
Combined Routing and Scheduling of Concurrent Communication 
Traffic in Hypercube Multicomputers 

Bing-rung Tsai and Kang G.  Shin 

Real-Time Computing Laboratory 
Department of Electrical Engineering and Computer Science 

The University of Michigan 
Ann Arbor, MI 48109-2122 

Email: { iast , kgshin} eeecs .umich.edu 

Abstract- We propose and evaluate low- complexit yt 
low-overhead schemes fo r  distributed message schedul- 
ing and routing in  binary hypercube multicom.puters 
equipped with a hardware communication adapter at 
each node. The goal is t o  optimize the network per- 
formance not only fo r  steady traffic pow, but also fo r  
concurrent bursty t ra f ic .  We comparatively evaluate 
the performance of different sch.eduling-routing combi- 
nations f o r  several switching methods, such as message 
switching, circuit switching and virtual cut-through. 
The evaluation results have indicated that in case 
of heavy transient t ra f ic ,  a partially-adaptive routing 
scheme, when combined with an appropriate message- 
scheduling policy, can outperform a fully-adaptive rout- 
ing scheme. 

1 Introduction 

As pointed out in [l], the critical component of a 
multicomputer is its interconnection network. Many 
algorithms are communication rather than processing 
limited. Some fine-grain concurrent programs execute 
as few as ten instructions in response to a message. 
To execute such programs efficiently, the communica- 
tion network must be able to handle heavy concurrent 
traffic. Message or traffic routing/scheduling in mul- 
ticomputer interconnection networks has received con- 
siderable attention. Most of the existing work has as- 
sumed inter-node communication traffic to be composed 
of a set of steady, independent flows. Network through- 
put or mean message latency over a certain period of 
time is often used as a performance measure. This type 
of performance evaluation reflects more of the “steady- 

The work reported in this paper was supported in part by the 
Office of Naval Research under grants N00014-92-5-1080 and 
N00014-91-J-1115, and by the NSF under Grant MIP-9203895. 
Any opinions, findings, and recommendations in this paper are 
those of the authors and do not reflect the views of the funding 
agencies. 

state” behavior of a network. However, in the task level 
- where a computation task is decomposed into a set 
of communicating modules - intermodule traffic, and 
hence interprocessor communication when the modules 
are assigned to different processors, tends to be bursty. 
A large number of messages are often generated within 
a short span of time. Furthermore, delivering each of 
these messages may not be mutually independent. For 
instance, an algorithm may not continue its execution 
until the partial results are collected from, or exchanged 
among, the participating modules. 

The work described in this paper differs from oth- 
ers in several ways: (1) it stresses the importance of 
combining low-complexity adaptive routing with mes- 
sage scheduling as opposed to complex, fully-adaptive 
routing; (2) it zooms on the case of bursty traffic where 
a network is congested with concurrent communication 
traffic; and (3) it deals with the transient (rather than 
just steady-state) performance of a network. 

We define a communication mission, or mission for 
short, to be a set of messages to be exchanged among 
the nodes such that the completion of delivery of these 
messages as a whole is crucial to the completion of the 
whole task. The makespan of a mission denotes the 
time span since the generation of the first message un- 
til the last message reaches its destination. (A formal 
definition of makespan will be given in Section 2.) In 
the execution of parallel algorithms, such as parallel 
state-space-search [2], parallel sorting [3] and parallel 
Fourier-Transform [4], their communication behavior in 
a multicomputer network can often be characterized as 
a series of communication missions. In the case of mis- 
sions containing heavy concurrent traffic, the network 
may become congested and turn int,o a bottleneck of 
execution efficiency. 

Our goal is to improve communication efficiency 
by implementing low-complexity, distributed message 

1063-6927/96 $5.00 0 1996 IEEE 
Proceedings of the 16th ICDCS 

150 

http://umich.edu


scheduling and routing in a distributed-memory sys- 
tem equipped with a communication adapter like SPI- 
DER [5] at each node. We will focus on the case where 
SPIDER is configured to work in k-ary n-cubes in gen- 
eral, and binary n-cubes in particular. Large-buffer 
message switching and virtual cut-through as well as 
circuit switching will be considered for the hypercube 
topology. Wormhole switching is found to be more suit- 
able for high-radix low-dimension hypercube networks 
(such as meshes) with multiple virtual channels, and 
hence, covered in a separate paper [6].  

The paper is organized as follows. Necessary notation 
and definitions are introduced in Section 2. In Section 3, 
the proposed scheduling policies and routing allgorithms 
are described. Section 4 deals with the performance 
evaluation of various scheduling-routing combinations. 
This paper concludes with Section 5. 

2 Notation and Definitions 
The following notation will be used throughout the 

paper. 

0 (T,  T + At]: a mission time frame or time window 
during which messages of a mission arrive. Without 
loss of generality, we will assume T = 0 from now 
on. 

* M :  the number of messages arrive in (0, At]. 

mi: message i of length t i ,  0 .< i < M .  

t4: the arrival time of mi, i.e., the time when mi is 
ready to be sent. 

ti: the completion time of mi, i.e., the time when 
mi reaches its destination. 

For a set of M messages {mi, 0 5 i < M }  , each with 
arrival time t4, and completion time ti", the makespan of 
this set, t", is defined as max { t f )  - min .(t%). Given 

this set of messages to be exchanged among the nodes 
of a Qn, we want to minimize this set's ma.kespan and 
hence maximize link utilization of the network. Depend- 
ing on the system implementation, we may achieve this 
goal with various combinations of message :scheduling 
and routing. 

A network with a mission arrival can be viewed as a 
physical system with a certain amount of inljected en- 
ergy, i.e., the total communication bandwidth required 
for the mission. t^ is essentially the time span I-squired to 
dissipate the injected energy. Given the same mission, 
different message scheduling-routing combinations will 

O<i<M OSi<M 

affect the rate the energy is dissipated in the system, 
thus resulting in different t̂  values. Measuring the net- 
work performance using this approach is analogous to 
evaluating tlhe transient response of an electronic com- 
ponent to innpulse-function inputs. Similar tlo the case 
with an electronic circuit, a network that performs well 
under this kind of hard will perform well for most of the 
time under i3 steady-state condition. 

3 Proposed Schemes 
In this 8,ection we will describe several message 

scheduling policies and an adaptive routing algorithm 
that can be implemented with the aid of a SPIDER-like 
communication adapter. Note that in the presence of 
concurrent communication traffic, the system must use 
a traffic control mechanism that is efficient and doesn't 
cause excessive overhead. The schemes introlduced here 
don't modify the underlying message format, and can 
all be implemented with minimal hardware, or, as in 
SPIDER, with a simple microprogram. 

3.1 Scheduling 

We will evaluate the performance of several dis- 
tributed message scheduling policies, while focusing on 
non-preemptive, lowcomplexity policies which utilize 
the existing message format. Each message has a length 
field as well as a deshnatzon f ield.  The routing con- 
troller on a node can use the information in these 
two fields to determine which message to be sent first 
over each link of the node. The only major overhead 
comes from the implementation of a priority queue for 
each link, which can be implemented on a SPIDER-like 
adapter or by gate-level logic circuit. The time over- 
head can be ignored since in such an adapter, message 
queueing and comrriiunication can be done in parallel for 
non-preemp tive scheduling . 

In the default, FIFO, policy, no length or destination 
information is used, and the message at the front of a 
FIFO queule will be transmitted over a link. h o ,  in any 
of the following priority scheduling policies, a tie is bro- 
ken by the FIFO principle. With the shortest-first (SF), 
and longes1,-first (LF) policies, messages in the queue of 
a link are arranged according to their lengths. When 
a message arrives, and the outgoing link it requests is 
busy, it is entered into a priority queue. SF gives a 
shorter message higlher priority, while LF awards higher 
priority to a longer message. The nearest-first (NF) and 
farthest-first (FF) policies take the destination field of 
a message and calculate the Hamming distance of the 
current node to the destination of the message, Entries 
in the priority queue are arranged in the order of in- 
creasing (as in NF) or decreasing (as in FF) Hamming 

15 1 



distances. 

The Remaining Bandwidth Requirement (RBR) of a 
message on a node is defined as the product of the length 
of the message and the remaining Hamming distance 
to its destination. The Smallest-RBR-First (SBF) pol- 
icy gives higher priority to smaller RBR messages. The 
Largest-RBR-First (LBF) policy gives priority to larger 
RBR messages. Implementing these two policies in- 
duces a slightly more overhead than the other policies 
due to a multiplication operation required before each 
message is entered into a queue. Again, with a SPIDER- 
like adapter, this overhead can be ignored since queue- 
ing and routing can be done in parallel. 

Note that all of the above scheduling policies can be 
combined with the earliest due-date (EDD) scheduling 
of message transmissions. With EDD scheduling, star- 
vation can be avoided when a certain type of messages 
arrives continually. For example, with the LBF policy, 
short messages may be blocked indefinitely if long mes- 
sages arrive continually. This can be remedied by giving 
earlier arrivals higher priority. 

The effectiveness of a scheduling policy can be mea- 
sured by comparing its performance to that of optimal 
schedules. An optimal schedule is obtained by assuming 
that the following parameters are known a priori: ti”, 
la, and the path each message is routed through. Thus, 
we have a classical scheduling problem in this case. For 
example, when message switching is used, by treating 
each link as a “processor”, and each message as a “job”, 
the optimization problem is essentially a special case 
of the job-shop scheduling problem, which is NP-hard. 
For other switching methods such as circuit switching 
and virtual cut-through, there are no equivalent known 
scheduling problems, but their computational complex- 
ity is also NP-hard. A branch-and-bound algorithm is 
used to find optimal schedules. At each node in the 
search tree, we calculate an estimated bound to de- 
cide which node to be expanded next. The eficiency of 
the algorithm depends on the accuracy of the estimated 
bounds. In [7], we developed algorithms and equations 
to be used for computing bounds which are then used 
for finding optimal schedules for message switching, cir- 
cuit switching, and virtual cut-through. 

3.2 Routing 

One major drawback of the e-cube routing algorithm 
is that the path chosen between a pair of processors is 
fixed regardless of the network traffic condition. When a 
certain link leading toward the destination of a message 
is busy, the e-cube algorithm simply holds the message 
and waits until the link becomes free, even if there can 

be an alternative free path. In situations where inter- 
processor communication traffic is light, this may not 
cause any serious performance degradation. However, 
under heavy traffic, it can become a major performance 
bottleneck. With distributed adaptive routing, a pro- 
cessor can select an alternative (free) link to route a 
message when the originally-selected link is busy. By 
doing this, it is possible that link utilization and net- 
work efficiency can be greatly enhanced. 

There are numerous adaptive routing algorithms pro- 
posed for hypercubes. Each scheme has its own advan- 
tages and disadvantages. More complex routing algo- 
rithms such as the DFS (Depth-First-Search) routing 
algorithm [B]  require extra fields in each message to 
avoid livelock and achieve the backtracking capability. 
The major advantage of such algorithms is that all pos- 
sible paths between source and destination nodes will 
be explored. However, their disadvantages include the 
overhead for storing information on detouring and back- 
tracking, and more complex routing controllers. Fur- 
thermore, the information stored in a message can be- 
come out-of-date before it reaches the destination. For 
example, at a certain intermediate node, the routing al- 
gorithm may find all links that lead the message closer 
to its destination are busy, and hence decide to take a 
detour, i.e., a non-shortest path. But when the message 
is routed via a detour, one of the shortest paths may 
become available. This can result in a waste of net- 
work bandwidth, and hence degrade the performance. 
Also, unpredictable path lengths in this routing algo- 
rithm can result in inaccuracies in calculating the RBR 
of a message, and therefore reduce the effectiveness of 
bandwidth-sensitive message scheduling policies such as 
SBF and LBF. 

On the other hand, if we restrict the routing algo- 
rithm to the shortest paths only, albeit the full con- 
nectivity of the network is not explored, the above 
shortcomings can be avoided. Besides, in a network 
equipped with SPIDER-like adapters, virtually no ad- 
ditional overhead is added to the default e-cube routing 
algorithm, since no modification needs to be done on 
the original message format, and the routing controller 
can be easily programmed with low-complexity code. 
Also, it is easy to have it work in tandem with any mes- 
sage scheduling policies since the length of each path is 
predictable. Characteristics of this distributed routing 
algorithm, called the Progressive Adaptive (PA) algo- 
rithm. are described as follows. 

As in e-cube routing, PA tries to route messages 
from the lowest dimension to the highest dimension 
based on the results of exclusive-ORing the source 

152 



and destination addresses. 

0 When the link corresponding to the lowest dimen- 
sion is busy, the next lowest dimension is tested, 
and so on, until a free link is found to route the 
message. If no link leading the message closer to 
its destination is available, the message is blocked 
and entered into a queue. 

0 Only one message queue is maintained on each 
node. All blocked messages are entered into the 
queue. Their order in the queue is determined by 
the underlying scheduling policy. When a link be- 
comes free, the message closest to the head of the 
queue that can use the link to move closer to its 
destination is routed through this link. 

The performance of the PA algorithm will be com- 
pared with DFS routing and a centralized path-selection 
(CPS) algorithm. As in the case of finding optimal 
schedules, the CPS algorithm operates on the premise 
that accurate message lengths are known a priori, and 
assigns paths to messages to balance the traffic in the 
network. With concurrent communication traffic, ?s 
are usually dominated by the most heavily-loaded link. 
The problem of selecting a path in order to minimize 
t^ is equivalent to minimizing the maximum link load, 
and can thus be formulated as a mini-max optimization 
problem. This is a special case of Decision F’roblem 1 
in [9], which was shown to be NP-hard. However, the 
true optimal solutions may not be meaningful since t^ is 
eventually determined by scheduling messages. There- 
fore, our goal is to find sufficiently good solutions that, 
when combined with the branch-and-bound scheduling 
algorithm, can achieve near-optimal performance. The 
CPS algorithm used is based on the simulated annealing 
method and is described in [7]. 

4 Performance Evaluation 

When the number of messages being sent concur- 
rently into a network becomes larger, their interactions 
make the network behavior too complicated to predict 
and analyze. This calls for simulations to assess the per- 
formance of various scheduling-routing combinations. 
Our simulation model is summarized as follows: 

0 We assume processors - including their routing 
controllers - as well as communication links to be 
fault-free. 

0 Each communication link is half-duplex, Le., at any 
instant of time, only one message can be sent in 
either direction of a link. 

As was supported in SPIDER, the routing con- 
troller on each processor can send or receive multi- 
ple messages at the same time, provided the links 
needed are not in use. Also, incoming message 
buffering/queueiiig and outgoing messatge trans- 
mission are done in parallel for all switching meth- 
ods. 

0 For circuit switc.hing, the “call signal” for estab- 
lishing a circuit is transmitted out-of-band, and 
doesn’t interfere with the existing communication 
traffic. 

0 At is relatively small, i.e., the communication traf- 
fic is highly concurrent. As a result, we assume 
there can be at most one message sent from node 
i to node j, i +: j ,  within At. If there are more 
than one message, they will be combined into a long 
message. We USB “density” to denote the probabil- 
ity that one processor sends a message to another 
processor in a mission. A higher value of densi ty  
means heavier traffic. In the uniformly-distributed 
traffic pattern, li is generated by the following rou- 
tine: 

for i :== 0 to M - 1 
for j := 0 to M - 1 

if i # j and r a n d l  < dens i ty  then la := rand2;  
else := 0;  

In the above ptjeudo code, r a n d l  is a uniformly- 
distributed random number in the interval [0 ,1] ,  
and rand2 is a normally-distributed random num- 
ber with 11 = 10, c = 5 in obtaining most of our 
numerical resulits. It can be seen that as densi ty  
and cr vary, the generated communication patterns 
extend over a wide range. In the hot-spot traffic 
pattern, the routine is similar except that the traf- 
fic is directed only to a given number of hot spots 
in a hypercube. 

0 In all of  the presented data, we set At := 0. The 
results with At > 0 were found to be similar with 
the case of At = 0 combined with Povver densi ty  
values., 

0 Each data point is obtained by averag;ing the re- 
sults of 10,000 iterations. The hypercube dimen- 
sion used is 4. Results of this problem size are 
found to be typical among all tested sizes and are 
therefore selected for presentation. 

153 



4.1 Scheduling 

Table 1 shows typical evaluation results of various 
scheduling polices. The data shown is obtained with 
densitg = 0.95 for uniformly-distributed traffic, i.e., 
a highly-congested condition. It is obvious that LBF, 
with performance very close to the optimal schedules 
(OPT), outperforms the other policies. 

OPT 
FIFO 
LF 
SF 
FF 
NF 
LBF 
SBF 

MS CS VCT 
193.1 193.7 193.0 
231.1 229.0 218.5 
216.8 221.4 202.5 
240.5 233.7 221.4 
199.9 217.3 208.7 
244.4 232.7 219.5 
195.8 208.2 195.3 
250.1 231.5 226.6 

Table 1: Performance of scheduling policies under the 
e-cube routing algorithm. 

Our simulation results in evaluating the various schedul- 
ing policies are summarized as follows: 

e SF, NF, SBF are all worse than FIFO under 
all three switching methods, i.e., message switch- 
ing (MS), circuit switching (CS), and virtual cut- 
through (VCT). Typically, SBF has the worst per- 
formance among all the scheduling policies consid- 
ered. It should be noted, however, that this is 
not the case with wormhole switching. As we have 
shown in [6], SF, NF and SBF outperform LF, FF 
and LBF in a virtual-channel network with worm- 
hole switching. 

e FF has the performance characteristics closest to 
LBF. In most situations FF outperforms LF, espe- 
cially when the variance of message length is small. 
In message and circuit switching, FF generally out- 
performs LF, meaning that the distances to desti- 
nations have more pronounced effects. It is found 
that only under virtual cut-through, LF has perfor- 
mance closer to LBF when the variance of message 
length is large. But as ~7 gets smaller, it gradu- 
ally becomes closer to, and eventually gets outper- 
formed by, FF. 

e Under circuit switching, the performance differ- 
ences are smaller for all distributed scheduling poli- 
cies. The difference between the best and the worst 
are only M 25 time units. Since messages never 
get buffered under circuit switching, distributed 
scheduling policies can only determine the order 

of sending messages at the source. It is expected 
that a distributed scheduling policy is less effective 
than a centralized policy in this case. 

e Under virtual cut-through, messages are buffered 
only when a cut-through attempt fails, so the ef- 
fects of distributed scheduling policies lie between 
those of message switching and circuit switching. 
However, given the same scheduling policy, virtual 
cut-through has consistently shown the best per- 
formance among the three switching methods. It 
is also interesting to note that as shown in Table 1, 
in case of heavy concurrent traffic, with a better 
scheduling policy such as LBF, message switch- 
ing can approach the performance of virtual cut- 
through. 

In all three switching methods, network perfor- 
mance generally gets better if message lengths are 
closer to uniform, i.e., (T is small. 

In Figs. 1 to 3, the performance of LBF schedul- 
ing is compared with the optimal schedules and FIFO 
scheduling under various dens i ty  value for uniformly- 
distributed traffic. Under message switching, for 
densi ty  > 0.3, and in most cases of hot-spot traffic, LBF 
improves significantly over FIFO and produces sched- 
ules whose makespans are within 10% of the optimal 
schedules. Its performance is only slightly degraded 
under very light traffic, where all distributed schedul- 
ing policies become less effective and degenerate into 
FIFO scheduling. Performance of LBF under virtual 
cut-through is very similar to the case under message 
switching, which is predictable since under heavy con- 
current traffic, virtual cut-through essentially degener- 
ates into message switching. In circuit switching, all 
distributed scheduling policies are less effective than 
in other switching schemes since messages are never 
buffered and are scheduled only at the source nodes. 
Nevertheless, LBF can still approach within 12% of op- 
timal schedules for dens i ty  > 0.5. The only case where 
LBF does not improve significantly over FIFO is under 
circuit switching and hot-spot traffic. 

4.2 Routing 

The performance of PA routing combined with the 
LBF scheduling is compared against the DFS routing 
working with the LBF scheduling, the e-cube routing al- 
gorithm with FIFO message schedules (EQ-FIFO), and 
the CPS centralized path selection algorithm with op- 
timal message schedules (CPS-OPT). The results are 
plotted in Figs. 4 to 6, for uniformly-distributed traffic. 

154 



Our simulation results indicate that under all three 
switching methods, PA-LBF significantly improves over 
the e-cube routing in all cases and outperforms DFS- 
LBF in cases of heavy concurrent traffic. In most situa- 
tions, it also approaches the performance of CPS-OPT 
closely within 12% in the message switching case, and 
in cases of circuit switching and virtual cut-t hrough, 
within 7%. 

It  is only under light traffic condition (density < 0.4) 
or a very small number of hot spots (< 4) that the 
DFS routing has an advantage over the PA routing. 
I t  can approach CPS-OPT under very light uniformly- 
distributed traffic, and outperform CPS-OPT in case 
of a very small number of hot spots. However, under 
heavy traffic, the DFS algorithm does not fare much 
better than the e-cube routing, especially under mes- 
sage switching. This indicates that detouring arid back- 
tracking in the DFS algorithm have negative effects 
on network performance when the network is heavily 
congested. Besides, with the unpredictability of path 
lengths of the DFS routing, LBF scheduling becomes 
less effective and nearly degenerates into FIFO schedul- 
ing. 

The DFS algorithm performs significantly better un- 
der circuit switching or virtual cut-through than in 
the case of message switching. In fact, virtual cut- 
through with the DFS routing essentially degenerates 
into circuit-switching in our simulations. With both of 
these switching methods, the DFS algorithm either suc- 
cessfully routes a message to the destination, or blocks 
the message at the source. Therefore, there is no band- 
width waste in detouring and backtracking. While in 
the case of message switching where a message can be 
blocked a t  any node in the network, taking a detour 
and blocking a message at a node farther from its des- 
tination can degrade the performance. However, in im- 
plementing the DFS algorithm with circuit switching or 
virtual cut-through, the information on detou,ring and 
backtracking must be stored in the header used for es- 
tablishing the path to avoid livelock. This can become 
a major overhead for large networks. 

From the above results, one can conclude thak, to im- 
prove network efficiency under heavy concurrent traf- 
fic, shortest-path adaptive routing combined with the 
LBF message scheduling policy can approach th.e perfor- 
mance of near-optimal centralized routing and schedul- 
ing. Also, it is a more cost-effective alternative than a 
high-complexity fully-adaptive routing a1gorit”hm such 
as the DFS routing. 

4.3 Steady- State Performance 

Here we coinpare the performance of scheduling and 
routing mLechanisms under steady-state traffic arrivals. 
Message arrivals at each node are assumed to follow a 
Poisson process. The mean latency of messages over a 
period of 20,000 units of time is plotted versus {,he mean 
message inter -arrival times. When scheduling messages, 
the ages of messages are also taken into account and 
combined with either FIFO or LBF scheduling policies. 
That is, “older” mess3ges are given higher priority to 
minimize the mean message latency and avoid starva- 
tion on continual message arrivals. 

In Figs 7 to 9, the performance of PA-LBF, DFS-LBF 
and EQ-FIFO are compared. Centralized schemes such 
as CPS-OPT are not iincluded because their high com- 
putation cost makes them unsuitable for “on-line” ap- 
plications in which message arrivals are continual. The 
steady-state results indicate that a scheme that per- 
forms well in transient conditions also performs well in 
a steady-state situation. Also, as in the transient case, 
the DFS algorithm outperforms the PA algorithm only 
under light traffic conditions. 

5 Concluding Remarks 
We have dealt with the problem of optimizing 

interprocessor-communication performance in a hy- 
percube multicomputer equipped with SPIDER-like 
adapters under concurrent traffic. Branch-and-bound 
algorithms have been developed to find optimal sched- 
ules for various switching methods under the non- 
adaptive e-cube routing algorithm. Though compu- 
tationally expensive, these optimal schedules serve to 
measure the effectiveness of various scheduling policies. 
A centralized path selection algorithm based om the sim- 
ulated annealing method is also developed in Appendix 
A and serve53 as a reference for evaluating distributed 
routing atlgorithms. 

Several distributed message scheduling policies under 
the e-cube routing algorithm were examined for systems 
with message switching, circuit switching, arid virtual 
cut-through. In our siimulations, the Largest iremaining 
Bandwidth First (LWF) scheduling policy was found to 
be very effective. It could approach the performance 
of optimal schedules in many situations, and being a 
distributed scheduling policy, it was also more practical 
and comp utationally much less expensive than central- 
ized approaches. 

A low-complexity adaptive routing algorithm, called 
the Progressive Adaptive (PA) algorithm, was also eval- 
uated. VVheii combined with the LBF scheduling policy, 
this routing algorithm was found to be very effective in 

155 



improving  per formance  over the e-cube a lgor i thm.  It 
outper formed the more  complex DFS rout ing  in heavy 
traffic conditions,  a n d  could closely m a t c h  t h e  perfor- 
m a n c e  of centralized, near-optimal approaches.  

T h o u g h  we evaluated network performance under 
transient communication loads,  it was  shown that an 
improvement  in t rans ien t  performance almost always 
offered better s teady-s ta te  performance. 

References 
[I] W. J. Dally, “Performance analysis of k-ary n-cube inter- 

connection networks,” IEEE Trans. on Computers, vol. 
39, no. 6,  pp. 775-785, June 1990. 

[2] S. Anderson and M. C. Chen, “Parallel branch-and- 
bound algorithms on the hypercube,” in Hypercube Mul- 
tiprocessors, pp. 309-317, 1987. 

[3] T. Tang, “Parallel sorting on the hypercube concurrent 
processor,” in Proc. of the 5th Distributed Memory Com- 
puting Conference, pp. 237-240, April 1990. 

[4] L. Desbat and D. Trystram, “Implementing the discrete 
Fourier Transform on a hypercube vector-parallel com- 
puter,” in Proc. of the 4th Distributed Memory Comput- 
ing Conference, pp. 407-410, March 1989. 

[5] J. W. Dolter, S. Daniel, A. Mehra, J. Rexford, W.-C. 
Feng, and K. G. Shin, “SPIDER: Flexible and efficient 
communication support for point-to-point distributed 
systems,” in Proc. of the 14-th I n t 7  Conf. Distributed 
Computing Systems, May 1994. 

[6] B.-R. Tsai and K. G. Shin, “Sequencing of concurrent 
communication traffic in mesh multicomputers with vir- 
tual channels,” in Proc. of the 23rd International Con- 
ference on Parallel Processing, August 1994. 

[7] B.-R. Tsai, Mapping and  Scheduling of Concurrent Com- 
munication Trafic in Multicomputer Networks, PhD the- 
sis, The  University of Michigan, 1994. 

[8] M. S. Chen and K. G. Shin, “Depth-first search approach 
for fault-tolerant routing in hypercube multicomputers,” 
IEEE Trans. on Parallel and  Distributed Systems, vol. 1, 
no. 2, pp. 152-159, April 1990. 

[9] D. D. Kandlur and K. G. Shin, “Traffic routing for multi- 
computer networks with virtual cut-through capability,” 
IEEE Trans. on Computers, vol. 41, no. 10, pp. 1257- 
1270, October 1992. 

240 

215 

- I I I I - 
( 

- ,a.‘ - 

Density 

Figure 1: Uniformly distributed traffic, message switching. 

240 I I I I 

0.0 0.2 0.4 0.6 0.8 1 .O 
Density 

Figure 2: Uniformly distributed traffic, circuit switching. 

240 c I I I I 

0.0 0.2 0.4 0.6 0.8 1.0 
Density 

Figure  3: Uniformly distributed traffic, virtual cut-through. 

156 



225 

% 175 

125 

75 

I_ 

0.0 0.2 0.4 0.6 0.8 1.0 
Density 

- 

- 

- 

- 

"" 
20 40 60 80 100 120 

Inter-arrival Time 

Figure 4: Performance comparison under message switch- 
ing, uniformly distributed traffic. 

I I I I 

225 

Density 

Figure 5: Performance comparison under circuit switching, 
uniformly distributed traffic. 

I I I I I I 

75 

25 
0.0 

....la 

Density 

Figure 7 Steady-state performance under message switch- 
ing. 

250 

200 

3 3 150 
E 

100 

I I 
80 100 120 20 40 60 

Inter-arrival Time 

Figure 8: Steady-state performance under circuit switching. 

Figure 6: Performance comparison under virtual cut- Figure 9: Steady-state performance under virtual cut- 
through, uniformly distributed traffic. through 

157 


