
QoS Negotiation in Real-Time Systems
and Its Application to Automated Flight Control *

Tarek F. Abdelzaher, Ella M. Atkins, and Kang G. Shin

Real- time Computing Laboratory
Department of Electrical Engineering and Computer Science

The University of Michigan
Ann Arbor, Michigan 48109-2122

{ zaher, marbles, Lgshin}@ eecs. umich. edu

Abstract
We propose a model for quality-of-service (QoS)

negotiation in building real-time services to meet
both predictability and graceful degradation require-
ments. &OS negotiation is shown to (i) outperform
conventional (‘binary’’ admission control schemes (ei-
ther guaranteeing the required QoS or rejecting the
service request), and (ii) achieve higher application-
perceived system utility. We incorporated the pro-
posed QoS-negotiation model into an example real-
time middleware service, called RTPOOL, which man-
ages a distributed pool of shared computing resources
(processors) to guarantee timeliness QoS for real-time
applications. The efficacy and power of QoS negotia-
tion are demonstrated for an automated flight control
system implemented on a network of PCs running RT-
POOL. This system is used to fly an F-16 fighter air-
craft modeled using the Aerial Combat (ACM) F-16
Flight Simulator. Experimental results indicate that
QoS negotiation, while maintaining real-time guaran-
tees, enables graceful &OS degradation under condi-
tions in which traditional schedulability analysis and
admission control schemes fail.

1 Introduction
Predictability in real-time applications is often
achieved by reserving resources and employing admis-
sion control under a priori assumed load and failure
conditions. Graceful QoS degradation, on the other
hand, requires dynamic resource reallocation in order
to cope with changing load and failure conditions while
maximizing system utility. Both predictability and

‘The work reported in this paper was supported in part by
the Advanced Research Projects Agency, monitored by the US
Air Force Rome Laboratory under Grant F30602-95-1-0044.

graceful QoS degradation are necessary for real-time
applications but pose conflicting requirements.

The main focus of this paper is on how to achieve
predictability and graceful degradation in long-lived
real-time services for embedded applications. By
“long-lived” we mean that a request, if granted, will
hold its reserved resources for a relatively long period
of time. To control the load imposed on system re-
sources and hence guarantee a certain level of &OS,
the request must go through admission control and
resource reservation. Conventional admission control
schemes make “binary” decisions on whether to guar-
antee or reject each request. Future requests may be
rejected because resources have already been commit-
ted to those that arrived earlier. In hard-real-time
systems, a static analysis may be performed to guar-
antee a priori that all requests be honored under the
assumption of the worst-case request arrival behav-
ior and service requirements. If these assumptions are
violated at run-time due to transient overload or re-
source loss (failures), the guarantees may become in-
valid, which may, in turn, lead to system failure.

We propose a mechanism for QoS (re)negotiation
as a way to ensure graceful degradation in cases of
overload, failures, or violation of pre-run-time asaump-
tions. This mechanism permits clients to express in
their service requests a spectrum of QoS levels they can
accept from the provider and perceived utility of re-
ceiving service at each of these levels. As a result, the
application designer will be able to express acceptable
compromises in &OS and their relative cost/benefit as
derived from application domain knowledge.

We incorporate the proposed &OS negotiation into
a processing capacity management middleware service
called RTPOOL. The service is designed and imple-

1080-1812/97 $10.00 0 1997 IEEE 228

mented to support timeliness guarantees for a flight
control application, in which a set of flight control
tasks, their QoS levels, and the corresponding rewards
are provided by the flight mission planner, and can
be renegotiated, if necessary, using RTPOOL’s QoS-
negotiation support. The mission planner was de-
veloped in the context of the Cooperative Intelligent
Real-time Control Architecture (CIRCA) [l], which
computes task execution tradeoffs from application
domain knowledge and alters the mission plan as re-
quired during QoS negotiation.

In this paper, we begin with a review of related
work (Section 2), followed by a description of the
proposed QoS-negotiation model (Section 3). Next
(Section 4), we describe RTPOOL, a distributed
processing resource management service that follows
the proposed QoS-negotiation model, highlighting the
synergy between RTPOOL components and QoS-
negotiation support. We present details of RT-
POOL implementation and negotiation API (Sec-
tion 5), then describe the use of RTPOOL in the con-
text of automated flight control (Section 6). Flight
performance is evaluated (Section 7), illustrating the
efficacy of QoS-negotiation support, followed by a brief
paper summary (Section 8).

2 Related work
Predictable performance of real-time services has tra-
ditionally been achieved using resource reservation
and admission control. In hard real-time systems, suf-
ficient resources are reserved a priori for the appli-
cation. Off-line schedulability analysis (e.g., [2-41) is
used to verify that the reserved resources are suffi-
cient for meeting all timing constraints. Such analy-
sis requires that the worst-case load/failure conditions
be known at design time. For some applications, the
worst-case load and failure conditions may be difficult
to know, thus a mechanism is needed to ensure grace-
ful performance degradation when the load or failure
hypotheses are violated.

On-line admission control has been used to guaran-
tee predictability of services where request patterns
are not known in advance, e.g., establishment re-
quests of real-time channels [5] . This concept has also
been applied to resource reservation for dynamically-
arriving real-time tasks, e.g., the Spring Kernel [6] and
Dreams real-time system [7]. A main concern of this
approach is predictability. Run-time guarantees given
to admitted requests are never revoked even if they re-
sult in rejecting subsequently-arriving more important
requests competing for the same resources.

In soft real-time systems, services are more con-
cerned with maximizing overall utility (by serving

the most important request first) than guaranteeing
reserved resources for individual requests. Priority
driven services can generally be categorized this way,
and are supported in real-time kernels such as Al-
pha [8] and Mach [9]. Under overload conditions, lower
priority tasks are denied1 service in favor of more im-
portant tasks. In the Rialto operating system [IO], a
resource planner attempts to dynamically maximize
user-perceived utility of the entire system. However,
the scheme does not adopt the notion of guaranteeing
a reserved amount of resources for the application.

Compromises between giving irrevocable service
guarantees to arriving requests (in hard real-time sys-
tem), and maximizing overall system utility (in soft
real-time systems) have been addressed. For exam-
ple, virtual clock based communication schemes [ll]
essentially delay a packet transmission request until
its virtual arrival time. This enforces a global priority
order, a special case of mlaximizing utility. Recently, a
similar approach has been suggested for guaranteeing
dynamic real-time tasks. The decision to guarantee
an arrived task (and commit resources to it) is de-
layed until some critical instant, effectively making the
system wait for “more important” tasks to arrive. Un-
fortunately, the delay in making task guarantees may
itself waste processing bandwidth which may reduce
schedulability and increase the task rejection rate.

A different approach to maintaining hard real-time
guarantees while maximizing the overall perceived
utility under overload and failure conditions is to of-
fer QoS as a new dimension to trade in making re-
source management deciisions. QoS negotiation ex-
tends the typical real-time service interface in two dif-
ferent ways. First, it offers QoS degradation as an
alternative to denial of service, thus enhancing the
percentage of accepting service requests and the to-
tal perceived system utility. Second, it provides a
generic means of utilizing application-specific knowl-
edge to control QoS degradation. This paper describes
a generic QoS-negotiation scheme and its application
to automated flight control systems.

3 QoS-Negotiation Model
A simple yet expressive QoS-negotiation model is the
key to building predictable] gracefully degradable mid-
dleware services for real-time applications. In this sec-
tion we describe the application model, the proposed
QoS-negotiation model, and the model of a real-time
middleware service that supports QoS negotiation.
We consider a class of embedded real-time systems in
which various software components realize functions to
accomplish a single overall “mission.” We will hence-
forth call this mission an application. Flight control,

229

shipboard computing, automated manufacturing, and
process control generally fall under this category. The
application is composed of a set of tasks, each of which
requires a set of resources/services. We are concerned
mainly with long-lived services that need to hold re-
served resources for an extended period of time, such
as processor capacity reservation (121 and communica-
tion connection establishment services [5].

Our negotiation model is centered around three
simple abstractions: QoS levels, rewards, and rejec-
tzon penalty. A client requesting service specifies in its
request a set of negotiation options and the penalty of
rejecting the request derived from the expected utility
of the requested service. Each negotiation option con-
sists of an acceptable QoS level for the client to receive
from the provider and a reward value commensurate
with this QoS level. The &OS levels are expressed
in terms of parameters whose semantics need to be
known only to the client and service provider. For ex-
ample, in establishing a real-time communication con-
nection, these parameters may specify the client’s traf-
fic delay and jitter requirements. In processor capacity
reservation, they may express the required processor
bandwidth, while in a multicast protocol they may
represent the semantics of the requested multicast ser-
vice, such as reliable, ordered, causal, or atomic deliv-
ery. The reward represents the “degree of satisfaction”
to be achieved from the QoS level (i.e., application-
perceived utility of supplying the client with that level
of service). Thus, the client’s negotiation options rep-
resent a set of alternatives for “acceptable” QoS and
their “utility.” The rejectzon penalty of a client’s re-
quest is the penalty incurred to the application if the
request is rejected. Rejection penalty plays no fur-
ther role if the request is guaranteed. In Section 6 we
describe how QoS levels, negotiation options, and re-
jection penalty are computed in the context of a flight
control application using a mission planner. The plan-
ner computes QoS levels, rewards, and penalties from
application domain knowledge and a specification of
system failure probabilities.

To control system load in a way that ensures pre-
dictable service, the service provider must subject the
client’s request to on-line admission control which de-
termines whether to guarantee or reject the request.
We propose a slightly different notion of guaranteeing
a request, as compared to the conventional notion of
guarantee. In our model, guaranteeing a client’s re-
quest is the certification of the request to receive ser-
vice at one of the QoS levels listed in its negotiation
options. The selection of the QoS level it will actually
receive, however, is up to the service provider. Fur-

thermore, the service provider is free to switch this
QoS level to another level in the client’s negotiation
options, if it increases perceived utility. Note that
specifying only one negotiation option with default
rejection penalty reduces this mechanism to tradi-
tional on-line guarantee schemes. Thus, while the pro-
posed mechanism should perform no worse than these
schemes in the special case, it provides the means to
express and take advantage of more accurate semantic
information about the application whenever such in-
formation is available. So, while we do noi require the
application designer to supply more information than
is necessary for traditional on-line guarantee schemes,
we offer the flexibility to take advantage of additional
semantic information when it is available. In Section 6
we give an example application that benefits from this
support.

Shifting the authority in selecting clients’ QoS lev-
els from client to service provider has two important
advantages. First, the application code is decoupled
from assumptions on underlying resource availability
and capacity, implied when a client asks for a specific
QoS level. Second, providing negotiation options and
delegating QoS-level selection to the provider allows
QoS-level adjustment by the provider, when necessary,
to achieve higher overall system utility while maintain-
ing each client’s &OS guarantee at a level specified in
negotiation options.

4 RTPOOL
We designed an example middleware service, RT-
POOL, to support the proposed QoS-negotiation
model. This service is responsible for managing a dis-
tributed pool of computing resources (processors) to
guarantee timeliness. It employs a processor member-
ship protocol to keep track of processor pool mem-
bership and report processor failures. Schedulability
analysis is used to provide timeliness guarantees. Ad-
ditionally, we integrated support for QoS negotiation
into RTPOOL. This support is split into local and dis-
tributed algorithms, and is the focus of this section.

RT-
POOL service requests are used to guarantee the time-
liness of new incoming tasks. Our task execution
model is influenced by the requirements of the flight
control application (Section 6), but is still sufficiently
general for use in different applications. RTPOOL as-
sumes periodic tasks and handles aperiodic tasks with
periodic servers. A task is composed of a set of mod-
ules and has a deadline by which all its modules must
complete. The modules may have arbitrary prece-
dence constraints among themselves, thus specifying
their execution sequence. We assume task arrivals

Clients of RTPOOL are application tasks.

230

(guarantee requests) are independent, so we do not
support precedence constraints among different tasks.

Each request for guaranteeing a task includes its
rejection penalty, and the negotiation options of the
client task that specify different QoS levels and their
respective rewards. A client task’s QoS level is speci-
fied by the parameters of its execution model. For an
independent periodic task, the parameters consist of
task period, deadline, and execution time. We model
period and deadline as negotiable parameters. This
represents a significant departure from most schedul-
ing literature, although the authors of [13] articulate
on the alterability of task periods in real-time control
systems using system stability and performance in-
dex. Task execution time, on the other hand, depends
on the underlying machine speed and thus should not
be hardcoded into the client’s request. Instead, each
QoS level in the negotiation options specifies which
modules of the client task are to be executed at that
level. This allows the programmer to define different
versions of the task to be executed at different QoS
levels, or to compose tasks with mandatory and op-
tional modules. The reward associated with each QoS
level tells RTPOOL the utility of executing the spec-
ified modules of the task with the given period and
deadline.

Requests for guaranteeing tasks may arrive dynam-
ically at any machine in the pool. Since, in the pro-
posed QoS-negotiation scheme, tasks normally receive
higher QoS than their minimum functionality &OS
level, it is highly probable for the new arrival to be
guaranteed on the local machine. To guarantee a re-
quest at the local machine, RTPOOL executes a local
&os-optimization heuristic, which (re)computes the
set of &OS levels for all local clients (including; this
new one) to maximize the sum of their rewards. Re-
computing the QoS levels may involve degrading some
tasks to accommodate the new one. The task is re-
jected if both (i) the new sum of rewards (including
that of the newly-arrived task) is less than the ex-
isting sum prior to its arrival, and (ii) the difference
between the current and previous sums is larger than
the new task’s rejection penalty. Otherwise, the re-
quested task is guaranteed. As a result, task execution
requests will be guaranteed unless the penalty from re-
sulting QoS degradation of other local clients is larger
than that from rejecting the request. When a task ex-
ecution requwt is rejected by the local machine, m e
may attempt to tronsfer and guarantee it on a dif-
ferent macnine using a load-sharing algorithm. Note
that conventional admission control schemes would al-
ways incur the request rejection penalty whenever an

-
Let each c l i e n t task Ti have QoS levels
M,[O], . . . , M;[best ;] with rewards
R;[O], . . . , R;[best i] , r o s p e c t i v e l y .

1 . S t a r t by s e l e c t i n g t h e b e s t qoS l e v e l ,
M,[best;], for each c l i e n t T;.

2 . While the s e t o f s e l e c t e d QoS l e v e l s is
not schedulable, do S teps 3 and 4 .

3 . For each c l i e n t Ti r e c e i v i n g s e r v i c e
at l e v e l M;[j] > M,[O], determine t h e
decrease of l o c a l reward,
RiL]-Ril;-l] , r e s u l t i n g from degrading
t h i s c l i e n t t o t h e next loner l e v e l .

4 . Find c l i e n t Tk iuhose Rhb] - R& - 11 is
minimum and degrade it t o t h e next
lower l e v e l .

5 . Go t o S tep 2 .

Figure 1: Local QoS optimization heuristic

arrived task makes the set of current tasks unschedu-
lable. By offering QoS degradation as an alternative
to rejection and by using admission control rules, we
can show that the reward sum (or perceived utility)
achieved with our scheme is lower bounded by that
achieved using conventional admission control schemes
given the same schedulability analysis and load shar-
ing algorithms. Thus, in general, our proposed scheme
achieves higher perceived utility.

Figure 1 gives an example of the local QoS-
optimization heuristic. The heuristic implements a
gradient descent algorithm, terminating when it finds
a set of QoS levels that keeps all tasks schedulable, if
any. Note that unless all tasks are executed at their
highest QoS level, the machine suffers from unfulJilled
potential reward, The unfulfilled potential reward,
UPRj, on machine N j , i$i the difference between the
total reward achieved by the current QoS levels se-
lected and the maximum possible reward that would
be achieved if all local tasks were executed at their
highest QoS level. This difference can be thought of
as a fractional loss to the mission and is often unavoid-
able due to resource limitations. However, such loss
may also be caused by poor load distribution, in which
case it can be improved b:y proper load sharing.

RTPOOL employs a bad-sharing algorithm that
implements a distributed QoS-optamamtion protocol.
Described in Figure 2, the protgcOl uses a hill climb-
ing approach to maximize the global sum of rewar&
across d l clients in the distributed pool. It is activated
between two machines Ni and Nj when the difference
UPRi - UPRj exceeds i5 threshold V .

Close examination of 1,he local &OS optimization

23 1

I. On source machine, N,, f ind c l i e n t Tk
whose removal w i l l resul t i n maximum
increase, W , in t o t a l reward.

2 . Ni request reassigning T k with reward
W .

N j , where UPR, - UPR, > V , receives
the request and recomputes QoS l e v e l s
f o r its l o c a l c l i e n t s plus T k .
t o t a l reward is higher with Tk, N j
bids for T k with the reward increment
W, resul t ing from accepting i t .

4, Ni transfers TIC t e highest bidder.

3 . Each machine

I f i ts

Figure 2: Distributed QoS optimization protocol

heuristic and the distributed QoS optimization pro-
tocol reveals that neither makes assumptions about
the nature of the client and the semantics of its QoS
levels.' For RTPOOL this means complete indepen-
dence between the task model used by the feasibility
assessment module and the QoS-negotiation mecha-
nism. As a result, it is easier to enhance RTPOOL to
handle more elaborate task models, constraints, and
QoS-level parameters/semantics without affecting its
QoS-negotiation mechanism. The disadvantage of this
separation of concerns compromises optimality some-
what, as illustrated by the example in Section 7.

5 Implementation and API
In this section we highlight implementation details
of RTPOOL, particularly those related to its QoS-
negotiation API. RTPOOL is currently running on
top of OSF Mach RT, mk7.2, on a PC platform, and
is implemented as a user-level library which exports
the abstraction of tasks, threads, QoS levels, and re-
wards. Highlighted below are the components of the
implemented prototype.
5.1 Scheduling and QoS Negotiation
Our scheduling and &OS negotiation support is imple-
mented as a thread package called qthreads controlled
by a user-level. local scheduler. The local schedulet is
the lowest laver of RTPOOL, and Supports ~ r ~ i ~ d i c
thread creation with a period that can be changed at
run-time in response to QoS-level changes.

On top of our local scheduler, the qthreads pack-
age exports the abstraction of tasks, QoS levels, and
rewards. Its API permits the user to create tasks, cre-
ate threads within each task, define &OS levels, and
specify rewards. It also permits the user to specify

lThe distributed QoS-negotiation protocol, however, as-
sumes service to a given client can be migrated to another node.

for a given thread the &OS levels in which the thread
is eligible to execute. This package also exports a
force-negotiation() primitive used to initiate QoS ne-
gotiation. In the current implementation, all created
tasks execute in the same a.ddress space. The applica-
tion is compiled into a single executable image that is
loaded in its entirety at system start time. The code
itself is thus static, although task arrival/activation
times at different nodes may vary dynamically.
5.2 Invocation Migration
On top of qthreads we provide an invocation migration
mechanism to implement the distributed QoS opti-
mizat,ion protocol described in Section 4. The mecha-
nism is completely transparent to the application. We
call it invocation migration, because the transfer oc-
curs between two successive invocations of a periodic
task (i.e., when one invocation has terminated and the
next hasn't started yet).

When the distributed &OS optimization heuristic
determines that a task is to be migrated, the state
variables of each thread in the transferred task are
sent to the new machine, and the threads belonging
to the task are destroyed at the source and recreated
with the transferred state at the target. In the current
implementation, state variables of a thread must be in-
dicated to RTPOOL using a corresponding library call
at thread initialization time. The force-negotiation()
primitive is called on source and target after the trans-
fer to update QoS levels accordingly. If a task must
execute on a certain machine the task can be wired to
that machine by calling a wiredask() primitive.
5.3 Pool Membership API
A membership algorithm is used to maintain a consis-
tent view of current membership in the shared resource
pool. Our group membership algorithm is a derivative
of [14], and the user interface to this algorithm is the
subscrabe-to-pool() call which causes the machine on
which the call was executed to join the named pool.
When a new machine subscribes (joins), each machine
in the pool adds the new member to the group. Since
the new machine does nbt run any application task,
its unfulfilled potential reward is zero. In our had-

tial reward is above a given threshold will attempt to
offload tasks to the new member. Task transfer will
continue until the unfulfilled potential reward is bal-
anced within a certain threshold, which stops the dis-
tributed &OS optimization protocol. When a machine
fails, the group leader (the machine with the highest
number in the pool) re-creates the destroyed tasks,
then the load-sharing heuristic redistributes the load
if necessary. When the group leader fails, its succes-

ikaring keurietia, machines whom unfulfilled poten-

232

sor (the machine with the next highest pool number)
becomes the leader. Task state will be lost in case of
a crash, but it can be avoided by task replication.
5.4 Communication API
An application need not be aware where each of its
tasks is executing. The same executable application
image is started on every machine that joins the pool.
The application is composed of tasks, and the decision
of where to run each task is left up to the load-sharing
heuristic. This requires location-independent send()
and receive() primitives for inter-task communication.
Tasks communicate via location-independent send()
and receive() primitives which use local communica-
tion buffers on the same machine, and send messages
across the network for remote destinations. Our com-
munication protocol stack is implemented using xKer-
ne1 3.2 [15], and is layered on top of a UDP/IP stack.
The communication subsystem architecture on each
host is designed to support prioritized, bounded-time
message delivery. This architecture has been proposed
earlier in the context of implementing real-time chan-
nels [la]. We adapt it to export the abstraction of
a sporadic communication server, implemented as a
separate task using qthread support.

6 Application
We have used RTPOOL to provide negotiable timeli-
ness guarantees for several real-time tasks required in
our fully-automated flight control system, which was
used to fly a simulated model of an F-16 fighter air-
craft. Details of the automated aircraft flight prob-
lem are provided in Section 6.1, followed by a de-
scription of a method to determine task QoS levels
and rewards from application domain knowledge (Sec-
tion 6.2). Section 6.3 summarizes the set of tasks, QoS
levels, and rewards that describe our application.
6.1 Automated Flight Control

Current Flight Management Systems (FMS)
([17], [18]) perform several functions, including flight
planning, navigation, guidance, and control. The
flight planner computes waypoint trajectories, then
during flight, the navigator uses sensor data to main-
tain a current aircraft state estimate. The guidance
module uses the planned trajectory and state esti-
mate to build the reference state vector, which is then
used by the controller to compute actuator commands.
In all FMS, real-time execution guarantees exist for
navigation, guidance, and control, adhering to criti-
cal function deadlines with schedulability guarantees
made off-line. Our QoS-negotiation scheme will al-
low graceful performance degradation when enough
resources are lost to violate off-line guarantees. In
this paper we consider only tasks having a known and

bounded execution time. Issues in dealing with poten-
tially unbounded on-line computations, such as run-
time intelligent flight planning, are discussed in [l].

We issue F-16 aircraft guidance commands in terms
of altitude (2) and compass heading (h) , and em-
ploy a control loop to compute primary actuator com-
mands, including elevator, ailerons, rudder, and throt-
tle. The elevator, ailerons, and rudder generate aero-
dynamic forces that directly affect aircraft roll and
pitch attitude, and, via dynamic coupling, alter air-
craft heading and airspeed. The throttle provides a
linear force along the aircraft fuselage. Our controller
may also command a secondary actuator set that im-
proves flight performance but is not critical for flight
safety. Secondary actuators include the afterburner
for extra engine thrust, and flaps and speed brake used
to enhance slow-airspeed control.

In a parallel research effort [19] a set of linear con-
trollers have been implemented to calculate the pri-
mary actuator commands to achieve the desired ref-
erence altitude (zrej) and heading (h , , j) . Controller
state includes altitude x , heading h, pitch, p , and roll
r . Equation (1) shows t,he control laws used during
our experiments, adopted from those used in [l]. In
higher-performance QoS levels (see Section 6.3), the
controller also sends discrete-valued commands to the
secondary actuator set (described in [19]).

Z r e j -

rudder

0 -ICp2 --IC&
0 -Kp3 -IC& O)

I< = (0 IC2 0
1‘1 0 -I<dl 0

0 IC, 0

6.2 Computing QaiS Levels and Rewards
Our QoS-negotiation scheme enables the application
domain expert to express application-level semantics
to RTPOOL using &OS levels, rewards, and rejection
penalty. In this section .we briefly highlight how this
support may complemenl mission planning techniques
in the context of CIRCA (the Cooperative Intelligent
Real-time Control Architecture) [l]. Based on a user-
specified domain knowledge base, CIRCA’S main goal
is to build a set of control plans to keep the sys-
tem “safe” (i.e., avoid catastrophic failures such as
an aircraft crash) while working to achieve its perfor-
mance goals (e.g., arrive at its destination on time).

233

In order to deal successfully with an inherently non-
deterministic, perhaps poorly modeled, environment
of a complex real-time system CIRCA employs prob-
abilistic planning which models the system by a set
of states and transition probabilities. System failure
is modeled by temporal transitions to failure states
(TTFs). CIRCA’S mission planner uses its domain
knowledge base to select appropriate actions (tasks)
and their timing constraints (QoS levels), so that the
probability of TTFs is reduced below a certain thresh-
old. The reward decrease corresponding to degrading
a task from one QoS level to another, or rejecting a
task altogether, is computed from the corresponding
increase in failure probability.

The CIRCA planner computes a maximum pe-
riod for each task based on the notion of preempt-
ing TTFs [19]. For any state, an outgoing TTF is
considered preempted if its probability is below the
specified threshold. To define alternative QoS levels,
CIRCA’S planner may compute different task periods
based on a set of alternative TTF probability thresh-
olds. For example, say a TTF has a cumulative prob-
ability distribution that reaches the threshold value
when the preemptive task’s inaximuin period is set to
0.2 seconds. But, suppose we need to relax the task’s
period requirement under overload. The new, longer
task period for degraded &OS is computed from the
next higher TTF probability threshold, and this task
is assigned a lower reward that corresponds to the re-
duction in certainty that the T T F will be preempted.
A complete set of task QoS levels may be developed
by considering all T T F probability thresholds.

6.3 Description of Flight Tasks
We have used the Aerial Combat (ACM) F-16 flight

simulator [20] for all flight tests. ACM runs on a Sun
workstation with socket connection to the real-time
execution platform. We have tested QoS-negotiation
by flying the simulated aircraft around a left-hand pat-
tern in which the aircraft executes a takeoff and climb,
holds a constant altitude around a rectangular course,
then descends through final approach and landing. By
varying periods for controllers and sensors, we are able
to observe the degradation in flight quality (Le., sta-
bility) as a function of each task’s selected QoS level.

In this section, we describe the tasks and rewards
used during our QoS-negotiation algorithm tests. Our
mission goals were to complete the flight around the
pattern and to destroy observed enemy targets, if any,
using the F-16’s onboard radar and missiles. Four
separate tasks were required to control the aircraft:
Guidance (Guid), Control (Cirl) , Slow Navigation
(SNav) , and Fast Navigation (F N a v) . These tasks

function much like their similarly-named FMS coun-
terparts. Guid is responsible for computing the refer-
ence trajectory (state) for the aircraft. In our tests,
Guid specified heading and altitude to lead the aircraft
around the pattern through landing. The Ctrl task is
responsible for executing the low-level control loops
to compute actuator commands from the high-level
guidance trajectory. We have two navigation tasks
(SNav,FNav) to estimate aircraft state, distinguished
by required update frequency.

Table 1 shows the QoS levels (L) present for all
tasks, including associated reward (R), execution time
(ET), period (P), and version (Ver). In our simple
tests, we set each task deadline equal to its period,
although there are no such requirements in our QoS
negotiation protocol. Also, because all tasks are con-
sidered critical to execute (at least at a degraded QoS
level), we set all task rejection penalties sufficiently
high that all tasks are always accepted by the QoS
negotiator.

In addition to the basic flight control tasks, we
simulate a function necessary during military opera-
tion: Missile Control (M C) . M C is composed of two
precedence-constrained threads: “Read Radar” and
“Fire Missile”. “Read Radar’’ monitors aircraft radar
to detect approaching enemy targets, then “Fire Mis-
sile” launches a missile at any enemy targets appearing
on radar. As shown in Table 1, M C is cornputation-
ally expensive and has two QoS levels. In Level 1,
radar will be scanned with sufficient frequency to al-
low detection and destruction of most enemy targets.
Otherwise (Level 0), fast-moving targcts may not be
destroyed. During experiments (in Section 7.3), we
varied the reward for M C QoS Level 1 depending on
the relative importance of destroying enemy targets.

As described above, Ctrl is responsible for execut-
ing the control loop. At each invocation, Ctrl uses
the Equation (1) control law with appropriate gains
to compute primary actuator values. Two versions of
this task were tested, one that used the secondary ac-
tuators (QoS levels 0, 2, and 4) and one that did not
(&OS levels 1 and 3). Use of these actuators allows the
aircraft to perform better in terms of takeoff distance
and climb rate as shown in Section 7 at the expense of
a longer task execution time. The importance of Ctrl
task period is illustrated with relatively high reward
given to low-period Ctrl &OS levels. The small reward
changes between the use of the different versions (e.g.,
level 3 vs. level 4) reflects the fact that version choice
is not critical for safety.2

We defmed a QoS “level 0” for Girl and SNav that, as will
be shown in Section 7 , were so slow that the aircraft becomes

234

1 2 I 104 I 80 I 1 1 sec

SNav

3 120 60 0.2 prim
4 124 80 0.2 sec
0 10 100 10 def

Table 1: Flight plan with different &OS levels.

The SNav task is responsible for reading sensors
that do not require a high sampling rate. All naviga-
tion sensors are grouped into this task because they
are used only by the Guid task to determine high-level
altitude and heading commands. The reward/period
values for SNav in Table 1 reflect this task’s non-
critical nature. Finally, FNav is responsible for main-
taining all sensor data used by the Ctrl task. Since
the system must read this data frequently to maintain
sufficient state estimates, the periods and associated
rewards are similar to those used by Clrl.

7 Evaluation
In this section, we show results illustrating how &OS
negotiation can help aircraft flight control degrade
gracefully. First, we assess the &OS negotiation heuris-
tic for our flight tasks by observing how the &OS of
each task degrades with lower machine speeds. In Sec-
tion 7.2 we study aircraft performance during flight
as a function of the Ctrl task’s QoS level, illustrat-
ing graceful performance degradation by example. In
Sections 7.1 and 7.2, we focus on tests that use a sin-
gle machine, and consider only the guidance, naviga-
tion, and control tasks. We conclude our experiments
(Section 7.3) with tests which also include the missile
control task and observe the effects of load sharing
between two machines, with processor failure used to
demonstrate graceful performance degradation.

unstable. These levels are included among the QoS negotiation
options for illustrative purposes only.

4

3.5

3

f 2.5

H 1.5

1

0 5

0

5

P 2

Task X1 (Guidance) 1
Task f 2 (Controller) I

i
i ill Task X3 (Slow Navigation)

Task 14 (Fast Navigation) 1

1 2 4 8 1 6

CPU Speed (oealed)

Figure 3: QoS levels vs. CPU speed for flight tasks.

7.1 QoS Negotiation Heuristic Testing
In Section 4, we described a simple local QoS opti-
mization heuristic to help a service provider select a
high-reward set of QoS levels for its clients. Using
the &OS levels and rewards listed in Table 1, we illus-
trate the behavior of the presented heuristic. In this
experiment we kept the task set fixed, and decreased
the underlying CPU speed (increasing task execution
times), then observed the corresponding decrease in
task QoS levels. Figure 3 plots QoS levels (modes)
selected vs. CPU speed, normalized by the minimum
CPU speed for which the task set is schedulable.

Since the heuristic uses only reward information to
guide its search for a feasible &OS level set (thus be-
ing applicable as-is in amy service that uses our QoS
negotiation scheme), optimality is compromised yet
“graceful QoS degradatioln” is still illustrated.
7.2 Aircraft Performance
We evaluated system performance by studying its abil-
ity to control the simulated F-16 during flight. In this
section, all flight control tasks execute on one machine.
As shown in Figure 3, since Ctrl and Fnav required
the smallest period, these tasks are the execution bot-
tlenecks, so flight perforrnance changes are most eas-
ily observed via changes in Ctrl or Fnav &OS. Since
these tasks are tightly coupled (i.e., Ctrl uses results
from F N a v) , our test miatrix included variations of
Ctrl QoS from its highest (4) to lowest (0) level and
ensured that FNav acted with at least as low a period
as that selected for Ctrl.

As shown in Table 1, Clrl &OS levels are a function
of both period and version. We present tests that show
flight performance differences due to each of these
variables, specifically during the critical takeoff/climb
phase of flight. Figure 4 illustrates differences between
the two versions of Ctrl in their “best performance”
case (period = 200 msec). Level 4 (with secondary
actuation) requires larger execution time than level 3
(no secondary actuation), thus is harder to schedule.

235

5 4 0 0 0 ~

< 3000
=
f 2000

-Mode 4
Made 3 ---_

Figure 4:
without secondary control actuation.

Aircraft altitude performance with and

Climb performance for level 4 is only slightly better
for level 3, consistent with their small reward differ-
ence. This example illustrates how QoS negotiation
can achieve graceful degradation. Overall processor
utilization is decreased by reducing Ctrl to level 3,
but safety (controller stability) is not compromised.

Next, we performed tests with varying Ctrl task
period. We isolated version from period effects by
exclusively selecting QoS levels with secondary ac-
tuation, although similar trends result with the other
Ctrl version (levels 1 and 3). To illustrate performance
changes as a function of task period, we consider three
QoS levels: level 4 (period = 0.2 sec), level 2 (period =
1 sec), and level 0 (period = 5 sec). We include level 0
among Ctrl QoS negotation options as a comparative
example illustrating controller instability. Of course,
no unstable QoS levels should be defined among a
client's negotiation options, since the client should not
'(ask" for instability.

Figures 5 through 8 show aircraft state as a func-
tion of time during takeoff, climb, and a turn from
South to East. Figure 5 shows aircraft altitude for
the different Ctrl task periods. As period increases,
climb performance gracefully degrades between QoS
levels 4 and 2, but then becomes unstable in level 0
(period = 5 sec), illustrating the necessity of real-time
response for the Ctrl task. Figures 7 and 8 show air-
craft pitch angle and roll angle, respectively, for the
"stable" controller QoS levels. Note that we do not
include level 0 because the unstable response obscures
the other plots. Pitch angle and altitude are coupled,
so pitch has largest magnitude during the climb, and
as illustrated, the period increase to 1 second causes
a large pitch angle to be required longer, a stable but
undesirable performance trait. Roll angle (Figure 8)
shows delay and longer deviation from zero as well as
significant overshoot when task period increases.

eo00

Figure 5: Aircraft altitude for varied Ctrl QoS levels.

1

0 5

Figure 6: Aircraft heading for varied Ctrl QoS levels.
0 5

-penal I 0 2
Penal I 1 0

.o 2

llmo (.eo)

Figure 7: Aircraft pitch for varied Ctrl QoS levels.

-Penal . 0 2
" " . ." P€.,,Cd = 1 0

Figure 8: Aircraft roll for varied Ctrl QoS levels.

236

7.3 Load Sharing

Load sharing capabilities are implemented in RT-
POOL, and we performed a final test set which in-
cluded both the flight control tasks and the missile
control MC task, as described in Section 6.3. In these
tests, we start the system with two machines available
for task execution. Because, as defined in Table 1,
the M C task is computationally expensive, the load
sharing protocol places all flight control tasks on one
machine and the M C task (both “Read Radar” and
”Fire Missile” threads) on the other machine.

When the two machines function normally, both
flight and missile control tasks ran in their maximum
performance levels. In this case, enemy targets are
quickly detected and fired upon, while flight control
is identical to the best performance profiles in the
Section 7.2 plots. For the next test set, we began
operation with two functioning machines, then shut
one down (simulating failure) just after takeoff. This
requires the load sharing and &OS negotiation algo-
rithms to function dynamically, such that the one
functional machine now has to execute both flight and
missile control tasks. If M C task reward is relatively
low, the system chooses to degrade the MC, Guid, and
SNav functions (to level 0), but manages to keep the
Ctrl and FNav tasks at safe levels. In this manner,
flight control is a bit sluggish but stable. However, the
aircraft is unable to launch missiles at most targets.

Alternatively, this system may be aboard an ex-
pendable drone whose most important function is to
destroy a target or attack enemy aircraft. In this case,
the reward set may be structured such that the missile
control task takes precedence over accurately main-
taining flight contr01.~ To illustrate such changes in
the task reward set, we altered the reward for QoS
level 1 of M C to 200 (shown in Table 1). Now, when
the second machine shuts down, the &OS negotiator
reduces all flight control levels to 0, since the missile
controller is the “most important” task. After one
machine fails, the aircraft eventually becomes unsta-
ble (as illustrated in Section 7.2), but will still quickly
detect and respond to enemy targets on radar.

It is important to note that, had we used traditional
schedulability analysis algorithms that do not allow
negotiated QoS degradation, the system would have
failed to guarantee/accept the entire task set on the
same processor, leading to complete mission failure.

31n our tests. when rnissile control takes precedence over
flight control during single machine operation, the aircraft be-
comes unstable. This would be undesirable in an actual system,
since missiles cannot be launched from a crashed aircraft.

8 Summary and Future Work
In this paper we presented a novel scheme for QoS
negotiation in real-time applications. This scheme is
applicable for the design of real-time service providers,
extending the interface of such services in that (i) it
adopts a modified notion of request guarantees that
allows for defining QoS compromises and supports
graceful &OS degradation, and (ii) it provides a generic
means to express application-level semantics to control
how application QoS is to be degraded under overload
or failure conditions. Our QoS-negotiation scheme im-
proves the guarantee ratio over traditional admission
control algorithms and increases the application-level
perceived utility of the system.

The proposed QoS-negotiation architecture has
been incorporated into FtTPOOL, an example middle-
ware service which implements a computing resource
manager for a pool of processors. The synergy be-
tween components of the service and QoS-negotiation
support has been illustrated. RTPOOL is used for a
flight control application to demonstrate the efficacy
of QoS negotiation, We demonstrated that the appli-
cation does have negotiable parameters and can thus
benefit from the added flexibility of negotiation. We
also showed that application task QoS levels and their
rewards can be analytically derived from system fail-
ure probability. QoS-negotiation support, while guar-
anteeing maximum &OS levels during normal opera-
tion, is shown to provide graceful &OS degradation in
case of resource loss.

We have demonstrated how an application can ben-
efit from the proposed QoS-negotiation scheme, but
we have not analyzed the performance of different QoS
optimization policies, nor the general scope of their
applicability. We are currently studying alternative
QoS-optimization methodologies and the scalability of
our QoS-negotiation approach. We are also consider-
ing ways to implement negotiable fault-tolerance &OS,
perhaps as an extension to RTPOOL. Finally, we are
working to develop new schemes for quantifying per-
ceived utility to compute reward and penalty values.
Possible approaches include adapting performability
analysis and using economic models of utility/costs.

Acknowledgment
The authors wish to thank Farnam Jahanian,

Ashish Mehra, Anees Shaikh, and Wuchang Feng for
sharing their opinions aind insights during the devel-
opment of this paper.

References
P I

237

E. M. Atkins, E. H. :Durfee, and K. G. Shin, “Plan
development in CIFlCA using local probabilistic
models,” in Uncertainty an Artificial Intelligence:

Proceedzngs of the Twelfth Conference, pp. 49-56,
August 1996.

J . Xu and D. L. Parnas, “Scheduling processes
with release times, deadlines, precedence, and ex-
clusion relations,” IEEE Trans. Software Engi-
neering, vol. SE-16, no. 3, pp. 360-369, March
1990.

T. Shepard and M. Gagne, “A pre-run-time
scheduling algorithm for hard real-time systems,”
IEEE Transactions on Software Engineering, vol.
17, no. 7, pp. 669-677, Jul 1991.

T. F. Abdelzaher and K. G. Shin, “Optimal com-
bined task and message scheduling in distributed
real-time systems,” in IEEE Real- Time Systems
Symposium, Pisa, Italy, December 1995.

D. D. Kandlur, K. G. Shin, and D. Ferrari, “Real-
time communication in multi-hop networks,”
IEEE Trans. on Parallel and Distributed Systems,
vol. 5, no. 10, pp. 1044-1056, October 1994.

J . A. Stankovic and K. Ramamritham, “The
Spring Kernel: A new paradigm for real-time sys-
tems,” IEEE Software, pp. 62-72, May 1991.

S. Sommer and J . Potter, “Operating system ex-
tensions for dynamic real-time applications,” in
IEEE Real- Time Systems Symposium, pp. 45-50,
Washington, DC, December 1996.

R. Clark, E. Jensen, and F. Reynolds, “An ar-
chitectural overview of the Alpha real-time dis-
tributed kernel,” in Proceedings of the USENIX
Workshop on Microkernels and other Kernel Ar-
chitectures, 1992.

H. Tokuda, T. Nakajima, and P. Rao, “Real-time
Mach: Towards a predictable real-time system,”
in Proceedings of the USENIX Mach Workshop,
pp. 73-82, October 1990.

M. B. Jones and P. J . Leach, “Modular real-
time resource management in the rialto operating
system,” Technical Report MSR-TR-95-16, Mi-
crosoft Research, Advanced Technology Division,
May 1995.

[ll] W. Zhao and K. Ramamritham, “Virtual time
CSMA protocols for hard real-time communica-
tion,” IEEE Transactions of Software Engineer-
ing, vol. 13, no. 8, pp. 938-952, 1987.

[12] C. Mercer, S. Savage, and H . Tokuda, “Processor
capacity reserves: Operating system support for
multimedia applications,” in Proceedings of the
IEEE International Conference on Multimedia
Computing and Systems, pp. 90-99, May 1994.

[13] D. Seto, J. P. Lehoczky, L. Sha, and K. G. Shin,
“On task schedulability in real-time control sys-
tems,” in IEEE Real- Time Systems Symposium,
pp. 13-21, Washington, DC, December 1996.

[14] T. Abdelzaher, A. Shaikh, F. Jahanian, and
K. Shin, “RTCAST: Lightweight multicast for
real-time process groups,” in IEEE Real- Time
Technology and Applications Symposium, Boston,
Massachusetts, June 1996.

[15] N. C. Hutchinson and L. L. Peterson, “The x-
Kernel: An architecture for implementing net-
work protocols,” IEEE Transactaons on Software
Engineering, vol. 17, no. 1, pp. 64-76, January
1991.

[16] A. Mehra, A. Indiresan, and K. G. Shin, “Struc-
turing communication for quality of service guar-
antees,” in IEEE Real- Time Systems Symposium,
pp. 144-154, Washington, DC, December 1996.

[17] S. Liden, “The evolution of flight management
systems,” in Proceedings of the 1994 IEEE/AIAA
Thirteenth Digital Avionics Systems Conference,

[18] J. Schreur, “B737 flight management computer
flight plan trajectory computation and analysis,”
in Proceedings of the American Control Confer-
ence, pp. 3419-3429, June 1995.

[19] E. M. Atkins. Reasoning About and In Time when
Building Plans for Safe, Fully-Automated Aircraft
Flight. Ph.D. Thesis Proposal, December 1996.

1201 R. Rainey. ACM: The Aerial Combat Simulation
for X l l , February 1994.

pp. 157-169. IEEE, 1995.

238

