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Abstract

Maximizing overall performance in multicomputers requires matching application com-
munication characteristics with a suitable routing scheme. However, since the communi-
cation demands of emerging applications vary significantly, it is hard for a single routing
algorithm to perform well under all workloads. In order to study the complex dependencies
between routing policies and communication workloads, we have performed a set of multi-
factor experiments to better characterize routing performance. These experiments show that
in addition to adaptivity, the selection functions used to order the candidate links greatly
affect network performance under various traffic patterns. By supporting flexible routing,
the network can tune its routing policies to application communication characteristics in
order to improve performance.
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1 Introduction

Message-passing multicomputers are an effective platform for exploiting parallelism in a
variety of applications. Since fast message exchange enables efficient, fine-grained cooperation
between processing elements, the network used to connect processors must be designed to meet
the communication requirements of its applications. Maximizing network performance requires
matching application communication characteristics with a suitable network design. Parallel
applications impose a wide range of communication patterns on the underlying interconnection
network. Scientific computations [1,2], parallel databases, and real-time applications [3,4]
generate distinct distributions for message lengths, interarrival times, and target destination
nodes.

Finding a suitable network design to support such diverse communication requirements is
difficult since there are a myriad of design factors which can potentially impact performance.
Network topology, network size, the routing algorithm, the switching scheme, and the router
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architecture all greatly influence the cost and the performance of the design. In this paper,
we focus on how routing policies impact network performance as the communication pattern
is varied. Specifically, we classify different routing algorithms in terms of their adaptivity and
the selection function [5] used to determine the order in which candidate links are considered.
Through extensive multi-factor experiments, we investigate how selection functions and the
amount of routing adaptivity combine with the traffic pattern to determine how well links are
utilized and hence, how well the network performs. These experiments show that no single set
of routing policies performs best under all conditions and that tuning network routing to the
applied workload can significantly improve network performance. Additional experiments show
the utility of supporting multiple routing policies simultaneously in a multi-user environment.

The next section of the paper highlights application communication patterns and gives an
overview of the various classes of routing algorithms. Section 3 describes the simulation platform
used in the experiments. Section 4 evaluates the performance of different selection functions
under various application workloads and network topologies. The impact that adaptivity has on
these selection functions is then examined in Section 5. Using these results, Section 6 shows the
utility of supporting multiple routing schemes by tailoring routing to each application workload
to improve performance. Section 7 concludes the paper.

2 Background

2.1 Communication Workloads

Parallel applications generate a wide range of communication workloads depending on the
application’s granularity and mapping across multiple nodes. Multi-user systems exacerbate
these effects since different applications may run simultaneously; these applications may exe-
cute on different parts of the network or even time-share the same processing elements. Conse-
quently, communication characteristics such as message interarrival times, lengths, and target
destinations vary substantially on modern multicomputers, as discussed below.

Message/packet arrival: Earlier studies of multicomputer networks have typically modeled
message arrivals as a Poisson process, with exponentially-distributed interarrival times. How-
ever, detailed measurements of multicomputer applications have led to more sophisticated mes-
sage generation models. In particular, these studies show that applications typically generate
bursty network traffic [1,2], due to multi-packet messages and fine-grain handshaking between
cooperating nodes.

Message/packet length: Message and packet lengths depend on several factors including
packet-size restrictions and the mixture of data and control messages. Although fixed-length
packets or exponentially-distributed lengths simplify analytic models, recent work shows that
real multicomputer applications typically generate bimodal packet-length distributions [1,2].
Recent studies have examined adapting router designs to accommodate bimodal packet-length
distributions [6, 7].

Message destination: Message destination distributions vary a great deal depending on the
network topology and the application’s mapping onto different processing elements. While many
analytical and simulation studies evaluate a uniform random distribution of destination nodes,



this pattern does not capture the communication locality or traffic non-uniformities that arise in
many applications. Hop-uniform traffic distributions can represent spheres of spatial locality,
but these still do not capture the communication structure of specific parallel algorithms or
applications. In particular, many scientific programs generate permutation patterns such as
matrix-transpose (dimension-reversal), bit-complement, and bit-reversal [8-12]. In this paper,
we focus on characterizing network performance over a range of destination distributions.

2.2 Routing

The routing algorithm determines which path a packet takes to reach its destination. Each
time a packet enters a node, the routing algorithm generates a list of candidate links for the
packet to travel on. Minimal-path algorithms generate candidate links along shortest paths
while non-minimal or deflection algorithms can consider additional links in the hope of circum-
venting network congestion or faulty links. The number of candidate links generated depends
on whether or not the algorithm is oblivious or adaptive. If the routing algorithm is oblivious, a
single candidate link is chosen deterministically for the incoming packet to route on. Adaptive
algorithms, on the other hand, consider multiple outgoing links depending on the prevailing
network conditions. While most oblivious algorithms are minimal-path, i.e., route along only
minimal path directions, adaptive algorithms can either be minimal or non-minimal. The choice
of adaptivity has a significant influence on the cost and performance of the design. By con-
sidering multiple outgoing links, adaptive algorithms can increase the likelihood of cut-through
at intermediate nodes and balance the traffic load in the network. However, opportunities for
adaptive routing vary depending on the network topology and the distance a packet must travel.
In addition, adaptive algorithms add to the complexity of both the hardware which implements
the scheme and the software which must handle the possibility of out-of-order arrivals [13].

Fach algorithm invokes a selection function [5] which selects and orders candidate links.
Network performance is greatly influenced by the interaction of this function with the commu-
nication workload. Selection functions of oblivious algorithms deterministically select a single
candidate link independent of the current network conditions. For example, an oblivious ran-
dom algorithm selects a direction randomly from the candidate links and attempts to route the
packet along it. Selection functions of adaptive algorithms determine the order in which the
multiple candidate links are considered. For example, an adaptive random algorithm randomly
selects from the list of candidate directions until it finds a direction which it can successfully
route the packet on.

This paper examines how message destination distributions affect routing algorithm perfor-
mance. In particular, we focus on how routing adaptivity and selection functions combine with
a set of destination distributions to determine network performance. While other studies have
looked at comparing various routing algorithms over different patterns, most studies limit the
selection functions used [14-16], the range of algorithms evaluated [7,10,17], or the destination
distributions considered [11,18].



Distribution Description

NodeUniform Uniform random selection of destination node

MatrixTranspose | Source (z,y) selects destination (y,z)

BitComplement | Destination node id is the bit-complement of the source id

BitReversal Destination node id is the bit-reversal of the source id

Table 1: Destination node distributions

Selection Function Description

Dimension order Favors links in lower dimensions of the topology
Random Generates all rankings with equal probability
Diagonal Favors directions with more remaining hops

Table 2: Selection functions used in algorithms

3 Experimental Setup

In order to evaluate these algorithms, we used pp-mess-sim [19,20] (point-to-point message
simulator), an object-oriented discrete-event simulation tool. pp-mess-sim supports a wide
range of routing algorithms under a variety of switching schemes by decoupling them from the
router models which execute them. The simulator provides a general framework for evaluating
router architectures and includes a high-level router model that supports a range of queueing,
arbitration, and flow-control policies and can be used to consider a broad range of simulation
parameters. For the simulations in this study, the model was configured with word-width
crosshar interconnects between reception and transmission links (for cut-through switching
schemes), between reception links and host reception ports, and between host transmission
ports and transmission links. In addition, the model assumes that the host is an ideal sink
with large buffer capacity. This abstract model allows the basic interaction between selection
functions and communication workloads to be studied. Experiments were also done on a cycle
level simulation model of SPIDER [21] and showed similar trends in performance.

The destination node patterns we examine include node uniform traffic, as well as patterns
found commonly in scientific computations such as the matrix-transpose, bit-complement, and
bit-reversal permutations. Table 1 summarizes each of these destination distributions. Although
these permutations alone do not capture the communication characteristics of all parallel ap-
plications, they are sufficient to show the diverse performance trends which exist in parallel
systems.

Under these patterns, we evaluate a range of routing algorithms in order to characterize
their performance. Specifically, we consider oblivious minpath algorithms using three different
selection functions as shown in Table 2. The oblivious dimension-ordered algorithm chooses
the lowest dimension link out of all of the minimal-path links. The oblivious random algorithm
chooses a single link from all minimal-path links randomly. Finally, the oblivious diagonal



algorithm chooses the link which is in the direction that the packet has the most hops left to
travel [22,23].

Similar to the oblivious algorithms, adaptive minpath algorithms using the same selection
functions are considered. The adaptive dimension-ordered algorithm takes the set of minimal-
path directions, orders them according to their dimension, and attempts to route the packet
along each of the ordered directions until it is successful. The random and diagonal algorithms
do the same except the directions are ordered randomly and according to the number of hops
left, respectively. By choosing the direction which has the most hops left to travel on, the
diagonal algorithm attempts to maximize the available routing options for each packet as it
travels from source to destination.

The non-minimal algorithms we evaluate attempt to route in the minimal-path directions
first before attempting non-minimal ones. The number of non-minimal hops (deflections) al-
lowed is limited by a hop threshhold in order to prevent livelock. As with the minpath algo-
rithms, deflection algorithms also have associated selection functions. In this paper, we evaluate
a class of deflection algorithms which use a dimension-ordered selection function for ordering
both the minimal and non-minimal directions. In these experiments, the hop threshhold is var-
ied in order to show the performance of algorithms with varying degrees of adaptivity. Note that
these deflection algorithms typically perform close to the adaptive dimension-ordered minpath
algorithm, since dimension-ordered minpath routing is effectively the deflection algorithm with
a hop threshold of 0. Any benefit that the deflections provide can thus be measured against
the performance of this algorithm. For certain patterns, we also consider deflection algorithms
which use random and diagonal selection functions for ordering the minimal-path directions.

The experiments were performed on two different, low-dimensional network topologies: the
square mesh and the torus. The torus differs from the square mesh in that it has wrapped links
which connect nodes on the periphery to each other and make the topology homogeneous. By
comparing the performance of the same algorithms over both the torus and square mesh, we
examine how topologies impact the performance of adaptivity and selection functions.

For the experiments in Section 4 and 5, a packet length of 16 words and a network size
of 256 nodes were used. Simulations using 64-word packets and 64-node meshes were also
performed and showed no significant differences. The results of these experiments are included
in Appendix A. While the experiments in these sections also fix the switching scheme as virtual
cut-through, experiments using wormhole switching are presented in Section 6.

4 Selection Functions

In order to show how selection functions impact performance, we evaluated oblivious algo-
rithms using each of the selection functions in Table 2. Figure 1 shows the peak throughputs
(given in link utilization load) of each algorithm under the different traffic patterns. While the
peak throughputs are a good indication of how algorithms behave at lower loads, algorithms
which saturate at higher peak throughputs don’t necessarily have lower latencies. For such
cases, average latency graphs over all link loads are given.
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Figure 1: Peak throughput for oblivious algorithms under different traffic patterns

4.1 Node Uniform Traffic

For node uniform traffic in a square mesh, selection functions have a significant impact on
performance. The dimension-ordered algorithm outperforms both the random and diagonal
selection functions. This occurs since the diagonal and random algorithms generate pockets
of congestion by clogging the center of the mesh. The dimension-ordered selection function
performs the best since it tends to avoid the middle of the mesh and is able to utilize the links
at the periphery of the network more effectively. The diagonal function performs the worst
since it leaves these links underutilized by preferring routes which go through the center of the
mesh. Finally, since the random selection function neither prevents nor prefers routing toward
the center of the mesh, its performance is in between the two. In contrast to the square mesh,
the oblivious algorithms perform comparably to each other on a torus. This is because both
the topology and the communication pattern, in this case, are homogeneous. Thus, all links
remain evenly loaded as long as the selection function used isn’t biased.

4.2 Bit-Complement Traffic

Figure 1 also shows the peak throughputs of the oblivious algorithms under bit-complement
traffic. This pattern fundamentally congests the center of the network in both the torus and
square mesh topologies, leaving many of the peripheral links underutilized. The bit-complement
permutation requires source node (¢, d) to communicate with node (15 — ¢, 15 — d); as a result,
all packets must eventually cross both the middle row and the middle column of the mesh,
irrespective of the routing algorithm. Again, the dimension-ordered algorithm tends to avoid
the center of the network, where the middle row and column meet, by exhausting the z-
direction before routing a packet in the y-direction. On the other hand, the random and
diagonal algorithms perform poorly since they allow packets to route to the center of the mesh,
causing the links along the periphery to be even more underutilized. This effect is seen in both
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Figure 2: Performance of oblivious random and diagonal algorithms under transpose traffic

the square mesh and the torus experiments.

4.3 Matrix Transpose and Bit-Reversal Traffic

The trends in performance change under transpose and bit-reversal traffic. For both pat-
terns, all nodes of a particular row communicate with nodes of a particular column. Using
the dimension-ordered algorithm, packets route on common links, leaving a large number of
links underutilized throughout the network. Both the random and the diagonal algorithm
outperform the dimension-ordered algorithm by taking advantage of these underutilized links.
Because the diagonal algorithm statically chooses a common path for all packets between a
source-destination pair, its peak throughput is lower than the random algorithm’s, as shown
in Figure 1. By randomizing its decisions, the random algorithm more evenly distributes the
traffic across the links at high loads.

While the random algorithm outperforms the diagonal algorithm at high loads, the diagonal
algorithm achieves a lower average latency at low loads as shown in Figure 2 for transpose traffic
on a 16 x 16 square mesh. The diagonal algorithm performs well at low loads since it forces the
traffic off of the heavily-loaded links and onto the underutilized links; the random algorithm
only partially does this, leaving links along particular rows and columns fairly congested. At
higher loads, however, the diagonal algorithm prematurely saturates the diagonal links it routes
on since it statically chooses a single path from source to destination.

5 Adaptivity

By considering multiple links, adaptive algorithms can potentially improve performance over
oblivious algorithms by routing around regions of congestion. For each pattern, we evaluate
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Figure 3: Peak throughput under node-uniform traffic

a number of adaptive algorithms using different selection functions to see how they impact
routing performance. Each plot groups the algorithms according to their selection function
with each group ordered according to the amount of adaptivity. The deflection algorithms
are also labeled with their hop threshhold. Additional deflection experiments using larger hop
threshholds are shown in Appendix A. The benefits of extra deflections diminish significantly
after a hop threshhold of 2.

5.1 Node Uniform Traffic

Figure 3 shows the peak realizable throughputs of the adaptive and oblivious algorithms un-
der node-uniform traffic. For this pattern, adaptivity has little impact on network performance.
For the random and diagonal selection functions, adaptivity slightly improves performance since
the algorithms can use adaptivity to avoid congestion created by their selection functions. For
the dimension-ordered selection function, the performance of adaptive algorithms depends on
the topology. On a torus, the dimension-ordered adaptive minpath algorithm only slightly
outperforms the oblivious algorithm since opportunities for adaptivity are limited for a ho-
mogeneous traffic pattern on a homogeneous topology. In this case, the deflection algorithms
actually reduce performance since deflections delay packets and consume additional link band-
width without avoiding much congestion. As Figure 3(b) shows, increasing the hop threshold
for the deflection algorithms exacerbates this effect by allowing more (wasteful) misroutes. In
a square mesh, the oblivious dimension-ordered algorithm actually outperforms the adaptive
minpath algorithm. This occurs because any adaptive routes send packets closer to the con-
gested center of the network. Because the deflection algorithms can use their adaptivity to route
around this congestion, they do not harm performance as they did with the torus topology.

5.2 Bit-Complement Traffic

Figure 4 shows the peak throughputs of the different algorithms under bit-complement
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Figure 5: Minimal and nonminimal adaptive routing under bit-complement traffic

traffic. As the figure shows, none of the adaptive algorithms performs as well as the oblivious
dimension-ordered algorithm. However, adaptivity does help improve performance of algorithms
using the random or diagonal selection functions. Since these functions tend to direct traffic
into the center of the network, adaptivity helps by choosing alternate links in order to avoid
creating large regions of congestion. For the dimension-ordered selection function, adaptivity
harms performance since the adaptive algorithms mistakenly try to avoid the heavily-congested
middle column (or row) by routing packets to more lightly-loaded rows (or columns); this
ultimately pushes traffic closer to the congested center of the network. A local decision at one
node causes a packet to travel a lightly-loaded link into a more congested region. This effect
becomes worse on a square mesh and on larger networks, where the regions of congestion are
magnified.

As shown in Figure 4, deflections can help improve performance over the dimension-ordered
adaptive minpath algorithm by circumventing the regions of congestion. Thus, the deflections
correct mistakes made earlier in the route from selecting adaptive minimal path links. While
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Figure 6: Peak throughput under matrix transpose traffic

the deflection algorithms outperform the minpath algorithms at high loads, the minimal routing
algorithms perform better at low loads, as shown in Figure 5. This graph compares the average
packet latency of the dimension-ordered minpath algorithm and the 2-hop deflection algorithm
in a 16 X 16 square mesh network. At lower loads, nonminimal routing increases end-to-end
packet latency, since network congestion is not severe enough for deflections to have a positive
impact.

5.3 Matrix-Transpose Traffic

Figure 6 shows the peak throughputs of the adaptive and oblivious algorithms under matrix
transpose traffic. Adaptivity significantly improves performance for the oblivious dimension-
ordered algorithm by routing packets onto underutilized links. In this case, the underutilized
links are interspersed throughout the network, enabling the adaptive algorithms to find and
utilize them. This is in contrast to the bit-complement traffic pattern, where the underutilized
links are at the periphery of the network. For the diagonal and random algorithms, however,
adaptivity makes little difference since the selection function itself is enough to distribute the
load onto the underutilized links.

As Figrue 6 shows, regardless of the amount of adaptivity, algorithms using a random
selection function peform the best. This occurs because any of the deterministic selection
functions bias certain paths over others and generates pockets of congestion. Since the random
selection function does not prefer a particular routing direction, it evenly distributes the traffic
across the network, and thus saturates at a higher load.

The behavior of the dimension-ordered deflection algorithms varies with the network topol-
ogy. While deflections improve performance (relative to the adaptive minpath algorithm) for
the square mesh topology, they hinder performance in the torus. This occurs because the
square mesh generates more non-uniformity in the network, thus giving the deflections more
opportunities on which to capitalize. Since the random selection function performs best for the
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Figure 7: Peak throughput under bit-reversal traffic

minpath algorithms, experiments using deflection algorithms with random selection functions
were also performed. The additional adaptivity, however, made little difference in performance
as shown in Figure 6.

5.4 Bit-Reversal Traffic

Figure 7 shows the peak throughputs of the routing algorithms under a bit-reversal traffic
pattern. As with the matrix-transpose pattern, oblivious dimension-ordered routing performs
poorly since packets can not circumvent regions of congestion to utilize many of the lightly-
loaded links. However, additional adaptivity, in this case, does not improve performance signif-
icantly as shown by the low peak throughputs of the adaptive minpath and adaptive deflection
dimension-ordered algorithms. This indicates that just as the diagonal selection function is
pathologically bad for bit-complement traffic, the dimension-ordered function is pathologically
bad for bit-reversal traffic.

Unlike the matrix-transpose pattern, simply changing selection functions is not enough to
obtain peak performance. As shown in Figure 7, the adaptive minpath algorithms using ran-
dom and diagonal selection functions perform considerably better than any of the oblivious
algorithms. It is interesting to note that the adaptive diagonal algorithm saturates at a higher
peak throughput than the adaptive random algorithm, while the reverse is true for their obliv-
ious counterparts. For the adaptive algorithms, the diagonal selection function attempts to
maximize the number of nodes in which the packet has two possible directions to route on.
Since this gives the packet more of a chance to find lightly-loaded links later in its route, the
algorithm outperforms the adaptive random algorithm.

The performance of the deflection algorithms depends on the selection function. Deflections
improve performance for the dimension-ordered deflection algorithms since they allow packets to
route around the areas of congestion caused by the poor performance of the selection function.

11
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This effect increases with the hop-threshold. Since the diagonal selection function performed the
best for the minpath algorithms, additional experiments using a diagonal deflection algorithm
were also performed. As Figure 7 shows, the extra adaptivity makes little difference and actually
harms performance in some cases.

6 Tailoring Experiments

The multi-factor experiments show that the relative performance of routing algorithms
varies according to application communication characteristics. Because of the diverse com-
munication requirements of emerging applications, several router architectures now support
multiple routing schemes in order to tailor network routing to applications [4,24-26]. In a
multi-user environment, where multiple tasks communicate concurrently, supporting multiple
routing schemes simultaneously, can improve performance significantly.

The following experiements consider a mix of bit-reversal and bit-complement traffic in an
8 X 8 square mesh. The experiments evaluate a wormhole network with four virtual channels
on each link; the two tasks route messages on separate pairs of virtual channels to partially
insulate the applications from each other. According to Figures 4(a) and 7(a), bit-complement
has peak performance under oblivious dimension-ordered routing, while the bit-reversal pattern
performs best under the diagonal minpath algorithm. Using these results, we evaluate three
configurations: one where both tasks use the oblivious algorithm, one where both tasks use the
adaptive algorithm, and finally one where the bit-complement task uses the oblivious algorithm
and the bit-reversal task uses the adaptive one.

Figure 8 shows average packet latency for both traffic patterns, under increasing bit-
complement load; the bit-reversal pattern remains fixed at a link load of 0.12. As shown
in Figure 8(a), the bit-reversal traffic has poor performance when both tasks are forced to use

12



the oblivious routing algorithm. Bit-reversal performance improves significantly when both
tasks employ diagonal minpath routing, but this configuration degrades the bit-complement
performance, as shown in Figure 8(b). The bit-complement traffic has low average latency
under oblivious dimension-ordered routing, independent of the algorithm assigned to the bit-
reversal traffic. In this case, the network performs best when it tailors the routing policies to
the application traffic patterns.

7 Conclusion

Our experiments have shown that, under a range of application workloads, the performance
of routing algorithms varies significantly. In particular, routing performance is fairly sensitive
to the selection function, adaptivity, and the traffic pattern.

Applying these results to improve routing performance can easily be done for systems such
as HARTS [27], the nCube-3 [25], and Hnet [24] which support multiple routing policies. For ex-
ample, in HARTS, the Programmable Routing Controller (PRC) [19,26] can be reprogrammed
with different routing policies as the application communication workloads change. By having
multiple algorithms programmed into its memory, the PRC is also able to tailor its routing
decisions to individaul tasks in multi-user environments.

For systems which only support a single routing policy, these results can be used to influence
how the operating system maps the tasks onto multicomputer nodes, in effect, tailoring the
communication workload to the routing algorithm. Future work will address such issues as
well as examine performance under more realistic application workload models such as bursty
sources and bimodal packet lengths.
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Appendix A Simulation Results

Tables 3-8 give the peak throughputs points for different routing algorithms in terms of link
utilization load applied. For each entry, a percent is given which indicates how far below the
best routing algorithm, a given algorithm performs. This inidicates the relative performance
between each of the algorithms as parameters are varied.
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Algorithm H BitComplement ‘ BitReverse ‘ Transpose ‘ Uniform ‘

OblivMinPath-DimOrder 0.51 ( 0%) 0.19 (-62%) | 0.19 (-59%) | 0.66 ( 0%)
Diagonal || 0.19 (-63%) | 0.26 (-48%) | 0.38*(-17%) | 0.48 (-27%)
Random || 0.23 (-55%) | 0.31 (-38%) | 0.44%(- 4%) | 0.52 (-21%)
AdaptMinPath-DimOrder 0.38 (-25%) 0.24 (-52%) | 0.35 (-24%) | 0.62 (- 6%)
Diagonal | 0.24 (-53%) | 0.50 (0%) | 0.40 (-13%) | 0.54 (-18%)
Random | 0.30 (-41%) | 0.42 (-16%) | 0.45 (- 2%) | 0.56 (-15%)
AdaptDeflect-DimOrder-1 0.42 (-18%) 0.25 (-50%) | 0.38 (-17%) | 0.61 (- 8%)
DimOrder-2 || 0.43 (-16%) | 0.27 (-46%) | 0.40 (-13%) | 0.61 (- 8%)
DimOrder-3 || 0.43 (-16%) | 0.30 (-40%) | 0.42 (- 9%) | 0.60 (- 9%)
DimOrder-4 || 0.43 (-16%) | 0.31 (-38%) | 0.42 (- 9%) | 0.59 (-11%)

Diagonal-1 0.49 (- 2%)

Diagonal-2 0.49 (- 2%)

Random-1
Random-2

0.45 (- 2%)
0.46 ( 0%)

Table 3: 16 x 16 Square Mesh, 16 word packets

‘ Algorithm H BitComplement ‘ BitReverse ‘ Transpose ‘ Uniform ‘
OblivMinPath DimOrder | 0.48 ( 0%) | 0.26 (-66%) | 0.26 (-53%) | 0.89 (- 4%)
Diagonal | 0.20 (-8%) | 0.39 (-49%) | 0.50 (- 9%) | 0.86 (- 8%)
Random | 0.26 (-46%) | 0.56 (-26%) | 0.52 (- 5%) | 0.86 (- 8%)
AdaptMinPath-DimOrder 0.38 (-21%) 0.33 (-57%) | 0.52 (- 5%) | 0.91 (- 2%)
Diagonal | 0.28 (-42%) | 0.76 ( 0%) | 0.53 (- 4%) | 0.93 ( 0%)
Random | 0.32 (-33%) | 0.69 (- 9%) | 0.55( 0%) | 0.92 (- 1%)
AdaptDeflect-DimOrder-1 0.43 (-10%) 0.43 (-43%) | 0.50 (- 9%) | 0.82 (-12%)
DimOrder-2 | 0.43 (-10%) | 0.51 (-33%) | 0.50 (- 9%) | 0.77 (-17%)
DimOrder-3 | 0.43 (-10%) | 0.52 (-32%) | 0.49 (-11%) | 0.73 (-22%)
Diagonal-1 0.73 (- 4%)
Diagonal-2 0.69 (- 9%)
Random-1 0.55 ( 0%)
Random-2 0.55 ( 0%)

Table 4: 16 x 16 Torus, 16 word packets

16



‘ Algorithm H BitComplement ‘ BitReverse ‘ Transpose ‘

Uniform

OblivMinPath-DimOrder 0.54 ( 0%) 0.22 (-58%) | 0.21 (-60%) | 0.72 ( 0%)
AdaptMinPath-DimOrder 0.44 (-19%) 0.32 (-40%) | 0.47 (-11%) | 0.68 (- 6%)
Diagonal 0.32 (-41%) 0.53 (0%) | 0.45 (-15%) | 0.59 (-18%)
Random 0.36 (-33%) 0.49 (- 8%) | 0.53 ( 0%) | 0.63 (-13%)
AdaptDeflect-DimOrder-1 0.48 (-11%) 0.33 (-38%) | 0.46 (-13%) | 0.69 (- 4%)
DimOrder-2 0.48 (-11%) 0.37 (-30%) | 0.48 (- 9%) | 0.68 (- 6%)
DimOrder-3 0.49 (- 9%) 0.43 (-19%) | 0.48 (- 9%) | 0.66 (- 8%)
DimOrder-4 0.49 (- 9%) 0.42 (-21%) | 0.47 (-11%) | 0.65 (-10%)
Table 5: 8 x 8 Square Mesh, 16 word packets
‘ Algorithm H BitComplement ‘ BitReverse ‘ Transpose ‘ Uniform ‘
OblivMinPath-DimOrder 0.47 ( 0%) 0.27 (-58%) | 0.28 (-53%) | 0.91 (- 1%)
AdaptMinPath-DimOrder 0.42 (-11%) 0.41 (-37%) | 0.54 (-10%) | 0.92 ( 0%)
Diagonal 0.38 (-19%) 0.60 (- 8%) | 0.57 (- 5%) | 0.92 ( 0%)
Random 0.38 (-19%) 0.65 ( 0%) | 0.60( 0%) | 0.92( 0%)
AdaptDeflect-DimOrder-1 0.45 (- 4%) 0.48 (-26%) | 0.52 (-13%) | 0.85 (- 7%)
DimOrder-2 0.45 (- 4%) 0.50 (-23%) | 0.54 (-10%) | 0.82 (-11%)
DimOrder-3 0.45 (- 4%) 0.48 (-26%) | 0.51 (-15%) | 0.80 (-13%)
Table 6: 8 x 8 Torus, 16 word packets
‘ Algorithm H BitComplement ‘ BitReverse ‘ Transpose ‘ Uniform ‘
OblivMinPath-DimOrder 0.51 ( 0%) 0.20 (-61%) | 0.20 (-53%) | 0.63 ( 0%)
AdaptMinPath-DimOrder 0.38 (-25%) 0.26 (-49%) | 0.37 (-14%) | 0.58 (- 8%)
Diagonal 0.24 (-53%) 0.51 (0%) | 0.43(0%) | 0.51 (-19%)
AdaptDeflect-DimOrder-1 0.42 (-18%) 0.27 (-47%) | 0.40 (- 7%) | 0.58 (- 8%)
DimOrder-2 0.43 (-16%) 0.29 (-43%) | 0.43 ( 0%) | 0.58 (- 8%)

Table 7: 16 x 16 Square Mesh, 64 word packets
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Algorithm H BitComplement ‘ BitReverse ‘ Transpose ‘

Uniform

OblivMinPath DimOrder | 0.48 ( 0%) ] 0.27 (61%) | 0.28 (51%) | 0.90 ( 3%)
AdaptMinPath-DimOrder 0.39 (-19%) 0.36 (-49%) | 0.56 (- 2%) | 0.93 ( 0%)
Diagonal || 0.28 (-42%) | 0.82 (0%) | 0.57 (0%) | 0.93 ( 0%)
AdaptDeflect-DimOrder-1 0.43 (-10%) 0.47 (-47%) | 0.54 (- 5%) | 0.83 (-11%)
DimOrder-2 | 0.43 (-10%) | 0.54 (-43%) | 0.54 (- 5%) | 0.78 (-16%)

Table 8: 16 x 16 Torus, 64 word packets
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