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Abstract

Quality-of-service (QoS) routing can satisfy application performance requirements and opti-
mize network resource usage by selecting paths based on connection traffic parameters and link
load information. However, effective path-selection schemes require the distribution of link-state
information, which can cause a significant burden on the bandwidth and processing resources in
the network. We investigate the fundamental tension between network overheads and the qual-
ity of routing decisions in the context of source-directed QoS routing algorithms. In contrast to
previous performance studies that compare different routing algorithms under specific network
configurations, we characterize how the performance and overheads of QoS routing relate to the
link-state update policies, as a function of the underlying traffic load, network topology, and
link-cost metrics. We explore the interplay between stale link-state information and random fluc-
tuations in traffic load through a broad set of simulation experiments on a parameterized model
of QoS routing. These results suggest ways to tune the frequency of link-state update messages
and the link-cost functions to strike a careful balance between high accuracy and low complexity.
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1 Introduction

The migration to integrated networks for voice, data, and multimedia applications introduces new
challenges in supporting predictable communication performance. To accommodate diverse traffic
characteristics and quality-of-service (QoS) requirements, these emerging networks can employ a
variety of mechanisms to control access to shared link, buffer, and processing resources [1,2]. These
mechanisms include traffic shaping and flow control to regulate an individual traffic stream, as well
as link scheduling and buffer management to coordinate resource sharing at the packet or cell level.
Complementing these lower-level mechanisms, routing and signalling protocols control network
dynamics by directing traffic at the flow or connection level. QoS routing has the potential to
satisfy diverse performance requirements and optimize resource usage by selecting a path for each
flow or connection based on the traffic parameters and network load [3—5]. However, to support
high throughput and low delay in establishing connections in large networks, the path-selection
scheme should not consume excessive bandwidth, memory, and processing resources.

In this paper, we investigate the fundamental tension between these resource requirements and
the quality of the routing decisions. We focus on link-state routing algorithms where the source
switch or router selects a path based on the connection traffic parameters and the available resources
in the network. For example, the ATM Forum’s PNNI standard [6] defines a routing protocol
for distributing topology and load information throughout the network, and a signalling protocol
for processing and forwarding connection-establishment requests from the source. Similarly, the
proposed QoS extensions to the OSPF protocol include an “explicit routing” mechanism for source-
directed TP routing [7,8]. Despite the attractiveness of these schemes, QoS-routing protocols can
impose a significant bandwidth and processing load on the network, since each switch must maintain
its own view of the available link resources, distribute link-state information to other switches, and
compute and establish routes for new connections. To improve the scalability of these protocols in
large networks, switches and links can be assigned to smaller peer groups or areas that exchange
detailed topology and link-state information.

Despite the apparent complexity of QoS routing, these path-selection and admission control
frameworks offer network designers a considerable amount of latitude in limiting overheads. In
particular, the network can control the complexity of the routing algorithm itself, as well as the
frequency of route computation and link-state update messages. Link-state information can be
propagated in a periodic fashion or in response to a significant change in the link-state metric (e.g.,
utilization). For example, a link may advertise its available bandwidth metric whenever it changes
by more than 10% since the previous update message; triggering an update based on a change
in available capacity ensures that the network has progressively more accurate information as the
link becomes congested. In addition, a minimum time between update messages would typically
be imposed to avoid overloading the network bandwidth and processing resources during rapid
fluctuations in link bandwidth. However, large periods and coarse triggers result in stale link-
state information, which can cause a switch to select a suboptimal route or a route that cannot
accommodate the new connection. Hence, tuning the frequency of link-state update messages
requires a careful understanding of the tension between network overheads and the accuracy of
routing decisions.

Several recent studies consider the effects of stale or coarse-grained information on the perfor-
mance of QoS-routing algorithms. For example, analytical models have been developed to evalu-
ate routing in hierarchical networks where a switch has limited information about the aggregate
resources available in other peer groups [9]. To characterize the effects of stale information, com-
parisons of different QoS-routing algorithms have included simulation experiments that vary the
link-state update period [10-12], while other work considers a combination of periodic and triggered
updates [13]. However, these studies have not included a detailed evaluation of how the update
policies interact with the traffic parameters and the richness of the underlying network topology.



Finally, new routing algorithms have been proposed that reduce computation and memory over-
heads by basing path selection on a small set of discrete bandwidth levels [8,12]; these algorithms
attempt to balance the trade-off between accuracy and computational complexity.

The performance and implementation trade-offs for QoS routing depend on the subtle interplay
between a large set of parameters. For example, the underlying network topology not only dictates
the number of candidate paths between each pair of nodes or switches, but also affects the overheads
for computing routes and distributing link-state information. The effects of inaccurate link-state
information depend on the amount of bandwidth requested by new connections. Similarly, the
frequency of link-state updates should relate to connection interarrival and holding times. Although
a lower link-state update rate reduces network and processing requirements, stale load information
incurs set-up failures, which may require additional resources for computing and signalling an
alternate route for the connection. In addition, controlling overhead in large networks may require
strict limits on the frequency of link-state updates and route computation, even though inaccurate
information may make it very difficult to successfully reserve resources on routes with a large
number of links.

In this paper, we investigate these performance issues through a systematic study of the scaling
characteristics of QoS routing in large backbone networks. In contrast to recent simulation studies
that compare different routing algorithms under specific network configurations [10-19], we focus
on understanding how routing performance and implementation overheads grow as a function of
the network topology, traffic patterns, and link-state update policies. To guide the evaluation,
Section 2 introduces a parameterized model of route computation, link-state metrics, and update
policies; we also address how our model relates to previous work on QoS routing. In this context, we
evaluate an efficient algorithm that selects routes based on bandwidth requirements, path lengths,
and link utilization. Since the model’s complexity precludes a closed-form analytic expression, we
present a simulation-based study that uncovers the effects of stale link-state information on network
dynamics.

To efficiently evaluate a diverse collection of network configurations, we have developed an
event-driven simulator that limits the computational overheads of evaluating the routing algorithm
in large networks with stale information. Based on this simulation model, Section 3 examines the
effects of periodic and triggered link-state updates on the performance and overheads of QoS rout-
ing. The experiments evaluate several topologies to explore the impact of inaccurate information
on how well a richly-connected network can exploit the presence of multiple short routes between
each pair of switches. Section 4 studies the impact of stale load information on the choice of link
metrics for selecting minimum-cost routes for new connections. The experiments suggest guidelines
for tuning link-state update policies and link-cost metrics for efficient QoS routing in high-speed
networks. Section 5 concludes the paper with a discussion of future research directions.

2 Routing and Signalling Model

Our study evaluates a parameterized model of QoS routing, where routes depend on connection
throughput requirements and the available bandwidth in the network. When a new connection
arrives, the source switch computes a minimum-hop path that can support the throughput require-
ment, using the sum of link costs to choose among feasible paths of equal length. To provide every
switch with a recent view of network load, each link distributes information about its resources in
a periodic fashion or in response to a significant change in the available capacity. Using this model,
we characterize the effects of stale link-state information and random fluctuation in traffic load on
the performance and overheads of QoS routing in a well-provisioned backbone network.



2.1 Route Computation

Since predictable communication performance relies on having some sort of throughput guarantee,
our routing model views bandwidth as the primary traffic metric for defining both application QoS
and network resources. Although application requirements and network load may be characterized
by several other dynamic parameters, including delay and loss, initial deployments of QoS routing
are likely to focus simply on bandwidth to reduce algorithmic complexity. Hence, our model ex-
presses a connection’s performance requirements with a single parameter b that represents either a
peak, average, or effective bandwidth, depending on the admission control policy. Similarly, each
link ¢ has reserved (or utilized) bandwidth u; that cannot be allocated to new connections. Conse-
quently, a switch’s link-state database stores (possibly stale) information u! about the utilization
of each link 7 in order to compute suitable routes for new connections. Each link also has a cost ¢;
(c!) that is a function of the utilization u; (u!), as discussed in Section 2.2.

Although networks can employ a wide variety of QoS routing strategies, previous comparative
studies have demonstrated that algorithms with a strong preference for minimum-hop routes almost
always outperform algorithms that do not consider path length [11,15-18,20]. For example, select-
ing the widest shortest path (i.e., the minimum-hop route with the maximum value of min;{1—u;})
increases the likelihood of successfully routing the new connection. Similarly, the network could
select the minimum-hop path with the smallest total load (minimum value of 3", u;) to balance
network utilization. In contrast, non-minimal routing algorithms, such as shortest widest path,
often select circuitous routes that consume additional network resources at the expense of future
connections, which may be unable to locate a feasible route. Biasing toward shortest-path routes
is particularly attractive in a large, distributed network, since path length is a relatively stable
metric, compared with dynamic measurements of link delay or loss rate [15].

In our model, the source selects a route based on the bandwidth requirement b and the desti-
nation node in three steps, effectively computing a “cheapest-shortest-feasible” path:

1. Prune infeasible links (i.e., links ¢ with ! 4+ b > 1)
2. Compute shortest paths to the destination based on hop-count

3. Extract a route with the minimum total cost 3, ¢}.

By pruning any infeasible links (subject to stale information), the source performs a preliminary
form of admission control to avoid selecting a route that cannot support the new connection.
In an N-node network with L links, pruning has O(L) computational complexity and produces
a sparser graph consisting entirely of feasible links. Then, the switch can employ the Dijkstra
shortest-path tree algorithm [21] to compute a minimum-hop path with the smallest total cost!.
The Dijkstra shortest-path calculation has O(L log N') complexity when implemented with a binary
heap. Although advanced data structures can reduce the average and worst-case complexity [22], the
shortest-path computation still incurs significant overhead in large networks. Extracting the route
from the tree introduces complexity in proportion to the path length with a maximum complexity
of O(N) for an N-hop route.

2.2 Link-Cost Metrics

The routing algorithm uses link cost metrics {¢;} to distinguish between paths of the same length.
Previous studies suggest several possible forms for the path metric, including sum of link utilizations,

YA careful assignment of link weights w; permits a single invocation of the Dijkstra algorithm to produce a
minimum-cost, shortest path. In a network with N switches and 0 < ¢; < 1, the link weights w; = N 4+ ¢; ensure that
paths with A links always appear cheaper than paths with h + 1 links. In particular, h-hop routes have a maximum
cost of A(N + 1), while any (A + 1)-hop route has a cost that exceeds (k+ 1)N, where b < N.
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Figure 1: Link-cost metrics: These graphs show the basic shape of the exponential link-cost
function, in its continuous and discrete forms, for wm,, = 0.1 and several values of the exponent a.

maximum link utilization on the path, or sum of the link delays. Defining the path cost as the sum
of link utilization reduces call blocking probability and results in less route oscillation by adapting
slowly to changes in network load [17]. Other studies have shown that assigning each link a cost that
is exponential in its current utilization results in optimal call blocking probability [23]. For a general
model of link cost, we employ a function that grows exponentially in the link utilization (¢; o uf),
where the exponent a controls how expensive heavily-loaded links look relative to lightly-loaded
links. We define the parameter wmyin, to be the minimum-cost utilization level; any link utilization
below i, is considered to have the minimum cost. Setting umiy, = 0.5, for example, results in a
routing policy in which all links with less than 50% utilization look the same with regard to cost.

Figure 1(a) plots link-cost functions for several values of @ with wpin = 0.1. When a = 0 the
path-selection scheme reduces to load-independent routing, while a = 1 selects a shortest-path with
the minimum sum of link utilization. Large values of a loosely correspond to widest shortest-path
routing, since the large exponent virtually eliminates heavily-loaded links from consideration. Since
it is expensive for the link-state database to support an arbitrary number of cost levels, our model
converts the continuous cost function to C' discrete values

(45 )™ (- 1)] 41
¢ = C
1/C otherwise,

U; > Umin

as shown in Figure 1(b). Small values of C' reduce network overhead by decreasing the number of
bits in the link-state database. More importantly, limiting the number of cost levels can substan-
tially lower the complexity of the Dijkstra shortest-path computation; relatively simple algorithms
have O(L 4+ C'N) complexity [21], while more complicated approaches offer even further reduc-
tion [22]. However, coarse-grain link-cost information can degrade performance by limiting the
routing algorithm’s ability to distinguish between links with different available resources.

2.3 Call Signalling

When a new connection request arrives, the source switch applies the three-step routing algorithm
to select a suitable path. However, pruning the (seemingly) infeasible links may actually disconnect
the source and the destination, particularly when the network is heavily-loaded. When a feasible
route cannot be computed, the source rejects the connection without trying to signal the call
through the network. Stale link-state information may contribute to these routing failures, since
the source may incorrectly prune a link that could actually support the new connection (i.e., the



link has u; + b < 1, although the source determines that u; + b > 1). In the absence of a routing
failure, the source initiates hop-by-hop signalling to reserve bandwidth b on each link in the route.
As the signalling message traverses the selected path, each switch performs an admission test to
check that the link can actually support the call. If the link has sufficient resources, the switch
reserves bandwidth on behalf of the new connection (i.e., u; = u; + b) before forwarding the set-up
message to the next link in the route.

Once the bandwidth resources are reserved on each link in the route, the network admits the
connection, committing bandwidth b on each link in the path for the duration of the call. However,
a signalling failure occurs if a link does not have enough resources available when the set-up
message arrives. Qur simulation experiments assume that the propagation and processing delays
for signalling messages are small, relative to connection durations. Instead of modeling the latency
in establishing and terminating connections, we characterize the effects of stale link state on QoS
routing for longer-lived traffic streams. Still, by modeling the staleness of link-state information,
we capture the basic effects of inaccuracy on connection signalling. Since these link-state update
messages occur on a coarser time scale than connection set-up delay, the staleness of link-state
information is likely to have a more significant influence on routing and signalling failures. Finally,
we model at most one attempt to signal a connection. Although we do not evaluate alternate
routing (or crankback) after a signalling failure, the connection blocking rate provides an estimate
of the frequency of crankback operations.

2.4 Link-State Update Policies

Every switch has accurate information about the utilization and cost of its own outgoing links, and
potentially stale information about the other links in the network. To extend beyond the periodic
link-state update policies evaluated in previous performance studies [10-12,17], we consider a three-
parameter model that applies to the routing protocols in PNNI and the proposed QoS extensions to
OSPF. In particular, the model includes a trigger that responds to significant changes in available
bandwidth, a hold-down timer that enforces a minimum spacing between updates, and a refresh
period that provides an upper bound on the time between updates. The link state is the available
link bandwidth, beyond the capacity already reserved for other QoS-routed traffic (i.e., 1 —u;). This
is in contrast to traditional best-effort routing protocols (e.g., OSPF) in which updates essentially
convey only topology information. We do not assume, or model, any particular technique for
distributing this information in the network; two possibilities are flooding (as in PNNI and OSPF")
or broadcasting via a spanning tree. To improve the efficiency of the simulation, we avoid devoting
any events to link-state updates. Instead, we perform a “lazy” evaluation that updates link state
only when a particular link is used by a connection.

The periodic update messages provide a refresh of the link utilization information, without re-
gard to changes in the available capacity. Still, the predictable nature of periodic updates simplifies
the provisioning of processor and bandwidth resources for the exchange of link-state information.
To prevent synchronization of update messages for different links, each link introduces a small ran-
dom component to the generation of successive updates [24]. In addition to the refresh period, the
model generates updates upon detection of a significant change A; in the available capacity since
the last update message, where
=l

11—l

A;

These changes in link state stem from the reservation (release) of link bandwidth during connection
establishment (termination). By updating link load information in response to a change in available
bandwidth, triggered updates respond to smaller changes in utilization as the link nears capacity,
when the link may become incapable of supporting new connections. Similarly, connections ter-
minating on a heavily-loaded link introduce a large relative change in available bandwidth, which
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Figure 2: Sample k-ary n-cube topologies: The left figure shows a 4-ary 2-cube with the wrap
links indicated by dotted lines, whereas the right figure shows a 3-ary 3-cube with the wrap links
omitted for clarity. Each edge in the figures represents two unidirectional links.

generates an update message even for very large trigger thresholds. In contrast to periodic updates,
though, triggered messages complicate the provisioning of network resources since rapid fluctua-
tions in available capacity can generate a large number of link-state updates, unless a reasonable
hold-down timer is used.

2.5 Network and Traffic Model

For a systematic study of link-state routing under different network configurations, we employ a
parameterized model of network topology and traffic load. Performance evaluation on small “well-
known” networks, such as the NSFnet or MCI backbone, may reveal trends that are particular
to the specific topology [25]. In addition, depending on the simulated traffic pattern, these non-
homogeneous topologies may unfairly bias the evaluation against static routing algorithms. As an
alternative, random graphs could provide more uniform connectivity, although these networks are
difficult to study in a systematic manner and may result in unrealistically long paths between certain
pairs of nodes [25]. Instead, our experiments focus on regular graphs, which permit us to change
the network size, diameter, and node degree in a controlled fashion. To verify the trends in the
simulation results, we occasionally refer to the results of similar experiments on other “well-known”
topologies.

The simulation experiments evaluate the class of k-ary n-cube topologies, with k£ nodes in each
of n dimensions, as shown by the examples in Figure 2. Each node can be viewed as a single core
switch in a backbone network that sends and receives traffic for one or more sources and carries
transit traffic to and from other switches. For simplicity, we assume that links are bidirectional, with
unit capacity in each direction. A k-ary n-cube has N = k™ nodes of degree 2n, with I, = 2nk™ links
and diameter D = |[k/2|n. These graphs have relatively dense connectivity, common in emerging
core backbone networks. Most of the experiments in the paper evaluate a 125-node 5-ary 3-cube
topology, though Section 3.3 compares the effects of stale link-state information on different k-ary
n-cube networks. We further assume that the topology remains fixed throughout each simulation
experiment; that is, we do not model the effects of link failures.

Instead of simulating a non-uniform traffic pattern that would favor QoS-routing algorithms,
the experiments evaluate a homogeneous traffic pattern, with a uniform random selection of source
and destination nodes. For simplicity, we assume that connection interarrival and holding times
are exponentially-distributed with means 1/A and {, respectively. Connection bandwidths are
uniformly-distributed within an interval with a spread about the mean b. For instance, call band-
widths may have a mean of 5% of link capacity with a spread of 200%, resulting in b ~ U/(0.0,0.1].
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Figure 3: Staleness due to periodic updates: The left graph shows that the blocking probability
grows rapidly as the link update period grows for several ranges of requested bandwidth; the dashed
lines indicate the performance of static routing (& = 0 and no pruning). The right graph shows
that the blocking is dominated by signalling failures after only a small increase in the period. In
both graphs A =1, a = 1, and p = .85.

Most of the simulation experiments focus on mean bandwidths from 2-10% of link capacity. Smaller
bandwidth values, albeit perhaps more realistic, would result in extremely low blocking proba-
bilities, making it almost impossible to complete the wide range of simulation experiments in a
reasonable time; instead, the experiments consider how the effects of link-state staleness scale with
the b parameter to project the performance for low-bandwidth connections. With a connection
arrival rate \ at each of N switches, the offered network load is p = AN{bh/L, where h is the mean
distance (in number of hops) between nodes, averaged across all source-destination pairs.

3 Link-State Update Policies

The initial simulation experiments focus on the effects of inaccurate link-state information on the
performance and overheads of QoS routing by evaluating periodic and triggered updates in isolation.
With a periodic update policy, large periods substantially increase connection blocking, ultimately
outweighing the benefits of QoS routing. In contrast, experiments with triggered updates show that
coarse-grain triggers do not have a significant impact on the overall blocking probability, although
larger triggers shift the type of blocking from routing failures to more expensive signalling failures.
The experiments also show that this shift between routing and signalling failures degrades the
performance of QoS routing in richly-connected network topologies.

3.1 Periodic Link-State Updates

The connection blocking probability increases as a function of the link-state update period, as shown
in Figure 3. The experiment evaluates three bandwidth ranges at an offered load of p = 0.85; the
connection arrival rate remains fixed at A = 1, while the holding times are adjusted to keep load
constant across the three configurations. For comparison, the graph also plots the performance of
static shortest-path routing (o = 0 with no pruning). We vary the update periods from almost
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Figure 4: Link-state fluctuations with periodic updates: This graph shows link utilization (u;
and u!) across time for a single link, with an “x” denoting each link-state update; the experiment
corresponds to the curve in Figure 3(a) with b ~ (0.0,0.1] when the update period is 30 time units.
An update indicating low utilization causes a rush of traffic to the link, causing the utilization to
remain very high until the next update; then, new traffic avoids the link and the utilization drops
as existing connections terminate, and the cycle repeats.

continuous updates to very long periods of 100 times the average connection interarrival time?.
Experiments with different a values, with and without pruning, show similar performance trends.
Furthermore, we find that pruning does not significantly affect the blocking probability, even with
very stale information, consistent with the results in [17]. Due to fragmentation of link resources [11,
12,20], the high-bandwidth connections experience a larger blocking probability than the low-
bandwidth connections across the range of link-state update rates. The blocking probability for
high-bandwidth connections, while higher, does not appear to grow more steeply as a function of
the update period; instead, the three curves remain roughly equidistant across the entire graph.

Although QoS routing clearly outperforms static routing for smaller link-state update periods,
the blocking probability rises relatively quickly before gradually plateauing for large update periods.
In fact, static routing becomes competitive with QoS routing once the update period grows beyond
60 times the average connection interarrival time. In general, though, periodic updates do not
respond quickly enough to variations in link state, sometimes allowing substantial changes to go
unnoticed. Signalling failures account for all of the call blocking, except when the update period
is very small (e.g., for periods close to the arrival rate), as shown in Figure 3(b). This suggests
that inaccuracy in the link-state database causes the source switch to mistake infeasible links as
feasible; hence, the source selects an infeasible path, even when there are other feasible routes
to the destination. We see that routing failures occur only with very accurate information since
the source learns about link infeasibility very quickly. When link-state can fluctuate significantly
between updates, however, the source is virtually certain to find at least one seemingly feasible
path, thus avoiding a routing failure.

Under large update periods, relative to the arrival rates and holding times, the links can experi-

2The simulator imposes a warm-up period before collecting any final performance statistics. When the measured
call blocking probability is within a 99% confidence interval subject to a specified threshold, we begin collecting
actual statistics and we terminate the simulation when the new call blocking probability is within a 99% confidence
interval subject to a tighter threshold. When evaluating periodic link-state updates, we ensure that the warm-up and
data-collection intervals are each at least several times larger than the update period, even if the confidence intervals
initially suggest that the simulation has converged.
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Figure 5: Blocking for different traffic types: The left graph shows several different blocking
metrics to highlight the effects of staleness on connections with different bandwidth requirements
and route lengths, with the same simulation parameters as in Figure 3(a). The right graph shows
the blocking probability for connections with different mean holding times; the arrival rate A varies
to keep offered load fixed at p = 0.85, with b ~ (0,.1] and a = 1.

ence dramatic fluctuations in link state between successive update messages, as shown in Figure 4.
Such link-state flapping has been observed in packet routing networks [26], where path selection
can vary on a packet-by-packet basis; the same phenomenon occurs here since the link-state update
period is large relative to the connection arrival rates and holding times. When an update message
indicates that a link has low utilization, the rest of the network reacts by routing more traffic
to the link. Blocking remains low during this interval, since most connections can be admitted.
However, once the link becomes saturated, connections continue to arrive and are only admitted if
other connections terminate. Blocking stays relatively constant during this interval as connections
come and go, and the link remains near capacity. For large update periods, this “plateau” interval
dominates the initial “climbing” interval. Hence, the QoS-routing curves in Figure 3(a) flatten at
a level that corresponds to the steady-state blocking probability during the “plateau” interval.
Eventually, QoS routing starts to perform worse than static routing, because the fluctuations
in link state begin to exceed the random variations in traffic load. In searching for (seemingly)
underutilized links, QoS routing targets a relatively small set of links until new update messages
arrive to correct the topology view. In contrast, under static routing, the source switches blindly
route to a single group of links, though this set is typically larger than the set identified by QoS
routing. Thus, when the update period grows quite large, static routing is more successful at
balancing load and reducing connection blocking. The exact crossover point between the two
routing algorithms is very sensitive to the distribution of traffic in the network. For example, in the
presence of “hot-spots” of heavy load, QoS routing can select links that circumvent the congestion
(subject to the degree of staleness). Under such a non-uniform load, QoS routing continues to
outperform static routing even for large update periods. For example, further experiments with
the non-homogenous MCI backbone topology used in [11,12] show that QoS routing consistently
achieves lower blocking probability than static routing over a wide range of update rates.
Fluctuations in link state have a more pernicious effect on connections between distant source-
destination pairs, since QoS routing has a large chance of mistakenly selecting at least one heavily-
loaded link. This is especially true when links do not report their new state at the same time, due
to skews in the update periods at different switches. Figure 5(a) illustrates this effect by comparing
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the call blocking probabilities from Figure 3(a) to several alternative measures of blocking. The
hop-count blocking probability is defined as the ratio of the hop-count of blocked connections to
the hop-count of all connections; bandwidth blocking is defined analogously relative to requested
bandwidth®. Compared to conventional connection blocking, these metrics grow more quickly in
the presence of stale information. In general, bandwidth blocking exceeds hop-count blocking, sug-
gesting that high-bandwidth connections are even harder to route than high-hopcount connections,
though link-state staleness does not seem to affect one metric more than the other.

Despite the fact that staleness due to periodic updates can substantially increase connection
blocking, the network can limit these effects by controlling which types of traffic employ QoS
routing. For example, Figure 5(b) shows that longer holding times allow the use of larger link-state
update periods to achieve the same blocking probability. In particular, the network could limit QoS
routing to the longer-lived traffic that would consume excessive link resources if not routed carefully,
while relegating short-lived traffic to static routes. With some logical separation of resources for
short-lived and long-lived traffic, the network could tune the link-state update policies to the arrival
rates and holding times of the long-lived connections. With appropriate mechanisms to identify or
detect long-lived traffic, the network can assign this subset of the traffic to QoS routes and achieve
good routing performance with a lower link-state update rate.

3.2 Triggered Link-State Updates

Although periodic updates introduce a predictable overhead for exchanging link-state information,
triggered updates can offer more accurate link-state information for the same average rate of up-
date messages. Using similar simulation parameters as the experiment in Figure 3, the graph in
Figure 6 plots the connection blocking probability for a range of triggers and several bandwidth
ranges. In contrast to the experiments with periodic link-state updates, we find that the overall
blocking probability remains relatively constant as a function of the trigger, across a wide range
of connection bandwidths, cost metrics, and load values, with and without pruning. In conducting
further experiments on the asymmetric MCI backbone topology used in [11,12], we find, again, that

%For the hop-count blocking metrics, the number of hops derives from the shortest-path distance between the
source and destination nodes, independent of the actual (possibly longer) path selected for the connection.
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Figure 7: Connection blocking and link-state updates for different trigger values: Fx-
panding the simulation results from Figure 6, the left graph shows that a decrease in routing failures
compensates for the increase in signalling failures for larger triggers. The right graph shows how
the average frequency of link-state update messages decreases as a function of the trigger value.

the blocking probability is not significantly influenced by the trigger level, despite our intuition that
staler information should increase the likelihood of blocking new connections.

To understand this phenomenon, consider the two possible effects of stale link-state information
on the path-selection process at the source switch. Staleness can cause infeasible links to appear
feasible, or cause the switch to dismiss links as infeasible when they could in fact support the
connection. When infeasible links look feasible, the source may mistakenly choose a route that
cannot actually support the connection, resulting in a signalling failure. However, if the source had
accurate link-state information, any infeasible links would have been pruned prior to computing a
route. In this case, blocking is likely to occur because the source cannot locate a feasible route,
resulting in a routing failure. Instead of increasing the connection blocking probability, the stale
information changes the nature of blocking from a routing failure to a signalling failure. Figure 7(a)
highlights this effect by plotting the blocking probability for both routing and signalling failures;
the experiments on the MCI topology show similar trends, with the decrease in routing failures
compensating for the increase in signalling failures as the trigger grows.

Now, consider the other scenario in which staleness causes feasible links to look infeasible. In
this case, stale information would result in routing failures because links would be unnecessarily
pruned from the link-state database. Although this case can sometimes occur, it is very unlikely,
since the triggering mechanism ensures that the source switch has relatively accurate information
about heavily-loaded links. For example, a connection terminating on a fully-utilized link would
result in an extremely large change in available bandwidth, which would activate most any trigger.
Moreover, the richly connected topology of the 5-ary 3-cube has many available routes between
any two nodes; the likelihood of pruning links incorrectly on all of the feasible routes is quite low.
Hence, the blocking probability is dominated by the previous scenario, namely mistaking infeasible
links as feasible. Networks with sparser topologies and longer propagation delays, however, may
experience more inadvertent routing failures.

Despite the increase in signalling failures, large trigger values substantially reduce the number
of update messages for a given blocking probability, as shown in Figure 7(b). For very fine-grained
triggers, every connection establishment and termination generates an update message on each link
in the route, resulting in an update rate of 2ANA/L in a network with N switches, L links, and
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an average path length of h hops. For the parameters in this experiment, the expression reduces
to 15.1 link-state update messages per unit time, which is close to the y-intercept in Figure 7(b);
additional experiments show that the link-state update rate is not sensitive to the connection
holding times, consistent with the 2ANh/L expression. In Figure 7(b), the larger bandwidth values
have a slightly smaller link-state update rate for small triggers; the higher blocking probability for
high-bandwidth connections decreases the proportion of calls that enter the network and generate
link-state messages. When triggers are coarse, however, more calls are signalled in the network
(due to fewer routing failures), and the high-bandwidth connections trigger more updates since
they create greater fluctuation in link state.

Although routing failures do not generate link-state updates, signalling failures can trigger
updates, since reserving bandwidth as part of the attempt to signal the connection can change the
status of upstream links, even if the connection eventually blocks at a downstream link. Hence,
the increase in signalling failures in Figure 7(a) serves to slow the reduction in the update rate in
Figure 7(b) as the trigger grows. The exact effect of signalling failures depends on the number of
successful hops before the connection blocks. Also, if the network supports crankback operations,
the attempt to signal the connection on one or more alternate routes could generate additional link-
state update messages. Finally, as a secondary effect, pruning infeasible links at the source switch
can inflate the update rate by selecting nonminimal routes that reserve (and release) resources on
extra links. Overall, though, modest trigger values are effective at reducing the link-state update
rate by about a factor of four.

Ultimately, the choice of link-state periods and triggers depends on the relative cost of routing
failures, signalling failures, and update messages, as well as the importance of having a predictable
link-state update rate. Coarse triggers and large periods can substantially decrease the processing
and bandwidth requirements for exchanging information about network load. Still, the benefit of
larger triggers and periods must be weighed against the increase in connection blocking, particularly
due to more expensive signalling failures. By blocking connections inside the network, signalling
failures consume processing resources and delay the establishment of other connections [27]. In
addition, a failed connection temporarily holds resources at the upstream links, which may block
other connections in the interim [28,29]. These effects become more important when connection
set-up delay is large, relative to connection holding times, since the state of a downstream link may
change while the signalling message propagates through the network. In contrast, routing failures
are purely local and do not consume any resources beyond the processing capacity at the source
switch. These trade-offs suggest a hybrid policy with a moderately large trigger value to provide
load-sensitive information when it is most critical, as well as a relatively small hold-down timer to
bound the peak link-state update rate without suppressing these important messages.

3.3 Network Topology

The impact of stale link-state information depends on the underlying network topology. Varying
the parameters in the k-ary n-cube topology model allows us to examine the relative performance
of networks of similar size but different node degree and diameter, as shown in Table 1. A higher
dimension (n) typically implies a “richer” topology with more flexibility in selecting routes, whereas
a large number of nodes (k), with a fixed n, increases the average length of routes, which requires
connections to successfully reserve resources on a larger number of links. These differences between
the topologies have a significant influence on how well the QoS-routing algorithm’s performance
scales with the staleness of link-state information, as shown in Figure 8(a). The graph plots the
connection blocking probability over a range of periods, with offered load kept constant between
the four configurations by changing the mean holding time.

Under accurate link-state information, the 10-ary 2-cube and 5-ary 3-cube topologies have
good performance, despite the longer average distance between pairs of nodes. For small update
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Topology Nodes | Links | Degree | Diameter | Mean path length
10-ary 2-cube 100 400 4 10 5.05
5-ary 3-cube 125 750 6 6 3.63
4-ary 3-cube 64 384 6 6 2.95
H-ary 2-cube 25 100 4 4 2.50

Table 1: Characteristics of k-ary n-cubes: This table lists pertinent parameters of four k-ary
n-cube topologies that vary in their size and richness of routes.

periods, the higher connectivity of the 5-ary 3-cube and 4-ary 3-cube results in a large number of
possible routes, which reduces the likelihood of a routing failure. Similarly, the 10-ary 2-cube has
a large number of routes, though fewer than the 5-ary 3-cube. However, the performance of these
richer topologies degrades more quickly under stale load information. For higher link-state update
periods, blocking stems mainly from signalling failures, which are more likely when a connection
has a longer path through the network. Once the routing algorithm selects a single path, based
on stale information, the new connection can no longer capitalize on the presence of other possible
routes. The performance of the 5-ary 2-cube degrades more slowly, since the shorter route lengths
increase the chance that the routing algorithm selects a feasible path. Similarly, though they have
identical connectivity, the 4-ary 3-cube outperforms the 5-ary 3-cube, due to its smaller average
path length.

Direct comparisons between the four topologies are somewhat difficult, due to differences in the
number of switches and links. For example, the crossover in Figure 8(a) occurs because the 5-ary
2-cube has a lower average path length, despite the topology’s poorer connectivity. Still, varying
k and n lends insight into the effects of stale information. Figure 8(b) shows the overheads for
triggered link-state updates in the four topologies. Although the 10-ary 2-cube has fewer switches
than the 5-ary 3-cube topology, the 10-ary 2-cube generates substantially more link-state update
messages than the other two networks. The larger update rate stems from the large path lengths,
relative to the number of switches. Interestingly the 5-ary 3-cube and the 5-ary 2-cube have nearly
identical link-state update rates. Drawing on the analytic expression from Section 3.2 and the
average path length in a k-ary n-cube network, the link-state update rate should be

~
~

L 2nkn N 4k N 4k 4’

N 2/\k,nk2—1 N-1 2 7 2 _
ipdate rate = DANE _ 2WEFLARY AR DN 1A =1) M

for a fine-grain trigger, assuming odd values of k. This update expression is proportional to £ and
independent of n. A similar expression holds for even values of k.

More generally, a densely-connected topology with a relatively low diameter should trigger
fewer link-state updates since connections are routed on shorter paths. The reduction in overhead,
however, may be offset by the cost of distributing the update messages. For example, if link-state
messages are flooded throughout the network (as in PNNI and OSPF), then each switch receives
the message on each incoming link. As a result, each switch receives 2n copies of every link-state
update. Hence, the advantages of a richer topology are partially overshadowed by the cost of
flooding the link-state messages. Also, the experiment in Figure 8(a) shows that stale information
limits the benefits of richer connectivity, though the use of update triggers, instead of periods, can
mitigate these effects. With a prudent update-distribution mechanism, a richly-connected topology,
coupled with a reasonable trigger level, can retain the advantage of having many routing choices
and a low link-state update overhead.
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Figure 8: Topology and link-state accuracy: Richly-connected topologies have low blocking
probabilities under accurate information, although the benefits of multiple routes degrade under
large update periods, as shown in the left graph. With triggered updates, the rate of link-state
messages is proportional to £ and independent of n, as shown in the right graph. In both experi-
ments, p = 85%, b ~ (0,0.1], and @ = 2 (with pruning). The arrival rates in left and right grahps
are A = 1 and A = 12.5, respectively. Load is kept constant across the four topologies by changing

L.

4 Link-Cost Parameters

The link-state update rate also impacts the choice of the link-cost parameters (C' and ) in the rout-
ing algorithm. Fine-grain cost metrics are much less useful, and can even degrade performance,
in the presence of stale link-state information. With a careful selection of the exponent a, the
path-selection algorithm can reduce the number of cost levels €' without increasing the blocking
probability. Smaller values of C' reduce the size of the link-state database and lower the computa-
tional complexity of the path-selection algorithm, allowing the QoS-routing algorithm to scale to
larger network configurations.

4.1 Number of Cost Levels (C)

The experiments in Section 3 evaluate a link-cost function with a large number of cost levels, limited
only by machine precision. With such fine-grain cost information, the path-selection algorithm can
effectively differentiate between links to locate the “cheapest” shortest-path route. Figure 9(a)
evaluates the routing algorithm over a range of cost levels and link-state update periods. To isolate
the effects of the cost function, the routing algorithm does not attempt to prune (seemingly)
infeasible links before invoking the shortest-path computation. The C' cost levels are distributed
throughout the range of link utilizations by setting wmi, = 0. Compared to the high blocking
probability for static routing (C' = 1), larger values of C' tend to decrease the blocking rate,
particularly when the network has accurate link-state information, as shown in the “period=1”
curve in Figure 9(a).

Fine-grain cost metrics are less useful, however, when link-state information is stale. For ex-
ample, having more than four cost levels does not improve performance once the link-state update
period reaches 20 time units. Although fine-grain cost metrics help the routing algorithm distin-
guish between links, larger values of C' also limit the number of links that the routing algorithm
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Figure 9: Discretized costs with stale link-state information: With periodic updates, con-
nection blocking drops significantly with more cost levels when link-state information is relatively
accurate; however, stale information counteracts the benefits of fine-grain costs, as shown in the left
graph. Additional cost levels decrease the rate of signalling failures when using triggered updates,
as shown in the right graph. Both experiments simulate a 5-ary 3-cube with p = 0.85, 5 ~ (0.0,0.1],
A=1,£=281,and a = 1.

considers, which can cause route flapping. In contrast, coarse-grain cost information generates
more “ties” between the multiple shortest-path routes to each destination, which effectively damp-
ens link-state fluctuations by balancing the load across several alternate routes. In fact, under
stale information, small values of C' can sometimes outperform large values of C', but this crossover
only occurs once the update period has grown so large that QoS routing has a higher blocking
probability than static routing.

The appropriate number of cost levels depends on the update period and the connection-
bandwidth requirements, as well as the overheads for route computation. Ultimately, though,
larger values of (' increase the complexity of the Dijkstra shortest-path computation without offer-
ing significant reductions in the connection blocking probability. Fine-grain cost information is more
useful in conjunction with triggered link-state updates, as shown in Figure 9(b). Since the trigger
value does not affect the overall blocking probability, Figure 9(b) plots only the signalling failures.
In contrast to the experiment with periodic updates, increasing the number of cost levels beyond
C' = 4 continues to reduce the blocking rate. Since triggered updates do not aggravate fluctuations
in link state, the fine-grain differentiation between links outweighs the benefits of “ties” between
shortest-path routes. Although larger values of C' reduce the likelihood of signalling failures by a
factor of two, increasing the number of cost levels eventually offers diminishing returns.

4.2 Link-Cost Exponent («)

To maximize the utility of coarse-grain load information, the cost function should assign each
cost level to a critical range of link utilizations. A large value of a concentrates most of the cost
information in the sensitive, high-utilization region. However, as shown in Figure 10, large values
of a can degrade performance after an initial sharp drop due to the transition from static routing
(a = 0) to QoS routing (o > 0). Setting a larger than 4 for periodic updates or 10 for triggered
updates increases the blocking rate, particularly for small values of C'. If a is too high, some of the
cost intervals are so narrow that the arrival or departure of a single connection could change the
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Figure 10: Exponent a with stale link-state information: A larger exponent a decreases the
blocking probability, until a grows so large that the cost intervals become too narrow, as shown in
the left graph. Large values of a have a more negative influence on performance under accurate
link-state information, as shown in the right graph. Both experiments evaluate a 5-ary 3-cube
network with p = 0.85, A =1, b ~ (0.0,0.1], and £ = 28.

link cost by one or more levels. For example, when a = 8 and C' = 10, the link-cost function has
four cost levels in the 90-100% range. This sensitivity exacerbates route flapping and also limits
the routing algorithm’s ability to differentiate between links with lower utilization.

Small values of €' exacerbate this effect, as seen by the higher blocking rates for large values
of ain the ¢ = 4 and C' = 6 curves in Figure 10. We also explored the effects of the link-state
update period on the connection blocking probability as a is increased, for a fixed value of C.
Interestingly, larger update periods dampen the detrimental effects of large values of a, resulting
in flatter curves than the plots in Figure 10(a). Although large values of a limit the granularity of
the cost information, the drawback of a large value of « is largely offset by the benefit of additional
“ties” in the routing algorithm when information is stale. Hence, the selection of a is actually
more sensitive when the QoS-routing algorithm has accurate knowledge of link state. For triggered
updates, experiments with different values of C' are consistent with the results in Section 3.2; that
is, the blocking probability remains constant over a wide range of triggers.

5 Conclusions and Future Work

The performance and complexity of QoS routing depend on the interaction between a large set
of parameters. In this paper we investigated the scaling properties of source-directed link-state
routing in large backbone networks. Our simulation results show that the routing algorithm, net-
work topology, link-cost function, and link-state update policy have a significant impact on the
probability of successfully routing new connections, as well as the overhead required to distribute
network load metrics. In this context, one of our key observations was that stale link-state infor-
mation introduces a basic trade-off between the number of signalling failures and the frequency
of link-state update messages. With periodic updates, reducing the rate of link-state messages in-
creases the blocking probability dramatically and results in a large number of expensive signalling
failures. The network can reduce these effects by limiting QoS routing to long-lived connections,
while carrying short-lived traffic on static preprovisioned routes.
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In contrast, triggering link-state updates on a significant change in available bandwidth does
not affect overall blocking, although coarse triggers increase the number of signalling failures. Our
findings suggest a combination which uses a relatively coarse trigger with a hold-down timer to
mitigate the unpredictable nature of triggered updates when link state fluctuates rapidly. The
trade-off between routing and signalling failures also has important implications for the selection of
the network topology. Although dense topologies offer more options for choosing good routes, the
advantages of multiple short paths dissipate as link-state information becomes more stale. While
large, dense topologies have high overheads for distributing load information and computing routes,
this complexity can be reduced by representing link cost by a small number of discrete levels without
significantly degrading performance. This is especially true when link-state information is stale,
suggesting a strong relationship between temporal and spatial inaccuracy in the link metrics.

To further investigate QoS-routing dynamics for a range of topology and traffic models, we
plan to extend our experiments to a broader class of transit-stub networks [25] and consider more
realistic traffic models, such as bimodal bandwidth requests (e.g., audio and video traffic), a mixture
of short-lived and long-lived connections, and non-uniform traffic patterns. We also plan to include
more detailed models of call set-up delay and propagation delay to gauge the impact of reserving
link resources for connections that ultimately fail at a downstream switch, and to study the effects
of inaccurate information about links that are further from the source. Also, selecting alternate
routes after signalling failures introduces interesting performance trade-offs between connection
blocking and set-up delay. Finally, since performance degrades when many connections are routed
on nonminimal paths, we plan to evaluate other routing algorithms that incorporate some form of
trunk reservation to prevent the overuse of constrained network resources.

In addition to these extensions to our simulation model, we plan to explore new QoS-routing
policies that consume less network resources. For example, support for precomputed routes can
reduce computation overheads and connection set-up delay [8], yet these policies must reconcile the
timescale for route computation with the expected connection arrival and link-state update rates.
Some initial simulation experiments with precomputed routes for a few bandwidth classes show
promising results [12]. We are especially interested in finding ways to precompute routes, while still
incorporating new link-state information in routing decisions. Finally, the intrinsic staleness of link-
state information suggests new policies for alternate routing after a signalling failure. For example,
introducing a small delay before trying an alternate route for a connection [29,30] is particularly
appropriate when the arrival of fresh link-state information has the potential to improve the routing
decision.

References

[1] J. J. Bae and T. Suda, “Survey of traffic control schemes and protocols in ATM networks,”
Proceedings of the IFEFE, vol. 79, pp. 170-189, February 1991.

[2] D. Towsley, “Providing quality of service in packet switched networks,” in Performance Fval-
uation of Computer and Communication Systems, pp. 560-586, Springer Verlag, 1993.

[3] W. C. Lee, M. G. Hluchyj, and P. A. Humblet, “Routing subject to quality of service constraints
in integrated communication networks,” IFFFE Network Magazine, pp. 46-55, July/August
1995.

[4] Z. Whang and J. Crowcroft, “Quality-of-service routing for supporting multimedia applica-
tions,” IFFFE Journal on Selected Areas in Communications, vol. 14, pp. 1228-1234, September
1996.

[5] E. Crawley, R. Nair, B. Rajagopalan, and H. Sandick, “A framework for QoS-based routing in
the Internet.” Internet Draft (draft-ietf-qosr-framework-00.txt), March 1997.

18



[6]

[7]

[19]

[20]

[21]

PNNI Working Group, ATM Forum 94-0471R13 PNNI Draft Specification. Document available
at ftp://ftp.atmforum.com/pub/contributions.

7. Zhang, C. Sanchez, B. Salkewicz, and E. S. Crawley, “Quality of service extensions to OSPF
or quality of service path first routing (QOSPF').” Internet Draft (draft-zhang-qos-ospf-01.txt),
September 1997.

R. Guerin, S. Kamat, and A. Orda, “QoS routing mechanisms and OSPF extensions.” Internet
Draft (draft-guerin-qos-routing-ospf-01.txt), March 1997. To appear in Proceedings of IEEFE
GLOBECOM, November 1997.

R. Guerin and A. Orda, “QoS-based routing in networks with inaccurate information,” in

Proceedings of IFEFE INFOCOM, April 1997.

L. Breslau, D. Estrin, and L. Zhang, “A simulation study of adaptive source routing in in-
tegrated services networks,” Tech. Rep. 93-551, Computer Science Department, University of
Southern California, 1993.

Q. Ma and P. Steenkiste, “Quality-of-service routing for traffic with performance guarantees,”
in Proc. IFIP International Workshop on Quality of Service, (Columbia University, New York),
pp- 115-126, May 1997.

Q. Ma and P. Steenkiste, “On path selection for traffic with bandwidth guarantees,” in Pro-

ceedings of IFEFE International Conference on Network Protocols, (Atlanta, GA), October
1997.

M. Peyravian and R. Onvural, “Algorithm for efficient generation of link-state updates in ATM
networks,” Computer Networks and ISDN Systems, vol. 29, pp. 237247, January 1997.

S. Rampal and D. Reeves, “Routing and admission control algorithms for multimedia data,”
Computer Communications, October 1995.

R. Gawlick, A. Kamath, S. Plotkin, and K. Ramakrishnan, “Routing and admission control
in general topology networks,” Tech. Rep. CS-TR-95-1548, Stanford University, May 1995.

R. Gawlick, C. Kalmanek, and K. Ramakrishnan, “Online routing for virtual private networks,”
Computer Communications, vol. 19, pp. 235-244, March 1996.

I. Matta and A. U. Shankar, “Dynamic routing of real-time virtual circuits,” in Proceedings of

IFEFE International Conference on Network Protocols, (Columbus, OH), pp. 132-139, 1996.

C. Pornavalai, G. Chakraborty, and N. Shiratori, “QoS based routing in integrated services
packet networks,” in Proceedings of IFEFE International Conference on Network Protocols,

(Atlanta, GA), October 1997.

A. Iwata, R. Izmailov, H. Suzuki, and B. Sengupta, “PNNI routing algorithms for multimedia
ATM internet,” NEC Reserach & Development, vol. 38, January 1997.

H. Ahmadi, J. 5. Chen, and R. Guerin, “Dynamic routing and call control in high-speed
integrated networks,” in Teletraffic and Datatraffic in a Period of Change: Proceedings of the
International Teletraffic Congress (A. Jensen and V. B. Iversen, eds.), vol. 14 of Studies in
Telecommunication, pp. 397-403, Copenhagen, Denmark: North-Holland, June 1991.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms. Cambridge, MA
(New York): MIT Press (McGraw-Hill), 1990.

19



[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

B. V. Cherkassky, A. V. Goldberg, and T. Radzik, “Shortest-path algorithms: Theory and
experimental evaluation,” Mathematical Programming, vol. 73, pp. 129-174, May 1996.

S. Plotkin, “Competitive routing of virtual circuits in ATM networks,” IFEFE Journal on
Selected Areas in Communications, vol. 13, pp. 1128-1136, August 1995.

S. Floyd and V. Jacobson, “Synchronization of periodic routing messages,” IFFE/ACM Trans-
actions on Networking, vol. 2, pp. 122-136, April 1994.

E. W. Zegura, K. L. Calvert, and S. Bhattacharjee, “How to model an internetwork,” in
Proceedings of IFEE INFOCOM, pp. 594-602, March 1996.

A. Khanna and J. Zinky, “The revised ARPANET routing metric,” in Proceedings of ACM
SIGCOMM, (Austin, TX), pp. 45-56, 1989.

E. Gelenbe, S. Kotia, and D. Krauss, “Call establishment overload in ATM networks,” Per-
formance Fuvaluation, 1997.

R.-H. Hwang, J. Kurose, and D. Towsley, “On call processing delay in high speed networks,”
IEEE/ACM Transactions on Networking, vol. 3, pp. 628—639, December 1995.

D. J. Mitzel, D. Estrin, S. Shenker, and L. Zhang, “A study of reservation dynamics in in-
tegrated services packet networks,” in Proceedings of IFEF INFOCOM, pp. 871-879, April
1996.

A. Feldmann, “Impact of non-poisson arrival sequences for call admision algorithms with and
without delay,” in Proceedings of IEFE GLOBECOM, pp. 617-622, November 1996.

20



