. While the emulator allows us to study a 
variety of tradeoffs, including the effects of the relationship 
between CPU and link bandwidth, it is not completely ac- 
curate since no packet data is actually transferred from host 
memory. However, this does not invalidate the trends ob- 
served and performance comparisons reported here. 

3. Managing CPU and Link Bandwidth 

As mentioned earlier, Algorithm D-order [ 121 computes 
the worst-case response time for a message. This response 
time has two components: the time spent waiting for re- 
sources and the time spent consuming resources. At the 
host, the time spent consuming resources is equal to the mes- 
sage service time, the time required to process and transmit 
all the packets constituting the message. To calculate the 
time spent waiting for resources, one must consider the pre- 
emption model used €or resource access. 

The real-time channel model presented in [ 121 accounts 
for non-preemptive packet transmissions, but assumes an 

ideal preemption model for CPU access, i.e., the CPU can be 
allocated to a waiting higher-priority handler immediately at 
no extra cost. Under this assumption, message service time 
is determined solely by the CPU processing bandwidth re- 
quired to packetize the message, and the link bandwidth re- 
quired to transmit all the packets. The time spent waiting 
for resources is calculated by accounting for resource usage 
by messages from all higher-priority channels, and the one- 
packet delay (due to non-preemptive packet transmission) in 
obtaining the link. However, as explained below, implemen- 
tation issues necessitate extensions to the model to account 
for implementation overheads and constraints. 

3.1. Implementation Issues 

Several implementation issues impact resource manage- 
ment policies. These include handler execution require- 
ments, implementation of link scheduling, and the relation- 
ship between CPU and link bandwidth. 
Handler Execution: Preemption of an executing pro- 
cesslthread comes with a significant cost due to context 
switch and cache miss penalty. Preemption effectively in- 
creases the CPU usage attributed to a channel, which in turn 
reduces the CPU processing bandwidth available for real- 
time channels; immediate preemption is thus too expensive. 
It is desirable to limit the number of times a handler is forced 
to preempt the CPU in the course of processing a message. 
At the other extreme, non-preemptive execution of handlers 
implies that the CPU can be reallocated to a waiting han- 
dler only after processing an entire message. This results 
in a coarser (temporal) grain of channel multiplexing on the 
CPU and makes admission control less effective. More im- 
portantly, admission control must consider the largest pos- 
sible message size across all real-time and best-effort chan- 
nels; maximum message size for best-effort traffic may not 
even be known a priori. An intermediate solution is to pre- 
empt the CPU only at specific preemption points, if needed. 
Since message processing involves packetization, the CPU 
can be preempted after processing every packet. The impor- 
tant parameter here is the number of packets processed be- 
tween preemption points, which determines the (temporal) 
grain at which the CPU can be multiplexed between chan- 
nels. Admission control must account for the extra delay 
in obtaining the CPU which may be currently allocated to 
a lower-priority handler. 

In the absence of per-byte copying overheads, the total 
CPU time required to process a message is directly propor- 
tional to the number of packets constituting the message. 
Clearly, assuming that the communication subsystem does 
not copy message data unnecessarily (true for our imple- 
mentation), the CPU processing time will be minimum if 
a single packet constituted the entire message, i.e., if the 
packet size was the same as the message size. However, 
as explained below, the total time required to transmit a 
packet on the link is determined primarily by the size of 
the packet, although initiation of transmission involves non- 
zero per-packet overhead. If the set of channels requesting 
service have identical traffic specifications, and hence the 
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same maximum message size, then single-packet messages 
maximize channel admissibility. However, under a hetero- 
geneous mix of real-time channels (with large and small 
messages), a large packet size would significantly reduce the 
admissibility for channels with messages smaller than the 
chosen packet size. Packet size, therefore, also plays a sig- 
nificant role in determining channel admissibility. 
Implementation of Link Scheduling: An assumption of- 
ten made when formulating resource management policies 
for communication is that CPU and link bandwidth can 
be independently allocated to a channel. This assumption 
may get violated in an implementation depending on the 
paradigm used to implement link scheduling. We consider 
three options for implementing link scheduling in software: 

0 1  

0 2  

0 3  

Packets are scheduled for transmission either in the con- 
text of the currently executing channel handler (via a 
function call) or in interrupt context after each packet 
transmission. 
Packets are scheduled for transmission by a dedicated 
process that executes at the highest priority and is sig- 
nalled via semaphore operations. 
Packets are scheduled for transmission either in the con- 
text of the currently executing channel handler or in 
the context of a new thread that is fired up after every 
packet transmission. 

0 1  and 0 2  differ significantly in the implications for CPU 
and link bandwidth allocation, since with 0 2  the link sched- 
uler must also be scheduled for execution on the CPU. Since 
0 3  presents tradeoffs similar to 02, we focus on 0 1  and 0 2  
in the discussion below. 

Selecting a packet for transmission incurs some overhead 
in addition to that of initiating transmission on the link. Ad- 
ditional overhead may be involved if the link scheduler must 
transfer packets between link packet queues [16]. In 01, 
the scheduler is frequently invoked from the interrupt ser- 
vice routine (ISR) announcing completion of packet trans- 
mission. Since the scheduling overhead involved can be 
substantial in the worst case, it is undesirable to incur this 
penalty in the ISR, since this prolongs the duration for which 
network interrupts are disabled. If the host is also receiving 
data from the network, there is now a greater likelihood of 
losing incoming data. 

02 ,  on the other hand, does not suffer from this problem; 
since scheduler processing is scheduled for execution, it is 
performed outside thc ISR. In addition to keeping the ISR 
short, this paradigm also has some software structuring ben- 
efits such as a relatively cleaner implementation. However, 
because the link scheduler is itself scheduled for execution 
on the CPU, there i s  now an additional overhead of a con- 
text switch and the accompanying (instruction) cache miss 
penalty for each packet transmission. More importantly, al- 
location of CPU and link bandwidth is closely coupled in 
02.  This coupling can potentially lower the utilization of the 
link and, as demonstrated in Section 5, significantly reduces 
channel admissibility while making it unpredictable. 
Relationship Between CPU and Link Ba~dw~dth: A con- 
servative estimate of message service time can be obtained 

by adding the total CPU processing time and the total link 
transmission time. However, this ignores the overlap be- 
tween CPU processing and link transmission of packets con- 
stituting the same message. The extent of this overlap de- 
pends largely on the relationship between the CPU and link 
bandwidth, i.e., on the relative speed of the two. To improve 
channel admissibility, message service time must be calcu- 
lated to account for this overlap. The extent of the over- 
lap also depends on the implementation option used for link 
scheduling. While 01 allows link utilization to be kept rela- 
tively high, 0 2  can cause the link to idle even when there are 
packets available for transmission. From another perspec- 
tive, 0 2  forces link scheduling to be non-work-conserving 
while 01 allows for work-conserving packet transmissions. 

While admission control can utilize the overlap between 
CPU processing and link transmission of packets belonging 
to a message, it cannot do so for the potential overlap be- 
tween CPU processing and link transmission of packets be- 
longing to diferent messages. Since message arrivals serve 
as system renewal points, no a priori assumptions can be 
made about the presence of messages in the system. 
Determination of L,: As mentioned earlier, the packet 
transmission time L,(s) for a packet of size s measures the 
delay between initiation and completion of packet transmis- 
sion on the network adapter. It determines the minimum 
time between successive packet transmission invocations by 
the link scheduler. For a typical network adapter, this de- 
lay depends primarily on two aspects, namely, the overhead 
of initiating transmission and the time to transfer the packet 
to the adapter and on the link. The latter is a function of 
the packet size and the data transfer bandwidth available be- 
tween the host memory and the adapter. If C, is the over- 
head to initiate transmission on an adapter feeding a link of 
bandwidth B, byteshecond, then the transmission time of a 
packet (of size s) can be approximated as 

Lx(s)  = c, + S 

min(Br, B,) ’ 
where B, is the data transfer bandwidth available tolfrom 
host memory. B, is determined by a variety of factors such 
as the mode (direct memory access (DMA) or programmed 
IO) and efficiency of data transfer and the degree to which 
the adapter pipelines packet transmissions. C, includes the 
cost of setting up DMA transfer operations, if any. Note 
that with non-preemptive packet transmissions on the link, 
L,(S) is also the delay experienced by a waiting highest- 
priority packet to commence transmission, where S is the 
maximum packet size. 

To use this model of packet transmission time, C, and B, 
must be determined for a given network adapter and host 
architecture. This involves experimentally determining the 
latency-throughput characteristics of the adapter. Since we 
want to explore the effects of the relationship between CPU 
and link bandwidth, we select min(Br, U,) to conform to a 
desired link (and data transfer) speed, measured in nanosec- 
onds (ns)  required to transfer one byte. On the null de- 
vice, C, is determined by the granularity of time-keeping 
and overhead of communication with the host processor; the 
measured value of C, is M 40 ps. 
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Figure 1. Throughput as a function of packets between preemptions, packet size and link speed 

3.2. Performance Implications 

To illustrate the performance implications of some of the 
above-mentioned issues, we ran several experiments us- 
ing our real-time channel implementation to measure sys- 
tem throughput (kilobytes(KB)/second) as a function of pa- 
rameters such as the number of packets processed between 
preemption points, the packet size, and link speed. For 
a given CPU processing power, varying the speed of the 
link allows us to explore the relationship between CPU 
and link bandwidth. In the experiments reported here, four 
best-effort channels were created and messages generated 
on these channels continuously; each experimental run in- 
volved transmission of over 25,000 packets. Multiple runs 
produced consistently repeatable results. The results re- 
ported are representative in that similar trends were obtained 
with more channels and other parameter settings. An exper- 
imental parameterization of our implementation yielded the 
values listed in Table 1. 

Figure l(a) shows system throughput (useful resource ca- 
pacity) as a function of the number of packets processed be- 
tween preemption points (PBP) for several message sizes. 
The packet size is fixed at 4 KJ3 and the link speed (LS) 
is set at 0 ns per byte, i.e., the link is “fast” relative to the 
CPU. For 01, changing PBP has no effect when the mes- 
sage size is 4 KB; this is expected for single-packet mes- 
sages. As message size increases, so do the number of pack- 
ets and throughput increases until PBP equals the number of 
packets in the message. After this point PBP has no effect on 
throughput. As can be seen, for large messages an increase 
in PBP improves throughput significantly and consistently. 

0 2  reveals the same behavior as 0 1  for small- to 
medium-sized messages. However, for large messages 
throughput rises initially as PBP increases. Subsequently, 
throughput starts falling sharply, in a non-linear fashion. 

The decline in throughput is due to increasingly poor uti- 
lization of the link bandwidth and a corresponding increase 
in the time to transmit all the packets belonging to the mes- 
sage. The oscillations in throughput are due to subtle in- 
teractions between the CPU preemption window and link 
transmission, as investigated in Section 4. 

Figure l(b) shows the measured system throughput as a 
function of packet size and link speed. Three values of link 
speed are considered: 0 ns per byte (fast link), 50 ns per 
byte (medium-speed link), and 100 ns per byte (slow link). 
For each link speed, we fix PBP at 1 and message size at 32 
KB; packet size is varied from 2-12 KB. 

Consider system throughput for 01 .  For a given packet 
size (i.e., fixed CPU processing time), an increase in link 
speed results in higher throughput for 01 and 02, with 01 
outperforming 02. For a given link speed, throughput in- 
creases with packet size since the CPU processing time re- 
duces due to a reduction in the number of packets consti- 
tuting the message. An increase in packet size from 8 KB 
to 10 KB does not change the number of packets and the 
throughputremains unchanged. As the link becomes slower, 
however, there is a saturation in the achieved throughput due 
to the link tending to become a bottleneck. After a certain 
packet size, for a given link speed, link transmission time 
exceeds the protocol processing time; thus any gains from 
a higher PBP cease to matter and the two curves converge. 
From Figure l(b), this occurs at a packet size of 8 IU3 for 
link speed of 50 ns per byte and at 4 KB for link speed of 
100 ns per byte. 

Consider system throughput for 02. The trends are sim- 
ilar to those observed when the link is either very fast (CPU 
is the bottleneck) or vcry slow (link is the bottleneck) since 
CPU and link processing overlap almost completely. For a 
medium speed link (CPU and link bandwidths are more bal- 
anced), however, throughput behavior is more non-linear. 
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Subtle interactions between CPU preemption window and 
link lransmission time cause the link to idle until the next 
preemption point. This explains the drop in throughput at 
a packet size of 6 KB. Subsequently, throughput climbs be- 
cause link utilization improves and CPU requirements con- 
tinue to decrease. This effect is analyzed in Section 4. P 

S 
Cc,(S) 4. Worst-case Service and Wait Times 

packets between preemption points 4 

transmit time for uacket size S 

_ _ _ _ ~ _ _ _ _  
maximum packet size 4KE 

245 us 

For a channel requesting admission, D-order can compute 
the worst-case message response time (the system time re- 
quirement in [ 121) by accounting for three components: 

e worst-case waiting time (lW) due to lower-priority han- 

o worst-case service time for the message (Z), 
worst-case waiting time due to message arrivals on all 

We show below how 7, and I, can be estimated to account 
for the implementation-related issues highlighted above; 
qhP can then be recomputed using I,. 

Suppose the CPU is reallocated to a waiting handler, 
if needed, every P packets; that is, up to P packets are 
processed between successive preemption points. Further, 
(see Table 1) suppose that the maximum packet size is S, 
context switch overhead between handlers is Csw (this in- 
cludes scheduling overhead to select a handler for execu- 
tion), cache miss penalty due to a context switch is Ccmr 
and packet transmission time is &(S) for packet size S. 
Per-packet protocol processing cost is Cp and per-packet 
(link) scheduling overhead of selecting a packet and initiat- 
ing transmission is Cl. 

dlers or packets, 

existing higher-priority channels (Ithp ). 

4.1. Estimating Service Time 

Consider a message of size M bytes, i.e., Np = [Yl pack- 
ets, with (N, - 1) packets of size S and the last packet of size 
Slas t  = ( M  mod S) i f ( M  mod S) # 0, else Slast = S. 
Thus, link transmission time is C,(S) for all but the last 
packet and Lz(S'asi)  for the last packet. Protocol process- 
ing cost for the first packet is CiSt while subsequent frag- 
ments each incur a lower cost C,. Ckst includes the fixed 
cost of obtaining the message for processing, the cost of a 
timestamp, and the cost of preparing the first packet.2 Both 
Cjs' and C, include the cost of network-level encapsulation. 
We estimate I, for 0 1  and 0 2  separately. The reader is re- 
ferred to [17] for explanations (omitted here due to space 
constraints) of the following derivations. 
Option 01: Given the system parameters listed in Table 1, 
the worst-case service time for 01 is given by 

Cis' + Cr + Cy + Cpr 

Cp" + C r  + Cz(S las t )  + Cpr 
if Cp < &(S) 
otherwise 7 y  = { 

where ,Cp = (Np - 1)C,(S) + Cm(Slas t )  is the total 
link transmission time for the message, CyZ = NpC, is 

*Our fragmentation protocol traverses a slower path for messageslarger 
than S bytes; the first packet thus has a higher processing cost. 

first-packet CPU processing cost 
per-packet CPU processing cost 
per-uacket link scheduling cost 

420 p s  
170 ,us 
160 us 

Table 1. Important system parameters 

the total link scheduling overhead for the message, C p r  = 
( N+)Cesp is the total cost of preemption during the pro- 
cessing of the message (&, = C,, + C,,), and C r  = 
Cis' + (Np - 1)C, is the total protocol processing cost for the 
message. Protocol processing and link transmission overIap 
in 0 1  is illustratedin Figure 2(01:(i) and Ol:(ii)). 
Option 0 2 :  Calculation of the worst-case service time for 
0 2  is done similarly; however, we must now consider the 
processing of blocks of packets with each block comprising 
no more than P packets. The number of blocks in a message 
withMP packets is given by Nb = LN+J + 1. The protocol 
processing cost for the first block is given by Ctst  = C i S t  + 
(max(Np, P )  - l)Cpl while the cost of processing the last 
block of packets is given by 

if (A(, mod P )  = 0 
= { cb (Np mod P)Cp + Ccsp otherwise 

where cb = PC, + Cesp is the cost of processing the other 
blocks, if any. The worst-case service time is given by 

To"= {  7 B  otherwise 
7 A  + 7$2JPU if cb < C,(S) 

where 'TA = Ctst  + Cp + Cy and 
7 w 0 2 , c ~ u  - C l s t  

- p + ( P  - 1)CP + ccsp  + c;, 
with C; = CI + CcSp. I B  is given by 

TA ifNb = 1 
I B  = { 7," + 1;6" otherwise 

where 7," = ciSt + (Nb - 2)Cb + max(Cpstl ic,(S)) and 
%' = (Np - Nb)C,(s) + &(Slast) + c r .  Protocol pro- 
cessing and link transmission overlap in 0 2  is illustrated in 
Figure 2(02:(i) and 02:(ii)). 

4.2. Estimating Wait Time 

To compute the total message wait time, we first consider the 
time spent waiting for a lower-priority handler to relinquish 
the CPU, followed by the time spent waiting for the link. 
Option 01: The worst-case CPU time for a block of packets 
i s  Cis ' ,  during which up to packets could complete 
transmission. Thus, the worst-case CPU wait time is 
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01: (i)Cb < C,(S) 02:  (i) c b  < C,(S)  

01: (ii)Cb 2 C,(S) 0 2  (ii)Cb 2 C,(S) 

First block processing time 1 Packet transmission time 

Other blocks processing time 0 Link scheduling time 

Figure 2. Protocol processing and link transmission overlap in 01 and 0 2  

Due to non-preemptive packet transmission, the worst-case 
link wait time is simply 7 $ l , l e n k  = C,(S), and TZ1 = 

2: The worst-case CPU wait time equals the time 
to process up to P packets on a lower-priority channel fol- 
lowed by a context switch to the link scheduler, followed by 
another context switch to the waiting handler. Thus, 

7woLcPu + ?;f l , lznL 

Our implementation provides admission control based on 
thc above estirnatcs o f  service and wait times. While 
these estimates are geared towards real-time guarantees, 
and therefore are necessarily conservative, it is insightful to 
compare the throughput predicted by these estimates and the 
best-cffsrt throughput measured using the real-time chan- 
nel implementation. For this purpose, we parameterized the 
communication subsystem, including the protocol stack, ex- 
tensively to determine the system parameter values listed i n  
Tablc 1. We validated the implementation as a function of 
packet size, for different values o f  link speed; the main re- 
sults are summarized below. See [17] for more details. 

Predicted throughput tracks measured throughput well 
for both (31 and 0 2 .  However, for 01 with medium link 
spccds, the predicted and measured throughputs divcrgc sig- 
nificantly; we attribute this to overly conservative estimates 
of Cgw and CCm. The estimates are necessarily conserva- 
tive in accounting for worst-case times which, though neces- 
sary for real-timc traffic, may be relatively small on average. 
These validation experiments reveal certain shortcomings in 
determining the system parameter values listed in Table 1: 
part of the discrepancy stems from the unpredictability in- 
troduced by caches. More refined experiments are necessary 
to select accurate values for e,, C,, and C,, . 

5. Channel Admissibility 

In this section, we demonstrate that the tradeoff between re- 
source capacity and channel admissibiIity is influenced sig- 
nificantly 'cy P, the number of packets between preemp- 
tions, and S ,  the packet size. As expected, the mechanism 
employed to implement link scheduling and the relationship 
between CPU and link bandwidth also have a profound ef- 
fect on channel admissibility. We studied channel admis- 
sibility for 0 1  and 0 2  for a range of link speeds, message 
sizes, rates and deadlines. In the following, we present and 
compare the results for a link speed of 50 ns per byte, mes- 
sage size of 32 KB, and message inter-arrival of 100 ms. We 
admit as many channels as possible withdeadlineof 100 ms. 

5.1. Channel Admissibility in 

From Figure 3, channel admissibility in 01 rises with both 
P and S due to the accompanying reduction in proiocol 
processing cost and work-conserving packet transmissions. 
As P rises (Figure 3(a)), protocol processing costs decline, 
resulting in a small increase in channel admissibility. As 
P continues to rise, the marginal benefits in protocol pro- 
cessing costs decline. Due to an increase in the window of 
non-preemptibility, channel admissibility either saturates or 
shows a small decline. Figure 3(b) shows that increasing 
S increases channel admissibility substantially, since the re- 
duction in the required CPU bandwidth more than compen- 
sates for the increase in the non-preemptibility window. 

The above results might suggest that arbitrary-sized 
packets, i.e., sending each message as a single packet, are 
desirable to maximize channel admissibility. While this is 
true if all channels carry same-sized messages, the same can- 
not be said for channels with smaller (single-packet) mes- 
sages. Increasing P and S arbitrarily only serves to increase 
the window of non-preemptibility with no reduction in CPU 
requirements for small messages. Large values of P and S 
lower admissibility for channels with small messages, espe- 
cially those with tight deadlines. Selection o f P  and S there- 
fore depends on system parameters as well as the targetted 
mix of communication traffic. 
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Figure 3. Effect of P and S on ch nnel admissibility in 0 1  and 0 2  

5.2. Channel Admissibility in 8 2  

In contrast to 01, channel admissibility when using 0 2  to 
schedule packets is significantly lower and the behavior is 
highly non-linear. This is explained easily using our pre- 
emption model. Consider the effect of? on channel admis- 
sibility (Figure 3(a)) for 8 K13 packets. With the given link 
speed and P = 1, link transmission time is greater than 
protocol processing time for a block of packets. The model 
in Figure 2(02:(i)) applies, making the channel susceptible 
to long idle periods (Section 4). For P = 2, the lransmis- 
sion time for a packet remains unchanged, but the process- 
ing time for a preemption block increases, making it more 
than the link transmission time. This results in the scenario 
in Figure 2(02:(ii)), in which the worst-case transmission 
time is reduced substantially, thereby increasing channel ad- 
missibility. 

As P increases further, the nature of overlap between 
CPU processing and link transmission remains unchanged. 
Channel admissibility either remains unchanged or de- 
clines slightly due to an increase in the window of non- 
preemptibility. This transition occurs for all but the smallest 
packet sizes. In general, the larger the packet, the greater the 
P that causes a change in the nature of overlap, namely, from 
packet transmission time being slower to it being faster than 
the processing time for the longest block of packets. 

Figure 3 (b) presents the same information as a function 
of S. As packet size increases, there is an initial increase 
in admissibility due to reduced protocol processing load. At 
a certain value of S, link transmission time becomes larger 
than block processing time, changing the scenario from that 
in Figure 2(02:(ii)) to that in Figure 2(02:(i)). Further in- 
crease in packet sizc slowly increases channel admissibility 
due to reduced CPU bandwidth requirements. As seen from 

Figure 3, the best operating point for 0 2  depends critically 
on system parameters. Since a change in channel character- 
istics will significantly change channel admissibility, a sys- 
tem parameterized and optimized for a particular workload 
is unlikely to perform well under a heterogeneous workload. 

Using a model of ideal resources, i.e., with no CPU 
preemption cost and an immediately preemptible CPU, we 
found M 40% improvement in channel admissibility over 
and above 0 1  with P = 1. Thus, it is necessary to ac- 
count for non-ideal characteristics (context switch overhead, 
cache miss penalty) of real systems. 

6. Related Work 

This paper extends the policies proposed in [12], focus- 
ing on CPU and link bandwidth management for admission 
control. We have implemented a QoS-sensitive architec- 
ture [16] that provides admission control and run-time sup- 
port for real-time channels using the proposed extensions. 

Our implementation methodology and analysis is appli- 
cable to other proposals for guaranteed real-time communi- 
cation in packet-switched networks, a survey of which can 
be found in [2]. Similar issues are being explored for provi- 
sion of integrated services on thehternet [6,4,8]. The Tenet 
protocol suite [3] is an advanced implementation of real- 
time communication on wide-area networks; however, they 
have not considered incorporation of protocol processing 
overheads into network-level resource management poli- 
cies. In particular, they do not address the problem of mak- 
ing protocol processing inside the host QoS-sensitive. 

The gap between theory and practice for real-time sys- 
tems has received significant attention in recent years [13, 
5 ,  141. Our work is complimentary to these efforts in that 
we focus QIP communication needs of distributed real-time 
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systems. Scheduling of  protocol processing at priority lev- 
els consistent with those o f  the communicating application 
was considered in [SI. More recently, processor capacity re- 
serves in KT-Mach [ 181 have been combined with user-level 
protocol processing [ 151 to  make protocol processing inside 
hosts predictable [ 191. Operating system support for multi- 
media communication is explored in  [IO] and [201. In [lo] 
the focus is o n  provision of preemption points and earliest- 
deadline-first scheduling in the kernel. Similarly, the focus 
of [20] is on the scheduling architecture. 

onclnsion and Future Work 

In  this paper, we focused on management of host commu- 
nication resources for real-time communication. In partic- 
ular, we  identified the issues involved in extending and im- 
plementing resource management policies originally formu- 
lated using idealized resource models. Using our  real-time 
channel implementation, w e  extended the admission control 
procedure to account for protocol processing and implemen- 
tation overheads, for two implementation paradigms realiz- 
ing link scheduling. The  extensions were validated against 
measured performance o f  the implementation and used to 
study the implications for channel admissibility. 

The  issues of simultaneous management of CPU and link 
bandwidth for  real-time communication are of wide-ranging 
interest. Our  present work is applicable to  other proposals 
for real-time communication and QoS guarantees [2]. The 
proposed extensions are general and applicable to other host 
and network architectures. While  w e  only considered man- 
agement of communication resources, the present work can 
be  extcnded to incorporate application scheduling as well. 
Our  analysis is  directly applicable if a portion of the host 
processing capacity can be reserved for communication- 
related activities [l8, 191. 

As part of future work, we plan to conduct more exten- 
sive validation of the proposed extensions. This would in- 
volve relaxing some of the fairly-conservative assumptions 
about worst-case scenarios without compromising real-time 
guarantees. Lastly, we  plan to  extend the null device into a 
more sophisticated network device emulator. 
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