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Abstract 
We propose a model for quality-of-service (QoS) 

negotiation in building real-time services to meet 
both predictability and graceful degradation require- 
ments. &OS negotiation is shown to (i) outperform 
conventional (‘binary’’ admission control schemes (ei- 
ther guaranteeing the required QoS or rejecting the 
service request), and (ii) achieve higher application- 
perceived system utility. We incorporated the pro- 
posed QoS-negotiation model into an example real- 
time middleware service, called RTPOOL, which man- 
ages a distributed pool of shared computing resources 
(processors) to guarantee timeliness QoS for real-time 
applications. The efficacy and power of QoS negotia- 
tion are demonstrated for an automated flight control 
system implemented on a network of PCs running RT- 
POOL. This system is used to  fly an F-16 fighter air- 
craft modeled using the Aerial Combat (ACM) F-16 
Flight Simulator. Experimental results indicate that 
QoS negotiation, while maintaining real-time guaran- 
tees, enables graceful &OS degradation under condi- 
tions in which traditional schedulability analysis and 
admission control schemes fail. 

1 Introduction 
Predictability in real-time applications is often 
achieved by reserving resources and employing admis- 
sion control under a priori assumed load and failure 
conditions. Graceful QoS degradation, on the other 
hand, requires dynamic resource reallocation in order 
to cope with changing load and failure conditions while 
maximizing system utility. Both predictability and 
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graceful QoS degradation are necessary for real-time 
applications but pose conflicting requirements. 

The main focus of this paper is on how to achieve 
predictability and graceful degradation in long-lived 
real-time services for embedded applications. By 
“long-lived” we mean that a request, if granted, will 
hold its reserved resources for a relatively long period 
of time. To control the load imposed on system re- 
sources and hence guarantee a certain level of &OS, 
the request must go through admission control and 
resource reservation. Conventional admission control 
schemes make “binary” decisions on whether to guar- 
antee or reject each request. Future requests may be 
rejected because resources have already been commit- 
ted to those that arrived earlier. In hard-real-time 
systems, a static analysis may be performed to  guar- 
antee a priori  that all requests be honored under the 
assumption of the worst-case request arrival behav- 
ior and service requirements. If these assumptions are 
violated at run-time due to transient overload or re- 
source loss (failures), the guarantees may become in- 
valid, which may, in turn, lead to system failure. 

We propose a mechanism for QoS (re)negotiation 
as a way to ensure graceful degradation in cases of 
overload, failures, or violation of pre-run-time asaump- 
tions. This mechanism permits clients to express in 
their service requests a spectrum of QoS levels they can 
accept from the provider and perceived utility of re- 
ceiving service at each of these levels. As a result, the 
application designer will be able to express acceptable 
compromises in &OS and their relative cost/benefit as 
derived from application domain knowledge. 

We incorporate the proposed &OS negotiation into 
a processing capacity management middleware service 
called RTPOOL. The service is designed and imple- 
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mented to support timeliness guarantees for a flight 
control application, in which a set of flight control 
tasks, their QoS levels, and the corresponding rewards 
are provided by the flight mission planner, and can 
be renegotiated, if necessary, using RTPOOL’s QoS- 
negotiation support. The mission planner was de- 
veloped in the context of the Cooperative Intelligent 
Real-time Control Architecture (CIRCA) [l], which 
computes task execution tradeoffs from application 
domain knowledge and alters the mission plan as re- 
quired during QoS negotiation. 

In this paper, we begin with a review of related 
work (Section 2), followed by a description of the 
proposed QoS-negotiation model (Section 3). Next 
(Section 4), we describe RTPOOL, a distributed 
processing resource management service that follows 
the proposed QoS-negotiation model, highlighting the 
synergy between RTPOOL components and QoS- 
negotiation support. We present details of RT- 
POOL implementation and negotiation API (Sec- 
tion 5), then describe the use of RTPOOL in the con- 
text of automated flight control (Section 6). Flight 
performance is evaluated (Section 7), illustrating the 
efficacy of QoS-negotiation support, followed by a brief 
paper summary (Section 8). 

2 Related work 
Predictable performance of real-time services has tra- 
ditionally been achieved using resource reservation 
and admission control. In hard real-time systems, suf- 
ficient resources are reserved a priori for the appli- 
cation. Off-line schedulability analysis (e.g., [2-41) is 
used to verify that the reserved resources are suffi- 
cient for meeting all timing constraints. Such analy- 
sis requires that the worst-case load/failure conditions 
be known at design time. For some applications, the 
worst-case load and failure conditions may be difficult 
to know, thus a mechanism is needed to ensure grace- 
ful performance degradation when the load or failure 
hypotheses are violated. 

On-line admission control has been used to guaran- 
tee predictability of services where request patterns 
are not known in advance, e.g., establishment re- 
quests of real-time channels [ 5 ] .  This concept has also 
been applied to resource reservation for dynamically- 
arriving real-time tasks, e.g., the Spring Kernel [6] and 
Dreams real-time system [7].  A main concern of this 
approach is predictability. Run-time guarantees given 
to admitted requests are never revoked even if they re- 
sult in rejecting subsequently-arriving more important 
requests competing for the same resources. 

In soft real-time systems, services are more con- 
cerned with maximizing overall utility (by serving 

the most important request first) than guaranteeing 
reserved resources for individual requests. Priority 
driven services can generally be categorized this way, 
and are supported in real-time kernels such as Al- 
pha [8] and Mach [9]. Under overload conditions, lower 
priority tasks are denied1 service in favor of more im- 
portant tasks. In the Rialto operating system [IO], a 
resource planner attempts to dynamically maximize 
user-perceived utility of the entire system. However, 
the scheme does not adopt the notion of guaranteeing 
a reserved amount of resources for the application. 

Compromises between giving irrevocable service 
guarantees to arriving requests (in hard real-time sys- 
tem), and maximizing overall system utility (in soft 
real-time systems) have been addressed. For exam- 
ple, virtual clock based communication schemes [ll] 
essentially delay a packet transmission request until 
its virtual arrival time. This enforces a global priority 
order, a special case of mlaximizing utility. Recently, a 
similar approach has been suggested for guaranteeing 
dynamic real-time tasks. The decision to guarantee 
an arrived task (and commit resources to it) is de- 
layed until some critical instant, effectively making the 
system wait for “more important” tasks to arrive. Un- 
fortunately, the delay in making task guarantees may 
itself waste processing bandwidth which may reduce 
schedulability and increase the task rejection rate. 

A different approach to maintaining hard real-time 
guarantees while maximizing the overall perceived 
utility under overload and failure conditions is to of- 
fer QoS as a new dimension to trade in making re- 
source management deciisions. QoS negotiation ex- 
tends the typical real-time service interface in two dif- 
ferent ways. First, it offers QoS degradation as an 
alternative to denial of service, thus enhancing the 
percentage of accepting service requests and the to- 
tal perceived system utility. Second, it provides a 
generic means of utilizing application-specific knowl- 
edge to control QoS degradation. This paper describes 
a generic QoS-negotiation scheme and its application 
to automated flight control systems. 

3 QoS-Negotiation Model 
A simple yet expressive QoS-negotiation model is the 
key to building predictable] gracefully degradable mid- 
dleware services for real-time applications. In this sec- 
tion we describe the application model, the proposed 
QoS-negotiation model, and the model of a real-time 
middleware service that supports QoS negotiation. 
We consider a class of embedded real-time systems in 
which various software components realize functions to 
accomplish a single overall “mission.” We will hence- 
forth call this mission an application. Flight control, 
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shipboard computing, automated manufacturing, and 
process control generally fall under this category. The 
application is composed of a set of tasks, each of which 
requires a set of resources/services. We are concerned 
mainly with long-lived services that need to hold re- 
served resources for an extended period of time, such 
as processor capacity reservation (121 and communica- 
tion connection establishment services [5]. 

Our negotiation model is centered around three 
simple abstractions: QoS levels, rewards, and rejec- 
tzon penalty. A client requesting service specifies in its 
request a set of negotiation options and the penalty of 
rejecting the request derived from the expected utility 
of the requested service. Each negotiation option con- 
sists of an acceptable QoS level for the client to receive 
from the provider and a reward value commensurate 
with this QoS level. The &OS levels are expressed 
in terms of parameters whose semantics need to be 
known only to the client and service provider. For ex- 
ample, in establishing a real-time communication con- 
nection, these parameters may specify the client’s traf- 
fic delay and jitter requirements. In processor capacity 
reservation, they may express the required processor 
bandwidth, while in a multicast protocol they may 
represent the semantics of the requested multicast ser- 
vice, such as reliable, ordered, causal, or atomic deliv- 
ery. The reward represents the “degree of satisfaction” 
to be achieved from the QoS level (i.e., application- 
perceived utility of supplying the client with that level 
of service). Thus, the client’s negotiation options rep- 
resent a set of alternatives for “acceptable” QoS and 
their “utility.” The rejectzon penalty of a client’s re- 
quest is the penalty incurred to the application if the 
request is rejected. Rejection penalty plays no fur- 
ther role if the request is guaranteed. In Section 6 we 
describe how QoS levels, negotiation options, and re- 
jection penalty are computed in the context of a flight 
control application using a mission planner. The plan- 
ner computes QoS levels, rewards, and penalties from 
application domain knowledge and a specification of 
system failure probabilities. 

To control system load in a way that ensures pre- 
dictable service, the service provider must subject the 
client’s request to on-line admission control which de- 
termines whether to guarantee or reject the request. 
We propose a slightly different notion of guaranteeing 
a request, as compared to the conventional notion of 
guarantee. In our model, guaranteeing a client’s re- 
quest is the certification of the request to receive ser- 
vice at one of the QoS levels listed in its negotiation 
options. The selection of the QoS level it will actually 
receive, however, is up to the service provider. Fur- 

thermore, the service provider is free to switch this 
QoS level to another level in the client’s negotiation 
options, if it increases perceived utility. Note that 
specifying only one negotiation option with default 
rejection penalty reduces this mechanism to tradi- 
tional on-line guarantee schemes. Thus, while the pro- 
posed mechanism should perform no worse than these 
schemes in the special case, it provides the means to 
express and take advantage of more accurate semantic 
information about the application whenever such in- 
formation is available. So, while we do noi require the 
application designer to supply more information than 
is necessary for traditional on-line guarantee schemes, 
we offer the flexibility to take advantage of additional 
semantic information when it is available. In Section 6 
we give an example application that benefits from this 
support. 

Shifting the authority in selecting clients’ QoS lev- 
els from client to service provider has two important 
advantages. First, the application code is decoupled 
from assumptions on underlying resource availability 
and capacity, implied when a client asks for a specific 
QoS level. Second, providing negotiation options and 
delegating QoS-level selection to the provider allows 
QoS-level adjustment by the provider, when necessary, 
to achieve higher overall system utility while maintain- 
ing each client’s &OS guarantee at a level specified in 
negotiation options. 

4 RTPOOL 
We designed an example middleware service, RT- 
POOL, to support the proposed QoS-negotiation 
model. This service is responsible for managing a dis- 
tributed pool of computing resources (processors) to 
guarantee timeliness. It employs a processor member- 
ship protocol to keep track of processor pool mem- 
bership and report processor failures. Schedulability 
analysis is used to provide timeliness guarantees. Ad- 
ditionally, we integrated support for QoS negotiation 
into RTPOOL. This support is split into local and dis- 
tributed algorithms, and is the focus of this section. 

RT- 
POOL service requests are used to guarantee the time- 
liness of new incoming tasks. Our task execution 
model is influenced by the requirements of the flight 
control application (Section 6), but is still sufficiently 
general for use in different applications. RTPOOL as- 
sumes periodic tasks and handles aperiodic tasks with 
periodic servers. A task is composed of a set of mod- 
ules and has a deadline by which all its modules must 
complete. The modules may have arbitrary prece- 
dence constraints among themselves, thus specifying 
their execution sequence. We assume task arrivals 

Clients of RTPOOL are application tasks. 
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(guarantee requests) are independent, so we do not 
support precedence constraints among different tasks. 

Each request for guaranteeing a task includes its 
rejection penalty, and the negotiation options of the 
client task that specify different QoS levels and their 
respective rewards. A client task’s QoS level is speci- 
fied by the parameters of its execution model. For an 
independent periodic task, the parameters consist of 
task period, deadline, and execution time. We model 
period and deadline as negotiable parameters. This 
represents a significant departure from most schedul- 
ing literature, although the authors of [13] articulate 
on the alterability of task periods in real-time control 
systems using system stability and performance in- 
dex. Task execution time, on the other hand, depends 
on the underlying machine speed and thus should not 
be hardcoded into the client’s request. Instead, each 
QoS level in the negotiation options specifies which 
modules of the client task are to be executed at that 
level. This allows the programmer to define different 
versions of the task to be executed at different QoS 
levels, or to compose tasks with mandatory and op- 
tional modules. The reward associated with each QoS 
level tells RTPOOL the utility of executing the spec- 
ified modules of the task with the given period and 
deadline. 

Requests for guaranteeing tasks may arrive dynam- 
ically at  any machine in the pool. Since, in the pro- 
posed QoS-negotiation scheme, tasks normally receive 
higher QoS than their minimum functionality &OS 
level, it is highly probable for the new arrival to be 
guaranteed on the local machine. To guarantee a re- 
quest at  the local machine, RTPOOL executes a local 
&os-optimization heuristic, which (re)computes the 
set of &OS levels for all local clients (including; this 
new one) to maximize the sum of their rewards. Re- 
computing the QoS levels may involve degrading some 
tasks to accommodate the new one. The task is re- 
jected if both (i) the new sum of rewards (including 
that of the newly-arrived task) is less than the ex- 
isting sum prior to its arrival, and (ii) the difference 
between the current and previous sums is larger than 
the new task’s rejection penalty. Otherwise, the re- 
quested task is guaranteed. As a result, task execution 
requests will be guaranteed unless the penalty from re- 
sulting QoS degradation of other local clients is larger 
than that from rejecting the request. When a task ex- 
ecution requwt is rejected by the local machine, m e  
may attempt to tronsfer and guarantee it on a dif- 
ferent macnine using a load-sharing algorithm. Note 
that conventional admission control schemes would al- 
ways incur the request rejection penalty whenever an 

- 
Let each c l i e n t  task Ti have QoS levels 
M,[O], . . . , M;[best ; ]  with rewards 
R;[O], . . . , R;[best i ] ,  r o s p e c t i v e l y  . 

1 .  S t a r t  by s e l e c t i n g t h e  b e s t  qoS l e v e l ,  
M,[best;], for  each c l i e n t  T;. 

2 .  While the  s e t  o f  s e l e c t e d  QoS l e v e l s  is 
not  schedulable,  do S teps  3 and 4 .  

3 .  For each c l i e n t  Ti r e c e i v i n g  s e r v i c e  
at l e v e l  M;[j]  > M,[O], determine t h e  
decrease of l o c a l  reward, 
RiL]-Ril;-l] ,  r e s u l t i n g  from degrading 
t h i s  c l i e n t  t o  t h e  next  loner  l e v e l .  

4 .  Find c l i e n t  Tk iuhose Rhb] - R& - 11 is 
minimum and degrade it t o  t h e  next  
lower l e v e l .  

5 .  Go t o  S tep  2 .  

Figure 1: Local QoS optimization heuristic 

arrived task makes the set of current tasks unschedu- 
lable. By offering QoS degradation as an alternative 
to rejection and by using admission control rules, we 
can show that the reward sum (or perceived utility) 
achieved with our scheme is lower bounded by that 
achieved using conventional admission control schemes 
given the same schedulability analysis and load shar- 
ing algorithms. Thus, in general, our proposed scheme 
achieves higher perceived utility. 

Figure 1 gives an example of the local QoS- 
optimization heuristic. The heuristic implements a 
gradient descent algorithm, terminating when it finds 
a set of QoS levels that keeps all tasks schedulable, if 
any. Note that unless all tasks are executed at  their 
highest QoS level, the machine suffers from unfulJilled 
potential reward, The unfulfilled potential reward, 
UPRj, on machine N j ,  i$i the difference between the 
total reward achieved by the current QoS levels se- 
lected and the maximum possible reward that would 
be achieved if all local tasks were executed at their 
highest QoS level. This difference can be thought of 
as a fractional loss to the mission and is often unavoid- 
able due to resource limitations. However, such loss 
may also be caused by poor load distribution, in which 
case it can be improved b:y proper load sharing. 

RTPOOL employs a bad-sharing algorithm that 
implements a distributed QoS-optamamtion protocol. 
Described in Figure 2, the protgcOl uses a hill climb- 
ing approach to maximize the global sum of rewar& 
across d l  clients in the distributed pool. It is activated 
between two machines Ni and Nj when the difference 
UPRi - UPRj exceeds i5 threshold V .  

Close examination of 1,he local &OS optimization 
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I. On source machine, N,, f ind c l i e n t  Tk 
whose removal w i l l  resul t  i n  maximum 
increase,  W ,  in  t o t a l  reward. 

2 .  Ni request reassigning T k  with reward 
W .  

N j  , where UPR, - UPR, > V ,  receives  
the request and recomputes QoS l e v e l s  
f o r  its l o c a l  c l i e n t s  plus T k .  
t o t a l  reward is higher with Tk, N j  
bids for T k  with  the reward increment 
W, resul t ing  from accepting i t .  

4, Ni transfers  TIC t e  highest bidder. 

3 .  Each machine 

I f  i ts  

Figure 2: Distributed QoS optimization protocol 

heuristic and the distributed QoS optimization pro- 
tocol reveals that neither makes assumptions about 
the nature of the client and the semantics of its QoS 
levels.' For RTPOOL this means complete indepen- 
dence between the task model used by the feasibility 
assessment module and the QoS-negotiation mecha- 
nism. As a result, it is easier to enhance RTPOOL to 
handle more elaborate task models, constraints, and 
QoS-level parameters/semantics without affecting its 
QoS-negotiation mechanism. The disadvantage of this 
separation of concerns compromises optimality some- 
what, as illustrated by the example in Section 7. 

5 Implementation and API 
In this section we highlight implementation details 
of RTPOOL, particularly those related to its QoS- 
negotiation API. RTPOOL is currently running on 
top of OSF Mach RT, mk7.2, on a PC platform, and 
is implemented as a user-level library which exports 
the abstraction of tasks, threads, QoS levels, and re- 
wards. Highlighted below are the components of the 
implemented prototype. 
5.1 Scheduling and QoS Negotiation 
Our scheduling and &OS negotiation support is imple- 
mented as a thread package called qthreads controlled 
by a user-level. local scheduler. The local schedulet is 
the lowest laver of RTPOOL, and Supports ~ r ~ i ~ d i c  
thread creation with a period that can be changed at 
run-time in response to QoS-level changes. 

On top of our local scheduler, the qthreads pack- 
age exports the abstraction of tasks, QoS levels, and 
rewards. Its API permits the user to create tasks, cre- 
ate threads within each task, define &OS levels, and 
specify rewards. It also permits the user to specify 

lThe distributed QoS-negotiation protocol, however, as- 
sumes service to a given client can be migrated to another node. 

for a given thread the &OS levels in which the thread 
is eligible to execute. This package also exports a 
force-negotiation() primitive used to initiate QoS ne- 
gotiation. In the current implementation, all created 
tasks execute in the same a.ddress space. The applica- 
tion is compiled into a single executable image that is 
loaded in its entirety at system start time. The code 
itself is thus static, although task arrival/activation 
times at different nodes may vary dynamically. 
5.2 Invocation Migration 
On top of qthreads we provide an invocation migration 
mechanism to implement the distributed QoS opti- 
mizat,ion protocol described in Section 4. The mecha- 
nism is completely transparent to the application. We 
call it invocation migration, because the transfer oc- 
curs between two successive invocations of a periodic 
task (i.e., when one invocation has terminated and the 
next hasn't started yet). 

When the distributed &OS optimization heuristic 
determines that a task is to be migrated, the state 
variables of each thread in the transferred task are 
sent to the new machine, and the threads belonging 
to the task are destroyed at the source and recreated 
with the transferred state at the target. In the current 
implementation, state variables of a thread must be in- 
dicated to RTPOOL using a corresponding library call 
at thread initialization time. The force-negotiation() 
primitive is called on source and target after the trans- 
fer to update QoS levels accordingly. If a task must 
execute on a certain machine the task can be wired to 
that machine by calling a wiredask()  primitive. 
5.3 Pool Membership API 
A membership algorithm is used to maintain a consis- 
tent view of current membership in the shared resource 
pool. Our group membership algorithm is a derivative 
of [14], and the user interface to this algorithm is the 
subscrabe-to-pool() call which causes the machine on 
which the call was executed to join the named pool. 
When a new machine subscribes (joins), each machine 
in the pool adds the new member to the group. Since 
the new machine does nbt run any application task, 
its unfulfilled potential reward is zero. In our had- 

tial reward is above a given threshold will attempt to 
offload tasks to the new member. Task transfer will 
continue until the unfulfilled potential reward is bal- 
anced within a certain threshold, which stops the dis- 
tributed &OS optimization protocol. When a machine 
fails, the group leader (the machine with the highest 
number in the pool) re-creates the destroyed tasks, 
then the load-sharing heuristic redistributes the load 
if necessary. When the group leader fails, its succes- 

ikaring keurietia, machines whom unfulfilled poten- 
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sor (the machine with the next highest pool number) 
becomes the leader. Task state will be lost in case of 
a crash, but it can be avoided by task replication. 
5.4 Communication API 
An application need not be aware where each of its 
tasks is executing. The same executable application 
image is started on every machine that joins the pool. 
The application is composed of tasks, and the decision 
of where to run each task is left up to the load-sharing 
heuristic. This requires location-independent send() 
and receive() primitives for inter-task communication. 
Tasks communicate via location-independent send() 
and receive() primitives which use local communica- 
tion buffers on the same machine, and send messages 
across the network for remote destinations. Our com- 
munication protocol stack is implemented using xKer- 
ne1 3.2 [15], and is layered on top of a UDP/IP stack. 
The communication subsystem architecture on each 
host is designed to support prioritized, bounded-time 
message delivery. This architecture has been proposed 
earlier in the context of implementing real-time chan- 
nels [la]. We adapt it to export the abstraction of 
a sporadic communication server, implemented as a 
separate task using qthread support. 

6 Application 
We have used RTPOOL to provide negotiable timeli- 
ness guarantees for several real-time tasks required in 
our fully-automated flight control system, which was 
used to fly a simulated model of an F-16 fighter air- 
craft. Details of the automated aircraft flight prob- 
lem are provided in Section 6.1, followed by a de- 
scription of a method to determine task QoS levels 
and rewards from application domain knowledge (Sec- 
tion 6.2). Section 6.3 summarizes the set of tasks, QoS 
levels, and rewards that describe our application. 
6.1 Automated Flight Control 

Current Flight Management Systems (FMS) 
( [17], [18]) perform several functions, including flight 
planning, navigation, guidance, and control. The 
flight planner computes waypoint trajectories, then 
during flight, the navigator uses sensor data to main- 
tain a current aircraft state estimate. The guidance 
module uses the planned trajectory and state esti- 
mate to build the reference state vector, which is then 
used by the controller to compute actuator commands. 
In all FMS, real-time execution guarantees exist for 
navigation, guidance, and control, adhering to criti- 
cal function deadlines with schedulability guarantees 
made off-line. Our QoS-negotiation scheme will al- 
low graceful performance degradation when enough 
resources are lost to violate off-line guarantees. In 
this paper we consider only tasks having a known and 

bounded execution time. Issues in dealing with poten- 
tially unbounded on-line computations, such as run- 
time intelligent flight planning, are discussed in [l]. 

We issue F-16 aircraft guidance commands in terms 
of altitude (2) and compass heading ( h ) ,  and em- 
ploy a control loop to compute primary actuator com- 
mands, including elevator, ailerons, rudder, and throt- 
tle. The elevator, ailerons, and rudder generate aero- 
dynamic forces that directly affect aircraft roll and 
pitch attitude, and, via dynamic coupling, alter air- 
craft heading and airspeed. The throttle provides a 
linear force along the aircraft fuselage. Our controller 
may also command a secondary actuator set that im- 
proves flight performance but is not critical for flight 
safety. Secondary actuators include the afterburner 
for extra engine thrust, and flaps and speed brake used 
to enhance slow-airspeed control. 

In a parallel research effort [19] a set of linear con- 
trollers have been implemented to calculate the pri- 
mary actuator commands to achieve the desired ref- 
erence altitude (zrej) and heading ( h , , j ) .  Controller 
state includes altitude x ,  heading h, pitch, p ,  and roll 
r .  Equation (1) shows t,he control laws used during 
our experiments, adopted from those used in [l]. In 
higher-performance QoS levels (see Section 6.3), the 
controller also sends discrete-valued commands to the 
secondary actuator set (described in [19]). 

Z r e j  - 

rudder 

0 -ICp2 --IC& 
0 -Kp3 -IC& O )  

I< = ( 0 IC2 0 
1‘1 0 -I<dl 0 

0 IC, 0 

6.2 Computing QaiS Levels and Rewards 
Our QoS-negotiation scheme enables the application 
domain expert to express application-level semantics 
to RTPOOL using &OS levels, rewards, and rejection 
penalty. In this section .we briefly highlight how this 
support may complemenl mission planning techniques 
in the context of CIRCA (the Cooperative Intelligent 
Real-time Control Architecture) [l]. Based on a user- 
specified domain knowledge base, CIRCA’S main goal 
is to build a set of control plans to keep the sys- 
tem “safe” (i.e., avoid catastrophic failures such as 
an aircraft crash) while working to achieve its perfor- 
mance goals (e.g., arrive at its destination on time). 
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In order to deal successfully with an inherently non- 
deterministic, perhaps poorly modeled, environment 
of a complex real-time system CIRCA employs prob- 
abilistic planning which models the system by a set 
of states and transition probabilities. System failure 
is modeled by temporal transitions to failure states 
(TTFs). CIRCA’S mission planner uses its domain 
knowledge base to select appropriate actions (tasks) 
and their timing constraints (QoS levels), so that the 
probability of TTFs is reduced below a certain thresh- 
old. The reward decrease corresponding to degrading 
a task from one QoS level to another, or rejecting a 
task altogether, is computed from the corresponding 
increase in failure probability. 

The CIRCA planner computes a maximum pe- 
riod for each task based on the notion of preempt- 
ing TTFs [19]. For any state, an outgoing TTF is 
considered preempted if its probability is below the 
specified threshold. To define alternative QoS levels, 
CIRCA’S planner may compute different task periods 
based on a set of alternative TTF probability thresh- 
olds. For example, say a TTF has a cumulative prob- 
ability distribution that reaches the threshold value 
when the preemptive task’s inaximuin period is set to 
0.2 seconds. But, suppose we need to relax the task’s 
period requirement under overload. The new, longer 
task period for degraded &OS is computed from the 
next higher TTF probability threshold, and this task 
is assigned a lower reward that corresponds to the re- 
duction in certainty that the T T F  will be preempted. 
A complete set of task QoS levels may be developed 
by considering all T T F  probability thresholds. 

6.3 Description of Flight Tasks 
We have used the Aerial Combat (ACM) F-16 flight 

simulator [20] for all flight tests. ACM runs on a Sun 
workstation with socket connection to the real-time 
execution platform. We have tested QoS-negotiation 
by flying the simulated aircraft around a left-hand pat- 
tern in which the aircraft executes a takeoff and climb, 
holds a constant altitude around a rectangular course, 
then descends through final approach and landing. By 
varying periods for controllers and sensors, we are able 
to observe the degradation in flight quality (Le., sta- 
bility) as a function of each task’s selected QoS level. 

In this section, we describe the tasks and rewards 
used during our QoS-negotiation algorithm tests. Our 
mission goals were to  complete the flight around the 
pattern and to destroy observed enemy targets, if any, 
using the F-16’s onboard radar and missiles. Four 
separate tasks were required to control the aircraft: 
Guidance (Guid),  Control (Cirl) ,  Slow Navigation 
(SNav) ,  and Fast Navigation ( F N a v ) .  These tasks 

function much like their similarly-named FMS coun- 
terparts. Guid is responsible for computing the refer- 
ence trajectory (state) for the aircraft. In our tests, 
Guid specified heading and altitude to lead the aircraft 
around the pattern through landing. The Ctrl task is 
responsible for executing the low-level control loops 
to compute actuator commands from the high-level 
guidance trajectory. We have two navigation tasks 
(SNav,FNav) to estimate aircraft state, distinguished 
by required update frequency. 

Table 1 shows the QoS levels (L) present for all 
tasks, including associated reward (R), execution time 
(ET), period (P), and version (Ver). In our simple 
tests, we set each task deadline equal to its period, 
although there are no such requirements in our QoS 
negotiation protocol. Also, because all tasks are con- 
sidered critical to execute (at least at a degraded QoS 
level), we set all task rejection penalties sufficiently 
high that all tasks are always accepted by the QoS 
negotiator. 

In addition to the basic flight control tasks, we 
simulate a function necessary during military opera- 
tion: Missile Control ( M C ) .  M C  is composed of two 
precedence-constrained threads: “Read Radar” and 
“Fire Missile”. “Read Radar’’ monitors aircraft radar 
to detect approaching enemy targets, then “Fire Mis- 
sile” launches a missile at any enemy targets appearing 
on radar. As shown in Table 1, M C  is cornputation- 
ally expensive and has two QoS levels. In Level 1, 
radar will be scanned with sufficient frequency to al- 
low detection and destruction of most enemy targets. 
Otherwise (Level 0), fast-moving targcts may not be 
destroyed. During experiments (in Section 7.3), we 
varied the reward for M C  QoS Level 1 depending on 
the relative importance of destroying enemy targets. 

As described above, Ctrl is responsible for execut- 
ing the control loop. At each invocation, Ctrl uses 
the Equation (1) control law with appropriate gains 
to compute primary actuator values. Two versions of 
this task were tested, one that used the secondary ac- 
tuators (QoS levels 0, 2, and 4) and one that did not 
(&OS levels 1 and 3). Use of these actuators allows the 
aircraft to perform better in terms of takeoff distance 
and climb rate as shown in Section 7 at the expense of 
a longer task execution time. The importance of Ctrl 
task period is illustrated with relatively high reward 
given to low-period Ctrl &OS levels. The small reward 
changes between the use of the different versions (e.g., 
level 3 vs. level 4) reflects the fact that version choice 
is not critical for safety.2 

We defmed a QoS “level 0” for Girl and SNav that, as will 
be shown in Section 7 ,  were so slow that the aircraft becomes 
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1 2 I 104 I 80 I 1 1  sec 

SNav 

3 120 60 0.2 prim 
4 124 80 0.2 sec 
0 10 100 10 def 

Table 1: Flight plan with different &OS levels. 

The SNav task is responsible for reading sensors 
that do not require a high sampling rate. All naviga- 
tion sensors are grouped into this task because they 
are used only by the Guid task to determine high-level 
altitude and heading commands. The reward/period 
values for SNav in Table 1 reflect this task’s non- 
critical nature. Finally, FNav is responsible for main- 
taining all sensor data used by the Ctrl task. Since 
the system must read this data frequently to maintain 
sufficient state estimates, the periods and associated 
rewards are similar to those used by Clrl. 

7 Evaluation 
In this section, we show results illustrating how &OS 
negotiation can help aircraft flight control degrade 
gracefully. First, we assess the &OS negotiation heuris- 
tic for our flight tasks by observing how the &OS of 
each task degrades with lower machine speeds. In Sec- 
tion 7.2 we study aircraft performance during flight 
as a function of the Ctrl task’s QoS level, illustrat- 
ing graceful performance degradation by example. In 
Sections 7.1 and 7.2, we focus on tests that use a sin- 
gle machine, and consider only the guidance, naviga- 
tion, and control tasks. We conclude our experiments 
(Section 7.3) with tests which also include the missile 
control task and observe the effects of load sharing 
between two machines, with processor failure used to 
demonstrate graceful performance degradation. 

unstable. These levels are included among the QoS negotiation 
options for illustrative purposes only. 
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Figure 3: QoS levels vs. CPU speed for flight tasks. 

7.1 QoS Negotiation Heuristic Testing 
In Section 4, we described a simple local QoS opti- 
mization heuristic to help a service provider select a 
high-reward set of QoS levels for its clients. Using 
the &OS levels and rewards listed in Table 1, we illus- 
trate the behavior of the presented heuristic. In this 
experiment we kept the task set fixed, and decreased 
the underlying CPU speed (increasing task execution 
times), then observed the corresponding decrease in 
task QoS levels. Figure 3 plots QoS levels (modes) 
selected vs. CPU speed, normalized by the minimum 
CPU speed for which the task set is schedulable. 

Since the heuristic uses only reward information to 
guide its search for a feasible &OS level set (thus be- 
ing applicable as-is in amy service that uses our QoS 
negotiation scheme), optimality is compromised yet 
“graceful QoS degradatioln” is still illustrated. 
7.2 Aircraft Performance 
We evaluated system performance by studying its abil- 
ity to control the simulated F-16 during flight. In this 
section, all flight control tasks execute on one machine. 
As shown in Figure 3, since Ctrl and Fnav required 
the smallest period, these tasks are the execution bot- 
tlenecks, so flight perforrnance changes are most eas- 
ily observed via changes in Ctrl or Fnav &OS. Since 
these tasks are tightly coupled (i.e., Ctrl uses results 
from F N a v ) ,  our test miatrix included variations of 
Ctrl QoS from its highest (4) to lowest (0) level and 
ensured that FNav acted with at  least as low a period 
as that selected for Ctrl. 

As shown in Table 1, Clrl &OS levels are a function 
of both period and version. We present tests that show 
flight performance differences due to each of these 
variables, specifically during the critical takeoff/climb 
phase of flight. Figure 4 illustrates differences between 
the two versions of Ctrl in their “best performance” 
case (period = 200 msec). Level 4 (with secondary 
actuation) requires larger execution time than level 3 
(no secondary actuation), thus is harder to schedule. 
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Aircraft altitude performance with and 

Climb performance for level 4 is only slightly better 
for level 3, consistent with their small reward differ- 
ence. This example illustrates how QoS negotiation 
can achieve graceful degradation. Overall processor 
utilization is decreased by reducing Ctrl to level 3, 
but safety (controller stability) is not compromised. 

Next, we performed tests with varying Ctrl task 
period. We isolated version from period effects by 
exclusively selecting QoS levels with secondary ac- 
tuation, although similar trends result with the other 
Ctrl version (levels 1 and 3). To illustrate performance 
changes as a function of task period, we consider three 
QoS levels: level 4 (period = 0.2 sec), level 2 (period = 
1 sec), and level 0 (period = 5 sec). We include level 0 
among Ctrl QoS negotation options as a comparative 
example illustrating controller instability. Of course, 
no unstable QoS levels should be defined among a 
client's negotiation options, since the client should not 
'(ask" for instability. 

Figures 5 through 8 show aircraft state as a func- 
tion of time during takeoff, climb, and a turn from 
South to East. Figure 5 shows aircraft altitude for 
the different Ctrl task periods. As period increases, 
climb performance gracefully degrades between QoS 
levels 4 and 2, but then becomes unstable in level 0 
(period = 5 sec), illustrating the necessity of real-time 
response for the Ctrl task. Figures 7 and 8 show air- 
craft pitch angle and roll angle, respectively, for the 
"stable" controller QoS levels. Note that we do not 
include level 0 because the unstable response obscures 
the other plots. Pitch angle and altitude are coupled, 
so pitch has largest magnitude during the climb, and 
as illustrated, the period increase to 1 second causes 
a large pitch angle to be required longer, a stable but 
undesirable performance trait. Roll angle (Figure 8) 
shows delay and longer deviation from zero as well as 
significant overshoot when task period increases. 

eo00 

Figure 5: Aircraft altitude for varied Ctrl QoS levels. 
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Figure 6: Aircraft heading for varied Ctrl QoS levels. 
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Figure 7: Aircraft pitch for varied Ctrl QoS levels. 
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Figure 8: Aircraft roll for varied Ctrl QoS levels. 
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7.3 Load Sharing 

Load sharing capabilities are implemented in RT- 
POOL, and we performed a final test set which in- 
cluded both the flight control tasks and the missile 
control MC task, as described in Section 6.3. In these 
tests, we start the system with two machines available 
for task execution. Because, as defined in Table 1, 
the M C  task is computationally expensive, the load 
sharing protocol places all flight control tasks on one 
machine and the M C  task (both “Read Radar” and 
”Fire Missile” threads) on the other machine. 

When the two machines function normally, both 
flight and missile control tasks ran in their maximum 
performance levels. In this case, enemy targets are 
quickly detected and fired upon, while flight control 
is identical to the best performance profiles in the 
Section 7.2 plots. For the next test set, we began 
operation with two functioning machines, then shut 
one down (simulating failure) just after takeoff. This 
requires the load sharing and &OS negotiation algo- 
rithms to function dynamically, such that the one 
functional machine now has to execute both flight and 
missile control tasks. If M C  task reward is relatively 
low, the system chooses to degrade the MC, Guid, and 
SNav functions (to level 0), but manages to keep the 
Ctrl and FNav tasks at safe levels. In this manner, 
flight control is a bit sluggish but stable. However, the 
aircraft is unable to launch missiles at most targets. 

Alternatively, this system may be aboard an ex- 
pendable drone whose most important function is to 
destroy a target or attack enemy aircraft. In this case, 
the reward set may be structured such that the missile 
control task takes precedence over accurately main- 
taining flight contr01.~ To illustrate such changes in 
the task reward set, we altered the reward for QoS 
level 1 of M C  to 200 (shown in Table 1). Now, when 
the second machine shuts down, the &OS negotiator 
reduces all flight control levels to 0, since the missile 
controller is the “most important” task. After one 
machine fails, the aircraft eventually becomes unsta- 
ble (as illustrated in Section 7.2), but will still quickly 
detect and respond to enemy targets on radar. 

It is important to note that, had we used traditional 
schedulability analysis algorithms that do not allow 
negotiated QoS degradation, the system would have 
failed to guarantee/accept the entire task set on the 
same processor, leading to complete mission failure. 

31n our tests. when rnissile control takes precedence over 
flight control during single machine operation, the aircraft be- 
comes unstable. This would be undesirable in an actual system, 
since missiles cannot be launched from a crashed aircraft. 

8 Summary and Future Work 
In this paper we presented a novel scheme for QoS 
negotiation in real-time applications. This scheme is 
applicable for the design of real-time service providers, 
extending the interface of such services in that (i) it 
adopts a modified notion of request guarantees that 
allows for defining QoS compromises and supports 
graceful &OS degradation, and (ii) it provides a generic 
means to express application-level semantics to control 
how application QoS is to be degraded under overload 
or failure conditions. Our QoS-negotiation scheme im- 
proves the guarantee ratio over traditional admission 
control algorithms and increases the application-level 
perceived utility of the system. 

The proposed QoS-negotiation architecture has 
been incorporated into FtTPOOL, an example middle- 
ware service which implements a computing resource 
manager for a pool of processors. The synergy be- 
tween components of the service and QoS-negotiation 
support has been illustrated. RTPOOL is used for a 
flight control application to demonstrate the efficacy 
of QoS negotiation, We demonstrated that the appli- 
cation does have negotiable parameters and can thus 
benefit from the added flexibility of negotiation. We 
also showed that application task QoS levels and their 
rewards can be analytically derived from system fail- 
ure probability. QoS-negotiation support, while guar- 
anteeing maximum &OS levels during normal opera- 
tion, is shown to provide graceful &OS degradation in 
case of resource loss. 

We have demonstrated how an application can ben- 
efit from the proposed QoS-negotiation scheme, but 
we have not analyzed the performance of different QoS 
optimization policies, nor the general scope of their 
applicability. We are currently studying alternative 
QoS-optimization methodologies and the scalability of 
our QoS-negotiation approach. We are also consider- 
ing ways to implement negotiable fault-tolerance &OS, 
perhaps as an extension to RTPOOL. Finally, we are 
working to develop new schemes for quantifying per- 
ceived utility to compute reward and penalty values. 
Possible approaches include adapting performability 
analysis and using economic models of utility/costs. 
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