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Abstract 
W e  consider the message transmission problem in uni- 

directional slotted ring networks. w e  consider two opera- 
t ion modes: 1)  the evacuation mode, in which all messages 
arrive before system initialization and n o  new message ar- 
rives during system operation; 2) the continuation mode, in 
which new messages may arrive after system initialization. 

W e  study the performance of several message scheduling 
policies with respect to  three performance measures: meet- 
ing all message deadlines, minimizing the maximum delay 
OT the total length of busy periods, and minimizing the aver- 
age delay. W e  show that the Least-Slack-time-First (LSF)  
scheduling policy is  optimal in evacuation mode operation 
with respect to  meeting all message deadlines, while no  op- 
timal scheduling policy can possibly exist f o r  continuation 
mode operation. 

FOT the other two performance measures, we show that 
in the case when messages may  be of variable lengths, 1 )  
the Farthest-Destination-First (FDF)  policy is  optimal in 
terms of minimizing the maximum delay and minimizing 
the total length of busy periods f o r  evacuation mode and f o r  
continuation mode operation, respectively, and 2) no  opti- 
mal scheduling policy can possibly exist in terms of mini- 
mizing the average delay under either evacuation mode OT 

continuation mode operation. 

1. Introduction 

Message transmission is an important issue in both 
communication networks and multiprocessor intercon- 
nection systems. Effective transmission scheduling 
policies may greatly reduce the queueing delay of mes- 
sages and improve the utilization of the overall commu- 
nication network or enhance the performance of par- 
allel computation. Ring is a simple, effective, and 
commonly-used network architecture for local area net- 
works (LANs) [5,9,12] and for interconnecting the pro- 
cessors in a multiprocessor. To reduce message delay 
and to improve the system throughput of a ring net- 
work, several ring architectures, medium access control 
(MAC) protocols, and message transmission schedul- 
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ing policies have been proposed to exploit spatial slot 
reuse [4, 5, 7, 81. A ring network that employs spatial 
slot reuse allows multiple simultaneous transmissions in 
the network as long as the transmissions take place on 
different links. 

To study the interaction of different traffic streams 
and their effects on the performance of a ring network 
that employs spatial slot reuse, Tassiulas and Joung 
[ll] adopted a simple ring network model. They con- 
sidered a unidirectional slotted ring in which each node 
can transmit to  its downstream neighbor and receive 
from its upstream neighbor simultaneously, and studied 
the performance of several scheduling policies for trans- 
mitting unit-length messages, called packets, under two 
operation modes: 1) the evacuation mode, in which all 
the messages arrive before system initialization and no 
new message arrives during system operation; 2) the 
continuation mode, in which new messages may ar- 
rive after system initialization. They showed that 1) 
the Farthest-Destinatzon-Fzrst (FDF) policy minimizes 
the maximum delivery time (or called evacuatzon t ime)  
in evacuation mode operation and minimizes the total 
length of busy periods in continuation mode operation, 
and 2) the Closest-Destination-First (CDF) policy min- 
imizes the average delay of the packets in evacuation 
mode operation. 

Several similar problems have been studied in the 
context of data transmission in multiprocessor sys- 
tems with respect to  different initial conditions of the 
data/messages and with the objective of minimizing 
the evacuation time [3, 6, lo]. These problems in- 
clude: 1) scattering: one processor has messages for 
some other processors, 2) gathering: some processors 
have messages for a specific processor, 3) broadcastzng: 
a processor has one specific message for all the other 
processors, and 4) gossiping: each processor has one 
specific message for all the other processors. Saad and 
Schultz [lo] studied the above problems for different 
parallel architectures, including broadcast bus model, 
shared memory model, ring architecture, two and three- 
dimensional mesh-connected arrays, hypercubes, and 
switch connected model. Fraigniaud et al. [6] focused 
on the scattering problem in a ring architecture and 

1052-8725/96 $5.00 0 1996 IEEE 
165 



showed that the FDF policy is optimal in terms of min- 
imizing the evacuation time. Bhatt et al. [3] studied 
the scattering and gathering problems with variable- 
length messages in a tree network, and showed that the 
FDF policy is optimal for scattering and proposed a 
near-optimal scheduling policy for gathering in general 
trees. 

All of the aforementioned work is concerned with 
minimizing either the evacuation time or the average 
delay. To our best knowledge, the issue of guarantee- 
ing the timely delivery of isochronous (real-time) mes- 
sages with delivery deadlines has not been addressed in 
ring networks with spatial slot reuse. However, for em- 
bedded real-time applications [l] such as air-traffic con- 
trols, automated factories, and industrial process con- 
trols, hard real-time messages need to be delivered by 
their respective deadlines for the timely completion of 
diverse real-time applications. Moreover, in some hard 
real-time systems, failure to meet the deadlines of the 
messages may even lead to catastrophic consequences. 
Conventional performance objectives, such as maximiz- 
ing the throughput or minimizing the maximum deliv- 
ery time, are not of the most important concern to  hard 
real-time systems. Instead, predictable and dependable 
timing guarantees must be provided. 

The main intent of this paper is, thus, to  study mes- 
sage transmission problems with timing constraints in 
ring networks. We adopt the same ring network model 
as that used in [ll], consider the same operation modes, 
i.e., the evacuation mode and the continuation mode, 
but relax the assumption that messages are of unit 
lengths, i.e., we consider messages of variable lengths. 
Messages are fragmented into fixed-length cells/packets 
at their source nodes, and are reassembled at  their des- 
tination nodes. Each cell needs one time slot to trans- 
mit from a node to its downstream neighbor, and may 
be forwarded one hop per slot independently as long as 
the transmission sequence of all the cells of a message is 
preserved at  each intermediate node. We show that the 
Least-Slack-time-First (LSF) scheduling policy is opti- 
mal in evacuation mode operation with respect to meet- 
ing all message deadlines, while no optimal scheduling 
policy can possibly exist for continuation mode opera- 
tion. 

Another salient contribution of this paper is that 
we generalize the results in [Ill and study the perfor- 
mance of message transmission scheduling policies with 
respect to  minimizing the evacuation time or minimiz- 
ing the average delay for the case that messages may 
be of variable lengths. We show that for the case of 
variable-length messages, 1) the Farthest-Destination- 
First (FDF) policy is still optimal in terms of min- 
imizing the maximum delay and minimizing the to- 

Figure 1. A unidirectional slotted ring network with 
8 nodes. 

tal length of busy periods under evacuation mode and 
continuation mode operations, respectively, and 2) no 
optimal scheduling policy can possibly exist in terms 
of minimizing the average delay under either evacua- 
tion mode or continuation mode operation. For the 
cases in which no optimal scheduling policy exists, we 
then conduct simulations and empirically compare the 
performance of several commonly-used scheduling poli- 
cies, including FIFO, FDF, CDF ( CZosest-Destination- 
Firs t ) ,  SMF (Shortest-Message-First), LSF, and EDF 
(Earliest-Deadline-First). 

The rest of the paper is organized as follows. In 
Section 2, we formally define the message transmis- 
sion problem to be addressed here. In Section 3, we 
study the message transmission problem in which each 
message is associated with a delivery deadline, and the 
objective of a scheduling policy is to meet all message 
deadlines. In Section 4, we comment on the impact of 
variable-length messages on the message transmission 
problem with the two performance measures used in 
Ill]. For the cases in which no optimal scheduling pol- 
icy can possibly exist, we first give formal non-existence 
proofs, and then conduct simulations to compare the 
performance of several scheduling policies. The results 
of these simulations are presented in Section 5 .  The 
paper concludes with Section 6. 

2. Problem formulation 

The network under consideration is a unidirectional 
slotted ring (Fig. 1) with N nodes numbered 0, 1, 
... , N - 1. Define p @ q = ( p  + q )  mod N and 
p e q = ( p  - q )  mod N .  The transmission link be- 
tween two neighboring nodes p and p @ l is denoted as 
L ( p , p  @ l), or simply ( p , p  63 1) if no ambiguity may 
arise. Each node p may transmit to its downstream 
neighbor p @ 1 and receive from its upstream neighbor 
p e  1 simultaneously. Moreover, all nodes may transmit 
at the same time to exploit spatial reuse, and they are 
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synchronized to begin transmission in the beginning of 
each slot (the slot length is the same for all nodes). 
Without loss of generality, we assume time is measured 
in slots and each slot begins at  an integral time in- 
stant, i.e., each time interval [t , t  + 11, t 2 0, is a slot 
and is denoted as S[t , t  + 11, or simply [t , t  + 11. Mes- 
sages are fragmented into fixed-length cells/packets at 
their source nodes, and are reassembled at  their desti- 
nation nodes. Each cell needs one time slot to transmit 
from a node to its downstream neighbor, i.e., the actual 
transmission time plus the propagation delay and com- 
munication startup overhead is equal to one slot. Each 
cell of a message may be forwarded one hop per slot 
independently as long as the transmission sequence of 
all the cells of a message is preserved at  each interme- 
diate node (and hence, the cells arrive at  the destina- 
tion in their original order). That is, message (but not 
cell) transmission is preemptable at  cell boundaries- 
the transmissions of the cells of different messages on a 
link can interleave with each other. 

A message Mi in the ring network is characterized 
by (ai ,&,  N;,  N f ,  d i ) ,  where 

0 ai is the arrival time of Mi,  i.e., the time Mi is 

0 li is the length of Mi (measured in cells/packets), 
0 Nf is the source node id of Mi,  

Nf is the destination node id of Mi,  and 

0 di is the absolute deadline of Mi,  i.e., (all the cells 
of) M; must be delivered to  its destination node 
Nf no later than time di .  

ready for transmission at its source node, 

Note that if we need not consider individual message 
deadlines, we set di = 00 for all i .  We denote the j - th  
cell of the i-th message Mi as Mij,  1 5 j 5 l i .  If Mi 
has only one cell (i.e., ti = l), we denote the only cell 
as Mi and interchangeably call Mi a message or a cell. 

A transmission scheduling policy determines the 
transmission priorities of the cells at  each node. We 
consider two operation modes: evacuation (or static) 
and continuation (or dynamic). In evacuation (static) 
mode operation, there is a set, M = { M l ,  Mz,  . . . , Mn} ,  
of n messages in the ring network at  system initializa- 
tion and after system initialization, no new message 
may arrive at  any node in the ring network, i.e., ai = 0 
for all i .  In continuation (dynamic) mode operation, 
new messages may arrive at  the nodes in the ring net- 
work during system operation, i.e., a; > 0 for all i. 

To facilitate the presentation, we define the following 
notation. Let n be a scheduling policy. The transmis- 
sion schedule generated by T acting Qn a set, M, of 
messages is denoted by a two-dimensional array (ta- 
ble), 7rM. The (t,p)-th (t-th row, p t h  column) entry 

n’(t,p), t 2 0 and 0 5 p 5 N - 1, in the trans- 
mission table describes the status (activity) at node p 
(link ( p , p  @ 1)) at time t (slot [t,t + 11). Specifically, 
7 r M ( t , p )  = ( M , A ; M ‘ )  denotes that cell M is trans- 
mitted from node p 8 1 to node p during slot [t - 1, t] 
and M’s destination is p ,  cells in A are residing (wait- 
ing for transmission) at  node p at time t ,  and cell M’ is 
transmitted by node p to  its downstream neighbor p @  1 
during slot [t, t + 11. Note that when a cell M is deliv- 
ered to its destination p in slot [t - l ,t],  M is passed 
onto the higher communication transport layer at  node 
p and exits from the ring network. This is the reason 
why M is not included in the A component of an entry 
n M ( t , p ) .  Furthermore, M will henceforth not appear 
in any entry nM(t’,p), for t’ > t and 0 5 p 5 N - 1. 
Also, n’(t, p )  = ( M ,  A; M’) (and M’ is non-null) im- 
plies M’ E A. Note that in the context of ring networks, 
the transmission table actually wraps around at  the left 
and right ends. For notational convenience, the super- 
script will be dropped in the following discussion as 
long as it doesn’t cause any ambiguity, i.e., 7r denotes 
both the scheduling policy and the transmission table 
(schedule) of 7r acting on a message set. 

Example 1 Table 1 shows the transmission schedule 
of the Farthest-Destination-First (FDF) policy acting 
on the set of messages, M = { M I  = (0,2,0,2,00), 
M2 = (0,2,1,3,00), M3 = (0,1,0,4,00)}. (As will 
be discussed later, the FDF policy gives priority to the 
message with longest way to go at  each node, and ties 
can be broken arbitrarily by a specific rule.) A “-” 

in the corresponding component of an entry denotes a 
null/empty cell/set. 0 

Each row of a transmission table is called a state. 
Each cell Mz3 will appear in at  most one entry in each 
row of the transmission table, and if appears in 
the entry 7 r ( t , p ) ,  then Mz3 will only appear in either 
n(t + 1, p @ 1) (if Mz3 is transmitted on link ( p ,  p @ 1) 
in slot [t,t + 11) or 7r(t + 1,p) (if Mz3 is not transmit- 
ted on link ( p , p  @ 1) in slot [t, t + 11). If we draw a 
line on the transmission table to trace the progress of 
the delivery of a cell M z j ,  the line will be piecewise lin- 
ear and each linear segment goes either from north to 
south or from northwest to  southeast. We call the line 
the transmission path of Mz3 (under policy n). Note 
that the transmission path of Mz3 is different from the 
unique physical path, (N,“,  N,” @ 1,. . . , N;) ,  through 
which Mt3 is delivered. The transmission paths of all 
the cells in Example 1 are shown in Fig. 2, in which the 
two solid lines are the transmission paths of the two 
cells of M I ,  respectively, the two dashed lines are the 
transmission paths of the two cells of M2, respectively, 
and the dotted line is the transmission path of M3. 
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Table 1. Transmission schedule generated by the FDF policy in Example 1. 
node node node node node 

0 1 2 3 4  

Figure 2. The transmission paths of MI = 
(0,2,0,2,00),  M2 = ( 0 , 2 , 1 , 3 , ~ ) ,  and M3 = 
(0,1,0,4, m) under the FDF scheduling policy. 

The transmission paths of two cells M,? and Mki are 
said to zntersect each other at  time t at node p (i.e., at 
the (t,p)-th entry of T )  if one cell, say Mkl, arrives at 
p later than the other, M,, but Mkl is transmitted to 
node p@l in slot [t, t+l]  before MzJ is transmitted top@ 
1. Note that intersection is a symmetric relation, i.e., 
if path 1 intersects path 2 then path 2 intersects path 
1. For example, in Fig. 2, the only two transmission 
paths that intersect each other are those of M3 and 
M22 and they intersect each other a t  FDF(1, 1). The 
transmission paths of M11 and A412 do not intersect 
each other. Nor does the transmission path of A411 
intersect that of M22. 

Let 0," denote the delzvery tzme of message M, under 
scheduling policy T ,  i.e., 0," is the time (the last cell 
of) M,  is delivered to  N," under scheduling policy T .  

The delay of Ma under T is defined to be 0," - a,. For 
evacuation mode operation, we consider the following 
performance measures: 

the evacuation time V ( T )  (also called schedule 
length or makespan), which is defined to  be the 
maxzmum delzvery tzme, i.e., V ( T )  = max,{D:}, 
and 

0 the average delay A ( T ) ,  which is defined as A(T)  = 

For continuation mode operation, in addition to the av- 
erage delay A(T) ,  we consider the total length of busy 

C:=l(D," - G). 

periods, B(T) ,  where a busy period is defined as a time 
interval [t,t'] during which the ring network is non- 
empty and in slots [t - 1, t] and [t', t' + 11 the ring net- 
work is empty. 

Tassiulas and Joung [ll] studied message transmis- 
sion in a ring network in which each message is of 
unit length, i.e., e, = 1 for all i ,  and showed that un- 
der evacuation mode operation, the FDF policy, which 
gives priority to the message with longest way to go at  
each node (ties can be broken arbitrarily by a specific 
rule), minimizes the evacuation time, and the Closest- 
Destination-First (CDF) policy, which gives priority to 
the message with shortest way to go at  each node, min- 
imizes the average delay. They also showed that under 
continuation mode operation, the FDF policy maxi- 
mizes the fraction of the time at which the ring is empty 
(i.e., minimizes the total length of busy periods) for any 
message arrival pattern. 

In what follows, we study the problem of transmit- 
ting variable-length messages with timing constraints in 
a ring network. In addition, we also study the impact 
of variable-length messages on the performance of mes- 
sage transmission with respect to the performance mea- 
sures mentioned above, i.e., minimizing V ( T )  or B(T) ,  
and minimizing A(7r). 

3. Message transmission with deadline 
constraints 

3.1. Evacuation mode operation 

In this section, we consider message transmission 
with deadline constraints in evacuation mode opera- 
tion, i.e., the arrival times, a,%, of all messages are 0. 
We first consider the case when all messages have unit 
length, i.e., e, = 1 for all i ,  and show that the Least- 
Slack-time-First (LSF) policy, rather than the Earliest- 
Deadline-First (EDF) policy, is optimal in terms of 
meeting message/cell deadlines. We then relax the as- 
sumption and consider the case when messages may 
have variable lengths. 

A commonly-used scheduling policy for mes- 
sages/cells with hard deadlines is the EDF policy which 
gives priority to  the message/cell with closest deadline. 

168 



However, EDF is not optimal in the ring network model 
(even for the case of & = 1 for all 2 ) .  

The reason why EDF is not optimal is that EDF 
does not take into account the distance from the current 
position, p ,  of a cell Mi at time t to its destination, Nf. 
To take this into account, we define the slack time, 
s ; ( t , p ) ,  of Mi at node p at time t as 
s i ( t , p )  = (di - t )  - (N,d e p ) ,  

(di - t )  - (N,d - p )  i f O S p 5  N,d, = {  (d; - t )  - ( N f  + N - p )  if N," < p < N .  

In the above definition, d; - t is the relative deadline 
(relative to the current time t )  of Mi and Nf e p  is the 
remaining transmission time (remaining distance to  the 
destination) of Mi. Note that with the above definition, 
the slack time of a cell changes dynamically with time 
and with the current position of the cell. Note, however, 
that two cells compete for transmission on a link only 
if they are residing at  the same node at the same time. 
Therefore] to ease the calculation of cell slack times, we 
further define si(p), 1 5 i 5 n and 0 5 p 5 N - 1, as 
follows: 

(1) 
d; - N," if 0 5 p 5 N f ,  

si(p) { d; - N," - N if N f  < p < N .  

It is easy to  see that s i ( t ,p )  - s j ( t , p )  = si(p) - s j ( p ) .  
Moreover, the difference between the slack times of two 
cells does not change with time and cell positions as 
long as the two cells are residing at the same node at  
the time of comparison. Formally, we have the following 
theorem. 

Theorem 1 Suppose at  time t l ,  both cells Mi and Mj 
are residing at  node pl .  If at time t 2 ,  both Mi and Mj 
are residing at  node p2, then si(t1,pl) - sj(t1,pl) = 
si(t27p2) - sj(t27p2) (and hence, s h )  - sj(p1) = 
Si(P2) - S j ( P 2 ) ) .  
Proof: Assume, without loss of generality, that the 
order of the three nodes p l ,  N f ,  and Njd in the direction 
of the ring is pl  + Nf + Nf. It is easy to see that 
the order of the three nodes p2, Nf, and Njd in the 
direction of the ring is p2 -+ Nf t N f  since if the order 
is N," -+ p2 + Njd, then tl < t 2  (tl > t 2 )  implies that 
Mi ( M j )  is transmitted beyond its destination Nf (Njd) 
and reaches node p2 ( p l )  at time t 2  (t l) .  Therefore, we 
have 
( N j d e p i )  - ( N f e p l )  = (NjdeN,d)  = (Njd 8 p z )  - ( N f e p z ) ,  

(2) 
and 

Si(t1,Pl) - Sj( t1 ,Pl)  

= di - ( ~ , d  e p l )  - (d j  - ( ~ , d  epl ) )  

= S i ( t 2 , p z )  - s j ( t ~ j ~ 2 ) .  0 

= (di - t i )  - ( N f  @ p i )  - ( ( d j  - t i )  - (Njd e p l ) )  

= di - (N;d 8 p z )  - ( d j  - (Njd 0 ~ 2 ) )  

(a) (b) 

Figure 3. The construction of T' in Lemma 1. 

As mentioned earlier, two cells will compete for 
transmission on a link only if they are residing at the 
same node at  the same time. Therefore] Theorem 1 
implies that it suffices for us to use Eq. (1) as the defi- 
nition of cell slack times, in which case each cell's slack 
time needs to be updated at  most once at the time 
when the cell passes through node 0. The resulting im- 
plementation of the LSF policy (to be discussed next) 
is greatly simplified. We will henceforth use Eq. (1) as 
the definition of slack times. 

Since the slack time serves as an index of how tight 
the message/cell laxity is, the LSF policy, which gives 
priority to  the cell with the smallest slack time1 (i.e., 
each node p always transmits first the cell with the 
smallest slack time among all the cells currently resid- 
ing at p ) ,  should give the best performance. We for- 
mally prove in Theorem 2 that the LSF policy is opti- 
mal in the sense that if a set of messages is schedulable 
(i.e., the deadlines of all the message cells can be met) 
then the LSF policy is guaranteed to generate a feasible 
schedule for the set. 

The following two lemmas are needed for the proof 
of the optimality of the LSF policy (Theorem 2). 

Lemma 1 Given a policy T ,  suppose the schedule pro- 
duced by T acting on a set of messages is feasible, and 
suppose at time to, both M,  and M3 are residing at 
node po.  If the destination, Nf, of M,  is the same 
as or farther than that, N;, of M3 from node po,  i.e., 
N," e p o  2 N;" e p o ,  and the slack time, si(po), of Mi is 
smaller than that, s,(po), of M j ,  but policy T transmits 
Mj in the slot [ to ,  t o  + 11 from node po to node po CB 1, 
then there exists a policy T' such that ~ ' ( t , p )  = ~ ( t , p )  
for all t 5 to and all 0 5 p 5 N - 1, except that po 
transmits M,, instead of M,, to node po CB 1 in slot 
[ to , to  + 11 under T' ,  and the resulting schedule gener- 
ated according to  7r' is also feasible. 
Proof: There are two cases to  consider. 
Case 1: The transmission paths of M; and M3 in T 

intersect each other at node p l  at time tl > t o .  
Policy T' is constructed as follows (see Fig. 3(a)). 

T' is exactly the same as T except in the time inter- 
val [to,tl], in which whenever a node transmits M, in 

'Ties can be broken arbitrarily by a specific rule. 
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T ,  the node transmits M; in d, and whenever a node 
transmits M; in n, the node transmits Mj in d. It 
is easy to  see that in the resulting schedule generated 
according to policy d, every cell is delivered to its des- 
tination at  the same time as in the schedule generated 
by policy T .  Therefore, if T is feasible, so is d. 
Case 2: The transmission paths (after time t o )  of M; 
and Mj in T do not intersect each other. 

Policy d is constructed as follows (see Fig. 3(b)). 
Let t 2  be the time when M,  is transmitted to Njd under 
T .  7r' is exactly the same as T except in the time in- 
terval [ t o ,  tz], in which whenever a node transmits Mj 
in T ,  the node transmits M; in T ' ,  and whenever a 
node transmits M; in T ,  the node transmits Mj in T'.  

It is easy to see that D:' 5 D: 5 d;,  and hence Mi 
meets its deadline under policy T'.  Since Dj"' = t 2  and 
D: - t 2  2 Nf e Njd, we have 

0;' 5 D: - (N: e N:), 

and since s ; (po)  5 s j (po ) ,  si(p0) - s j (p0 )  = d; - d j  - 
(Nf e Njd) < 0. Therefore, 

07' 5 Of - (Nf 8 N:) 5 Df - (d; - d j )  5 d j ,  

and hence Mi meets its deadline under policy d. More- 
over, since all the other cells are delivered to their des- 
tination at  the same time as in the schedule generated 
according to policy T ,  if 7r is feasible, so is the resulting 
schedule generated according to policy d. 

The lemma follows from Case 1 and Case 2. 0 

In Lemma 1, the original policy n- transmits cell Mj 
with a closer destination Njd before cell Mi with a far- 
ther destination N," at node poi  while policy 7r' switches 
the transmission order at  node po and transmits M; 
before Mj.  A dual lemma of Lemma 1 can be simi- 
larly proved in which the original policy 7r transmits 
cell Mj with a farther destination before cell Mi with 
a closer destination at  a node, while policy d switches 
the transmission order at  the node and transmits Mi 
before Mj . 
Lemma 2 Given a policy T ,  suppose the schedule pro- 
duced by T acting on a set of messages is feasible, and 
suppose at  time t o ,  both Mi and Mj are residing at  
node po. If the destination, N,d, of M; is closer than 
that, Njd, of M j ,  from node p o ,  i.e., Nf e p o  < Njd e p o ,  
and the slack time, s;(po),  of Mi is smaller than that, 
sj(po), of M i ,  but policy n transmits M j  in the slot 
[ t o ,  t o  + 11, from node po to node po @ 1, then there ex- 
ists a policy T' such that d ( t , p )  = r ( t , p )  for all t < t o  
and all 0 5 p 5 N - 1, except that po transmits Mi,  
instead of M j ,  to node po @ 1 in slot [ t o ,  t o  + 11 under 
T ' ,  and the resulting schedule generated according to 
71' is also feasible. 0 

The proof of Lemma 2 is omitted due to space limita- 
tions. 

Theorem 2 For the case of C, = 1 for all i, the LSF 
policy is optimal in terms of meeting all deadlines under 
evacuation mode operation. 
Proof: Given a set of messages/cells, suppose there is 
a feasible schedule T for this set but 7r does not follow 
the LSF policy. Let t o  be the earliest time and po be 
the smallest node id such that ?r does not follow the 
LSF policy, i.e., in slot [ t o , t o  + 11, node po does not 
transmit the least-slack-time cell, say M,, residing at  
po to its downstream neighbor po @ 1. 

There are three cases to consider. First, if in slot 
[ to ,  to + 11, the link ( P O ,  po @ 1) is idle, then we construct 
a schedule T' which is exactly the same as T except that 
node po transmits M,  to node po @ 1 in slot [ t o ,  t o  f 11 
and po is idle (under d) in the slot that po transmits 
M, to  po @ 1 under policy 7 r .  It is easy to  see that 
0,"' < 0," and D;' = D; for all J # i. Second, if 
in slot [ t o ,  t o  + 11, node po transmits another cell M3 
whose destination Nj" is not farther from po than M,'s 
destination N," (i.e., Nj" 8 po 5 N," 8 P O ) ,  then by 
Lemma 1, there exists a feasible policy T' such that 
n ' ( t , p )  = r ( t , p )  for all t 5 to  and all 0 < p 5 N - 1, 
except that T' follows the LSF policy and transmits 
M,, instead of M3,  from po to po @ 1 in slot [ t o ,  t o  + 11. 
Finally, if in slot [ t o ,  t o  + 11, node po transmits another 
cell M3 which has a farther destination N: from po than 
M,  (i.e., Nj" 8 p 0  > N," e p o ) ,  then by Lemma 2, there 
exists a feasible policy 71-' such that d ( t , p )  = 7r(t ,p) for 
all t 5 to and all 0 5 p 5 N - 1, except that 7r' follows 
the LSF policy and transmits M,, instead of M3,  from 
po to po @ 1 in slot [to, to + 11. 

In all of the above three cases, schedule 7r' is feasible 
and follows the LSF policy for all t < t o  and all p 5 PO. 
By repeating the above process, eventually we will get 
a feasible schedule which follows the LSF policy at  all 
times and at  all nodes. 0 

For the case when l a ' s  may not be all equal to 1, 
since each cell of a message may be transmitted inde- 
pendently, we need to define the slack time for each 
cell. Since it is required that the cells of a message are 
transmitted to their destination in their original order, 
the e,-th cell of M,, M,,e,, must be delivered to its des- 
tination no later than time d,, the (& - 1)-th cell of 
M a ,  M,,g,-I, must be delivered to its destination no 
later than time d, - 1, and so on. Therefore, we de- 
fine the deadline, dZ3, of each cell MZJ of message M,  
as d,, = d, - (C, - J ) ,  and the slack time, s , ~  ( p ) ,  of MZ3 
at node p as follows: 
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With the above definition of slack times, we show 
in the following theorem that the LSF policy is still 
optimal for the case when l , ’s may be arbitrary positive 
integers. 

Theorem 3 The LSF policy is optimal (in terms of 
meeting all message deadlines) for evacuation mode op- 
eration. 
Proof: Since the LSF policy treats all the cells of a 
message independently, by Theorem 2, we know that if 
a set of cells is schedulable, then the LSF policy will 
produce a feasible schedule for the set of cells, i.e., each 
cell MZ3 will meet its deadline d Z j ,  for all i and j. More- 
over, if two cells, MZ3 and Mzk,  of M, are residing at 
the same node p at the same time t ,  then j < IC implies 
sZ3(p) < szk(p), and hence the LSF policy will transmit 
the cells of a message in the correct order at  any time 
at  any node. 0 

3.2. Continuation mode operation 

In this section, we prove in Theorem 4 by using the 
adversary argument (a detailed account of which can 
be found in [2]) that there does not exist any opti- 
mal scheduling policy (in terms of meeting cell/message 
deadlines) under continuation mode operation. 

Theorem 4 There does not exist any optimal schedul- 
ing policy (in terms of meeting cell/message deadlines) 
under continuation mode operation even for the case of 
e, = 1 for all i .  
Proof: Suppose there are two messages, M I  = 
(0 ,1 ,0 ,3 ,5)  and Mz = (0 ,1 ,0 ,1 ,2) ,  that arrived at  
node 0 at  time 0. If a scheduling policy chooses M1 
to transmit first, we assume that there is another mes- 
sage, M3 = (1 ,1,0,1,2) ,  that arrived at  node 0 at  time 
1. It is easy to  see from the schedule of Table 4(a) that 
either MZ or M3 will miss its deadline. However, as 
shown in the schedule of Table 4(b), if we transmit Mz 
first during slot [0,1], then all the three messages can 
meet their deadlines. 

On the other hand, if the scheduling policy chooses 
M2 to transmit first in slot [0,1]. We assume that 
there are two other messages M3 = (2 ,1 ,1 ,2 ,3)  and 
M4 = (3 ,1 ,1 ,2 ,4) .  As shown in the schedule of Ta- 
ble 4(a), at least one of M I ,  M3, and M4 cannot meet 
its deadline. Note that after transmitting MZ to node 
1 in slot [0,1], node 0 transmits M I  to node 1 in slot 
[l, 21. At time 2 (i.e., before the beginning of slot [2,3]), 
M3 arrives at node 1. Since the deadline of M3 is 3, 
node 1 must transmit M3 during slot [2,3] in order to 
meet its deadline. At time 3, M4 arrives at  node 1. 
Since M4 has a deadline 4, node 1 must transmit M4 
to M4’s destination (node 2) during slot [3,4] (trans- 
mitting MI to node 2 in slot [3,4] will cause M4 to  

miss its deadline). Then it will be too late for M I  to  
meet its deadline. However, the transmission schedule 
of Table 4(b) is feasible for the same message set. 

From the above adversary argument, we conclude 
that there cannot exist any optimal scheduling policy 
(without knowing the future message arrivals) for con- 
tinuation mode operation even for the case of e, = 1 for 
all i. 0 

Since there does not exist any optimal scheduling 
policy for continuation mode operation, we resort to 
simulations and compare the performance of several 
commonly-used scheduling policies in Section 5. 

4. Minimizing evacuation time and aver- 
age delay 

In this section, we discuss the impact of variable- 
length messages on the performance of several schedul- 
ing policies with respect to the two performance mea- 
sures used in [ll], i.e., minimizing the evacuation time 
(or total length of busy periods) and minimizing the 
average delay. 

4.1. Minimizing evacuation time or total 
length of busy periods 

As mentioned earlier, if each message has unit 
length, i.e., e, = 1 for all i, Tassiulas and Joung [ll] 
proved that for evacuation mode operation, the FDF 
scheduling policy minimizes the evacuation time. More- 
over, they also showed that the FDF policy maximizes 
the fraction of the time at which the ring is empty, i.e., 
the FDF policy minimizes the total length of busy pe- 
riods, in continuation mode operation. By a similar 
argument as we generalize the optimality (in terms of 
meeting message/cell deadlines) of the LSF policy from 
the case of e, = 1 for all i to  the case of e, 2 1 for all i 
(Theorem 3), we can also show that both of the above 
results still hold in the case that messages may be of 
variable lengths since a message of length e, may be 
viewed as e, messages of unit-length. 

4.2. Minimizing average delay 

Tassiulas and Joung [ll] show that if all messages 
have unit length, the Closest-Destination-First (CDF) 
policy is optimal under evacuation mode operation in 
the sense that the average (total) delay is minimized. 
However, the CDF policy is no longer optimal if mes- 
sages may have variable lengths. Note that the delay 
of a message is defined to  be the delivery time of the 
(last cell of the) message minus the arrival time of the 
message. Again, using the adversary argument, we can 
show that there does not exist any optimal schedul- 
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Table 3. Illustrative schedules 

ing policy under evacuation mode operation if messages 
may be of variable lengths. 

Theorem 5 There does not exist any optimal schedul- 
ing policy (in terms of minimizing the average/total de- 
lay) under evacuation mode operation if messages may 
have variable lengths. 0 

The proof of the theorem is omitted due to space limi- 
tations. 

The above theorem also implies that there cannot ex- 
ist any optimal scheduling policy in terms of minimizing 
the average delay under continuation mode operation if 
e, 2 1 for all i since evacuation mode operation can be 
considered as a special case of continuation mode op- 
eration. By a similar argument, we can also show that 
under continuation mode operation, there cannot exist 

used in the proof of Theorem 4. 

any optimal scheduling policy in terms of minimizing 
the average delay even in the case of = 1 for all i. 
The proof is left for the interested reader. 

5. Performance evaluation 

Table 4 summarizes all the findings derived in Sec- 
tions 3-4 and in [ll], i.e., the optimal scheduling poli- 
cies, if any, for meeting all message deadlines, for mini- 
mizing the evacuation time or total length of busy peri- 
ods, and for minimizing the average delay, in both the 
cases of unit-length and variable-length messages. 

For the cases in which no optimal scheduling policy 
can possibly exist, we conduct simulations and compare 
the performance of several commonly-used scheduling 
policies, including FIFO, FDF, CDF, SMF (Shortest- 
Message-First), LSF, and EDF. In the FIFO policy, 
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Evacuation mode 
a; = 0,Vi 
e, = 1,vi  
e, p 1,vi 

meeting minimizing minimizing 
deadlines evacuation time average delay 

LSF [§3.1] FDF [ll] CDF [ll] 
LSF [§3.1] FDF [§4.1] not exist [§4.2] 

(b) Continuation mode operation. 

Table 4. Optimal scheduling policies for different performance measures. 

Continuation mode 
a, > 0.Qi 

m- Oo 10 m 30 M so w 

meeting minimizing length minimizing 
deadlines of busv Deriods average delav 

number of ncdes 

I -  , 

e; = 1,vz 
e; p 1,vi  

(a) Average delays for dif- 
ferent maximum message ferent network sizes. ferent maximum message ferent network sizes. 
lengths. lengths. 

(b) Average delays for dif- (a) Average delays for dif- (b) Average delays for dif- 

Figure 4. Average delays under evacuation mode op- 
eration (a, = 0) with e, 2 1 for all i. 

Figure 5. Average delays under continuation mode 
operation (a, 2 0) with e, 2 1 for all i. 

" I  " 
not exist [§3.2] FDF [ll] not exist 
not exist [§3.2] FDF [§4.1] not exist [§4.2] 

each node gives priorities to the cells (not messages) 
based on the arrival times of the cells at the node. In 
the SMF policy, each node gives priorities to the mes- 
sages based on the lengths of the messages. 

Fig. 4 shows the average delays for the case of a, = 0 
(i.e., evacuation mode operation) and e, p 1 for all i. In 
Fig. 4(a), for each value of max-length = 2, 4, 6, 8, and 
10, we generate 100 message sets, each of which con- 
tains messages whose lengths are randomly generated 
between 1 and max-length. The results show that the 
SMF policy outperforms (in terms of minimizing the 
average delay) the other policies, except when the max- 
imum message length is small (Le., max-Zength = 2),  
in which case the CDF policy outperforms the others 
(note that if all messages are of unit length, the CDF 
policy is optimal). In general, SMF performs slightly 
better than CDF (except when the maximum message 
length is small), and FDF has the worst performance 
among these four policies. In Fig. 4(b), the maximum 
message length, max-length, is fixed at  6 and the num- 
ber of nodes, N ,  in the ring network ranges from 10 to  

50. 100 message sets are again generated for each N = 
10, 20, 30, 40, and 50. The results coincide with those 
in Fig. 4(a). 

Fig. 5 depicts the average delays for the case of 
a, 2 0 (i.e., continuation mode operation) and 4, 2 1 
for all i. The input data (message sets) are similarly 
generated as in the evacuation mode case (Fig. 4). The 
results coincide with those in the evacuation mode case: 
SMF slightly outperforms CDF (except when the max- 
imum message length is small, i.e., max-length = 1 or 
2), and FDF has the worst performance among these 
four policies. 

Fig. 6 gives the percentage of the 100 input message 
sets that all message deadlines can be met under differ- 
ent scheduling policies. The results in Fig. 6(a) show 
that the LSF policy outperforms (in terms of meet- 
ing all message deadlines) the other policies (FIFO, 
FDF, CDF, SMF, and EDF). In general, LSF performs 
slightly better than EDF, and both LSF and EDF per- 
form much better than the other policies (FIFO, FDF, 
CDF, and SMF). The results in Fig. 6(b) show that in 
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maxlength number of nodes 

(a) Percentage of meet- (b) Percentage of meeting 
ing all deadlines for dif- all deadlines for different 
ferent maximum message network sizes. 
lengths. 

Figure 6. Percentage of meeting all deadlines under 
continuation mode operation (ai 2 0) with ti 2 1 
for all a.  

general, LSF outperforms EDF, and the larger the net- 
work the more significant the difference between LSF 
and EDF. This is perhaps due to the fact that when the 
network size gets larger, the distance factor becomes 
more pronounced and only the deadline itself cannot 
reflect the degree of the urgency of a message. 

In conclusion, the FDF policy is optimal in all four 
cases (i.e., in evacuation or continuation mode opera- 
tion and for unit-length or variable-length messages) in 
terms of minimizing the evacuation time or  total length 
of busy periods. In terms of minimizing the average de- 
lay, the CDF policy performs better in the case when 
message lengths are small, but the SMF policy performs 
better in the case when message lengths are large. In 
terms of meeting message deadlines, the LSF policy al- 
ways performs better than the other policies. 

6. Conclusion 

We treated the message transmission problem in uni- 
directional slotted ring networks with spatial slot reuse 
under two operation modes, i.e., evacuation mode and 
continuation mode, and with respect to three perfor- 
mance measures, i.e., meeting all message deadlines, 
minimizing the evacuation time or total length of busy 
periods, and minimizing the average delay. We showed 
that the LSF scheduling policy is optimal (in terms of 
meeting all message deadlines) under evacuation mode 
operation, while no optimal scheduling policy can pos- 
sibly exist under continuation mode operation. We gen- 
eralized the results reported in [ll] (in which only unit- 
length messages are considered) and showed that the 
FDF policy is optimal in terms of minimizing the evac- 
uation time and minimizing the total length of busy 
periods under evacuation mode operation and contin- 

uation mode operation, respectively, even in the case 
when messages may have variable lengths. We also 
showed that in terms of minimizing the average delay, 
no optimal scheduling policy can possibly exist if mes- 
sages may have variable lengths for either evacuation 
mode or continuation mode operation. 

For those cases in which no optimal scheduling pol- 
icy can possibly exist, we conducted simulations and 
compare the performance of several commonly-used 
scheduling policies, including FIFO, FDF, CDF, SMF, 
LSF, and EDF. The simulation results show that LSF 
outperforms the others in terms of meeting all message 
deadlines, and SMF outperforms the others in terms of 
minimizing the average delay in both evacuation mode 
and continuation mode operations, except when maxi- 
mum message length is small (in which case CDF out- 
performs the others). 
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