
Experimental Evaluation of Failure-Detection Schemes in Real-time
Communication Networks *

Seungjae Han and Kang G. Shin
Real-Time Computing Laboratory

Department of Electrical Engineering and Computer Science
The University of Michigan
Ann Arbor, MI 48109-2122.

email: {sjhan, kgshin}@eecs.umich.edu

Abstract
A n effective failure-detection scheme is essential

for reliable communication services. Most computer
networks rely on behavior-based detection schemes:
each node uses heartbeats to detect the failure of
its neighbor nodes, and the transport protocol (like
TCP) achieves reliable communicataon by acknowledg-
ment/retransmission. In this paper, we experimentally
evaluate the eflectiveness of such behavior-based de-
tection schemes in real-time communication. Specifi-
cally, we measure an,d analyze the coverage and latency
of two failure-detection schemes - neighbor detection
and end-to-end detection - through fault-injection ex-
periments. The experimental results have shouin that
a sipificant portionl of failures can be detected very
quickly by the neigh,bor detection scheme, while the
end-to-end detection scheme uncovers the remaining
failures with larger detection latencies.

1 Introduction
Reliable communication is an essential service for

many distributed applications, some of which require
very fast recovery from failures, while others can toler-
ate slower failure recovery. For example, telecommu-
nication services are provided with a very high avail-
ability goal (2 hours downtime in 40 years) and require
fast failure recovery so that humans may hardly no-
tice the service disruption caused by the failure. Ef-
fective failure detection with high coverage and low
latency is a key in meeting such stringent reliabil-

*The work reported in this paper was supported in part by
the Advanced Research Projects Agency, monitored by the US
Airforce Rome Laboratory under Grant F30602-95-1-0044, the
National Science Foundation under Grant MIP-9203895 and
the Office of Naval Research under Grant N00014-94-1-0229.
Any opinions, findings, and conclusions or recommendations
expressed in this paper are those of the authors and do not
necessarily reflect the views of the funding agencies.

ity requirements. Telecommunication networks em-
ploy an expensive fail we- detection technique using
hardware duplication/comparison to detect switching-
node failures [l]. However, such computer network
applications as electronic mail, file transfer, or re-
mote file services do not mandate fast failure recov-
ery, but require reliable (correct) delivery of all mes-
sages even if it takes a long time. Behavzor-based
failure-det&ion schemes without hardware support
may suffice for these applications. A network node
(i.e., gateway) uses heartbeats to detect the failure of
its neighbor nodes, and upon detection of a failure,
the node updates its routing table to have the traffic
detour around the faulty component. Each message is
acknowledged hop-by-hop or at the end-to-end level,
and unacknowledged messages are retransmitted.

Recently, computer networks are beginning to carry
real-time messages for such applications as multime-
dia and distributed real-time control. Real-time com-
munication requires different reliability goals as com-
pared to non-real-time (or best-effort1) commiinica-
tion. Since the content of a real-time message is mean-
ingful only when it is delivered in time, retransmit-
ted messages due to their loss or corruption may be
of little use. To mask the effects of failures, multi-
ple copies of a message should be sent simultaneously
via disjoint paths. This failure masking technique has
an advantage that failures are handled without ser-
vice disruption. However, it may be too expensive for
applications with high volume traffic like video, and
moreover, many real-time applications do not require
such strict reliability as ‘no message loss at all’. For
example, loss of a couple of frames in video/voice data

‘The usual non-real-time datagram service is often called
‘best-effort delivery’, implying that the network attempts to
deliver messages as quickly as possible by using the available
resources.

122
0731-3071/97 $10.00 0 1997 IEEE

mailto:kgshin}@eecs.umich.edu

streams is acceptable, and temporary message losses
are also tolerable in many real-time control applica-
tions because of the ‘system inertia’ characterized by
the control system deadline [a] . In such applications,
it would be more attractive to detect and recover from
persistent failures.

In this paper, we focus on the issue of failure detec-
tion, an important step of failure recovery. We exper-
imentally evaluate the effectiveness of two behavior-
based detection schemes: neighbor detection and end-
to-end detection. Transient and intermittent faults are
injected into the communication subsystem, using a
software-implemented fault injector. In particular, we
measure and analyze the coverage and latency of the
detection schemes.

Before delving into the details of failure detec-
tion] we need to discuss some general characteris-
tics of real-time communication. Real-time commu-
nication service is fundamentally different from best-
effort service in that individual guarantees on such
QoS (Quality of Service) as delay or throughput for
each connection are the key requirement. Typically,
real-time communication schemes in multi-hop packet-
switched networks are built based on three principles:
QoS-contracted, connection-orienied, and reservation-
based. A contract between an application and the net-
work should be established before actual data trans-
fer. The application/client must first specify its input
traffic behavior and required &OS. Then, the network
service provider computes the resource needs (link and
CPU bandwidths, buffer space) from this information,
selects a path, and reserves necessary resources along
the fixed path. If there are not enough resources to
meet the QoS requirement, the client’s request is re-
jected. This uni-directional virtual circuit is called a
real-time channel. Messages of a real-time channel
are delivered in the order they were generated, but
the delivery of a message is not guaranteed when it is
corrupted, delayed, or lost due to failures.

The rest of the paper is organized as follows. Sec-
tion 2 discusses the failure-detection schemes under
evaluation. Section 3 presents an overview of the fault
injector used for experimental evaluation. Section 4
describes the experimental setup. Section 5 deals with
the analysis of experimental results, and Section 6 con-
cludes the paper.

2 Channel Failure Detection
Reliable transport protocols guarantee the even-

tual (loss-free) delivery of messages between two end-
points. Therefore, the “grain” of failure detection is a
message. Message loss is typically detected using the
‘positive acknowledgment’ method, in which the re-

ceiver informs the sender of the reception of each mes-
sage (or a group of messages), so that the sender can
detect delivery failures. ‘Negative acknowledgment’ is
an alternative] in which the receiver detects message
losses and requests the retransmission of missed mes-
sages to the sender or other servers.

Here we are interested in detecting failures of a
grain different from the above-mentioned protocols,
i.e., channel failures. A real-time channel is said to
have ‘failed’, if the rate of correct2 message deliv-
ery within a certain time interval is below a thresh-
old specified by the application. In this section, we
present two behavior-based failure-detection schemes
to uncover channel failures. These schemes do not re-
quire any special hardware support so that they can
be used in any network.

2.1 Neighbor Detection Method
To detect node crash/hang failures or permanent

link failures, adjacent nodes periodically exchange
node heartbeats (“I am alive”). If a node does not
receive heartbeats from one of its neighbors for a cer-
tain period, it considers the silent neighbor failed and
stops sending heartbeats to that node. Heartbeats
do not carry any useful information, and regular mes-
sages can be used as heartbeats. Explicit heartbeats
are sent only if there are no regular messages for a
pre-specified period.

The heartbeat scheme is specified by three parame-
ters: heartbeat-generation interval t , , heartbeat-check
interval t,, and a tolerable number, m, of heartbeat
misses. Assume that the same value is used for both
t , and t,. Then, unless the clock and/or scheduling
skews << t,, the heartbeat checker should wait one
more t , after the number of heartbeat misses reached
m, because of the variance in the actual heartbeat-
generation/check timing between two adjacent nodes.
Thus, it takes (m+2) tC for a node to detect the failure
of one of its neighbors.

When two nodes are joined by dual simplex links, a
node cannot tell the difference between the failure of
its neighbor nodes and that of the corresponding links
by exchanging local heartbeats only. Instead of relying
on sophisticated diagnosis, we treat all channels run-
ning through the suspected link as faulty. So, when
the incoming link from a node fails, the channels on
the outgoing link to the node will be considered failed,
even if they were healthy. This is reasonable because
a channel cannot maintain dependable service if the
health of the channel cannot be monitored.

*In terms of both content and timing.

123

2.2 End-to-End Detection Method
The end-to-end detection method involves both end

nodes of a real-time channel. It works as follows. The
source node, whenever necessary, injects a “channel
heartbeat” into the channel message stream. A chan-
nel heartbeat is a sort of real-time message, and the
intermediate nodes on a channel do not discriminate
channel heartbeats from data messages. Each channel
heartbeat contains the sequence number of the lat-
est data message. In this way, the destination node
can monitor the number of data messages lost. If the
message-loss rate of the channel exceeds the threshold
y specified by the application, the destination node
declares that the channel has failed.

For each channel, the source node manages a
heartbeat-generation timer which is incremented by
clock interrupts. The heartbeat-generation timer is re-
set every time a message (data or heartbeat) is trans-
mitted over the channel. Only when the value of
the heartbeat-generation timer reaches the maximum
heartbeat interval h,,, , an explicit channel heartbeat
is generated. Therefore, when h,,, is set to a suffi-
ciently large value relative to the data message in-
terval, explicit heartbeats will seldom be generated
due to the (near) periodic nature of real-time mes-
sages, thus making the overhead of channel heartbeats
small. The h,,, of a real-time channel should be cho-
sen to fit the channel’s traffic characteristics. It should
be larger than the minimum message interval of the
channel which is specified in the channel’s QoS con-
tract; otherwise, the resources reserved for the channel
will not be sufficient to carry both data and heartbeat
messages of the channel. The smallest possible failure-
detection latency of a channel is therefore determined
by the channel’s traffic characteristics.

2.3 Experiment Goals
The end-to-end detection scheme will uncover all

channel failures, so the main concern is its detection
latency. Under this scheme a large minimum message
interval of a channel will result in a long detection
latency. Even when the message interval is small, if
the channel’s y value is large, a long detection latency
will result. The neighbor detection scheme has a much
weaker dependency on the underlying traffic than the
end-to-end scheme, because it monitors the behavior
of a neighbor node, rather than that of a real-time
channel. Therefore, one can achieve smaller detection
latencies by the neighbor scheme than by the end-to-
end scheme. However, in the neighbor scheme, there is
a possibility that a node is not operating correctly in
terms of message processing, but still generates node
heartbeats or propagates part of regular messages. In

such a case, the neighbor scheme will result in less than
perfect detection coverage. Even though the faulty
node becomes silent eventually, the detection latency
may be larger than that of the end-to-end scheme.
In case of multiple channels going through a node,
another problem arises: have all channels on the node
or part of them failed, when the node stops generating
heartbeats? In this paper, we would like to answer
the above questions by experimentally evaluating the
coverage and latency of the neighbor detection scheme.

3 DOCTOR: Integrated Fault Injec-
tion Tool Set

Fault injection has long been viewed as a use-
ful means of testing/evaluating fault-tolerant sys-
tems. Numerous hardware-implemented fault injec-
tors (HFIs) [3-51 have been developed and used for
various experiments. However, as the complexity of
contemporary computer increases as a result of us-
ing highly-integrated VLSI chips, it is becoming more
difficult, or nearly impossible, to evaluate dependabil-
ity with HFIs alone. On the other hand, software-
implemented fault injectors (SFIs) [6-101 have been
proposed as less expensive and more controllable al-
ternatives. Although SFI techniques such as overwrit-
ing memory or register contents are becoming pop-
ular, they still face many difficulties. For example,
the intrusion into normal execution by fault injection
should be minimized and isolated to obtain accurate
measurements, especially in real-time systems. In or-
der to remedy some of these difficulties, we have devel-
oped an integrated fault-injection environment called
DOCTOR[11], particularly for distributed real-time
systems.

DOCTOR provides a complete set of tools for au-
tomated fault-injection experiments. One of the core
parts of DOCTOR is the fault injector which con-
sists of three modules: experiment generation module
(EGM), experiment control module (ECM), and fault
injection agent (FIA). EGM is responsible for prepar-
ing experiments, such as generating a set of fault in-
stances to be injected, while ECM is the run-time ex-
periment manager. FIA performs actual fault injec-
tions under ECM’s control. Another core part is the
data monitor (HMON) which collects the experimen-
tal data at run time. Data analysis module (DAM)
analyzes the collected data off-line after completing
the experiment.

One distinct structural feature of DOCTOR is the
separation of software components of the host com-
puter from those of the target system. Thus, EGM
and ECM run on the host computer while FIA runs
on the target system. It has the advantage of reduc-

124

ing the run-time interference with the target system
caused by fault injection, because only essential com-
ponents are executed on the target system. It also in-
creases the portability of DOCTOR, since the highly
system-dependent part is isolated from the rest.

Evaluation of a fault-tolerance mechanism needs a
systematic fault-injection plan, and thus, the capabil-
ity of injecting a proper fault instance into a proper
location at a proper time is essential. DOCTOR sup-
ports the injection of a variety of faults and errors,
ranging from low-level faults such as memory or pro-
cessor faults to high-level errors such as communica-
tion errors. Three temporal properties - transient,
intermittent and permanent - are supported for the
following fault types.

Memory fault: Contents of the cache or main mem-
ory are corrupted. The fault injection target can
be either explicitly specified by the user, or cho-
sen randomly from the address space using the
symbol table and object file information. For bet-
ter controllability, DOCTOR allows faults to be
injected only into a certain memory section of a
particular target task (or executable object im-
age), such as text area, global variable area, or
stack/heap area.

Processor fault: CPU faults are emulated by cor-
rupting the contents of CPU registers. The tim-
ing of injecting register errors can be randomly
selected or can be controlled to be the time when
a specific task or instruction is executed. Bus
faults can be emulated as well, by corrupting the
content of an instruction just before its execution
and restoring it after the instruction cycle. Simi-
larly, various types of faults in the processing unit
can be emulated, such as ALU errors and instruc-
tion fetching unit errors.

Communication error: Errors in communication
links can be emulated using a special fault-
injection layer inside the protocol stack. The user
can define the intended fault behavior, while some
pre-defined fault types are supported including
message loss, corruption, delay, and duplication.
Fault injection timing/duration can be specified
by either time or message history (e.g., dropping
several consecutive messages of a certain type).

In addition to the capability of injecting various
faults, effective data collection is essential in fault-
injection experiments. Typically, software monitors
suffer from poor timing-resolution and cause signif-
icant performance intrusion. On the other hand,
signal-level hardware monitors lack the ability of cap-
turing a wide range of software-level events, such as

Figure 1: Configuration of the experimental platform

OS events or application-specific events. To overcome
the shortcomings of these conventional approaches to
data collection, we have developed a hybrid-style data
monitor, called HMON, which mainly observes soft-
ware events.

The data monitoring process consists of three steps:
event probing, time-stamping, and d a t a logging. In
our approach, event probing is done by software to
preserve flexibility, the advantage of software moni-
tors - special program codes are inserted into the
objects to be monitored. Probing targets may include
system call invocations, context switches, interrupts,
fault injections, fault detections, etc. In contrast,
time-stamping and data logging are done by custom
hardware to maximize timing accuracy and to mini-
mize intrusion. For data collection in distributed sys-
tems, multiple HMONs can be used. Each network
node will be equipped with its own HMON, and these
HMONs are connected via a dedicated HMON net-
work for generating synchronized time-stamps.

4 Experimental Setup
In this section, we describe the hardware/software

configuration of the experimental platform, the real-
time communication subsystem, and the failure detec-
tion mechanisms implemented on the platform. We
also outline our fault-injection experiments.

4.1 Experimental Platform
As shown in Figure 1, the experimental platform

consists of three nodes, Nodes 1-3. Each node is a
VME bus-based multiprocessor system with Motorola
68040 microprocessors. In each node, a CPU board

125

(labeled as NP) is dedicated to communication pro-
cessing, while a separate CPU board (labeled as AP)
is used for application processing. As a communica-
tion fabric between nodes, a network interface board
(NI) featuring the ‘ANSI Fiber Channel 3.0 standard’
is equipped with each node. In addition, a HMON
board is added to each node for data collection. Node
1 and Node 2 are connected by two simplex network
links (i.e., optical fibers), one for each direction. The
same type of connection exists between Node 2 and
Node 3. A SUN workstation serves as the host ma-
chine, and is connected to nodes through an Ether-
net. Nodes are not equipped with disks, and appli-
cation/system software is downloaded from the host
machine.

An extended version of the pSOSf” real-time
OS [la] is used for AP’s system software. The AP-
side software is not important in our experiment, since
APs run very simple applications which request mes-
sage delivery to the associated NP, and retrieve mes-
sages received by the NP. N P employs a derivative of
x-kernel 3.1 [13] as a system executive and a substrate
for building the protocol stack. Since NPs do not run
user tasks, we disabled the virtual address manage-
ment of x-kernel. Thus, all tasks in N P are executed
within a single (kernel) address space. Memory pro-
tection of x-kernel was also disabled to minimize the
overhead.

4.2 Communication Subsystem
Each NP features the real-time communication

scheme described in [14]. The protocol stack includes
protocols for application program interface (API),
network management (NM), remote procedure call
(RPC), transport-level fragmentation (FRAG), unreli-
able datagram service (HNET), and the device driver
for network interface boards (DD). The API proto-
col exports routines that applications can use to set
up/tear down real-time channels and perform data
transfer on the channels. The RPC protocol is used
by the NM protocol for transmitting channel establish-
ment/teardown messages. The HNET protocol covers
the function of the network layer and part of the data-
link layer. The run-time message scheduler is imple-
mented in it.

The NP system software, z-kernel, uses a non-
preemptive scheduling policy with 32 priority levels for
task scheduling, and its protocol processing is based on
the process-per-message model. Whenever a message
arrives at a network device or needs to be transmitted
into the network, a process (or thread) is created to
shepherd the message through the protocol stack; this
eliminates extraneous context switches encountered in

the usual process-per-protocol model. Once a protocol
thread is scheduled, it runs without preemption until
completion of protocol processing. While the process-
per-message model suffices for best-effort messages, i t
introduces complexity for maintaining QoS guarantees
and performing traffic policing. For this reason, we im-
plemented the run-time message scheduler as a special
thread that is created at system startup and runs at
the highest-priority level. Implementation details can
be found in [15].
4.3 Failure-Detection Mechanisms

For the neighbor detection scheme, the node heart-
beat generator/checker is implemented as a separate
task. It is periodically executed and checks special
flags, each of which is associated with a link and is set
whenever a message is transmitted over the link. If the
flag is not set when the heartbeat generator is invoked,
a new heartbeat is generated and sent as a best-effort
message. The heartbeat checking is also done in a sim-
ilar way. There is an alternative implementation for
heartbeat generation. Instead of running as a separate
task, the heartbeat generator can run on top of the
clock interrupt thread, and heartbeats are directly fed
to the device driver without going through the mes-
sage scheduler in the HNET protocol. However, we
have not used this implementation option because of
the following two drawbacks. First , execution time of
the clock interrupt handler is extended, during which
other interrupts are disabled. Second, even when OS
task scheduler or the message scheduler hang, heart-
beats will be sent out, which will lower the detection
coverage.

For the end-to-end detection scheme, NM spawns a
special thread for each channel. This thread is invoked
using watchdog timers (or alarm functions). Thus,
every time a message of a real-time channel is gen-
erated by the application, the thread associated with
the channel is scheduled to be invoked after a delay
of h,,,. When a new data message is generated by
the application before the timer is expired, the timer
is reset to h,,, again; hence, the scheduled thread is
canceled and a new thread is scheduled to be invoked
after a delay of h,,,. When activated, the thread gen-
erates channel heartbeats for the corresponding real-
time channel.
4.4 Experiment Description

The experiment controller, ECM, on the host ma-
chine communicates with FIAs in the target nodes
through an Ethernet. To minimize the interference
caused by fault injection, the function of the FIA
in N P is minimized; the communication with ECM
is done by a FIA proxy in AP, and the FIA in NP

126

Appliitlon

t

HNET

FRE: DD <Node 1> <Node 2> <Node 3>

Figure 2: Real-time message passing

communicates with the FIA proxy through the VME
bus. The FIA proxy is also responsible for controlling
HMON and uploading the collected data by HMON.

One or two real-time channels were established from
Node 1 to Node 3 through Node 2. The end-to-end
delay requirement was 30 msec and the application
program generated real-time messages regularly once
every 50 msec without any burst. A channel failure is
said to occur if no message is delivered for more than
250 msec. Since messages were generated periodically,
no ‘channel heartbeat’ was added in between two con-
secutive messages of the real-time channel. The in-
terval of ‘node heartbeats’ was set to 30 msec and
the tolerable number of (node) heartbeat misses was
set to 1. Thus, the node heartbeat generator and re-
ceiver are invoked once every 30 msec to generate or
check heartbeats, and if heartbeats are not received
for three consecutive checking intervals, a failure is
declared (detected).

Faults were injected into the NP of the intermedi-
ate node, Node 2. As illustrated in Figure 2, only the
bottom two protocols, HNET and DD, are executed
for run-time message passing at Node 2.3 Since we are
interested in detecting failures of real-time channels af-
ter their establishment, we restrict the fault-injection
target to these two protocols and other OS modules,
particularly the task manager (TM) and the clock ser-
vice (CS).

memory
faults, CPU register faults, and communication faults.
Memory faults were injected into the text area of the
target modules at randomly-selected times. The ef-
fects of memory faults in the data area can be covered
largely by CPU register faults, since memory variables
are typically loaded into registers. To emulate CPU
faults, the values of data/address registers were cor-

Three classes of faults were injected:

~ ~~

3NM/RPC protocols are used for channel establishment and
API/FRAG is executed only at end-nodes.

rupted. Time-driven triggering was not very effective
in injecting CPU register faults in our platform. It
is because message threads are created and destroyed
very quickly and thus, the CPU is idle for a large por-
tion of time, unlike usual fault-injection experiments
in which application programs run continuously. To
increase the fault-activation rate, a different method
was used to trigger a fault-injection. When an in-
struction in the target address is executed, a fault is
injected into the register used by the instruction. In
addition, we inject faults into PC and CCR to study
the effects of faults in control registers. To maxi-
mize the chance of fault activation, CCR faults are
injected when conditional branch instructions are ex-
ecuted. We also emulate the faults in (physical) com-
munication links. The fault-injection layer is inserted
between DD and HNET. Since the results of such com-
munication errors as message drop or message data
corruption are straightforward, we inject corruption
errors into the message header part.

Each experiment was fully automated, so that
multi-run experiments were done without human in-
tervention. To synchronize the start and the end of
each run, dummy FIAs were executed at NPs of Node
1 and 3. Each experimental run consists of 6 sequen-
tial steps:

Step 1: EGM generates a fault-injection script for
the run. (Scripts for multiple runs can be gen-
erated at once.)

Step 2: ECM downloads system software (includ-
ing communication subsystem) and fault-injector
software to NPs and APs, and remotely boots the
target system.

Step 3: When the connection between ECM and FIA
proxy is ready, ECM sends the current fault-
injection script to FIA proxy.

Step 4: FIA waits until applications establish real-
time channels.

Step 5: After the message transmission is started,
FIA injects a fault (or multiple faults). Dur-
ing the run, HMON collects time-stamped data
such as message generation, message relay, mes-
sage reception, fault injection, failure detection,
and heartbeat generation/reception.

Step 6: When the pre-specified experiment duration
is reached, the collected data is uploaded to ECM,
and FIA proxies reset all nodes for the next run.

After each experiment, we calculated (i) the
channel-failure rate, and (ii) failure-detection cover-
age/latency of the neighbor detection scheme. First,

127

message reception

M% I

latemy (end-toend)
reception

fault 9 *
injection

runs 302

ok 0.7%
c f 43.7%

Figure 3: Failure-detection latency

I

each fault injection will result in one of 3 cases: no
error, tolerable error, channel failure. The channel-
failure rate is then computed as the ratio of the third
case to all cases. The failure-detection coverage is
the percentage of detections among the runs in which
channel failures had occurred. We measured only the
failure-detection coverage of the neighbor scheme, be-
cause the end-to-end scheme has always perfect cov-
erage. When calculating the coverage of the neigh-
bor scheme, we excluded the case when the neighbor
scheme detects a failure which had already been de-
tected by the end-to-end scheme. Finally, the failure-
detection latency is computed as the duration between
the time of the last message delivered correctly and
the time of failure detection. Figure 3 illustrates the
failure-detection latency. In our current experimental
setup, the detection latency of the end-to-end scheme
is always 250 msec, and the minimum possible detec-
tion latency of the neighbor scheme is 90 m ~ e c . ~ The
detection latency of the neighbor scheme depends on
(i) how long it takes until the fault affects the real-time
message, and (ii) how long i t takes until heartbeats are
affected by the fault.

5 Experimental Results
In this section, we present the experimental results

and analyze their implications. The data was col-
lected from more than 10,000 experimental runs, each
of which took about 65 seconds; 35 seconds for experi-
ment setup + 30 seconds for executing the experiment.
5.1 Injection of Transient Faults

In this experiment, transient single-bit toggle
faults were injected, with one real-time channel set
up. According to the common practice in software-
implemented fault injectors, we use the term ‘tran-
sient’ to mean the opposite t o ‘permanent’. For exam-
ple, register faults are transient because the corrupted
register contents can be overwritten by the subsequent

One has to be careful in interpreting the detection latencies
of these two detection schemes, because destination nodes de-
tect failures in one scheme, while intermediate nodes do in the
other scheme.

no I 55.6%

Channel failure (cf); tolerable error (ok); no error (no)

Table 1: Fault manifestations: transient fault injec-
tion

instructions. A message fault corrupts the header of
only one message, so it is also transient. The faults
injected into memory are also transient, but, since the
program text area is corrupted, they will have proper-
ties similar to permanent memory faults. The experi-
mental results are summarized in Tables 1 and 2.

The first observation from these experimental re-
sults is the relatively low coverage. For example,
(72.6 + 0.1)/(100 - 18.2) = 88.8 % of failures were
reported in [16] to have been detected by the system
hardware detection mechanism, which was also based
on a Motorola 680x0 CPU. This is much higher than
the coverage observed in our experiment. This dis-
crepancy can be explained based on the following four
reasons. First , the two used different fault-injection
methods. In [16] , a hardware-implemented (pin-level)
fault injector was used, so the fault injected at a CPU
pin for two memory cycles can be manifested as several
errors at the level which a software-implemented fault
injector deals with. Moreover, the faults forced into
control signal pins will make more pronounced impact
on the target system than the data-level errors. Sec-
ond, we excluded the late detections by the neighbor
scheme from the coverage calculation. As shown in Ta-
ble 3, the portion of late detections within the set of
undetected failures ranges from 0% to loo%, depend-
ing on fault types and fault-injection targets. Third,
the underlying workload (i.e., system software and ap-

128

Coverage (c); latency mean (Im), latency var (I ,) in msec

PC

I , 21.52 27.g2 21.52 NA 23.52
c 86.7% 87.7% 82.5% 80.0% 84.3%
1, 140.5 134.3 132.4 137.7 136.2
I , 20.9’ 20.72 19.42 25.52 21.g2
C 39.4%

20.5’ I
Table 2: Detection coverage and latency: transient
fault injection

Table 3:
among undetected failures

The percentage of late failure detection

plication program) was different. Computationally-
intensive workloads (e.g., sorting, searching, matrix
multiplication, etc.) were executed in the experiments
of [16]. The dependency of fault-tolerance measures
on workload has been reported by several researchers,
e.g., [17,18]. Fourth, our target system, like most
other real-time systems, is not equipped with memory-
protection capability. The experimental result in [5]
indicates that memory protection can enhance detec-
tion coverage up to 15%.

One can make several other observations. The com-
position of fault manifestations varies greatly, depend-
ing on fault types and injection target^.^ For exam-
ple, fault injection into PC has resulted in very high
channel-failure rate and detection coverage. Though
some of the failures caused by P C faults have gone
undetected by the neighbor scheme, most of them
were eventually detected (see Table 3) . In contrast,
the faults injected into CCR have resulted in much

The channel-failure rate can be slightly increased, if the
experiment duration is extended, because there could be the
cases of very long fault-activation latency.

lower detection coverage than those injected into PC.
It is because CCR errors cause incorrect control flow,
which is difficult to detect without special hardware
support (e.g., a watchdog processor), while many
P C errors can be detected by CPU-intrinsic fault-
detection mechanisms like bus error, unaligned mem-
ory access, etc. The faults injected in the clock ser-
vice routines were not detected well by the neighbor
scheme. Particularly, address/data register faults and
CCR faults into the clock service resulted in very low
coverage, implying the need for incorporating some
additional anomaly-detection features (e.g., software
assertions) into the clock service routines.

Interestingly, while many of the tolerable errors
were due to ‘message deadline violations’ and some
of them were due to ‘message losses’, very few ‘mes-
sage data corruption’ errors were found. This is be-
cause the message data part is saved into the memory
by the device driver when the message arrives and is
not copied or modified by other protocols in x-kernel.
We also measured the probability of false alarm; no
channel failure had actually occurred even if the neigh-
bor scheme signals a failure detection. This happens
when both heartbeats and real-time messages are not
transmitted for longer than 90 msec, then the real-
time message delivery service returns to normal in 250
msec. According to our experimental results, false
alarms occur very rarely and the false-alarm proba-
bility is statistically negligible.

Now, let us consider the detection latency. In the
current experimental setup, a real-time message is
transmitted once every 50 msec, and a heartbeat is
transmitted 30 msec after each real-time message was
transmitted. If faults prevent the transmission of both
real-time messages and heartbeats at the same time,
the detection latency of the neighbor scheme will be ei-
ther 90 msec or 120 msec. If a fault is activated within
30 msec after a real-time message was sent (thus, be-
tween a real-time message and a heartbeat), since all
messages after that point will be dropped, the failure-
detection latency will be the same as three consecutive
heartbeat intervals, 90 msec. On the other hand, if a
fault is activated between a heartbeat and a real-time
message, the heartbeat will be sent and only the real-
time message will not be sent, extending the detection
latency by 30 msec. Thus, the average detection la-
tency is theoretically 30/50 x 90 + 20/50 x 120 = 102
msec, provided the fault-activation time is evenly dis-
tributed.

However, in reality, the nature of faults is not that
simple; the measured detection latency was about 140
msec on average. There are two reasons for this. First,

129

Msg
I

no I 26.6%

runs 252

ok 0%
c f 73.4%

Table 4: Fault manifestations: intermittent fault in-
jection

faults may delay or drop messages for some duration
before a complete channel failure. Late real-time mes-
sages are the same as message losses from the applica-
tion’s point of view, while they are considered as im-
plicit heartbeats from the heartbeat checker’s perspec-
tive. Thus, delayed messages may extend the detec-
tion latency. Second, fault-propagation delay can be
another reason for a long detection latency. Suppose
a fault is injected between a real-time message and a
heartbeat. The heartbeat may not be affected by the
fault because of the fault-propagation delay, but the
next real-time message can be affected by the fault.
Then, the detection latency will become 120 msec, in-
stead of 90 msec. Moreover, the fault-propagation de-
lay can be different for real-time messages and heart-
beats. In an extreme case, faults affect real-time mes-
sages quickly and affect heartbeats slowly, which will
result in a very long detection latency.
5.2 Injection of Intermittent Faults

To examine the performance of the neighbor detec-
tion scheme for harsher (than transient) faults, we ex-
perimented the case of intermittent faults. Up to five
single-bit toggle faults were injected, where each fault
was independently selected. The experimental results
are summarized in Tables 4 and 5. As expected, higher
channel failure rate and detection coverage have re-
sulted as compared to the case of transient fault injec-
tions. In particular, the detection coverage for mem-

I I , 1 26.42 I 31.02 [28.g2 1 14.82 I 28.62
I c I 86.8% I 88.7% I 83.9% 1 78.8% I 84.6%

68.1%
149.1
19.8’

Table 5: Detection coverage and latency: intermittent
fault injection

ory faults or message faults increased by a larger mar-
gin than address/data register faults and CCR faults
which seem to affect the program execution more del-
icately.

5.3 Effects of Faults on Multiple Chan-
nels

The same experiment as in Section 5.1 was con-
ducted with two real-time channels set up, in order to
study the effects of faults on multiple real-time chan-
nels. We measured the coverage and latency sepa-
rately for each channel. Though the results were not
presented due to space limitation, they were close to
those shown in Tables 1 and 2.

A surprising result is that, among more than 2,000
experiments, we did not observe any case in which
one channel fails but the other channel does not.
This is attributed to the sharing of program codes
in processing real-time messages belonging to differ-
ent channels. Recall that in x-kernel, whenever neces-
sary, a shepherd thread is spawned to process a new
message, and all shepherd threads execute the same
(protocol-processing) program code.6 If the execution
of a thread is faulty because of faults in the local data
of the thread, only the message associated with the
thread will be affected, not all messages of a channel.
In contrast, if the source of the incorrect execution
is in a globally-shared component like program code
or system software, all messages of all channels will
be affected. If a faulty thread affects the execution
of other threads or the channel-specific data (i.e., a

‘The property of program code sharing in message process-
ing is not limited to our platform and is common in most con-
ventional protocol implementations such as in BSD Unix.

130

message late messages

channel failure

Figure 4: A typical example of undetected channel
failure

link-deadline) is corrupted, only a subset of channels
fail. However, our experimental results have shown
this possibility to be negligible.

6 Conclusion
In this paper, we investigated the effectiveness of

two failure-detection schemes - neighbor and end-
to-end detection - in real-time communication net-
works. The neighbor scheme has been used widely in
many non-real-time computer networks to monitor the
health of network nodes. Our experimental results on
a platform, which was designed without any particular
consideration for fault-tolerance, have indicated that
the coverage of the neighbor scheme is not very high
and a long latency occasionally results, but in general,
it detects a significant portion of failures very quickly.
One main reason for this low coverage and occasional
long latency is that faults do actually cause real-time
messages to be delayed. A typical failure symptom
which was not detected by the neighbor scheme is il-
lustrated in Figure 4. The end-to-end scheme can de-
tect the failures which were missed by the neighbor
scheme. Despite its perfect coverage, this scheme has
such weaknesses as high overhead, long latency, and
the inability to locate failures. Thus, improving the
coverage and latency of the neighbor scheme is a cru-
cial step for fast failure recovery.

References
[l] W. N. Toy, “Fault-tolerant design of AT&T telephone

switching system processors,” in Reliable Computer
Systems: Design and Evaluation, pp. 533-574. Digital
Press, 1992.

[2] K. G. Shin and H. Kim, “Derivation and application
of hard deadlines for real-time control systems,” IEEE
Trans. on System, Man, and Cybernetics, vol. 22, no.
6, pp. 1403-1413, November 1992.

[3] J. Arlat, Y. Crouzet, and J.-C. Laprie, “Fault in-
jection for dependability validation of fault-tolerant
computing systems.,” in Proc. IEEE FTCS, pp. 348-
355, 1989.

[4] U. Gunneflo, J. Karlsson, and J. Torin, “Evaluation of
error detection schemes using fault injection by heavy-
ion radiation,” in Proc. IEEE FTCS, pp. 340-347,
1989.

[5] H. Madeira and J. Silva, ‘‘Experimental evaluation
of the fail-silent behavior in computers without error
masking,” in Proc. IEEE FTCS, pp. 350-359, 1994.

[6] Z. Segall et al., “FIAT - fault injection based auto-
mated testing environment,” in Proc. IEEE FTCS,

[7] R. Chillarege and N. S. Bowen, “Understanding large
system failures - a fault injection experiment,” in
Proc. IEEE FTCS, pp. 356-363, June 1989.

[8] G. Kanawati, N. Kanawati, and J. Abraham, “FER-
RARI: A tool for the validation of system dependabil-
ity properties,” in Proc. IEEE FTCS, pp. 336-344.
IEEE, 1992.

[9] K. Echtle and M. Leu, “The EFA fault injector for
fault-tolerant distributed system testing,” in Work-
shop on Fault- Tolerant Parallel and Distributed Sys-
tems, pp. 28-35. IEEE, 1992.

[IO] W. Kao, R. Iyer, and D. Tang, “FINE: A fault in-
jection and monitoring environment for tracing the
UNIX system behavior under faults,” IEEE Trans.
Software Engineering, vol. 19, no. 11, pp. 1105-1118,
November 1993.

[11] S. Han, K. G. Shin, and H. Rosenberg, “DOCTOR:
An integrateD software fault injeCTiOn enviRon-
ment for distributed real-time systems,” in Proc.

[la] L. M. Thompson, “Using pSOSt for embedded real-
time computing,” in Proc. COMPCON, pp. 282-288,
1990.

[13] L. L. Peterson, N. C. Hutchinson, S. W. O‘Malley, and
H. C. Rao, “The z-Kernel: A platform for accessing
internet resources,” IEEE Computer, vol. 23, no. 5,
pp. 23-33, May 1990.

[14] D. D. Kandlur, K. G. Shin, and D. Ferrari, “Real-time
communication in multi-hop networks,” IEEE Trans.
Parallel and Distributed Systems, vol. 5, no. 10, pp.
1044-1056, October 1994.

[15] A. Mehra, A. Indiresan, and K. G. Shin, “Resource
management for real-time communication: Making
theory meet practice,” in Proc. IEEE RTAS, pp. 130-
138, 1996.

[16] M. Rela, H. Madeira, and J. Silva, “Experimental
evaluation of the fail-silent behavior in programs with
consistency checks,” in Proc. IEEE FTCS, pp. 394-
403, 1996.

[17] S. Butner and R. Iyer, “A statistical study of reliabil-
ity and system load at SLAC,” in Proc. IEEE FTCS,

[18] R. Chillarege and R. Iyer, “Measurement-based anal-
ysis of error latency,” IEEE Trans. Computers, vol.
36, no. 5, pp. 529-537, May 1987.

pp. 102-107, 1988.

IEEE IPDS, pp. 204-213, 1995.

pp. 207-209, 1980.

131

