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Abstract —Real-time communication with performance guarantees is expected to become an important and necessary feature of
future computer networks. In this paper, we present a scheme which can provide real-time communication services with both
absolute and statistical performance guarantees on multiaccess bus networks for given input traffic characteristics and performance
requirements. The proposed scheme reserves network bandwidth for real-time connections according to their needs. It also allows
for independent addition and deletion of real-time connections while preserving existing guarantees. Our extensive simulation
results for motion video communication have shown the proposed scheme to outperform the other well-known schemes.

Index Terms —Real-time communication, real-time connection/channel, multimedia systems, FieldBus (SP50), multiaccess

networks, digital video transmission.

1 INTRODUCTION

EAL-TIME communication with performance guarantees
R is becoming very important to many applications, like
computer-integrated manufacturing, multimedia, and many
embedded systems. Performance/deadline guarantees are,
by definition, a certain grade of services which are prom-
ised by the communication system. Such guarantees may be
defined by user-specified parameters at the time of setting
up real-time communication services. The maximum mes-
sage-delivery delay and the maximum (acceptable) mes-
sage-loss rate are two typical performance parameters. In
order to provide performance guarantees, the underlying
communication system has to reserve a priori certain re-
sources for “anticipated” real-time traffic in order to meet
performance requirements.

Several researchers investigated the problem of sup-
porting real-time communication with performance guar-
antees for given worst-case input traffic characteristics in
wide-area point-to-point networks [9], [12], [13], [14], [23],
[27]. Among these, the concept of “real-time channel” pro-
posed by Ferrari and Verma [9], and refined by Kandlur,
Shin, and Ferrari [13], is the most notable in explicitly ad-
dressing the problem of meeting delivery deadlines in
wide-area point-to-point networks. A real-time channel is a
unidirectional virtual circuit which, once established, is
guaranteed to meet user-specified performance require-
ments as long as the user does not violate his a priori speci-
fied traffic-generation characteristics [9]. Although the main
focus of this paper is placed on the issue of providing real-
time communication services on multiaccess bus networks,
we will use the terminology “real-time channel” throughout
the paper. However, due to their differences in hardware
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architecture, those schemes suitable for wide-area point-to-
point networks may not be appropriate for multiaccess bus
networks. In a point-to-point network, the nodes at the end of
a link have complete control of the link, so the end nodes of
the link can adopt any scheduling algorithm and utilize the
entire link bandwidth, if needed. By contrast, nodes attached
to a multiaccess link/bus need to cooperate/coordinate with
one another in order to transmit data/control packets, since
only one node at a time can transmit packets over the
shared medium. Other types of local-area networks will
also be discussed, but a multiaccess bus will be used as the
interconnecting hardware for our scheme.

In addition to meeting “absolute” performance require-
ments on point-to-point networks, “statistical”” performance
requirements have also been investigated by several re-
searchers [18], [20], [30]. However, most of them focused on
the problem of defining/computing quality-of-service or
grade-of-service and the strategy of multiplexing packets.
They do not aggressively reserve resources to guarantee the
performance requirements or lack of methods to make suf-
ficient and efficient reservation of resources. Basically, most
of them are still best-effort schemes.

Although point-to-point networks can be used in small-
area systems (e.g., manufacturing cells and aircraft) to con-
nect a large number of nodes, they are often not cost-
effective due to the complexity of connecting hardware and
the potentially long delivery delay. Multiaccess bus net-
works are more suitable than point-to-point networks for
many small-area applications, such as computer-integrated
manufacturing systems, campus networks, and various
general-purpose networks for a small area. They are simple,
economical, and their propagation/delivery delays are
small. These advantages make multiaccess bus networks a
very good candidate as the underlying architecture for
small-area real-time applications. Although the coverage of
a multiaccess bus network is limited by its bus length, one
can cover a larger area by connecting several multiaccess
bus networks together, or connecting them to a point-to-
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point network via routers or bridges. Hence, a multiaccess
bus will be used in our scheme as the interconnecting
hardware.

Several schemes for real-time communication on general
multiaccess networks (not limited to bus networks) have
been proposed [15], [21], [24], or implemented on the token
ring and the token bus, but they generally belong to the
“best-effort” category. They do not reserve resources ac-
cording to the user-specified traffic characteristics and per-
formance requirements, and have no explicit admission
control. Thus, even if each node is guaranteed to have ac-
cess to the network within a certain upper bound of delay,
the network still cannot guarantee each node to deliver all
real-time messages in time. In this paper, we propose a
scheme which can provide performance guarantees for real-
time traffic on multiaccess bus networks and, at the same
time, improve network utilization.

The paper is organized as follows. In Section 2, we state
the problem of providing real-time communication services
on multiaccess bus networks. The proposed solution with
absolute performance guarantees is presented in Section 3.
Section 4 deals with the real-time communication with sta-
tistical performance guarantees. Run-time scheduling issues
are discussed in Section 5. Section 6 presents comparative
simulation results, and the paper concludes with Section 7.

2 PROBLEM STATEMENT

There are two main conceivable approaches to supporting
real-time communication. One is the best-effort approach
which does not provide any performance guarantees. The
other is the “hard” real-time approach which provides
“absolute” performance guarantees, but requires a priori
reservation of all necessary resources based on the worst-
case input traffic-generation behavior. Both of them have
drawbacks of their own. The former does not provide any
performance guarantees at all, and the latter often under-
utilizes the reserved resources.

Different applications come with different performance
requirements and traffic-generation characteristics. Some
applications, such as the conversation between two cooper-
ating robots, may need hard real-time performance guar-
antees, while many other applications may require less
stringent performance guarantees. For example, reading
various sensors is a typical task in automated manufactur-
ing systems, and missing some of these readings is tolerable
as long as the missing frequency is lower than a pre-
specified value. For applications of this type, the best-effort
approach is not suitable because it offers no performance
guarantees at all. The hard real-time approach is not suit-
able either, as it requires significantly more resources to be
reserved than actually needed. We propose to use the con-
cept of statistical real-time channel to solve the problem of
providing real-time communication with “statistical” per-
formance guarantees for these applications.

A statistical real-time channel is defined as a unidirec-
tional virtual circuit which can provide real-time communi-
cation with performance guarantees in statistical terms, e.g.,
the probability of a packet’s delivery before its deadline D
is greater than a given number Z. Because of its less strin-

gent performance requirements, a statistical channel is
likely to reserve much less resources than its hard real-time
counterpart, yet provides an acceptable level of real-time
performance. Although this concept was proposed in [9],
how to realize it has not yet been studied in depth.

Both how user’s traffic characteristics and performance
requirements are specified and who (which layer) is re-
sponsible for this specification have an important bearing
on the statistical channels. The current OSI seven-layer
model can at best treat real-time communication as best-
effort services, since there is no notion of performance
guarantees or traffic specification. Moreover, since there are
too many layer-to-layer data conversions, the seven-layer
model is not adequate for real-time communication. The
MINIMAP [11], [26] and the FieldBus [3], [4], [23] protocols
have only three layers in order to reduce the time required
for layer-to-layer data conversions. Under these protocols, a
communication system consists of only three layers: the
physical layer, the data link/network layer which is re-
sponsible for providing performance guarantees, and the
application/user layer which deals with all user interfaces
as well as user-specified traffic characteristics and perform-
ance requirements.

Obviously, it is the application/user layer’s responsibil-
ity to derive various user performance requirements or traf-
fic characteristics, since only this layer is aware of user’s
performance needs and traffic characteristics. The deriva-
tion should be independent of the network service pro-
vider, i.e., the data link/network layer which is responsible
for implementing network communication with perform-
ance guarantees. So, the application/user layer is responsi-
ble for deriving traffic characteristics and performance re-
quirements, and may choose to regulate user’s input traffic
[8], [14], [19], [27] in order to preserve existing performance
guarantees. Although the exact distribution of incoming
traffic may not always be available, an approximate distri-
bution is usually not difficult to obtain off-line for most
real-time applications. For example, during interactive
playback of stored video, the exact distribution depends on
the user’s on-line instructions, but the original distribution
from a sequential playback is usually a good approxima-
tion. For the other applications like video conferencing, we
cannot predict in advance the exact distribution of the an-
ticipated traffic, but an approximation is usually not diffi-
cult to obtain, e.g., follow industrial standards, or run ex-
tensive simulations/experiments and make conservative
estimations.

On the other hand, the data link/network layer is re-
sponsible for testing, checking, accepting/rejecting requests
for establishing real-time channels and provides perform-
ance guarantees by using both reservation and scheduling
schemes which the application/user layer is not usually
aware of. Since the derivation of performance requirements
and traffic distribution depends greatly on the application
under consideration, we will not discuss it any further. We
will instead consider the problem of providing real-time
performance guarantees at the data link/network layer in
multiaccess bus networks under the assumption that the
incoming traffic distribution and performance requirements
are given. Generally, there are three types of medium access
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protocols. The first type is CSMA/CD, such as the Ethernet,
which is completely random and cannot provide any guar-
antee on the maximum access delay and, therefore, is not
suitable for real-time applications. The second type is the
distributed timed-token protocol, such as the token ring
and token bus. In this type of protocol, a token is rotated
among all nodes (usually in a fixed order) on the network,
and only the node possessing the token is allowed to
transmit data/control packets. The token rotation is gov-
erned by some rules which guarantee each node to have
medium access at least once within some specified period.
The third type of protocols uses a control unit for medium
access control on each multiaccess link/bus (not ring).
(Note that we will use “link” and “bus” interchangeably in
this paper.) This control unit follows some rules to ensure
that user-specified performance requirements will be met.
For example, the FieldBus [3], [4], [23] protocol which is a
newly-developed industrial standard for process control
and manufacturing systems uses a multiaccess bus as the
transmission medium and a link active scheduler (LAS) as
the control unit of each multiaccess bus/link.

We propose a scheme to support real-time communica-
tion for type-three multiaccess protocols that include the
FieldBus. We will also discuss the differences between type-
two and type-three protocols, and identify the advantages
of using type-three protocols and the disadvantages of us-
ing type-two protocols. Each multiaccess link (not ring)
under our scheme has a link control unit which is responsi-
ble for controlling and coordinating all nodes’ accesses to
that link. The link control unit is also responsible for allo-
cating tokens and testing whether or not to admit
hard/statistical real-time channels (i.e., admission control).
Each real-time channel is required to reserve a portion of
link bandwidth by sending a channel establishment request
to the link control unit before sending its first packet over
the link.

3 HARD REAL-TIME CHANNELS ON MULTIACCESS
LINKS

In order to provide statistical performance guarantees, like

P(delay of a packet < D) > a given Z, or (3.1)

P(no packet loss in any time interval of a certain length) > Z, (3.2)

the communication system needs to know the distribution
of packet arrivals in each channel. Those packets missing
deadlines are considered “lost.” Using the user-specified
delay bound D, the maximum packet size S, the maxi-
mum burst size B,,,, and the maximum packet-arrival rate
Gax ONe can establish a hard real-time channel in a point-
to-point network using one of the schemes in [9], [12], [13],
[31]. Considering the differences between multiaccess bus
networks and point-to-point networks, we will first de-
velop a new scheme for establishing hard real-time chan-
nels on multiaccess buses with a more general traffic model
than that used for point-to-point networks. We will then
identify the additional information needed to establish sta-
tistical real-time channels on a multiaccess link.

The primary differences of a channel/connection in a

multiaccess bus network from that in a point-to-point net-
work are the relationship between nodes and links, and the
bus network’s shorter packet-delivery latency. In a point-to-
point network, a node has complete control of its transmis-
sion links and has complete knowledge on whether or not
the packets of a channel running through the node need to
be scheduled by simply examining its packet queues, one
for each channel; that is, it is easy to multiplex several real-
time channels. However, in a multiaccess bus, it is difficult
to determine which node has the right to transmit at a par-
ticular instant, especially in the presence of both real-time
and non-real-time packets.

There exist several medium access control protocols
which can achieve fair medium access among all nodes,
and some of them can support a limited form of real-time
communication. For example, FDDI uses a target token ro-
tation time (TTRT), a high-priority token holding time (for
synchronous packets), and a token holding time (THT) to
ensure that the maximum time for synchronous packets to
wait for medium access will not be greater than 2 x TTRT.
Although we can adjust the high-priority token holding
time and the algorithm of updating THT for each node us-
ing the anticipated load of real-time traffic so as to make a
good distribution of transmission capacity, FDDI still has
many inherent disadvantages. Two of these disadvantages
are most noticeable for real-time traffic. First, TTRTs must
be identical for all nodes on the ring. This restriction may
seriously limit the use of FDDI when heterogeneous real-
time traffic is to be handled. If some node requires a very
short TTRT, the network utilization may be significantly
reduced, as the token has to be rotated around the ring very
fast" (thus wasting the bandwidth on token passing). This is
also a disadvantage for networks with a ring structure
(including a logical ring structure). Second, since FDDI has
no efficient way to dynamically change TTRT and the high-
priority token holding time for each node, it cannot be used
in a network where the real-time traffic load of each node
changes due to the addition and/or deletion of real-time
channels. In fact, most timed-token protocols (FDDI is one
of them) suffer these two problems, and they are not ade-
quate for supporting real-time communication which re-
quires dynamic, independent addition/deletion of real-
time channels.

Another typical example of medium access protocol
which supports real-time traffic is FDDI Il. In addition to
being a timed-token protocol, FDDI Il adds the circuit
switching feature to facilitate the transmission of real-time
traffic. Although it provides some degree of dynamic allo-
cation of link bandwidth based on 16 wide band channels
(WBC) [1], [2], [22], [24], [25], FDDI 11 still suffers (not as
seriously as FDDI) the aforementioned two problems.
Moreover, FDDI Il underutilizes the network resources be-
cause of the use of WBCs which cannot be shared by other
traffic even when they are idle.

The emerging IEEE 802.12 standard [5], [29] is another
effort to provide guaranteed bandwidth and bounded access
delay for time-critical applications by using existing 10Base-T
networks. Since it does not reserve network resources

1. According to the smallest TTRT.
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according to the need of each node dynamically, it still suf-
fers the second problem mentioned above.

Before proceeding to describe our scheme, we need to
define the maximum token return time (MTRT) and real-time
token holding time (RTHT). The MTRT for a real-time chan-
nel is the maximum time interval between two consecutive
token allocations to the channel. For example, the MTRT for
FDDI is equal to 2 x TTRT. During each of its token posses-
sions, the RTHT of a real-time channel is the maximum
time the channel is allowed to transmit its real-time packets.

In order to eliminate the above-mentioned two problems
associated with most timed-token protocols, we need an
adaptive scheme which allows different real-time channels
to have different MTRTs. The ring is not a good topology if
we want to allow different MTRTs for different channels or
nodes; a multiaccess link/bus is a more natural candidate.
Note that the ring structure can be used if we have to ma-
nipulate RTHT only. On the other hand, the need for dy-
namically changing the MTRT and RTHT for each node
suggests the use of a centralized control unit on each mul-
tiaccess link which is responsible for token allocation and
admission test upon receiving a request for establishing a
real-time channel. Note that each centralized control unit
controls only one link, not the entire network if it consists of
multiple links. The centralized solution is much more effi-
cient and cost-effective than its distributed counterpart for
dynamic and independent addition/deletion of real-time
channels, because a multiaccess link poses no communica-
tion bottleneck, no resource deadlock, no routing problem,
and incurs low communication overhead in using a cen-
tralized control unit. Besides, the distributed counterpart
causes potential incoherence and inefficiency because any
change of MTRTs and RTHTs has to be negoti-
ated/accepted by all nodes. Thus, as in the FieldBus [3], [4],
[23], we will use a centralized control unit, called the link
control unit (LCU), on a multiaccess link. The LCU is re-
sponsible for token allocation and resource reservation for
real-time channels running through that link. The LCU will
send high-priority (i.e., real-time) tokens and normal (i.e.,
non-real-time) tokens to all nodes on the link according to
their needs and fairness. Only the node which currently
holds the real-time (normal) token is eligible to transmit
real-time (normal) packets. There is an expiration-time pa-
rameter associated with the token. The node must return
the token to the LCU before or at the time the token expires.

There are two potential problems with the use of a cen-
tralized control unit; fault-tolerance and communication
bottlenecking. However, for a multiaccess link, the fault-
tolerance problem can be handled easily by duplicating the
LCU. As all activities on a multiaccess bus can be seen by
all nodes on the bus, we can use a passive LCU to maintain
the network status just in case the primary LCU fails.
Thanks to the multiaccessibility of the bus, this approach
induces little additional communication cost in dealing
with an LCU failure.

The communication bottlenecking problem may occur
because all control messages have to be routed to the cen-
tralized control unit. In point-to-point networks, this could
be a serious problem, because control messages may have
to travel several hops to reach the centralized control unit,

thus incurring high communication overhead for the
transmission of control messages. However, in a multiac-
cess bus network, this communication overhead is small,
because messages can be received by all nodes (including the
LCU) on the multiaccess bus network, all in one hop. There-
fore, the overhead of sending control messages (including
tokens) is approximately proportional to the ratio of token-
passing time to the lifetime of the token (RTHT). Note that
token-passing time includes token transmission time, propa-
gation time, and processing time. The propagation time is
usually small on a multiaccess bus. For a bus of typical length
500 meters, the propagation time is about two microseconds.
On a 100 Mbps bus, 25 bytes can be transmitted only in two
microseconds. Although this ratio depends significantly on
the underlying application, it is generally small for typical
applications, like voice/video communication, since the traf-
fic volume (per token allocation) of these applications is usu-
ally much larger than the token size, and the lifetime of each
of these applications is usually much longer than the time
needed to set up a channel.

To provide real-time performance guarantees, the LCU
reserves link capacity and allocates a real-time token to
each node on a per-channel basis.” The basic idea is to let
each real-time channel have its own MTRT and RTHT
based on its anticipated real-time traffic load. In our
scheme, although the MTRT is defined to be the maximum
time interval between two consecutive token allocations, it
is approximately the same as the corresponding expected
time, as the variance of actual token return time is negligi-
bly small if MTRT >> RTHT (holds in most cases when the
network is expected to support many real-time channels).

Among the several models proposed to describe the traf-
fic generated by a real-time channel, the linear bounded
model—which was originally proposed by Cruz [8] and also
adopted by other researchers [13], [14], [27]—is one of the
most popular models. The traffic generated by a real-time
channel is said to follow the linear bounded model if the
number of packets generated in any interval T is bounded
by a linear function of the interval length T, G, T + Brax
where G, is the maximum packet-generation rate of this
channel and B, is the maximum burst size. Using the
user-specified delivery-delay bound D, one can establish a
hard real-time channel in a point-to-point network [13],
[14], [27]. Here we adopt an even simpler model which re-
quires only two parameters for establishing hard real-time
channels:

¢ D (seconds): the user-specified delivery-delay bound
for a message,

e M (packets): the maximum number of packets that
can be generated in an interval of length D.

This model is more general than the linear bounded model,
because it can be applied to more cases, and the linear
bounded model is only a special case of this model (by let-
ting M = G,,.,D + B,5,)- As we shall see, we need additional
information for handling statistical real-time channels.

We can derive MTRT and RTHT for each real-time
channel by using these two parameters which are provided

2. In [7], we discussed an alternative in which the token is allocated on a
per-node basis.
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by the application layer upon arrival of a request for estab-
lishing a real-time channel. Since there is generally an up-
per bound for the size of a packet in a given protocol, we
also assume the transmission time for a maximum-size
packet, P..,, is available. Since the size of a message may be
larger than P,,,,, we need to break this message into several
packets for transmission over the network. From these pa-
rameters, MTRT and RTHT can be derived as:

MTRT :=D (3.3)

RTHT := M X Py (3.4)

Although there are many other possible solutions with
smaller MTRTs, we do not choose a smaller MTRT here,
because the smaller the MTRT, the more frequently the
system has to allocate the token to this real-time channel
and therefore, the less efficient.

When a node attempts to establish a real-time channel, it
has to provide the LCU the requested MTRT and RTHT for
this channel. The LCU will then try to reserve the link ca-
pacity for this channel by performing the admission test:

RTHT; + overhead, 1
Z MTRT, -
1

where the index i runs over all existing real-time channels
and the current request. The main part of overhead is de-
termined by the token-passing time which includes token
transmission time, propagation time, and processing time.
If the admission test can be satisfied after adding this new
channel, the LCU will reserve the required link capacity,
update the information about the existing real-time chan-
nels, and send a confirmation message to the requesting
node. Otherwise, the LCU will send a rejection message to
the requesting node. Using these parameters, the LCU can
use the deadline-driven scheduling algorithm in [17] to al-
locate the token to each real-time channel with the corre-
sponding guaranteed MTRT and RTHT. Basically, the LCU
will issue a token to the requesting node approximately
once every MTRT, thus allowing the node to transmit pack-
ets of this real-time channel for a period up to RTHT. If the
transmission completes before RTHT expires, this node has
to return the token to the LCU. The LCU will then issue the
next token to this node (for this corresponding channel) no
later than (MTRT — RTHT) time units after the current token
is returned by this node. Thus, if all channels use up all
their reserved time, the token will be issued to all nodes
exactly once every (their corresponding) MTRT. The run-
time scheduling strategy will be discussed later.

(3.5)

4 STATISTICAL REAL-TIME CHANNELS ON
MULTIACCESS LINKS

If the application can tolerate the loss of a certain percent-
age of real-time packets, using a hard real-time channel
with the resources reserved for loss-free packet transmis-
sions will severely underutilize the network. Thus, we
would like to devise a real-time channel which reserves far
less resources and meets looser requirements for such ap-
plications. In order to achieve this, we need additional in-
formation on packet generation, i.e., the distribution of

packet interarrival times. Basically, we assume the packet-
arrival distribution for a real-time channel (characterized
over an interval of length D or MTRT) is given as in Fig. 1,
and packet arrivals in an interval of length D are independ-
ent and identically distributed (iid). Then we can reduce the
bandwidth that needs to be reserved for each real-time
channel using the packet-arrival distribution and the iid
assumption. Although this iid assumption may seem unrea-
sonable in view of the highly-correlated nature of such real-
time traffic as voice and video packets, our simulation re-
sults in Section 6 show that the iid assumption works well
for the transmission of compressed digital motion-video
frames. Similar simulation (based on different video
sources) results supporting the iid assumption can also be
found in [7].

P

M

l

number of packets
arrived within MTRT

Nmax

Fig. 1. An example distribution of packet arrivals within one MTRT.

One can lower the bandwidth needed for a real-time
channel by increasing MTRT or decreasing RTHT. By in-
creasing MTRT or choosing some MTRT > D, we may not
be able to satisfy (3.1) or (3.2) without making more as-
sumptions, as a packet could still be lost with this larger
MTRT, even when the packet-arrival rate for this channel is
far below average. For example, even though the packet-
arrival rate is low, the token may not always arrive in time
since MTRT > D. Another practical advantage of choosing
MTRT = D is the packet-arrival distribution of a real-time
channel can be computed off-line, and only one distribution
is needed for each application, even if it has several differ-
ent performance requirements, e.g., different packet-loss
rates. Therefore, once D is determined, the distribution of
packet arrivals from a source can be characterized and de-
rived from industrial standards and  simula-
tions/experiments. We will therefore consider decreasing
RTHT and keeping MTRT the same as in (3.3). Fig. 1 shows
an example distribution of packet arrivals for a real-time
channel within one MTRT (as in (3.3)). The horizontal axis
of this figure represents the number, N, of packet arrivals
within one MTRT. If N is a continuous (discrete) random
variable, the vertical axis represents the probability density
(mass) function of N. The shaded area to the right of N
represents the region where some packets of this real-time
channel may be lost due to the insufficient bandwidth re-
served, where N, is the maximum number of packets this
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real-time channel can transmit during each token allocation.
We will derive N, using Fig. 1 and the performance re-
quirements such as (3.1) or (3.2). So, we can choose an
RTHT large enough to satisfy this condition. That is, within
RTHT, the system must be able to transmit at least N
packets of this channel. N, can then be used to determine
the RTHT directly by using the relationship RTHT = N, X
Pmax- There are many possible ways to derive the desired
RTHT (or N,,) when MTRT = D, depending on the type of
performance requirements. We consider the following three
typical performance requirements. Let G denote the average
packet-arrival rate of a real-time channel.

Case 1: P(delay of a packet < delay bound D) > a given number Z.

This inequality is the same as (3.1) and should be satis-
fied over a sufficiently long period. Considering Fig. 1, if
the number of packet arrivals falls in the unshaded re-
gion (to the left of N,,.), all packets can be transmitted
before their deadlines, since the node can transmit up to
Niax Packets during each token allocation. Similarly, in
the shaded region (to the right of N,_/), at most (n —
Niax) Packets will miss their deadlines. Therefore, (3.1)
can be converted to (4.1) by using Fig. 1. Without loss of
generality, we can consider N to be a discrete random
variable, leading to:

Z<1- — (4.1)
ano nP(n)
M
B znszax (n - Nmax)P(n) 5
=1- G x MTRT (4.2)

If z:A_N P(n) is small, we can approximate (4.2) with

Nmax
7 < ZH:O nP(n)
= G x MTRT °

Using either (4.2) or (4.3), we can find the smallest N,
that satisfies this performance requirement. With a mi-
nor modification, this case can be applied to many simi-
lar performance requirements, e.g., “messages” are con-
sidered instead of packets in the performance-
requirement formula. For example, if the performance
requirement is P(delay of a message < delay bound D) > a
given number Z, then we can modify (4.2) to:

z:/I:NW f(n = Ny JP(N)
Z<1- G x MTRT !

where f(n) is the number of messages which will miss
deadlines given that n packets will miss their deadlines.

(4.3)

(4.4)

Case 2: P(no packet loss during any time interval of length >
MTRT) > Z.

This is similar to (3.2). The unshaded area in Fig. 1
should be greater than, or equal to, Z. Therefore, the re-
lation between Z and N, is represented by:
Nmax

z P(n).

n=0

Z< (4.5)

Equation (4.5) can be used to find the smallest N, that
makes the unshaded area greater than, or equal to, Z.

Case 3: P(delay of a packet < delay bound D) > a given Z for all
time intervals of length MTRT or larger. This is the
strictest requirement among the three cases, because it
has to be satisfied during any time interval of length >
MTRT. So, we must consider their worst case:

Ny > M X Z. (4.6)

We do not consider this performance requirement over
an interval < MTRT, because, in a very short period
during which only one packet is lost, it is impossible to
satisfy the requirement unless Z = 0, i.e., a hard real-time
channel.

In Section 6, we will use the first type of performance re-
qguirement and derive MTRT and RTHT with the proposed
scheme.

5 RUN-TIME SCHEDULING

Since each real-time channel can be described by its MTRT
(equivalent to “period”) and RTHT (equivalent to
“execution time”), we can use the deadline-driven sched-
uling algorithm in [6], [17] for allocating the token to indi-
vidual real-time channels. Before the LCU grants a real-
time channel request, a new schedule for allocating the to-
ken (e.g., “s0” in Fig. 2) must be computed in addition to
performing an admission test. According to this schedule,
the LCU then issues the real-time token to each real-time
channel at least once every MTRT, and this token allows a
node, upon receiving the token, to transmit packets of the
corresponding channel for a period up to RTHT. Note that
the LCU may choose to divide one RTHT into several
smaller intervals (not necessarily of equal length) and allo-
cate them to the channel within one MTRT as long as the
total bandwidth allocated to the channel does not exceed
RTHT/MTRT. However, in order to improve network utili-
zation, the LCU tries to allocate a real-time token to each
real-time channel exactly once every corresponding MTRT
(if all channels use up all their reserved bandwidth) and use
the remaining time for transmitting non-real-time traffic.
When there are no scheduled activities, the LCU issues the
non-real-time token whose expiration time is set to the be-
ginning of the next scheduled activity (including the token
passing time), and this token circulates among all nodes on
the network.

Let’s consider an example to illustrate these scheduling
activities. In Fig. 2, suppose “s0” is the original schedule
and the start time is 0. The symbol “ns” represents the time
that can be used to transmit non-real-time traffic. If the to-
ken “Al1” is returned at time t, the system will change the
original schedule, s0, to a new schedule, s1, by moving the
rest of the entire schedule ahead by (RTHT — t) time units.
Al (A2) in Fig. 2 is the first (second) token allocated to
channel A, which is determined by MTRT and RTHT.

The run-time packet scheduling performed by individ-
ual nodes is simple. The real-time token indicates which
real-time channel should be allowed to transmit its real-
time packets, and each node discards late packets and
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Fig. 2. A run-time scheduling example.

transmits the remaining packets in the queue according to
their deadlines. When a node receives the non-real-time
token, it transmits non-real-time packets in the queue until
the token expires, or continues to circulate the non-real-
time token if the node completes the transmission of non-
real-time packets before the token expires. Note that, in
order to achieve a higher non-real-time traffic throughput, a
node does not give real-time packets higher priority when
it receives the non-real-time token.

Since no complex scheduling algorithm is required at the
node level, the proposed scheme can be implemented on a
very simple node with low computing power, e.g., smart
sensors in an automated factory. In the next section, we will
show via simulation the effectiveness and efficiency of the
proposed scheme.

The communication overhead for the proposed scheme is
low, since the following two properties are generally true for
typical (soft) real-time audio/video communication. First, the
time needed to establish a channel is usually much shorter
than the lifetime of an application. Hence, this overhead does
not have significant effects on the overall communication
cost, as this is only a one-time cost for each channel. Second,
the total volume of successfully-delivered traffic (per token
allocation) of these applications is usually much larger than
the equivalent network size of a token. The equivalent network
size of a token is defined to be the amount of traffic which
can be transmitted on a bus network during one token-
passing time on this particular bus network. Recall that one
token-passing time includes token-transmission time, propa-
gation time, and processing time. The ratio of the average
successfully-delivered traffic volume per token allocation to
the equivalent network size of two tokens (one to issue and
the other to return) can be treated as the actual utilization of
this real-time channel, since the token-passing time is the
primary source of communication overhead in our scheme.
Although this ratio depends greatly on the underlying appli-
cation, it is usually small. In the simulation example pre-
sented in the next section, when the equivalent network size
of each token is 500 bytes long, the ratio is shown to be less
than one percent for the proposed scheme.

6 SIMULATION

In this section, we present a numerical example to demon-
strate the effectiveness of the proposed scheme. We will use

both the FDDI and the proposed scheme on a single
link/bus to transmit compressed digital motion-video
frames and compare their performances. This example
shows that the proposed scheme reserves the bandwidth
required for real-time traffic and also utilizes the network
efficiently in the absence of real-time traffic.

6.1 Simulation Model

Environment for the proposed scheme and incoming traf-
fic: In order to make a fair comparison with FDDI, we
simulated a 100 Mbps 2,000-meter long multiaccess
link/bus with 20 or 50 nodes. Thus, the upper bound of the
propagation delay on this bus is about 10 microseconds.
The video data are sampled from a sequence of CNN head-
line news (911 frames) stored on a laser disk [32]. The size
of each frame, after JPEG compression [28], [32] is plotted
in Fig. 3. The quality of video can be characterized by the
rate of “successfully-delivered” frames, where a success-
fully-delivered frame is defined as one which is delivered
to its destination correctly before the corresponding dead-
line. The maximum one-way transmission delay of each
frame must be less than 100 ms in order to achieve the
quality of live video. If we use the transmission rate of 30
frames per second, three frames will be transmitted in each
100 ms. Assume the maximum packet size of the network is
one Kbyte, and define the time to transmit a maximum-size
packet as the packet time. Therefore, 100 ms is equal to
1,250 packet times (1 packet time = 80 microseconds), or
D = 1,250 (in packet time). We will use a packet time as the
basic time unit in the rest of this section. Using (3.3), we get
MTRT = D = 1,250 packet times. The performance require-
ment can then be specified as:

P(delay of a frame < 1,250) > a given Z. (6.1)

Discussed below are three cases: Z = 99%, 95%, and 90%.
(All the other cases can be handled similarly.)

65000 T T T T
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0

. L
200 800 1000
Frame number

Fig. 3. An example of frame sizes (JPEG compression).

We need the distribution of traffic arrivals within one
MTRT (= 1,250) to derive RTHT. By adding the sizes of
three consecutive frames (because there are three frame arri-
vals in 100 ms), we can derive the distribution of traffic vol-
ume (in Kbytes) within D =1,250. Fig. 4 shows the distribution
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of traffic volume (three frame arrivals) within one MTRT.
For the scheme proposed in Section 4, we use this distribu-
tion to compute the bandwidths necessary for various
frame-delivery rate requirements. Let T, be the time
needed to transmit one maximum-size message. We get
Tnax = 62 from Fig. 3. The performance requirement can
then be expressed as:

186
P(n)
z<1- ng‘—ﬂx (6.2)
znzso 3P(n)
186 1
=1- §P(n), (63)
n=N

max

since, if Ny, is sufficiently large (> M — T, = 185 — 62 = 123),
each point in Fig. 4 will result in loss of at most one frame.

This corresponds to f(n) = 1.in (4.4). Note that > 3P(n) is

the expected number of frames which will arrive within one
MTRT (100 ms).
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Fig. 4. An example distribution of traffic volume in an interval of length
100 ms.

Token passing overhead for the proposed scheme: The
overhead to pass the token is the sum of token transmission
time, propagation time, and processing time. If we assume
the size of the token is 100 bytes, its transmission time is
eight microseconds. The upper bound of the token propa-
gation time is 10 microseconds, given the length of the bus
is 2,000 meters. Thus, it is safe to assume the processing
time to be less than 22 microseconds (2,200 instructions on a
100 MHz RISC CPU) and the upper bound of the total
overhead to pass the token is 40 microseconds, i.e., 0.5
packet time. The total token-passing overhead per token
allocation to a real-time channel involves passing the token
twice (one to issue and the other to return), and, hence, we
use one packet time for this overhead.

By adding one packet time as the token passing over-
head, we get:

o Z=99%: Ny = 183.
o Z=95%: Ny, = 147.
« Z=90%: Ny = 138.
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According to (3.5) the network is expected to support six 99
percent video channels, eight 95 percent video channels, or
nine 90 percent video channels. Certain uniformly-
distributed non-real-time traffic that requires from zero
percent to 90 percent of the total link capacity is added to
each node during the simulation. However, the source
nodes of real-time channels are randomly chosen. (It is pos-
sible that one node may become the source node of all real-
time channels.) The traffic data of real-time channels are
taken from Fig. 3 and each channel has its own starting
frame (also randomly chosen).

Environment for the FDDI network: In both 20-node and
50-node FDDI rings, we use the same input traffic as de-
scribed in the proposed scheme’s environment, except we
assume the source nodes of established real-time channels
are distributed evenly. For example, in a 20-node FDDI net-
work, when we want to simulate four established channels
and number the nodes from 1 to 20 in the clockwise order, the
four source nodes of the four real-time channels will be ran-
domly chosen among the following sets of nodes: (1, 6, 11, 16)
or(2,7,12,17) or (3, 8, 13, 18) or (4, 9, 14, 19) or (5, 10, 15, 20).
Since the set of source nodes is randomly chosen, all nodes
have an equal probability to be the source node of a real-time
channel. Therefore, the high-priority token holding time is
also distributed evenly among all nodes on the FDDI ring.
For instance, in the 20-node environment, the high-priority
token holding time of each node will be TTRT/20.

The token passing overhead is ignored in the FDDI case,
because we want to demonstrate the superiority of our
scheme by showing that our scheme (with token passing
overhead considered) is still significantly better (in terms of
supporting real-time communication) than FDDI, even if
we ignore FDDI’s token passing overhead (which includes
token-propagation time). So, the TTRT is set to 50 ms, i.e., a
half of the maximum frame delivery delay required.

From one to 10 established channels, we use 10 sets of
real-time channel source nodes sequentially for each case,
i.e., 100 sets are used through the simulation for FDDI.
During the course of simulation for each case (determined
by the number of established channels), each of the 10 sets
(of real-time channel source nodes) was randomly chosen
as the example mentioned above. The traffic data of real-
time channels will be taken from Fig. 3 and each channel
has its own starting frame (also randomly chosen).

6.2 Simulation Results

The main goal of our simulation is to evaluate and compare
the maximum and average frame-miss rates of both the FDDI
and the proposed scheme. (The frame-miss rate is defined
as the percentage of frames missing their deadlines.) We
will also evaluate the improvement of network utilization
by using statistical channels and examine the bandwidth
available for the transmission of non-real-time traffic in the
presence of real-time traffic. Our scheme is shown to al-
ways outperform FDDI and, at the same time, have the
ability to provide performance guarantees.

Note that the one percent, five percent, and 10 percent
lines in Figs. 5, 6, 7, and 8 are the lines which mark the cor-
responding frame miss rates in these figures for the pur-
pose of easy comparison.
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Figs. 5 and 6 show the maximum frame-miss rate of our
scheme (90 percent, 95 percent, and 99 percent lines), as
well as the maximum (FDDI line) and average (FDDI avg
line) frame-miss rates of 20-node and 50-node FDDI net-
works under the condition that the non-real-time traffic
load is equal to 50 percent of the total link capacity, i.e.,
50Mbps. The frame-miss rate is defined based on a channel,
i.e., the ratio of the number of frame misses for a channel C
to the total number of frames of C. The maximum (average)
frame-miss rate is defined to be the largest (average) value
of individual channel frame-miss rates. Each point in the
figure represents 1,000 cycles of the sequence for each
channel, i.e., about 911,000 frames or 8.4 hours at the rate of
30 frames per second for each channel. Note that each time
the video clip repeated for a real-time channel, a starting
frame was randomly chosen again so that each cycle of the
simulation would appear different overall. As predicted by
the analytic model, both figures show that six 99 percent,
eight 95 percent, and nine 90 percent channels can be sup-
ported under the proposed scheme. For those points where
the link does not have sufficient bandwidth for both real-
time and non-real-time traffic, e.g., 7-10th at 99 percent
channels, 9-10th at 95 percent channels, and 10th at 90 per-
cent channel, we reserved the entire link capacity for real-
time channels, and non-real-time traffic is transmitted only
when the bandwidth reserved for real-time traffic is not
used up completely. Since we reserved the link bandwidth
using the worst-case values, this is very likely to happen.

For example, we reserved [1,250/7] packet times for
each channel when there are seven 99 percent real-time
channels. (Note, however, that our scheme does not allow a
seventh 99 percent real-time channel, because the system
cannot guarantee the required performance.) When a sev-
enth 99 percent channel is added, about two percent of real-
time packets of this channel will miss deadlines. The FDDI
can provide four to five real-time channels at a 50 percent
non-real-time load. As we will see later, the FDDI’s ability
to support real-time communication is highly sensitive to
the non-real-time traffic load. The average frame-miss rate
for our scheme is very close to the maximum miss rate, so we
only plot the maximum frame-miss rate in Figs. 5 and 6. By
contrast, the average and maximum frame-miss rates of
FDDI are significantly different when the FDDI ring cannot
transmit all the real-time messages before their deadlines.
The FDDI’s frame-miss rate is also sensitive to the number of
nodes on the ring, but our scheme can provide the same
number of real-time channels regardless of the number of
nodes on the multiaccess link. This observation implies that
the variance of frame-miss rate of our scheme is very small,
whereas the FDDI suffers a large variation of frame-miss rate.

Figs. 7 and 8 show the maximum frame-miss rate of our
scheme (90 percent, 95 percent, and 99 percent lines), as
well as the maximum (FDDI line) and average (FDDI avg
line) frame-miss rates of 20-node and 50-node FDDI net-
works under the condition that the non-real-time traffic
load is equal to 90 percent of the total link capacity, i.e.,
90Mbps. At a high non-real-time traffic load like this, the
FDDI becomes nearly incapable of supporting real-time
communication. It can only support/handle two channels
(< 10 percent frame-miss rate) in the 20-node ring and one
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Number of Established Real-time Channels (20 nodes)
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Fig. 5. Maximum frame-miss rate at a 50 percent non-real-time traffic
load (20 nodes).
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Fig. 6. Maximum frame-miss rate at a 50 percent non-real-time traffic
load (50 nodes).

channel in the 50-node ring. By contrast, our scheme is in-
sensitive to the non-real-time traffic load. The system can
still provide six 99 percent, eight 95 percent, or nine 90 per-
cent real-time channels at a high non-real-time traffic load.
Again, since the average frame-miss rate of our scheme is
very close to the maximum frame-miss rate, we plot only
the maximum frame-miss rate. (Similar to the previous
case, the FDDI’s average frame-miss rate significantly dif-
fers from its maximum frame-miss rate.) As far as the abil-
ity to support real-time communication is concerned, our
scheme is shown to be far better than the FDDI.

Our simulation also shows that network utilization can
be improved significantly by using statistical channels. Ac-
cording to the simulation model, the network can support
nine 90 percent channels, while only six channels can be
established if no more than one percent of frames are al-
lowed to miss their deadlines.

Fig. 9 shows the actual non-real-time traffic throughput
(at a 90 percent non-real-time traffic load) and the capacity
which is not reserved for real-time traffic under our scheme.
As can be seen from this figure, the actual throughput is
higher than the capacity which is not reserved for real-time
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Fig. 7. Maximum frame-miss rate at a 90 percent non-real-time traffic
load (20 nodes).
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Fig. 9. Non-real-time traffic throughput as percent of total link capacity.

traffic, because our scheme requires the token to be re-
turned to the LCU if a node has no packets of the corre-
sponding real-time channel to transmit. Thus, the unused

portion of the reserved capacity can be used to transmit
non-real-time packets, thus improving network utilization.
This improvement is significant, especially when the re-
served capacity is much higher than the average need. For
example, when there are six 99 percent channels, only 12.2
percent of the link capacity is left for non-real-time traffic if
we use circuit switching. In our scheme, however, the actual
throughput is 36.5 percent, a 24.3 percent improvement over
the circuit-switching case (in terms of total link capacity).

We also calculated the token passing overhead of the
proposed scheme under the assumption that the equivalent
network size of a token is 500 bytes. Recall that the equiva-
lent network size of a token is defined to be the amount of
traffic which can be transmitted on the bus network during
the time period of length one token passing time on this bus
network. One token passing time includes token transmis-
sion time, propagation time, and processing time. Since two
tokens are needed for each token allocation (one to issue
and the other to return), the token passing overheads are
approximately 0.84 percent (90 percent channels), 0.79 per-
cent (95 percent channels), and 0.75 percent (99 percent
channels), since the average successfully-delivered traffic
volume per 100 ms are 119 Kbytes (90 percent channels),
127 Kbytes (95 percent channels), and 132 Kbytes (99 per-
cent channels).

Since the average frame-miss rate and the maximum
frame-miss rate of the proposed scheme are very close to
each other, we can assume that whether a frame will miss
its deadline or not (under the proposed scheme) follows a
Bernoulli distribution and the number of missed/lost
frames of each channel follows a Binomial distribution. Let
Y be a random variable denoting the number of lost frames
of a channel. For a particular point in Figs. 5, 6, 7, and 8, let
n be the number of samples (frames) and p be the frame-
miss rate of a channel in the corresponding environment.
Therefore, n = 911,000 and p is the mean of Y/n. By apply-
ing the central limit theorem [10], [16],

Y —-np
n(Y/n)(1-Y/n)

has a limiting distribution that is normal with mean 0 and
variance 1. We can then find an approximate 99% confi-
dence interval for the frame-miss rate, p, of our simulation.

We can thus derive

Y —-np

n(Y/n)(1-Y/n)

As a result, for a large n, if the experimentally-determined
value of Y is y, then the interval

L 2.60,/—()// n)(t_ y/n) g 2.60,/—(y/ n)(ln_ y/n)

provides an approximate 99 percent confidence interval of p.
In our simulation (n = 911,000), for any experimental value y

(y/n)(-y/n)

P| —2.60 < < 2.60 {=0.99.

2.60 < 0.003.



CHOU AND SHIN: STATISTICAL REAL-TIME CHANNELS ON MULTIACCESS BUS NETWORKS 779

The 99 percent confidence interval is even smaller in cases
where k (> 1) channels exist, because n = k x 911,000 in such
cases, i.e., the sample size increases.

Our scheme is shown to combine the advantages of cir-
cuit switching and packet switching. It provides perform-
ance guarantees for real-time channels and can also trans-
mit non-real-time packets during the idle period reserved
for real-time channels.

7 CONCLUSION

In this paper, we presented a new scheme for providing real-
time performance guarantees given traffic-generation char-
acteristics and performance requirements. In addition to its
ability to provide performance guarantees, the proposed
scheme can also improve network utilization by using statis-
tical (as opposed to hard) real-time channels for the perform-
ance requirements specified in statistical terms. Since the traf-
fic-generation model used in the proposed scheme is very
general and the information needed for this scheme is easy to
obtain, the scheme is easy to implement and is useful for
many applications. Our simulation results have shown that
this scheme is effective and efficient in supporting both real-
time and non-real-time communication.
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