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Abstract 

For many applications it is important to provide communi- 
cation services with guaranteed timeliness and fault-tolerance 
at an acceptable level of overhead. In this paper, we present 
a scheme for restoring real-time channels, each with guaran- 
teed timeliness, from component failures in multi-hop net- 
works. To ensure fast/guaranteed recovery, backup channels 
are set up a priori in addition to each primary channel. 
That is, a dependable real-time connection consists of a pri- 
mary channel and one or more backup channels, If a pri- 
mary channel fails, one of its backup channels is activated 
to become a new primary channel. We describe a protocol 
which provides an integrated solution to the failure-recovery 
problem (i.e., channel switching, resource reallocation, . . .). 
We also present a resource sharing method that significantly 
reduces the overhead of backup channels. The simulation re- 
sults show that good coverage (in recovering from failures) 
can be achieved with about 30% degradation in network uti- 
lization under a reasonable failure condition. Moreover, the 
fault-tolerance level of each dependable connection can be 
controlled, independently of other connections, to reflect its 
criticality. 

1 Introduction 

Real-time communication services have become essential for 
many applications like digital continuous media (audio and 
motion video) and distributed real-time control. Unlike tra- 
ditional datagram services in which average performance is 
of prime interest, guaranteeing such “quality of servicd(QoS) 
as message delay and error rate is the key requirement of 
real-time communication services. In recent years, consid- 
erable efforts have been made to provide the timeliness QoS 
guarantee, while the importance of guaranteeing fault-tolerance 
QoS has been far less recognized. The survey paper by 
Rras et al, [ARA94] discusses many of existing real-time 
communication schemes. However, there are growing needs 
for communication services with a guaranteed level of fault- 
tolerance in many real-time applications. Suppose, for ex- 
ample, there is a very important video conference and net- 
Permtsslon to moke digital/hard copy 01 par1 or all rms worK Tar 
personal or classroom use is granted without fee provided that 
copies are not made or distributed for profit or commercial advan- 
tage, the copyright notice, the title of the publication and its date 
appear, and notice is given that copying is by permission of ACM, 
Inc. To copy otherwise, to republish, to post on servers, or to 
redistribute to lists, requires prior specific permission and/or a fee. 
SIGCOMM ‘97 Cannes, France 
0 1997 ACM 0-89791.905-X/9710009...$3.50 

work failures disconnect one or more participants from the 
conference for an unpredictably long period. This may lead 
to a failure or delay in reaching important strategic deci- 
sions, which can cause a significant economic loss. Catas- 
trophic social consequences have actually been witnessed in 
recent breakdovms of the US telecommunication network. 

Interestingly, most real-time communication schemes for 
multi-hop networks share three common properties: &OS- 
contracted, connection-oriented, and reservation-based. Es- 
sentially, a contract between a client and the network is 
established before actual message transfer. To this end, 
the client must first specify his input tragic behavior and 
required &OS. Then, the network computes the resource 
needs (e.g., link & CPU bandwidths, and buffer space) from 
this information, selects a path, and reserves necessary re- 
sources along the path. (If there are not enough resources to 
meet the QoS requirement, the client’s request is rejected.) 
The client’s messages are transported only via the selected 
path with resources reserved, and this virtual circuit is often 
called a real-time channel. 

While this reservation-based approach has been success- 
ful in providing ‘hard’ guarantees on timeliness &OS, it causes 
a serious difiiculty in achieving fault-tolerance. Traditional 
failure-handling techniques for datagram services are inad- 
equate, because a real-time message can traverse only the 
path on which resources are reserved a priori for it and 
hence cannot be detoured around failed components on the 
fly. Instead, a new channel which does not use the failed 
components should be established before resuming the data 
transfer. However, establishing a new channel is usually a 
time-consuming process, which can result in a long service 
disruption. Moreover, such an approach cannot make any 
guarantee on successful failure recovery, because there may 
not exist a proper detouring path. Figure 1 illustrates such 
a situation. 

Figure 1 (a) shows a network which contains three real- 
time channels. Assume that two network nodes are con- 
nected by two simplex links, each of which can accommodate 
up to two channels. When node N2 fails, channels 1 and 2 
need to be detoured around N2. Both channels may need to 
use shortest possible paths in order to maximize the chance 
of meeting their timeliness QoS requirements. As a result, 
the resource needs on the link from N5 to N6 exceed its ca- 
pacity, and the link can accommodate only one of them, say 
channel 1, as shown in Figure 1 (b). Now, channel 2 has to 
be rerouted over a longer path. If channel 2’s QoS require- 
ment is too tight to fit the longer path, channel 2 cannot 
be recovered from N2’s failure. An option is moving than- 
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(a) Initial network 
Fekml 

(b) After failure recovery (b) After failure recovery 

Pigure 1: Failure recovery by blind rerouting Figure 2: Failure recovery by the proposed scheme 

nel 3 to a different path in order to accommodate channel 
2 at the link from N5 to N6. However, this is not, a good 
idea, since moving the existing channels can cause domino 
effects without guaranteeing successful rerouting of the af- 
fected channels. A better solution is not to set up channel 
3 over the link from N5 to N6 in the initial network. 

In this paper, me propose an efficient scheme to quickly 
restore real-time channels from network component failures. 
To assure successful rerouting and avoid the time-consuming 
channel re-establishment process, backup channels are set 
up a priori in addition to each primary channel. That is, 
a dependable real-time connection (or a D-connection for 
short.) consists of a primary channel and one or more backup 
channels. 

A backup channel remains a cold-standby until it is ac- 
tivated. In other words, it does not carry any data in a nor- 
mal situation, so that the resources reserved for the backup 
channel may be used by other traffic.’ However, backup 
channels degrade the network’s capability of accommodating 
real-time channels. If the application requires high-volume 
message streams (e.g., motion video), the degradation will 
become serious, To cope with this problem, we have de- 
veloped a resource-sharing method, called backup multiplex- 
ing, in which resources are shared among backup channels 
in such a way that fault-tolerance is not compromised. 

Figure 2 illustrates how the same failure in Figure 1 is 
handled in our scheme. Note the difference between the ini- 
tial channel setups. In Figure 2 (a), primary-3 is routed over 
N9 instead of N6, because of the resource shortage on the 
link from N5 to N6. On that link, backup.3 is multiplexed 
with backup-l and backup-2. In thii example, we assumed 
that channels are established in the ascending order of their 
indices, using a shortest-path routing method. 

The rest, of the paper is organized as follows. Section 2 

‘Not only non-real-time traffic but also other real-time traffic can 
utilize the resources reserved for backup channels, if the underlying 
real-time channel scheme has the capability of dynamic QoS control 
like the layered transmission method [MCC96]. 

(a) Initial network 

presents our design goals. Sections 3 and 4 describe, respec- 
tively, the connection-establishment and failure-handling pro. 
cedures of the proposed scheme. Section 5 analyzes the 
service-disruption time caused by failures. Section 6 ad- 
dresses the scalability issue. Section 7 presents the simu- 
lation results, demonstrating the efficiency of the proposed 
scheme. Section 8 discusses related work giving a compara- 
tive perspective, and the paper concludes wivith Section 9. 

2 Design Goals 

A real-time channel is a m&directional one-to.one virtual 
circuit with the capability of timeliness-guaranteed, in-order, 
but unreliable message delivery. A real-time channel ser- 
vice is usually implemented wipith two protocols: Real-time 
Network Manager Protocol (RNMP) and Real-time Mes- 
sage Transmission Protocol (RMTP). The main function of 
RNMP is channel establishment and teardown, while that 
of RMTP is runtime control such as traffic shaping and mes- 
sage scheduling. 

When a client requests a real-time channel to be estab- 
lished, he has to specify his traffic-parameters (e.g., maxi- 
mum message rate) and QoS requirements (e.g., message de- 
lay bound). Using this information, RNMP performs an ‘ad- 
mission test,’ which checks the availability of the resources 
necessary to meet the channel’s QoS requirement. RNMP 
reserves resources if the admission test is positive. In RMTP, 
a traffic regulator is used to smooth (oftentimes bursty) 
packet arrivals, and one or multiple output queues are ser- 
viced for message scheduling and transmission. RMTP is 
closely related to RNMP, because the admission control of 
RNMP assumes a certain message-scheduling policy for RMTP. 

The main intent of this paper is to develop a protocol 
which augments the existing real-time channel service wivith 
the fault-tolerance capability in multi-hop networks. To pro- 
vide a fault-tolerant service, we must first, define the under- 
lying failure model. We assume that (infrequent) transient 
packet losses are acceptable to the target applications, or are 
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dealt with by other techniques like forward error correction. 
Our scheme restores the real-time channel service which is 
disabled by 
jailurea. 

“persistent” or Xpermanent” failures, e.g., crash 

The proposed protocol, named Backup Channel Protocol 
(BCP), establishes %connections, reports detected failures 
to the nodes which are responsible for recovery operations, 
activates backup channels, resumes the disrupted real-time 
channel service, and reconfigures resources to cope with fu- 
ture failures (BCP does not deal with failure detection). 
There arc five goals that drive the design of BCP: 

Per-connection fault-tolerance control: Each V- 
connection is allowed to have a different fault-tolerance 
capability depending on its criticality. Unless the num- 
ber and type of failures occurred exceed the fault- 
tolerance capability of the connection, a successful re- 
covery is guaranteed. 

Fast (time-bounded) failure recovery: The service. 
disruption time of a ‘i%connection caused by failures 
is very short, and is bounded if certain conditions are 
met. 

Robust failure handling: Failures are always han- 
dled properly regardless of the number of their occur- 
rences, and the QoS of nonfaulty real-time channels is 
not affected at all. 

Small fault-tolerance overhead: The amount of 
the additional resources required for fast/guaranteed 
recovery is acceptably small. 

Interoperability/scalability: The BCP can be placed 
on top of any real-time channel protocol, so it can 
be used in wide-area networks equipped with various 
(heterogeneous) protocols. Also, the BCP scales well, 
since it doesn’t require each node to maintain global 
knowledge of network status. 

3 Establishment of a ‘D-Connection 

Instead of providing the same uniform level of fault-tolerance 
to all connections, we allow each client to specify his fault- 
tolerance QoS requirement. BCP then establishes necessary 
backups to meet the QoS requirement. Described below are 
the client interface and the channel-establishment procedure 
of BCP. 

3.1 Fault-Tolerance QoS Parameter, P, 

Pp represents the reliability of a D-connection. Generally, 
the reliability of a system, denoted by R(t), is defined as 
the probability that the system provides the required service 
from time 0 to t. In our case, the required service (i.e., fault- 
tolerant real-time channel service) will be provided unless all 
channels of a %connection fail (near) simultaneously. 

Let’s consider how to derive R(t) of a ZXconnection. As. 
suming a Poisson failure process with rate X, we derive R(t) 
of each network component to be ewAt. For the convenience 
of presentation, we further assume that the failure rates of 
all network components are same and all failures are statisti- 
cally independent. Then, R(t) of a channel can be expressed 
as e’uxt, where the channel path consists of n components. 

aIf a system hake and remains halted! it is said to have crashed. 
It cnn or cannot be recovered by restartmg (rebooting) the system. 
A link can crash by losing all messages transmitted over it. 

(a) %el A 

(b) Model B 

Figure 3: Markov models to derive R(t) 

In other words, the failure rate of the channel is n;\. Finally, 
R(t) of a D-connection can be modeled with a Markov pro- 
cess using the failure rates of its channels. For example, 
Figure 3 (a) shows a continuous-time Markov model to de- 
rive R(t) of a ZXconnection with a single backup channel, 
where ,u is the channel repair (or re-establishment) rate, 441 
and X2 are failure rates of the primary and backup channels, 
respectively, and Xs is the failure rate of the shared part of 
both channels. State 0 is the initial state and state 3 is the 
absorbing state. Figure 3 (b) is a simplified model when 
the primary and backup channels are of the same length, 
Using the technique in [TR.I82], one can calculate R(t) of a 
ZXconnection from these Markov models.3 

However, representing the QoS parameter as a function 
of time is unsuitable for the client interface model. Further- 
more, the channel repair rate (p) is much larger than the 
channel failure rate - the channel re-establishment time is 
in the order of seconds or minutes, whereas MTBF is in 
the order of 1000 hours. Thus, the system returns to the 
initial state quickly unless the second failure occurs near- 
simultaneously. Based on these observations, instead of us. 
ing Markov models, we use a combinatorial model in which 
each network component is assigned a probability, A, of fail- 
ure during one time unit and the system (i.e., a 2)-connection) 
is reset to the initial state at the start of each time unit. So, 
P, is equal to the probability that at least one channel of 
the Z)-connection remains healthy during one time unit. For 
example, the P, of a Z)-connection with a single backup is 
P(primary not fail) + P(primary fails n backup not fail). 

3.2 Backup Multiplexing 

The P, of a D-connection is determined mainly by the num- 
ber and the routing of its backup channels. A connec- 
tion with more backups will have a higher probability of 
at least one of its backups surviving network failures. The 
links/nodes used by a primary channel may preferably be 
avoided in routing its backups, because overlapping routes 
among the channels of the same D-connection will degrade 
its fault-tolerance &OS. 

As far as actual resource consumption is concerned, a 
backup channel costs nothing, since it does not actually 
transport any information until it is activated. However, 

3R(t) = 1 - P(the system is in the absorbing state at time t). 
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a backup channel is not free, as it requires the same amount 

of resources as its primary channel to be reserved, for im- 
mediate activation upon failure of the primary. As a result, 
equipping each ‘D-connection Gth a single backup routed 
disjointly with its primary reduces the network capacity by 
60% or more. We call the resources reserved for backups 
'spare resources,’ The large amount of spare resources can 
seriously degrade the attractiveness of the backupchannel 
scheme. 

To alleviate this problem, lve have developed a resource 
sharing technique, called backup multiplexing. Its basic idea 
is that, at each link, \ve reserve only a very small fraction 
of spare resources4 needed for all backups going through 
the link. That is, resources for backup channels are ‘over- 
booked. One of the key problems in backup multiplexing 
is to decide which backups Gil share the same resources. A 
natural solution to this problem is to choose those backups 
which are less likely to be activated simultaneously. The 
probability of simultaneous activation of two backups be- 
longing to two different %connections is bounded by the 
probability of simultaneous failure of their respective pri- 
mary channels, This probability depends on the routing 
of the primary channels, and increases with the number of 
components shared between the primary channels. 

For each link, we calculate the probability - denoted 
by S(Bit Bj) - of simultaneous activation of two backups, 
.0i and Bj, whose primary channels are Mi and Mj, respec- 
tively, Assuming that failures occur independently with the 
same probability X, we get: 

S(BifBj) = 1 - P(no failure in shared components) 

eP(no simultaneous failures in the rest) 

= 1 -(l,X)4MitMj) . {I_ (1 - (I_ ~)4"i)-s4J49Mj)) 

,(I_ (I_ ~)4"i)-B4MirMi))} 

= l- {(I_ x)ti"i) + (1 _ x)4"i) 

-(l-X)C("j)~~Mi)-dC(Mi~Mj)) 

vrherc c(Mi) and c(Mj) are the component counts in Mi and 
M,, respectively, and sc(Mi, Mj) is the number of compo- 
nents shared between them. Here, components include both 
nodes and links. One can use different failure rates for nodes 
and links by slightly modifying the equation. 

Based on this probability, the set of backups to be mul- 
tiplcxed together is determined for each backup on each 
link, i.e., multiplexing is done hop-by-hop. B; and Bj are 
multiplexed if S(Bi, Bj) is smaller than a certain thresh- 
old v, called the multiplexing degree, which is specific to 
each backup. The smaller v of a backup, the higher faule 
tolerance will result. For instance, if v for a backup Bi is 
set to X, fast recovery of the corresponding ZXconnection 
from any single node/link failure is guaranteed, because B; 
will not be multiplexed with any other backup whose pri- 
mary overlaps with Mi. This way, per-connection control 
of fault-tolerance is possible, thus allowing more important 
connections to have higher fault-tolerance (e.g., tolerating 
harsher failures). In this paper, each backup is required to 
have the same multiplexing degree on all of its links for ease 
in managing ‘p,. 

Let Hal,t = {B,, BP,. ..} denote the set of backups 
which are not multiplexed with Bi on link fJ. One way to 
determine the spare resources at link f2 is to find the highest 
resource requirement among all sets of {IIn,,t + Bi}, where 

‘In this pnper, we consider only link bandwidth for simplicity, but 
other resources like buffer and CPU can be treated similarly. 

all backups are considered equally regardless of their multi- 
plexing degrees. This method may overestimate the amount 
of required spare resources at a link, when there are multi- 
ple backups with different multiplexing degrees running over 
the link. Suppose there are one backup lvith a very smsll v 
and many backups with Iarge v on a link. Then, IIt of the 
backup with a very small v will determine the amount of 
spare resources at the link, which may be much larger than 
actually needed. To get around this problem, we consider 
only backups with no greater multiplexing degrees than that 
of Bi when I&L constructed. 

3.3 Calculation of ‘P, with Backup Multiplexing 

When a backup channel is activated, it dra\vs necessary re- 
sources from the spare resources. Since multiplexing is based 
on probabilistic relations, there is a possibility, albeit rare, 
that the backups which are multiplexed together need to 
be activated simultaneously. Such unlikely activations can 
cause the exhaustion of spare resources, so that the remain- 
ing backups cannot be activated; “multiplexing failures" are 
said to occur to those backups. 

When we calculate the P+ of a ‘D-connection lvith backup 
multiplexing, we have to consider the possibility of multi- 
plexing failures. The ‘P, of a D-connection with a single 
backup Bi routed disjointly with the primary channel Mi is 

Pr = P(Mi IlOt fail) + 

P(Mi fails) .P(Bi IlOt fail). (1 - P*,*f(Bi)}, 

where PmUrf(Bi) represents the probability that Bi is not 
available due to a multiplexing failure. P, with more back- 
ups can be derived in a similar way. 

For simplicity, we derive an upper-bound of P,,,r(B;). 
If any backup is multiplexed with Bi, the v value of Bi is 
always greater than the probability of simultaneously acti- 
vating Bi and the backup. In other words, the probability of 
avoiding a multiplexing failure is at least 1 - v. Therefore, 
the probability that Bi will suffer from a multiplexing failure 
on link f? is not greater than 1- (1 - ~)l*~**~l, where jqB,,!l 

is the number of backups multiplexed with Bi on link e (i.e., 
qB;,f = {all backups on e} - DB;J - Bi). Considering all 
the links Bi runs through, we get 

P mutf (Bi) < C 1 - (1 - Y)‘lyBaBc’. 

all e of B; 

3.4 Backup Channel Establishment 

As in the case of primary channels, route selection and re- 
source reservation are crucial steps of backup channel estab- 
lishment. Here we use the shortest-path routing to select 
backup paths. Algorithms to find multiple disjoint shortest 
paths between two nodes are given in lWHA90, SIDSl]. 

As to spare resource reservation, there can be various 
QoS-negotiation schemes between clients and BCP to deter- 
mine the number of backups and the associated multiplex- 
ing degrees. We describe two possible schemes. In the first 
scheme, the client-specified 7, requirement is met Yoosely,n 
as opposed to ‘literally.” At first, BCP selects the number 
of backup channels and their multiplexiug degrees by consid- 
ering the P, requirement and/or the network status. Then, 
the backups are established and the resultant ‘P, of the con- 
nection calculated. If backup establishment is successfully 
completed, the resultant ‘P? is notified to the client. The 
client may or may not be satisfied with the offered fault- 
tolerance level, and may accept or reject the offer. If the 
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backups cannot be established due to insufficient resources 
available, the client’s request will be rejected. (The rejected 
client may opt to retry with a lower P, requirement.) 

In the second scheme, the client’s P, requirement is met 
as requested. In contrast to the first scheme, BCP estab 
lishes backup channels incrementally until the required P, 

is achieved. Assume that the channel establishment is initi- 
ated by the source node.5 A backup channel is established 
by using a pair of channel-establishment messages: (i) the 
‘resource reservation message’ from source to destination 
and (ii) the ‘resource relaxation message’ from destination 
to source. In the forward pass (reservation message) to the 
destination, BCP reserves spare resources for the backup 
without multiplexing, while calculating the lqni,ll of each 
link f? on the channel route with various v values. The reser- 
vation message collects the I!J!B~,LI calculation results and 
passes them to the destination node. Then, the destination 
node selects the largest v which satisfies the required P, 

based on the collected information. Essentially, the prob- 
lem of meeting the Pr requirement is transformed to that of 
deciding the multiplexing degree. Fortunately, we need to 
try only a couple of different v values, because the values of 
S(Bi, B,) are distributed around integer multiples of X when 
X is small, i.e., S(Bi, Bj) ~~(M~).X~-C(M~).X-{C(M~)+ 
c(Mj)-sc(Mi,Mj)}*X = sc(M<, Mj) * X. Thus, the backup 
channels on a link can be classified into a certain number 
of classes according to their multiplexing degrees which are 
discrete numbers, The number of classes are not greater 
than the length of the longest possible path in the network. 
In the backward pass (relaxation message) from destination 
to source, the spare resources on the channel path are multi- 
plexed according to the selected v. If the required P, cannot 
be met with a single backup, additional backups are estab 
lished, The multiplexing degree of the backups set up previ- 
ously can be adjusted (further relaxed), if necessary. If the 
required Pr is too high to satisfy, P, should be renegotiated. 

For both schemes, the BCP daemon at each node has 
to maintain the information about each backup running 
through the node, including the path of its primary, the 
multiplexing threshold, the non-multiplexable channel set, 
and other information like the current channel state (which 
will be diicusscd in Section 4). We will discuss the com- 
plexity and scalability of the backupchannel establishment 
procedure in Section 6. 

4 Failure Recovery Procedure 

The first step in handling a failure is its detection. Depend- 
ing on the semantic of a failure, all channels on the failed 
component may fail or only part of them may fail. QoS re- 
quirements can also make an impact on the manifestation 
of a failure, For instance, real-time channels for certain ap 
plications may not be able to tolerate an error rate which is 
acceptable to other channels set up for different applications. 
WC have developed techniques for detecting channel failures, 
evaluated their efficiency experimentally, and reported the 
results in [HAN97a]. 

In this paper, we assume the existence of a proper failure- 
detection mechanism in which failed components are de- 
tected by their neighbor nodes, and focus on the procedure 
after failure detection. 

‘This is not B restriction. The destination can initiate the channel 
estobliohment. 

Figure 4: Channel state transition 

4.1 Overview 

If the node which detects a failure is different from the node 
which is responsible for channel switching, the failure should 
be reported to the latter node. There are three important 
issues in failure reporting. First, who will need to receive 
failure reports ? Second, which path will be used for failure 
reporting? Third, what information needs to be carried in 
failure reports? Our approach to these issues is as follows: 
(i) failure reports are sent from the failure-detecting nodes 
only to the end-nodes of failed channels, (ii) failure reports 
are delivered through healthy segments of the failed chan- 
nels’ paths, (ii) each failure report contains the ‘channel-id’ 
of the failure channel. 

Our approach handles multipIe (near-) simultaneous fail- 
ures very naturally and easily. A failure report will be dis- 
carded by a node when the same report had already been 
received/passed through. Thus, if multiple failures occur to 
a channel, only one failure report will reach its end-nodes, 
and all the other reports will be lost due to the failures 
themselves or discarded by intermediate nodes. 

When an end-node of a 2)-connection receives a failure 
report on its primary channel, it selects one of its backups 
and sends an ‘activation message’ along the path of the se- 
lected backup. To identify the health of backups, failures 
of backup channels are reported to their end-nodes in the 
same way as primary channel failures. During its journey, 
the activation message can come across a node which had al- 
ready received a failure report of the backup being activated. 
In such a case, the activation message is simply discarded, 
because this new failure will be reported and another acti- 
vation message will follow. 

After activating a backup channel to become a new pri- 
mary channel, BCP needs to reconfigure the resource reser- 
vation at the intermediate nodes of the new primary chan- 
nel, because some resources shared with other backups are 
now dedicated to the new primary channel. If the spare re- 
sources at a link are exhausted by the activation, the remain- 
ing backup channels on the link cannot function as standby 
channels, i.e., multiplexing failures. Multiplexing failures 
are reported in the same way as component failures. 

The key principle of our failure-recovery process is local- 
ization, so that the traffic on non-faulty parts of the network 
remains unaffected by failure recovery. 
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4.2 Failure Reporting & Backup Activation 

The failure-recovery process outlined in the previous sub- 
section is elaborated on with a state transition diagram in 
Figure 4. At each node, a channel can be in one of four 
states: non-existent state (N), healthy primary channel state 
(I’), healthy backup channel state (B), and unhealthy chan- 
nel state (U). The initial state is N. Upon reception of a 
‘channel-establishment message,’ the state machine enters 
state P or B, When a node receives a failure report (or de- 
tects a failure) in state P or B, the state machine enters U 
and the failure report is forwarded to the appropriate node. 
Additional failure reports received in state U are ignored. 
When an activation message is received in state B, the state 
machine enters P. The activation messages received in state 
U are ignored. The state transition for resource reconfigu- 
ration (c.g,, from U to N, or from U to B) will be detailed 
later, 

Now, we describe and compare schemes for failure re- 
porting and backup activation. Figure 5 illustrates three 
schemes. The main distinction among these schemes is where 
the failure reports and activation messages are generated 
and destined for. In Scheme 1 (Figure 5 (a)), the down- 
stream node of the failed component generates a failure 
report and sends it to the destination node of the failed 
channel. Then, the destination node initiates an activa- 
tion message, which travels in the opposite direction of the 
backup channel to be activated. By contrast, in Scheme 
2 (Figure 5 (b)), the upstream node generates the failure 
report, the channel source node receives the failure report, 
and the activation message is sent to the channel destina- 
tion node, Scheme 3 (Figure 5 (c)) is a hybrid of the first 
two schemes, Both end-nodes of a failed channel receive fail- 
ure reports, and backup-channel activation is done in both 
ways, If an activation message reaches a node on which the 
backup channel has already been activated by the activation 
message from the other end-node, the activation message is 
discarded by the node. 

Scheme 2 and Scheme 3 have an advantage over Scheme 
1 in terms of recovery delay, because data transfer through 
the new primary channel can be resumed immediately after 
sending the activation message,’ while in Scheme 1 the data 
transfer has to wait until the activation message is received 
by the source node. If a failure occurs near the destination 
node, this advantage will be minimal. 

Scheme 3 has an edge over Scheme 2 in two aspects. 
First, all nodes of a failed channel are informed of the fail- 
ure, which is useful for resource reconfiguration. Second, 
the channel destination node can prepare early for channel 
switching, and the activation delay will be reduced by the 
bi-directional activation. If a %connection is equipped with 
multiple backups, it is necessary that both end-nodes acti- 
vate the same backup.’ One way to accomplish this is to 
allocate serial numbers to the backups of each ‘D-connection, 
and select a backup according to the serial number. In the 
remainder of this paper, we assume the use of Scheme 3. 

4.3 Priority-based Activation 

Connection priorities can be considered in the activation of 
backup channels. The idea is to activate the backups belong- 

‘Albeit unlikely, if a data message arrives at intermediate nodes 
of the new primary channel before the channel is activated, the data 
mesaage will be discarded with no harm. 

‘If the destination node activates a different backup, the backup 
need to be deactivated, since data messages have already been trans- 
mitted over the backup activated by the source node. 

(a) Scheme 1 

(b) Scheme 2 

(c) Scheme 3 

Figure 5: Channel-switching schemes 

ing to higher priority ‘D-connections ahead of those of lower 
priority D-connections, if there are not enough resources to 
grant all activation requests. 

This priority-based activation can be achieved by delay- 
ing the activation of backups. In this method, an activa- 
tion message is sent after a certain delay determined by 
the multiplexing degree of the backup channel to be acti- 
vated. (Recall that the importance of a backup channel is 
represented by the multiplexing degree.) Thus, the activa- 
tion of backups with a large multiplexing degree (i.e., lower- 
priority backups) is delayed so that the backups with small 
multiplexing degrees (i.e., higher-priority backups) may be 
activated first. The main shortcoming of this method is 
that the ‘activation wait delay’ is always imposed on lower- 
priority connections. To completely avoid priority inversion, 
this wait delay should be longer than the transmission delay 
of the activation message over the longest channel path in 
the network. In a largescale network, the recovery delay 
incurred to lower-priority channels could be unacceptably 
long. 

Another way is to allow a higher-priority backup to pre- 
empt lower-priority backups, if the lower-priority backups 
have already been activated and there are not enough spare 
resources for activating all of them. Preempted channels are 
handled as if they mere disabled by component failures. So, 
the overhead associated with a preemption is the same as 
that for a failure recovery. Note that the recovery delays 
of lower-priority connections would be extended only if pre- 
emptions occur. An important issue of this method is the 
time granularity with which lower-priority connections can 
be preempted. If the preemptable interval is longer than the 
time needed for ‘backup activation,’ higher-priority backups 
will preempt active channels (i.e., primary channels of lower- 
priority connections). To avoid oscillation, the preemptable 
interval should be short, so that lower-priority connections 
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may be preempted only by the higher-priority connections 
which fail (near-) simultaneously with them. 

4.4 Resource Reconfiguration 

After the disrupted service is resumed, the faulty channels 
will be torn down and, if necessary, new backup channels 
will be established. To tear down a channel, a ‘channel- 
closure message’ is usually sent over the channel’s path, so 
that resources for the channel may be released. However, 
if failures disconnect a channel’s path or disable the chan- 
nel end-nodes, the resource-release process becomes compli- 
cated, To facilitate the reclaiming of the resources of failed 
channels, we borrow the concept of “soft-state connections,, 
in RSVP [ZHA93]. When an intermediate node of a channel 
receives a failure report (or detects a failure), it sets a rejoin 
timer whose expiration automatically triggers the channel 
teardown at the node.s Recall that in our failure report- 
ing scheme (Scheme 3)) all intermediate nodes either detect 
failures or receive failure reports, regardless of the number 
and location of failures. The purpose of the rejoin timer is 
to give the unhealthy channels (i.e., in U state) a chance to 
repair themselves. Channel repair can eliminate the need of 
establishing new channels, in case the unhealthy channels 
become usable again soon. 

When the channel’s source receives a failure report, it 
sends its destination a ‘rejoin-request message’ via the path 
of the failed channel, and each healthy intermediate node 
forwards this message. If the failed component becomes 
healthy again before the rejoin timer expires, it will also 
forward the rejoin-request message. Otherwise, the rejoin- 
request message will not propagate beyond the failed com- 
ponent, If a (backup) channel enters U state because of a 
multiplexing failure, more spare resources have to be allo- 
cated to restore the channel. If it is impossible to allocate 
additional spare resources because of resource shortage, the 
rejoin-request message will be dropped. 

If the channel destination node receives the rejoin-request 
message, the channel can be considered healthy (repaired). 
The destination node then sends a ‘rejoin message, back to 
the source node over the same path, and the channel state 
is changed from U to B, meaning that a repaired channel 
becomes a backup channeh If the rejoin timer had already 
expired when the rejoin message arrives at a node (i.e., in 
N state), the channel should be torn down as the resources 
for the channel had already been released. To undo the 
rejoin operations which have already done for the channel, 
a channel-closure message is generated by that node and is 
sent toward the channel destination. Figure 6 illustrates this 
case. The initial value of the rejoin timer should be chosen 
carefully, While it should be small for a quick teardown of 
unhealthy channels, it should also be large enough to allow 
their repair, including (i) the failure reporting delay, (ii) the 
round-trip time of the rejoin-request message and the rejoin 
message, (iii) the time for additional resource allocation. 

If all channels of a ‘D-connection fail simultaneously, a 
new primary channel has to be established from scratch. 
When there is no route which can meet the QoS require- 
ment of the D-connection, its client will be informed of the 
unrecoverable failure. Similarly, if any channel end-node 
fails or the network is partitioned, all attempts of channel 
re-establishment will be unsuccessful and the client will be 
informed of the unrecoverable failure. In any of these cases, 

‘This operation is executed by BCP independently of the under- 
lying RNMP. 

Source 
re;oil msg 

I Destination 

timeout 
channeCdosufe Insg 

Figure 6: Repair/closure of an unhealthy channel 

all the resources reserved for the connection will be released, 
when the rejoin timer expires. 

So far, we have discussed the tear-down and repair of 
failed channels. Another issue which must be addressed is 
how to reconfigure spare resources after backups are acti- 
vated. Because spare resources are shared among multiple 
backups, the activation of some backups can degrade the 
fault-tolerance capability of the remaining backups. The 
required spare resources should be recalculated, and addi- 
tional resources should be reserved, if necessary, to preserve 
the fault-tolerance capabiity of the remaining backups. If 
the required spare resources are not available, some of the 
remaining backups have to be closed (and/or moved to dif- 
ferent paths). Then, one has to determine which backups to 
close or move. The solution to this problem should account 
for the fault-tolerance QoS requirement of each connection, 
since a connection is vulnerable to failures during the re- 
establishment of its backups. 

5 Bounded-Time Failure Recovery 

Most of the resource reconfiguration operations, especially 
channel re-establishment, are time-consuming. However, 
unlike failure detection, failure reporting, or channel switch- 
ing, resource reconfiguration is not a time-critical action, be- 
cause its delay does not directly affect the service-disruption 
time except for the case of loss of all channels of a % 
connection.g If there is at least one backup surviving fail- 
ures, we can avoid the channel re-establishment and achieve 
fast recovery. 

The transmission delay of control messages, such aa fail- 
ure reports, is a major component of the recovery delay. The 
delay of such control messages is unpredictable, if they were 
transported as best-effort messages. Assigning the highest 
priority to control messages is not a good solution either, as 
it may atfect the &OS of regular real-time communication 
services. Suppose there are malicious nodes or a large num- 
ber of coincident failures. In such cases, the flood of control 
messages can paralyze the whole (or part of) network. To 
achieve fast and robust transmission of control messages, we 
use a special-purpose real-time channel, called the real-time 
control channel (RCC). 

5.1 The RCC Network 

An RCC is a single-hop real-time channel which connects 
two BCP daemons for the transmission of time-critical con- 
trol messages. When the network is initialized BCP estab- 
lishes a pair of RCCs, one in each direction, on every link 
of the network. RCCs will also be established, when failed 
components rejoin the network. The messages transferred 
over RCCs are called ‘RCC messages.’ 

‘But resource-reconfiyration delay can influence the recovery ca- 
pability/delay in handling future failures. 
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Re&Timo Message : Header Data 

_--- 1 
_-_--- .*’ 

RCC Messngc : SeqU usg Length Data 

1 

P3llurc Report: REP Channel-ID 

Acllvnllon Message : ACT Channel-ID 

h$OIOVkdgement: ACK SW 

Figure ‘7: The RCC message format 

The format of an RCC message is shown in Figure 7. Ba- 
sically, an RCC message contains a combination of failure 
reports, activation messages, and acknowledgments. The 
control messages related to resource reconfiguration are ex- 
cluded, since their delays are not time-critical. An inter- 
esting component of the RCC message format is acknowl- 
edgments, which are used to ensure reliable transmission of 
control messages, Generally, real-time communication does 
not support message retransmission, because there is not 
usually enough time for retransmission before the message 
deadline expires, and occasional losses of real-time (data) 
messages are tolerable in many applications. However, the 
loss of control messages is critical even in these applications. 
Each RCC message is acknowledged hop-by-hop between 
BCP daemons, and if a BCP daemon does not receive an ac- 
knowledgment of the RCC message which it sent, it resends 
the unacknowledged RCC message. Each RCC message con- 
tains the sequence number, so that duplicated messages may 
be easily detected and discarded. 

While the exact specification depends on the underlying 
real-time channel protocol, we model an RCC by three pa- 
rameters without loss of generality: maximum message size 
SRCu maximum message rate Rfizz, and maximum mes- mas , 
sage delay Dgf$‘. RCC messages are transmitted as follows. 
Each RCC-message has its eligible time and is held until it 
becomes cligble for transmission. Thus, the minimum in- 
terval (l/n,::) is enforced between two RCC messages. 
Until the next time to transmit RCC messages, the BCP 
daemon at a node collects the outgoing control messages 
and forms RCC messages according to the destinations of 
the control messages. In the next node, the received RCC 
message is fragmented and new RCC messages are formed. 
The sequence of disassembly and assembly of RCC messages 
continues, 

The collection of RCCs on ail links forms a virtual network,l’ 
called the RCC network, of the same topology as the un- 
derlying physical network. One can consider a (physical) 
network as a composition of three logically separated net- 
works - the primary-channel network, the backupchannel 
network, and the RCC network. 

6.2 RCC Message Delay 

The delay of control messages will depend directly on the 
capacity of the RCC network, i.e., if the capacity of the 
RCC on each link is large enough to accommodate all control 
messages on the link, the timely delivery of control messages 
can be guaranteed. 

There is an upper bound on the control message traffic, 

“A separate network in terms of resource reservation 

Figure 8: Message loss during failure recovery 

for the reasons given below. The number of failure reports 
on a Iink f! cannot exceed the number of primary/backup 
channels on a pair of links between two nodes incident to 
e. We have to consider both links, because failure reports 
for a channel can travel in both forward and backward di- 
rections of the channel, depending on the failure location. 
Similarly, the number of activation messages on link L is 
bounded by the number of backup channels on the pair of 
links between the two nodes incident to .L Since both the 
failure report and the activation message for the same chan- 
nel cannot be transported over the same link at the same 
time the control-message delay on any link is bounded by 
pdc * 

mar rf the following condition is met: 

SRCC > max{z : maz - z=z.y,Vlinkpairs}, 

where z = the size of a control message and y = the number 
of channels on a link pair. If the maximum control mes- 
sage traffic on a certain link exceeds SC::, some control 
messages may experience a longer delay than 0::: at that 
link. 

5.3 Failure-Recovery Delay Bound 

Now, let’s consider the failure-recovery delay. We assume 
that the failures are immediately detected, control messages 
are delivered without loss/retransmission, and the computa- 
tional delays for recovery operations are negligible compared 
to the control message delays. Then, the failure-recovery de- 
lay, I’, is the sum of ‘failure reporting delay’ and ‘activation 
retrial delay’. The delay for the activation message is not in- 
cluded in I’, because services are resumed immediately after 
sending the activation message by the source node, assuming 
the activation message is delivered faster than the data mes- 
sage. If the control message delay on each link is bounded 
by D::;“, we can derive an upper bound of I’ as follows. 

The ‘failure reporting delay’ is less than (K: - l)DzEF, 
where X is the number of hops of the longest-route chan- 
nel of the D-connection. The ‘activation retrial delay’ needs 
to be considered in case the connection has multiple back- 
ups. When the activation message for a backup encounters 
failures during its journey, one additional round-trip delay is 
added to the recovery delay: the transfer delay of the unsuc- 
cessful activation message itself and the delay for re 

8 
orting 

the new failure. It is bounded by 2(b-l)(K-l)Dfizz where 
b is the number of backups. With a single backup configu- 
ration, the failure-recovery delay of a D-connection is equal 
to the failure reporting delay. If the failed component is 
located close to the source node, the recovery delay will be 
very short. Figure 8 illustrates the message loss during fail- 
ure recovery (shaded messages are lost). 

84 



6 Scalability 

The proposed scheme scales well because it does not re- 
quire each node to maintain global knowledge of the network 
traffic conditions or to generate any type of messages to 
broadcast. Backup multiplexing is performed hopby-hop, 
and therefore, at each link, only the knowledge of primary 
channels whose backups traverse the link is required. Such 
information can be easily collected, if a backup channel- 
establishment message carries the path information of its 
primary channel. I1 Control messages are sent only over the 
paths of channels affected by failures, instead of broadcast- 
ing them to the entire network. 

The efficiency of backup multiplexing does not degrade 
as the network scales up. In fact, backup multiplexing will 
become more effective in large-scale and highly-connected 
networks, because such networks contain more versatile paths 
between two end nodes of a connection, thus lowering the 
probability that primary channels overlap with one another. 

The delay for backup multiplexing does not directly af- 
fect the failure recovery delay, but the computational com- 
plexity of backup multiplexing is a matter of concern. Its es- 
sential part is the construction of a set of non-multiplexable 
backups, IIB~,L, on each link e, taking O(n) time, where n 
is the number of backup channels on link .fJ. (This is be- 
cause each calculation of S(B:, .Bj) requires constant time.) 
To find the largest set, BCP needs to construct II&,( for 
all backups on L, which requires O(n2) time. However, if 
we store each IIn,+ calculated before the new establishment 
request for Bj, we only need to update each IIn,,r by calcu- 
lating S(Bi,Bj). H ence, the complexity can be reduced to 
O(n) at the expense of memory. 

7 Evaluation 

The proposed scheme is evaluated by simulating an 8 x 8 
torus (wrapped mesh) network and an 8 x 8 mesh network. 
In these simulated networks, neighbor nodes are connected 
by two simplex links, one for each direction, and all links 
have an identical bandwidth. To obtain a similar total ca- 
pacity for both networks, we set the link capacity of the torus 
network to 200 Mbps and set that of the mesh network to 
300 Mbps. 

Channels of each ID-connection were routed disjointly by 
a sequential shortest-path search algorithm. Thus, the pri- 
mary channel was routed first over a shortest path, then 
the backup was routed without using the components of the 
primary channel. For simplicity, the same traffic model was 
used for all channels, so each channel requires 1 Mbps of 
bandwidth on each link of its path. The end-to-end de- 
lay requirement of each channel is assumed to be met if the 
channel path is not longer than the shortest-possible path by 
more than 2 hops. A total of 4032 connections mere estab- 
lished incrementally, so that there may exist a ZXconnection 
between each node pair, i.e., 64.63 = 4032. 

7.1 Spare Resource Overhead 

We first measured the average spare bandwidth for vari- 
ous backup configurations. For ease of comparison, all D- 
connections are assumed to require the same number of 
backups and the same multiplexing degree. Single and dou- 
ble backup configurations were simulated in the torus net- 
work, but only the single backup configuration can be sim- 

“Assuming that a backup is established after its primary has been 
routed. 
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(a) Single backup in 8 x 8 torus 
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(b) Double backups in 8 x 8 torus 
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(c) Single backup in 8 x 8 mesh 

Figure 9: Average sparebandwidth reservation 

ulated in the mesh network because of its topological limi- 
tation. Seven different multiplexing degrees were applied in 
each case. 

Figure 9 shows the simulation results. The ‘network- 
Ioad’ is a metric to indicate the ratio of the total bandwidth 
consumed by aII primary channels to the total network band- 
width capacity. The establishment of 4032 connections re- 
sulted in a 33 N 34% network-Ioad in both networks. 

The notation ‘mux=o’ means that two backups are mul- 
tiplexed when their primary channels share less than (Y net- 
work components, i.e., Y = ruX. (‘mux=O’ implies that multi- 
plexing was disabled). The results of ‘mux=2’ and ‘mux=4’ 
were not plotted in Figure 9, because, due to the nature of 
channel routing, they were very close to the cases of ‘mux=3’ 
and ‘mux=S’, respectively. Thus, two channel paths are not 
likely to share two nodes without sharing a link between the 
nodes, so the results of ‘mux=2’ and ‘mux=3’ are very close 
to each other. The case of sharing two consecutive links 
(i.e.,‘mux=4’ and ‘mux=5’) can be reasoned similarly. 

There are several interesting observations to make from 
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-M mung degree 
Spare bandwidth 30.25% 22.5% 16% 9.5% 

7- 
1 link failure 100% lOOY0 97.27% 74.11% 
1 node failure 100% 100% 89.99% 64.72% 
2 node failures 93.11% 92.98% 84.05% 58.36% 

(a) Single backup in 8 x 8 torus 

2 wing cgree 
Spare bandwidth N/A 30.25% 21.25% 12.88% 

1 link failure -iimr 
1 node failure N/A 100% 100% 97.68% 
2 node failures N/A 100% 99.82% 93.28% 

(b) Double backups in 8 x 8 torus 

Muxing degree mux=l mux=3 mux=5 mux=6 
Spare bandwidth 33.11% 24.47% 19.69% 17.22% 

r- 
1 link failure 100% 1OOYo 97.63% 90.39% 
1 node failure 
2 node failures ]I 89.22% ] 88.83% ] 81.82% I 75.32% 

(c) Single backup in 8 x 8 mesh 

Table 1: I&t with same multiplexing degrees 

l?igure 9. First, the network capacity is reduced by more 
than 50% for each backup, because a backup channel may 
be routed over a longer path than the corresponding primary 
channel.‘2 The second backup becomes more expensive than 
the first backup. Thus, without backup multiplexing, the 
use of multiple backups will lower the network utilization 
to an unacceptably low level. Second, the spare bandwidth 
increases proportionally to the network load regardless of 
the multiplexing degree. There was no drastic change in the 
amount of spare bandwidth. Third, with high multiplexing 
degrees, the overhead of multiple backups becomes close to 
that of a single backup. See the case of ‘mux=6’ in Figure 9 
(a) and (b). Fourth, in the mesh network, the reduction 
of spare bandwidth by multiplexing is not as much as in 
the torus network. This is because the absence of wrapped 
links in the mesh network makes the primary-channel paths 
more concentrated on the centraI region of the network, thus 
discouraging multiplexing among their backups. 

We performed other simulations with inhomogeneous traf- 
AC, such as mixed bandwidth requirements or hot-spots in 
resource reservation. The results indicate that the efficiency 
of backup multiplexing is relatively insensitive to network 
traffic conditions, but is more sensitive to network topology 
- less effective in sparsely-connected networks. 

7.2 Degradation of Fault-Tolerance Due to Multiplexing 

The next issue to address is the impact of backup multiplex- 
ing on fault-tolerance. We assess the fault-tolerance degra- 
dation caused by backup multiplexing by simulating three 
failure models: single link failure, single node failure, and 
double node failures. Failures were injected into the net- 
work after establishing 4032 connections. Each single link 

“For example, in a torus network, there are usually two shortest 
diajoint paths between any two nodes that are more than one hop 
apnrt. If the source and destination nodes lie on the same principal 
axis and the distance between the two is not exactly one half of the 
torus dimension, there exists only one shortest path. 

failure disabled about 64 primary channels in the torus net- 
work, and about 85 primary channels in the mesh network. 
By injecting each single node failure, about 139 and 276 pri- 
mary channels were disabled in the torus and mesh network, 
respectively. Each double node failure caused the disconnec- 
tion of about 365 and 512 primary channels, respectively. 
We excluded from consideration the connections whose end 
nodes fail. 

To measure the fault-tolerance level achieved by each 
backup configuration, we use the fast recovery rate, I&t, 
as a metric. RfaJt is the ratio of fast recovery by backup 
channels to the number of failed primary channels. The 
(1 - Rfast) of ZXconnections, whose primary had failed, re- 
quired the establishment of new channels for failure recov- 
ery. The resultant Rfast values are summarized in Table 1, 
where N/A indicates that the total bandwidth requirement 
had exceeded the network capacity before establishing all 
connections. 

As expected, the use of a smaller multiplexing degree 
results in higher fault-tolerance (a larger RfaJr value). Un- 
der the single failure model, Rfost solely reflects the impact 
of backup multiplexing failures, because no connection loses 
all of its channels due to a single failure. So, ‘mux=l guar- 
antees a perfect recovery coverage from all single failures, 
and ‘mux=3’ does from aJl single link failures. Interest- 
ingly, a similar level of fault-tolerance was achievable with 
significantly less spare resources in the double backup con- 
figuration. For example, let’s compare the case of single 
backup with ‘mux=3’ with the case of double backups with 
‘mux=6’ in the torus network. Using a much smaller spare 
bandwidth, we achieved comparable Rfast, demonstrating 
the usefulness of multiple backup channels with effective re- 
source sharing. The comparison between double backups 
with ‘mux=6 and a single backup with ‘mux=5’ more clearly 
reveals the benefit of the multiple backup configuration. 

Considering that the spare bandwidths in Table 1 were 
measured under the 33 N 34% network-load condition, one 
has to double the spare bandwidth values to estimate the 
overhead in fully-loaded networks. Thus, in fully-loaded 
networks (with a 66 N 68% network load), 26 - 32% and 
34% spare resource overheads were induced in the torus and 
mesh network, respectively, to achieve around 90% of Rfost 
from single failures. This overhead level can be reduced 
substantially by employing a more efficient backup routing 
method. In [HAN97b], we presented a backup routing al- 
gorithm which can reduce the spare bandwidth up to 40%, 
compared to the shortest path routing method. 

7.3 Per-Connection Fault-Tolerance Control 

So far, we have assumed that all ZXconnections require the 
same level of fault-tolerance. We now show how the fault- 
tolerance level of each D-connection is maintained when dif- 
ferent connections require different levels of fault-tolerance. 
We simulated a combination of four types of connections: 
l/4 of connections with ‘mux=l’, l/4 of connections with 
‘mux=3’, l/4 of connections with ‘mux=5’, and the remain- 
ing l/4 of connections with ‘mux=6’. The number of back- 
ups was the same for all connections. Table 2 shows that 
the fault-tolerance level of each class of ZXconnections can 
be readily controlled, while the overhead remains around the 
average of all the classes. 

7.4 Comparison with Brute-Force Multiplexing 

We compare the efficiency of the proposed scheme with that 
of a simple multiplexing method, called brute-force multi- 
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Spare bandwidth 12.43% Spare bandwidth 30.25% 22.5% 16% 9.5% 
Muxing degree mux=l mux=3 mux=5 mux=6 1 link failure 100% 98.05% 92.19% 76.31% 
1 lEEf&re 106% 100% 93.48% 50.43% 1 node failure 100% 95.34% 87.98% 68.87% 
1 node failure 100% 99.64% 69.92% 44.14% 2 node failures 93.11% 89.82% 82.23% 63.53% 
2 node failures 93.11% 92.41% 65.88% 39.29% 

(a) 8 x 8 torus 
(a) Single backup in 8’ x 8 torus 

i Snare bandwidth II 16.88% I c 
Muxing degree mux=l mux=3 mux=5 mux=6 

1 link failure 100% 100% 100% 100% 
1 node failure 100% 100% 100% 100% 

2 

(b) Double backups in 8 x 8 torus Table 3: Rfast with brute-force multiplexing 

Spare bandwidth 17.41% 
Mm mux=l mux=3 mux=5 mux=6 

1 link failure 100% 100% 97.29% 68% 
1 node failure 
2 node failures 89.46% 89.04% 78.55% 47.47% 

(c) Single backup in 8 x 8 mesh 

Table 2: Rfast with mixed multiplexing degrees 

plexing. In the brute-force multiplexing method, the same 
amount of spare resource is reserved for all links without 
considering the network status. 

First, we applied the brute-force multiplexing to the torus 
network, with reservation of the same amount of spare re- 
sources as the average amount required by our proposed 
scheme. The comparison between Table 1 (a) and Table 
3 (a) shows that the proposed scheme is only marginally 
better than the brute-force scheme. We attribute this to 
the homogeneity of the simulated network in terms of net- 
work topology, channel traffic model, and the distribution 
of channel end-nodes. The resource demands for backup 
activations are therefore evenly distributed throughout the 
network. In case of a very large multiplexing degree, the 
proposed scheme’s estimation of the spare resource require- 
ment may become less accurate than the brute-force scheme; 
hence the brute-force scheme results in even higher RfaJt 
than the proposed scheme when mux=6. 

IIowver, when any sort of inhomogeneity exists, the pro- 
posed scheme outperforms the brute-force scheme. The sim- 
ulation results of the mesh network supports this observa- 
tion (compare Table 3 (b) with Table 1 (c)). Furthermore, 
if the channel end-nodes are not evenly distributed or the 
required bandwidths of all channels are not identical, hot- 
spots (in term of the spare resource demands) occur, and the 
cfhcicncy of the brute-force scheme degrades significantly 
unlike the proposed scheme. For the same reason, the pro- 
posed scheme outperforms the brute-force scheme in terms 
of per-connection fault-tolerance control. 

8 Related Work 

There have been roughly two types of approaches to achiev- 
ing fault-tolerance in real-time multi-hop networks. The 
first type is the forward-recovery approach as described in 
[RAM92, KA094], where multiple copies of a message are 
sent simultaneously via disjoint paths to mask failures. A 
variation of this approach coupled with the error-correction 

Spare bandwidth 33.11% 24.47% 19.69% 17.22% 

1 link failure 96.18% 89.74% 83.18% 78.18% 
1 node failure 96.56% 88.31% 79.49% 72.86% 
2 node failures 

(b)8x8mesh 

coding scheme can be found in [BAN96]. This approach has 
an advantage that failures are handled without service dis- 
ruption, but it is too expensive for certain applications like 
multimedia networking. If infrequent packet losses due to 
transient failures are tolerable, the approach to detect and 
recover from persistent failures is a more attractive and cost- 
effective alternative. The methods proposed in [BAN93, 
ZHE92, GR087, YAN88, BAK91, KAW94, AND94, MUR94] 
belong to this second type of approach. The proposed scheme 
also falls into this type. 

The method proposed in [BAN931 requires all failures to 
be broadcast to the entire network. When a source node is 
notified of the failure of its channel, it tries to establish a 
new channel from scratch. Since no resource is reserved in 
advance for the purpose of fault-tolerance, this method has 
a small overhead in the absence of faults. However, it does 
not give any guarantee on failure recovery. The channel re- 
establishment attempt can fail due to resource shortage at 
that time. Even when there are sufficient resources, the con- 
tention among simultaneous recovery attempts for different 
faulty connections may require several trials to succeed, thus 
delaying service resumption and increasing network traffic. 

In contrast, the method of [ZHE92] provides guaranteed 
failure recovery under a deterministic failure model (i.e., sin- 
gle failure). In this method, additional resources are re- 
served in the vicinity of each real-time channel, and the 
failed components are locally detoured using the resources. 
Since failures are handled without intervention of source 
nodes, the recovery latency will be small. However, thii 
method requires reservation of substantial amounts of ex- 
tra resources, and resource usage becomes inefficient after 
failure recovery, because channel path-lengths are usually 
extended by local detouring. Similar approaches in telecom- 
munication networks can be found in [GR087, YAN88, BAKSl]. 

The work reported in [KAW94, AND94, MUR94] comes 
closest to our scheme. They proposed VP-restoration meth- 
ods in ATM networks based on the backup channel concept. 
The main difference of these from ours is that they are un- 
able to control the fault-tolerance level of each connection 
(i.e., VP). Another difference is that they assume that a 
fixed traffic demand (i.e., VP setup requests) is given be- 
forehand and not changed, while we consider the dynamic 
setup and teardown of channels. Thus, at the network design 
stage, all channel paths and spare resources are determined 
together using a computationally very expensive algorithm, 
to minimize resource overhead while guaranteeing recovery 
from a certain type of deterministic failures (typically single 
link failures). Addition or removal of a channel requires re- 
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calculation of all channel paths and spare resources. There- 
fore, these schemes cannot be applied to an environment 
where short-lived channels are set up and torn down fre- 
quently. By contrast, in our scheme, we separated the spare 
resource allocation problem from the channel routing prob- 
lem, so that (i) channel path may be selected by any algo- 
rithm and (ii) channel establishment may be done in a dis- 
tributed manner without requiring global knowledge about 
all channels in the network. We have also presented an inte- 
grated solution to the problem of channel switching, resource 
reconfiguration, and control-message transmission, which is 
not specific to a particular type of network. 

9 Conclusion 

We have proposed a failure-recovery scheme for dependable 
real-time communication services in multi-hop networks. The 
main contributions of this paper are threefold. First, we de- 
fined the client interface model for fault-tolerant real-time 
communication. Second, we devised a mechanism to re- 
duce the fault-tolerance overhead to an acceptably low level. 
Third, we developed a robust protocol for fast and guar- 
anteed failure recovery. We evaluated the efficiency of the 
proposed scheme through simulations and showed that with 
minor degradation of the network’s capability of accommo- 
dating channels, a desired fault-tolerance QoS level can be 
achieved. 
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