
Abstract -
in decentral
and (2) the
controller ta
mer require;
to ensure th
while the lat
system to ca
We present
of a network
work (CAN:
ating system
decentralize

Field bust
automation i
vices [1,2].
ators, and CO

less wiring a
interconnecti
ligence: inst
expensive ca
devices, desi
arate, small 1

maybe a sm;
field bus inte
two ways. F
dles of shielc
ized controll
small proces:
erful, state-o
tium can cost
processor wh
Motorola68(
of dollars per
tiple process(
whereas cent
gle point off

As an exa
grees of freec

*The work re
search Projects
Grant F30602-9
ONR under Grai
or recommendai
views of the fun

0-7803-3685

Real-Time Decentralized Control with CAN*
Khawar M. Zuberi and Kang G. Shin

Real-Time Computing Laboratory
Department of Electrical Engineering and Computer Science

The University of Michigan
Ann Arbor, MI 48109-2122

E-mail:{zuberi,kgshin)@eecs.umich.edu

This paper deals with two important concerns
ed control: (1) communication over field bus
*ansition from a single powerful, centralized
nany smaller, distributed controllers. The for-
real-time network scheduling for the field bus
t messages get delivered in a timely manner,
'r requires a low-overhead real-time operating
!r to the specific needs of distributed control.
ilutions to both of these problems in the form
cheduling scheme for the Controller Area Net-
ield bus and the EMERALDS real-time oper-
which we have designed with the needs of the
control application designer in mind.

I. INTRODUCTION

are becoming increasingly popular in industrial
d robotics for decentralized control of field de-
.eld buses allow field devices like sensors, actu-
rollers to be interconnected at low cost - using
i requiring less maintenance than point-to-point
ns [2]. This makes it possible to distribute intel-
Id of having a central processing unit and using
ing to connect it to physically distributed field
iers are now using decentralized control. A sep-
icrocontroller is used to control each device (or
group of closely located devices) and a single

onnects all the controllers. This reduces costs in
;t, a single field bus replaces the expensive bun-
d cables previously used to connect the central-
' to all the field devices [3]. Secondly, several
rs are cheaper than one powerful processor. Pow-
.he-art processors like the PowerPC and the Pen-
lore than a thousand dollars per unit whereas any
:h has been in production for a few years like the
0 series or the Intel 80386, can be as cheap as tens
nit. Moreover, distributing control between mul-
5 makes the system more robust and fault-tolerant
lized control suffers from the drawback of a sin-
lure.
ple, consider the control of a robot with five de-
m. The control system may be designed with one

xted in this paper was supported in part by the Advanced Re-
ency, monitored by the US Airforce Rome Laboratory under
1.0044, by the NSF under Grant MIP-9203895, and by the
N00014-94-1-0229. Any opinions, findings, and conclusions
ns are those of the authors and do not necessarily reflect the
ng agencies.

I96 $5.00 0 1996 IEEE

100 MIPS PowerPC with, say, 2 MBytes of memory. Compare
this to a distributed design which places a 20 MIPS Motorola
68040 processor with 400 KBytes of memory at each joint and
interconnects them by a field bus. This distributed design has
the following advantages over the centralized design:

Five 68040 processors are cheaper than one PowerPC.
0 Cabling needed to connect the single PowerPC to the dis-

tributed actuators of the joints is now replaced by a single
bus interconnecting the 68040s.
The distributed design is more fault-tolerant since there is
no longer a single point of failure of the centralized con-
troller.

0 Writing application software is now modularized: low-
level details of controlling each joint can now be pro-
grammed into each node (processor) separately, while the
high-level coordination between the nodes can occur over
the field bus.

There are also some disadvantages in going from a centralized
to a distributed design. First of all, we must now worry about
communication over the field bus. We want to be able to give a
priori guarantees that all critical messages will meet their dead-
lines. This is important because if any of these messages miss
their deadlines, the coordination between the different joints of
the robot may be lost with possibly catastrophic results.

Another disadvantage of using decentralized control has to
do with real-time operating systems (RTOSs) [4]. In the dis-
tributed design, a separate copy of the RTOS must run on each of
the 68040s whereas previously, only one copy ran on the Pow-
erPC. This means that the processing overhead and memory re-
quirements of the RTOS are now five times that of the central-
ized system. So, an RTOS which may have been acceptable with
the centralized design is no longer suitable for the smaller pro-
cessors: it may well consume most of the memory and CPU cy-
cles available at the smaller 68040s.

This example shows that decentralized control has many ad-
vantages over centralized control, but new technology must first
be developed to overcome the disadvantages. The very first re-
quirement of distributed systems is a LAN protocol which fits
the requirements of industrial automation. These requirements
include supp~rt for real-time communications and error-free op-
eration in noisy environments. Several architectures have been
proposed for such LANs, including Controller Area Network
(CAN) [51, SP-50 FieldBus [61, MAP [71, Profibus [81, FIP [91,
etc. Of these networks, CAN has gained wide-spread accep-
tance in the industry [101 - first in the automotive industry and

93

mailto:E-mail:{zuberi,kgshin)@eecs.umich.edu

then for industrial automation and computer-integrated manu-
facturing (CIM) as well. CAN has been especially well received
by the textile industry and medical equipment manufacturers.
CAN is popular because of its low cost (a CAN interface chip
costs about $5) and its useful features like reliability in noisy en-
vironments and priority-based bus arbitration.

The second step in making wide-spread use of decentralized
control a reality is to develop scheduling schemes for these field
buses so that real-time messages (both periodic and sporadic)
will be guaranteed to meet their deadlines while coexisting with
non-real-time messages. These schemes must provide off-line
guarantees so that the application designer can be sure that all
critical messages will be delivered to their destinations in time.

The third step in making decentralized control feasible is eas-
ing the transition from apowerful, centralized processor to many
smaller, less-powerful, processors by designing an RTOS opti-
mized for small processors. Currently-available operating sys-
tems such as pSOS [ll], QNX [12], andVxWorks [13] werede-
signed for general real-time applications and have not been op-
timized for small- to medium-sized distributed embedded con-
trollers. As a result, their overhead is acceptable only when us-
ing powerful processors with several megabytes of volatile and
non-volatile memory. But when the switch is made to decen-
tralized control using small, cheap processors with limited mem-
ory, these RTOSs are just too large and inefficient to be used on
each of these small processors. Since application designers can-
not use these RTOSs, they are forced to hand-craft the system-
level services needed by their particular application. This not
only increases design costs but also leads to inflexible solutions
which cannot be used in any other project. This indicates a need
to identify the common set of services needed by application de-
signers for these small, distributed processors, and then design
an RTOS to provide these services. Since this RTOS will be opti-
mized for small- to medium-sized distributed embedded systems
such as the one described in the robot example, it will be able to
provide OS services at much lower overhead than RTOSs de-
signed for more general applications. This RTOS must not only
be efficient, but it must also be small in size (tens of kilobytes or
less) so it can fi t in the memory available on the smaller proces-
sors.

This paper deals with solutions for steps 2 and 3. First, we
present a scheduling scheme we have designed for CAN, called
the mixed trafic scheduler (MTS) [14]. It is capable of han-
dling both real-time (periodic and sporadic) and non-real-time
messages on the same bus and differs from previous schedul-
ing schemes for CAN [15,16] in that it uses dynamic scheduling
to increase schedulable utilization and performance. Next, we
present the EMERALDS (Extensible Microkernel for Embed-
ded, ReAL-time, Distributed Systems) real-time operating sys-
tem [17] which has been designed specifically with small, em-
bedded, distributed controllers in mind.

In the next section we give a brief overview of the CAN pro-
tocol. Section I11 describes the various types of messages that
exist in a manufacturing environment. The CAN scheduling
scheme to handle these messages is described and evaluated in
Section IV. Section V describes the EMERALDS microkernel,
and we conclude with Section VI.

11. CONTROLLER AREA NETWORK (CAN)
The CAN specification [5] defines the physical and data link

layers of the ISO/OSI reference model. Each CAN frame has
seven fields, but we are concerned only with the identzjier (ID)
field. It can be of two lengths: the standard format is 11-bits,
whereas the extended format is 29-bits. It controls both bus ar-
bitration and message addressing, but we are interested only in
the former which is described next.

CAN makes use of a wired-OR (or wired-AND) bus to con-
nect all the nodes (in the rest of the paper we assume a wired-OR
bus). When a processor has to send a message it first calculates
the message ID which may be based on the priority of the mes-
sage. The ID for each message must be unique to prevent a tie.
Processors pass their messages and associated IDS to their bus
interface chips. The chips wait till the bus is idle, then write the
ID on the bus, one bit at a time, starting with the most significant
bit. After writing each bit, each chip waits long enough for sig-
nals to propagate along the bus, then it reads the bus. If a chip
had written a 0 but reads a 1, it means that another node has a
message with a higher priority. If so, this node drops out of con-
tention. In the end, there is only one winner which can use the
bus.

111. WORKLOAD CHARACTERISTICS
In computer-integrated manufacturing (CIM), the communi-

cating devices are controllers (CPUs or PLCs), actuators, and
sensors. Some of these devices exchange periodic messages
(such as drives) while others are more event-driven (such as
smart sensors). Moreover, operators may inquire status informa-
tion from various devices, thus generating messages which do
not have timing constraints. So, we classify messages into three
broad categories: (1) hard-deadline periodic messages, (2) hard-
deadline sporadic messages, and (3) non-real-time (best effort)
aperiodic messages.

A. Periodic messages
A common example of this type of messages is servo control

of digital drives as in cutting tools. The controller must period-
ically sample the current position/velocity of the drive and then
send appropriate corrections to the drive. Such messages have
hard deadlines, because if the update message to the drive is de-
layed beyond its deadline, the cutting tool may deviate signifi-
cantly from its desired path, thus ruining the workpiece.

Note that a single periodic message will have multiple invo-
cations, each one period apart. So, whenever we use the term
message to refer to a periodic, we are referring to all invocations
of that periodic.

B. Sporadic messages
Strictly speaking, all events in the real world are aperiodic in

nature. If these events are expected to occur frequently enough,
periodic monitoring can be used to detect them and take appro-
priate action (as in servo control).

There are other events which are not as frequent, such as tem-
perature of a process exceeding a critical threshold. In fact, max-
imum interval between two such events is unbounded (event
may never occur again). In such cases, using periodic messages
is a waste because there is nothing to say most of the time. Smart

94

table for detecting such events. These
capabilities to recognize events on their own,
controller only when required. If these mes-

ely aperiodic, then we are assuming that
sed at any time - even in rapid succession.
be able to guarantee their delivery by their

interarrival time (MIT) for these mes-
messages which have a MIT are called
1. Knowing the MIT of a sporadic mes-

C. Non-real-lime messages

ng environment, an operator must be able to
f every device in the system. Also, some de-
ives) need to communicate operational data
ed limits and diagnostic information. Such
real-time because they do not have timing

communication protocol for manufacturing ap-
able to accommodate such messages while

guaranteeing bhe deadlines of real-time traffic.

D. Low-speeh vs. high-speed real-time messages
I

a manufacturing setting can have a wide range
ging from tens of microseconds for drive con-

re for temperature sensors. Thus,
messages into two classes: high-
ing on the tightness of their dead-
is a relative term - relative to the

0 in the workload. So, all messages with the
nitude deadlines as do (or within one order
ence from do) can be considered to be high-
1 others will be low-speed.

IV. T H ~ MIXED TRAFFIC SCHEDULER (MTS)

ier, access to the CAN bus is controlled by
ting messages. Then, scheduling messages on

o assigning proper IDS to messages so that
meet their deadlines in the presence of non-

ifficulties faced in scheduling messages on CAN,
onsider a typical CAN bus interface chip. These

chips usuall) have memory space for one or more messages.
When a processor 1 has to send a message, it will calculate the
ID and transller the message (with its ID) to the chip’s memory.
From then o , the chip will function autonomously: it will com-
pete for the 3 us with the message ID, and upon getting access,
i t will transdit the message.

essage has been transferred to the CAN chip for
transmission its ID will stay fixed unless the processor comes t and updateslit. If the ID is to be derived from the message’s
priority, that priority should stay fixed (at least for reasonably
long periods of time). So, fixed-priority scheduling - such as

Once a 4

otonic (DM) [20] - is a natural fit for these CAN
DM, messages with tighter relative deadlines are

assigned higher priorities. These priorities then form the mes-
sage IDS which not only uniquely identify the messages for re-
ception purposes but also schedule the messages in a predictable
fashion. However, in general, fixed-priority schemes give lower
utilization than other schemes such as non-preemptive earliest-
deadline’ (ED). This motivates us to use ED to schedule mes-
sages on CAN under which the message IDS must reflect the ab-
solute message deadline. But as time progresses, absolute dead-
line values get larger and larger, and eventually they will over-
flow the CAN ID. This problem can be solved by using some
type of a wrap-around scheme (which we present in Section A),
but even then, putting the deadline in the ID forces one to use
the extended CAN format with its 29-bit IDS. Compared to
the standard CAN format with 11-bit IDS, this wastes 20-30%
bandwidth, negating any benefit obtained by going from fixed-
priority to dynamic-priority scheduling. This makes ED imprac-
tical for CAN.

A. Time epochs

As already mentioned, using deadlines in the ID necessitates
having some type of a wrap-around scheme. We use a simple
scheme which expresses message deadlines relative to a peri-
odically increasing reference called the start of epoch (SOE).
The time between two consecutive SOEs is called the length of
epoch, C. Then, the deadline field in the ID of message i will
be the logical inverse of di - SOE = dd - C, where di is
the absolute deadline of message i and t is the current time (it
is assumed that all nodes have synchronized clocks). Value of C
depends on what fraction of CPU-time the designer is willing to
allow for ID updates. Let this fraction be 2, M be the MIPS of
the CPU, and n be the number of instructions required to do the
update. Then C = zM: 106. So at every node, there is a periodic
(timer-driven) process which wakes up every C seconds and up-
dates IDS of all ready messages according to the above equation.

B. MTS

MTS attempts to give high utilization (like ED) while using
the standard 11-bit ID format (like DM). High-speed messages
consume most of the bus bandwidth, so the idea behind MTS
is to try to use ED for high-speed messages and DM for low-
speed ones. First, we give high-speed messages priority over
low-speed and non-real-time ones by setting the most signifi-
cant bit to 1 in the ID for high-speed messages (Figure la). This
makes sense because high-speed messages have tighter dead-
lines, so they should have higher priority than low-speed mes-
sages.

A uniqueness field is needed within the ID to ensure that no
two IDS are the same. Its length should be [log2(num high-
speed messages)] which would typically be about 5 bits. This
leaves 5 bits for the deadline fieldewhich are not enough to en-
code message deadlines. Oyr solution to this problem is to quan-
tize time into regions and encode deadlines according to which
region they fall in. To distinguish messages whose deadlines fall
in the same region, we use the DM-priority of a message as its

I Non-preemptive scheduling under release time constraints i s NP-hard in the
strong sense [21], meaning that there is no polynomial time scheduler which will
always give the maximum schedulable utilization. However, Zhao and Ramam-
ritham [22] showed that ED performs better than other simple heuristics.

95

TABLE I
BASIC SIMULATION WORKLOAD.

(b) 0 1 DM priority

Fig. 1. Parts (a) through (c) show the IDS for high-speed, low-speed,
and non-real-time messages, respectively.

Periodic
Sporadic

I

SOE
end of epoch

4 t
1

625ps (1.6 kHz) 400.0~s 2 79ps
2s 1200ps 2 47ps

Fig. 2. Quantization of deadlines for m = 2.

(4

uniqueness code. This makes MTS a hierarchical scheduler. At
the top level is ED: if the deadlines of two messages can be dis-
tinguished after quantization, then the one with the earlier dead-
line has higher priority. At the lower level is DM: if messages
have deadlines in the same region, they will be scheduled by
their DM priority.

We can calculate length of a region (l,) as I, = A, where
m is the length of the deadline field. This is clear from Figure 2
(shown for m = 2). We must reserve one coding for messages
wh& deadlines fall beyond the end of the current epoch. This
leaves 2m - 1 codings for deadlines before the end of epoch.

A uniqueness field of 5 bits allows at most 32 real-time mes-
sages to be treated as high-speed. To accommodate the remain-
ing (possibly large number of) messages, we use DM scheduling
for low-speed messages and fixed-priority scheduling for non-
real-time ones, with the latter being assigned priorities arbitrar-
ily. The IDS for these messages are shown in Figures 1 (b) and
(c). The second most significant bit gives low-speed messages
higher priority than non-real-time ones. In each case, the pri-
ority field also acts as the uniqueness code, allowing 512 low-
speed and 480 non-real-time messages (32 IDS of non-real-time
messages are illegal under the CAN protocol, leaving 512 -
32 = 480 valid IDS). Schedulability conditions for MTS can
be found in [14]. They allow off-line checks to be made to de-
termine whether a message workload is feasible or not.

C. Performance of MTS

We have designed MTS to achieve better performance and
schedulability than DM. Since deadlines in MTS are quantized,
we would expect the performance of MTS to be close to that
of ED if somehow message length did not increase when us-
ing ED. So, let ED* be an ideal (imaginary) scheduling policy
which works the same as ED but requires only an 1 1-bit ID. Then
ED*'s performance should be an upper bound on MTS's.

To evaluate the performance of MTS, we generated random
workloads and tested their feasibility under DM, ED*, and MTS.
The base workload consists of high-speed periodic and sporadic
messages as shown in Table I (our simulations showed no real

0 fixed priority

Class I PeriodMIT I Deadline I Num. mssgs. 1 Mssg. len
Periodic I 833ps (1.2 kHz) I 600.0ps I 5 I 79ps

s

DM
I

0.0 20.0 40.0 60.0 80.0 100.0
YO feasible workloads

Fig. 3. Percentage of workloads feasible under DM, MTS, and ED*
(with five 1.2 kHz periodic messages and utilization = 72.7%).

0.0 20.0 40.0 60.0 80.0 100.0
YO feasible workloads

Fig. 4. Percentage of workloads feasible under DM, MTS, and ED*
(with six 1.2 kHz periodic messages and utilization = 82.2%).

difference between DM, MTS, and ED* in handling low-speed
messages, so we focus on high-speed messages only). This
workload gives a utilization of 72.7%. An actual test workload
is generated by adding a random value between 0 and 130 ps to
each message's deadline. One thousand such workloads were
generated and their feasibility tested under the three scheduling
schemes for a 1 Mbitls CAN bus. Figure 3 shows the percentage
of workloads feasible under each of the three schemes. It shows
that for these workload characteristics, MTS performs as well as
ED*, and much better than DM.

To evaluate MTS further, we increased the number of 1.2 kHz
periodic messages to six (giving a utilization of 82.2%), and re-
peated the simulation. Results are shown in Figure 4. We see
that even under this high utilization, MTS performs close to ED*
while DM is not able to feasibly schedule even a single work-
load.

V. EMERALDS: DESIGNED FOR EMBEDDED USE

As already mentioned, the transition from a powerful, cen-
tralized controller to several smaller. distributed controllers

96

I
Multi-threaped Communication Device
user procejses protocol servers drivers

- - - . - - - _ - - - _ l:TtT
- - - - . I - - _ _ - - _ _ -

'. Sensors Actuators Networks ,'
. - _ _ _ * - -. - - - '. _ _ - - - - - - _ -

I Fig. 5. EMERALDS' architecture.

,
presents two; problems: managing communications over the

presented MTS as a solution to the
Now, we describe a solution for the latter prob-
of EMERALDS which is a microkernel real-
ystem written in the C++ language. Figure 5

it some features, but this may make the
hallenge in the design
de and what to leave

and design choices
y to use in small- to

A. Simplijj& Characteristics
Followin are some characteristics of embedded systems that

allowed us t t simplify the implementation of EMERALDS to
achieve our boa1 of a small, fast kernel.

I) Location of Resources is Known: Most operating systems
provide na ing services to translate easy-to-remember names
into numeri 4 +a1 identifiers which may also contain location infor-
mation. Thebe services are necessary in large, rapidly-changing

~

I 97

systems where resources may move about. However, in embed-
ded systems, the designer is very much cognizant of the location
of various resources. For example, he knows which threads run
on which node (because he is the one who placed them there).
This is why EMERALDS does not provide any naming service.
For example, to send a message to a remote thread, the local
thread must know the node on which the remote thread runs and
the identifier of that thread's mailbox. When creating a shared-
memory segment, a process must supply a CPU-wide unique
identifier. If some other process wants to use that segment it
must also know that identifier. Same applies to semaphores and
condition variables.

2) Memory-Resident Applications: Our target applications, in
general, do not use disks. ROM is used as non-volatile storage
and on-board RAM satisfies all run-time memory requirements
of the application. So EMERALDS provides neither a file sys-
tem nor a backing store for virtual memory. This means no de-
vice drivers for disks, no disk buffer management, no page fault
handlers, or any other such services.

3) Simple Messages: In embedded systems, the most common
messages are sensor readings and actuator commands. Threads
can exchange such simple messages by talking directly to the
network device driver without using any protocol stack, so
EMERALDS does not have a built-in communication protocol
stack.

B. Extensibility, EfJiciency, and Ease of Use

It is not enough for an RTOS to be small in size - it tnust also
be efficient and easy to use. Here we describe those features of
EMERALDS which make it fast and user-friendly.

1) Microkernel Architecture: The microkernel architecture of
EMERALDS was necessary to allow users the flexibility to in-
stall their own communication protocols and device drivers.

As already mentioned, nodes in most embedded systems ex-
change simple messages for which no protocol stack is needed.
Such systems prefer to access the network directly to get max-
imum bandwidth. However, some applications require more
complicated communication protocols to handle duplicate de-
tection, ordering, message fragmentation, etc. In EMERALDS,
communication protocols run as user-level servers, so users are
free to use protocols which suit their particular applications.
The server can even be bypassed completely to directly access
the communication network if needed. Moreover, EMERALDS
provides the flexibility to have multiple protocol stacks on the
same node. For example, one set of processes may require that
messages be causally ordered, then they can use one protocol
stack. Another set of processes may not have this requirement,
so they can use a simpler (and faster) protocol stack.

Similar flexibility is needed regarding device drivers. Since
there are so many devices (e.g., sensors, actuators, network
adapters) used in embedded systems, it is virtually impossible
for the OS designer to supply device drivers for all of them. The
next best thing is to make it as easy as possible for users to write
their own device drivers. EMERALDS does just that. A device
driver is just a user process (instead of being part of the kernel),

and special system calls are available for device drivers to access
devices and deal with interrupts.

2) Need for Memory Protection: Providing memory pro-
tection requires maintaining page tables and programming the
memory management unit (MMU). This not only increases the
size of the kernel, but also adds overhead to several kernel ser-
vices, thus being contrary to our primary goal of building a small
and fast kernel. Here we justify providing memory protection in
EMERALDS.

The need for memory protection in time-shared systems is
indisputable. One user’s processes must be protected from all
other - possibly malicious - users. But in embedded sys-
tems, all processes are cooperative and will never try to inten-
tionally harm another process, so providing memory protection
seems extraneous. However, bugs in application code can mani-
fest themselves as malicious faults. For example, suppose some
pointer in a C program is left uninitialized. If this pointer is used
for writing, one process can easily corrupt another process or
even the kernel. With memory protection, such an access will
cause a TRAP to the kernel and recovery action may be taken,
providing a form of software fault-tolerance. Without memory
protection, such a fault may not even be detected until the CPU
crashes with possibly catastrophic consequences.

Another benefit of memory protection is easier debugging of
application code. During application development, if there is
no memory protection, each time one process crashes, the en-
tire CPU may crash. This makes tracking down bugs extremely
frustrating and time-consuming. With memory protection, soft-
ware failures are contained within an address space and can be
easily tracked down.

3) ESJicient System Culls: The main disadvantage of memory
protection is the context switch overhead incurred when making
system calls (because the user and kernel usually exist in sep-
arate address spaces). This is why some RTOSs omit memory
protection so they only have to make subroutine calls to access
kernel services; not so with memory protection. We resolved
this problem by mapping the kernel into each user-level address
space (unlike other OSs in which the kernel runs in its own ad-
dress space). This way, a system call reduces to a TRAP, then
a jump to the appropriate kernel address, without the need to

The flexibility EMERALDS offers in writing protocol stacks
and device drivers, its small size, and its speed set it apart
from other modern RTOSs. EMERALDS also provides many
standard features found in today’s RTOSs such as multi-
threaded processes, message-based IPC, real-time priority-
based scheduling, synchronization variables, timers, etc. Impor-
tant system calls for these functions are described in Tables II-
IV. See [171 for more detail.

C. Performance
We have completed a uniprocessor version of EMERALDS

for the Motorola 68040 processor. Its size is only 13 KBytes.
Table V shows the timing for some EMERALDS operations for
a 25 MHz MC 68040. The operations labeled with * involve a
context switch to another thread. All other operations return to
the calling thread.

switch address spaces. 0

Thread priority
Thread ID

Thread ID

TABLE I1
PROCESS AND THREAD SYSTEM CALLS.

with 1 thread
Create thread
Wait for child
thread to finish
Tell kemel: will not
wait for thread

System call
create-proc ()

cv-delete ()
cv-lock ()
cv-unlock ()

create-thread ()
j oin-thread ()

CV identifier Delete CV
CV identifier Acquire CV
CV identifier Release CV

detach-thread ()

Imp. Params I Function
Thread priority I Create process

TABLE 111
SYSTEM CALLS FOR SEMAPHORES AND CONDITION VARIABLES.

semunlock ()
cv-create ()

I Semaphore identifier I Release sem;
I CPU-wide uniaue ID I Create CV

Comparing the nul 1 () system call to the nu l 1 () subrou-
tine call, we see that EMERALDS’ technique of mapping the
kernel into each address space results in efficient system calls,
incurring only a 1.8 p s more overhead than subroutine calls.
Even when a context switch to a different address space is re-
quired, it incurs less than 12 p s overhead.

VI. CONCLUSION
Manufacturing systems are moving away from centralized

control toward decentralized design. This not only reduces costs
but also increases modularity and fault-tolerance. However, de-
centralized control presents its own problems. First and fore-
most is the issue of managing real-time traffic over the field
bus interconnecting the distributed nodes. This requires ensur-
ing that critical real-time messages (both periodic and sporadic)
meet their deadlines while sharing bus bandwidth with non-real-
time messages. Another problem has to do with the overhead
of real-time operating systems. An RTOS feasible for a pow-
erful, centralized controller may not be suitable for the smaller,
less powerful processors typically used in decentralized indus-
trial control.

In this paper we presented solutions to both of these problems
in the form of the mixed traffic scheduler (MTS) for the CAN
field bus and the EMERALDS microkernel operating system
for small, embedded processors. Through simulations, MTS
was shown to give good performance even under high bus uti-
lizations. It performed close to the idealized earliest-deadline
scheduler and far out-performed deadline-monotonic scheduler.

EMERALDS is still in the implementation phase. A unipro-
cessor version is ready which is only 13 KBytes in size. We are
in the process of adding CAN networking to EMERALDS. This
will allow us to implement MTS within EMERALDS and make
performance measurements.

98

TABLE IV
MESSAGE-PASSING SYSTEM CALLS. THE LAST TWO CALLS ARE FOR USE BY PROTOCOL SERVERS.

I ,

System call Important Parameters Function
&ox-create (1 CPU-wide unique identifier Create mailbox
mbox-delete () Mailbox identifier Delete mailbox

l msg-send () Destination node and mailbox,
local server mailbox
Mailbox identifier ’ msg-receive (1 trymsg-receive () Mailbox identifier

1 msg-send-direct () Destination mailbox i msg-receive-full() Mailbox identifier Retrieve message with meta-information

Send message to mailbox

Retrieve message from mailbox
Non-blocking version of msg-receive ()
Send message, but bypass redirection

1

1 Operation
Context swit’ h (kernel to thread)
nul 1 () sub, outine call

Latency (p)
11.8
0.2

nul l () sys/jemcall

shmattaclb () (attach existing segment)

cv-dele tel()
cv-wai t () 1
cv-signall() (no thread waiting)

25.4

2.0

&ox-dele/te ()
msg-send (1) (10 bytes, no server)

I VII. REFERENCES

[l] R. S. Rajill “Smart networks for control,” IEEE Spectrum,

to local control net-
Control, vol. 48,

vol. 31, nib. 6, pp. 49-55, June 1994.

“Scheduling algo-
for real-time sys-
no. 1, pp. 55-67,

cation. I S P 11898, 1st edition, 1993.
161 Industriall Automation Systems -Systems Integration and

Communication - Fieldbus (draft) (ISA/SP50-93), In-

Automation Protocol (MAP) 3.0 Imple-

1 and 2, DIN 19 245, German
MAPROP Users Group, 1987.

[lo] H. Zeltwanger, “An inside look at the fundamentals of
CAN,” Control Engineering, vol. 42, no. 1, pp. 81-87, Jan-
uary 1995.

[111 L. M. Thompson, “Using pSOS+ for embedded real-time
computing,” in COMPCON, pp. 282-288, 1990.

121 D. Hildebrand, “An architectural overview of QNX,” in
Proc. Usenix Workshop on Micro-Kernels and Other Ker-
nel Architectures, April 1992.

131 VxWorks Programmer’s Guide, 5.1, Wind River Systems,
1993.

141 K. M. Zuberi and K. G. Shin, “Non-preemptive schedul-
ing of messages on Controller Area Network for real-time
control applications,” in Proc. Real-Time Technology and
Applications Symposium, pp. 240-249, May 1995.

[I51 K. W. Tindell, H. Hansson, and A. J. Wellings, “Analyz-
ing real-time communications: Controller Area Network
(CAN),” in Proc. Real-Time Systems Symposium, pp. 259-
263, December 1994.

[16] K. Tindell, A. Burns, and A. J. Wellings, “Calculating
Controller Area Network (CAN) message response times,”
Control Engineering Practice, vol. 3, no. 8, pp. 1163-
1169,1995.

[17] K. M. Zuberi and K. G. Shin, “EMERALDS: A micro-
kernel for embedded real-time systems,” in Proc. Real-
Time Technology and Applications Symposium, pp. 24 1-
249, June 1996.

181 J. Brignell and N. White, Intelligent Sensor Systems, Bris-
tol, Philadelphia, 1994.

[191 A. K. Mok, “Fundamental design problems of distributed
systems for the hard real-time environment,” Ph.D thesis,
1983.

[20] J. Y.-T. h u n g and J. Whitehead, “On the complexity of
fixed-priority scheduling of periodic, real-time tasks,” Per-
formance Evaluation, vol. 2, no. 4, pp. 237-250, Decem-
ber 1982.

1211 K. Jeffay, D. E Stanat, and C. U. Martel, “On non-
preemptive scheduling of periodic and sporadic tasks,” in
Proc. Real-Rme Systems Symposium, pp. 129-139, 1991.

[22] W. Zhao and K. Ramamritham, “Simple and integrated
heuristic algorithms for scheduling tasks with time and re-
source constraints,” Jounal of Systems and Software, vol.
7, pp. 195-205,1987.

99

