
1338 IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 12, DECEMBER 1997

Allocation of Periodic Task Modules
with Precedence and Deadline Constraints

in Distributed Real-Time Systems
Chao-Ju Hou, Member, IEEE, and Kang G. Shin, Fellow, IEEE

Abstract —This paper addresses the problem of allocating (assigning and scheduling) periodic task modules to processing nodes in
distributed real-time systems subject to task precedence and timing constraints. Using the branch-and-bound technique, a module
allocation scheme is proposed to find an “optimal” allocation that maximizes the probability of meeting task deadlines.

The task system within a planning cycle is first modeled with a task flow graph which describes computation and communication
modules, as well as the precedence constraints among them. To incorporate both timing and logical correctness into module
allocation, the probability of meeting task deadlines is used as the objective function. The module allocation scheme is then applied
to find an optimal allocation of task modules in a distributed system. The timing aspects embedded in the objective function drive the
scheme not only to assign task modules to processing nodes, but also to use a module scheduling algorithm (with polynomial time
complexity) for scheduling all modules assigned to each node, so that all tasks may be completed in time.

In order to speed up the branch-and-bound process and to reduce the computational complexity, a dominance relation is derived
from the requirement of timely completion of tasks and use to eliminate the possibility of generating vertices in the state-space
search tree, which never lead to an optimal solution, and an upper bound of the objective function is derived for every partial
allocation with which the scheme determines whether or not to prune the corresponding intermediate vertex in the search tree.
Several numerical examples are presented to demonstrate the effectiveness and practicality of the proposed scheme.

Index Terms —Real-time systems, dynamic failure, task/module allocation, module scheduling, precedence and deadline
constraints, task flow graph, branch-and-bound process.

—————————— ✦ ——————————

1 INTRODUCTION

HE availability of inexpensive, high-performance proc-
essors and high-capacity memory chips has made it

attractive to use distributed computing systems for real-
time applications. For example, one can make the execution
of both periodic and aperiodic tasks not only logically cor-
rect, but also completed before their deadlines, by parti-
tioning periodic tasks into a set of communicating modules,
statically allocating these modules to processing nodes
(PNs) in a distributed system, and dynamically distributing
aperiodic tasks as they arrive according to the load state of
each PN.

Partitioning tasks are usually based on some application-
dependent criterion and the system architecture under con-
sideration, while the dynamic distribution of aperiodic
tasks is usually treated as an adaptive load sharing problem.
Both of these are not the intent of this paper; see [1] for an
example of partitioning real-time tasks into mod-
ules/activities, and see [2], [3], [4], [5], [6] for examples of
dynamic load sharing in distributed real-time systems. In
this paper, we consider, instead, the issue of “optimally” (in

the sense to be defined later) allocating periodic task mod-
ules to PNs in a distributed system, so as to fully utilize the
inherent parallelism, modularity, and reliability of the sys-
tem, while alleviating the “saturation effect” [7] caused by
excessive interprocessor communication of data and control
messages.

The problem of allocating tasks/modules in a distrib-
uted system has been studied by many researchers with
respect to different objective functions. These objective
functions can be roughly grouped into four categories:

1) Minimization of total computation and communica-
tion times in the system [7], [8], [9], [10]. In the case of
homogeneous systems, this objective function reduces
to the minimization of the total interprocessor com-
munication time.

2) Load balancing by minimizing the statistical variance
of processor utilization [11], [12] or by maximizing the
total rewards in the semi-Markov process that models
the computer system [13].

3) Minimization of maximum computation and commu-
nication times on a PN, the objective function of
which was termed the maximum turnaround time in
[14], the bottleneck processor time in [15], [16], and
the system hazard in [17].

4) Maximization of the reliability function of both PNs
and communication links [18], [19].

Different objective functions lead to different optimality
conditions and different allocation results. The first two

0018-9340/97/$10.00 © 1997 IEEE

¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥

• C.-J. Hou is with the Department of Electrical Engineering, The Ohio State
University, Columbus, OH 43210-1272.

 E-mail: jhou@ee.eng.ohio-state.edu.
• K.G. Shin is with the Real-Time Computing Laboratory, Department of

Electrical Engineering and Computer Science, The University of Michigan,
Ann Arbor, MI 48109-2122. E-mail: kgshin@eecs.umich.edu.

Manuscript received 1 Mar. 1995; revised 13 Aug. 1997.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 105672.

T

HOU AND SHIN: ALLOCATION OF PERIODIC TASK MODULES WITH PRECEDENCE AND DEADLINE CONSTRAINTS 1339

objectives are suitable for a distributed system execut-
ing multiple simultaneous non-real-time applications,
where maximizing the total throughput or minimizing
the average response time is the main concern. How-
ever, for real-time systems, the timing and logical cor-
rectness of each individual task must be considered,
because failure to correctly complete a task in time
could cause catastrophe. Thus, the third objective func-
tion, which is based on the worst-case behavior, is more
suitable for assessing the timeliness of real-time sys-
tems, while the fourth objective function, that incorpo-
rates reliability into task/module allocation, is more
suitable for assessing logical correctness. In this paper,
we use the probability of completing each task with
both timing and logical correctness as the objective
function, which was termed, in [20], the probability of no
dynamic failure (PND). Specifically, PND is the product of
two component probabilities:

• The probability, PND1, that all tasks within a planning
cycle are completed before their deadline. The planning
cycle is the time period within which the task-
invocation behavior repeats itself throughout the en-
tire mission, and, thus, completely specifies the entire
task system. More on this will be discussed in Section 2.

• The probability, PND2, that all PNs are operational
during the execution of task modules assigned to
them, and the links between communicating PNs1 are
operational for all intermodule communications over
these links under a given allocation.

Consequently, the use of PND incorporates both timeliness
and logical correctness into task allocation. This is in sharp
contrast to the other module allocation approaches reported
in the literature, which deal with either average task re-
sponse time or logical correctness, but not both.

The problem of finding an optimal assignment of
tasks/modules to processors subject to precedence con-
straints has been shown to be NP–hard for all the above
problem formulations [21], [22], and some form of enu-
merative optimization and/or local search approaches
must be sought. In this paper, we develop a module allo-
cation (MA) scheme using the branch–and–bound (BB)
method. We first model the task system with a task flow
graph (TG), which describes computation and communi-
cation modules as well as the precedence constraints
among them. We then use the BB method to search for an
optimal module allocation. The computational complexity
is reduced by deriving an upper bound of the objective
function with which we determine whether to expand or
prune intermediate vertices (corresponding to partial allo-
cations) in the state-space search tree. On the other hand,
because of the timing aspects embedded in the objective
function, the performance of any resulting assignment
strongly depends on how the assigned tasks/modules are
scheduled. Thus, when evaluating an upper-bound (exact)
objective function for a partial (complete) allocation, we use
a module scheduling (MS) algorithm (with polynomial
time complexity) to schedule all the modules assigned to a

1. By communicating PNs, we mean a pair of PNs to which two commu-
nicating modules are assigned under a given allocation.

PN by minimizing the maximum tardiness of modules
subject to precedence constraints. The MA scheme, com-
bined with the MS algorithm, is guaranteed to find the op-
timal allocation of modules to PNs subject to precedence
constraints. By “allocation,” we mean the assignment of
modules coupled with the scheduling of all modules as-
signed to each PN.

Shen and Tsai [14] minimized the maximum turnaround
time, but considered only a single invocation of each task.
They did not take into account precedence constraints be-
tween tasks. Chu et al. [15], [16] chose to minimize the bot-
tleneck processor workload for tasks/modules assignment,
but their algorithm/analysis was solely based on mean task
response times, which eliminates the need to consider the
scheduling problem. Peng and Shin [17] are the first to in-
clude the important timing aspects in the objective function,
and combine task scheduling with task assignment. They
chose to minimize the system hazard, which is defined as the
maximum normalized (with respect to task period) task
flowtime. It is, however, not clear how system hazard is
related to the probability of no dynamic failure. The re-
striction on assigning all modules of the same task to a sin-
gle PN may not always be desirable.

Ramamritham [23] used a heuristic-directed search tech-
nique with tunable design parameters to

1) determine whether or not a group of communicating
modules should be assigned to the same PN, and

2) allocate different groups of modules to PNs and
schedule them with respect to their latest–start–times
and precedence constraints.

Compared to this work, we use a finer granularity in mod-
eling the real-time task system. (For example, we include
probabilistic branches/loops in task graphs and allow
communications between periodic tasks.) Also, no conclu-
sions were made on whether or not his algorithm always
leads to an optimal solution. By contrast, we focus on mod-
ule allocation subject to precedence and timing constraints,
as well as on the minimization of PND, which, as mentioned
earlier, takes into account both timeliness and reliability.
Also, as will be demonstrated in our simulation study later,
the MA scheme always finds the best allocation at tractable
computational costs for task systems with less than 50
modules and/or distributed systems with less than 40 PNs.

The rest of the paper is organized as follows. In Section 2,
we discuss how to model real-time task systems. Assump-
tions on the distributed system are also stated there. In Sec-
tion 3, we provide an overview of our module allocation
scheme. The objective functions, PND1(x) and PND2(x)—with
which an allocation x is assessed in terms of timeliness and
logical correctness—are derived in Sections 4 and 5. In Sec-
tion 6, we address how to achieve both branching and
bounding efficiencies. Section 7 presents demonstrative
examples. The paper concludes with Section 8.

1340 IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 12, DECEMBER 1997

2 TASK AND SYSTEM MODELS

2.1 The Task System
Real-time tasks are either periodic or nonperiodic. A peri-
odic task is invoked at fixed time intervals and constitutes
the base load of the system. Its attributes, such as the re-
quired resources, the execution time, and the invocation pe-
riod, are usually known a priori. A nonperiodic task, on the
other hand, is invoked randomly in response to environ-
mental stimuli, especially to unanticipated abnormal situa-
tions. The main intent of this paper is to address the prob-
lem of allocating the modules of periodic tasks.

2.1.1 Planning Cycle
To analyze the behavior of periodic tasks, we only need to
consider the task behaviors within a specific period, the
task behaviors during which will repeat for the entire mis-
sion lifetime. Such a period is called the planning cycle of
periodic tasks and is defined as the least common multiple
(LCM) L of {pi : i = 1, 2, ..., NT}, where pi is the period of a
task Ti and NT is the total number of periodic tasks in the
system. That is, the planning cycle is the time interval [t0 + kL,
t0 + (k + 1)L), where t0 is the mission start time, and k is a
nonnegative integer.

2.1.2 Attributes and Precedence Constraints Among
Modules

Each task can be decomposed into smaller units, called
modules [1]. Each module Mi requires ei units of execution
time. The execution time of a module could be its worst-
case execution time or its real execution time, if known.
Since extensive simulations and testing are required before
putting any critical real-time system in operation (e.g., fly-
by-wire computers), the system designer is assumed to
have a good, albeit sometimes incomplete, understanding
of either the exact execution time or the worst-case execu-
tion time of each module.

The execution order of modules imposes precedence con-
straints among them. These precedence constraints are of the
form Mi Æ Mj, meaning that the completion of Mi of a task
enables another module Mj of the same task to be ready for
execution (e.g., by letting Mi send a short message to enable
Mj’s execution and/or update the data variables/files shared
between them [15], [16]). On the other hand, tasks communi-
cate with one another to accomplish the overall control mis-
sion. The semantics of message communication between two
cooperating tasks also impose precedence constraints be-
tween the associated modules of these tasks. This kind of
precedence constraint is also of the form Mi Æ Mj, except that
Mi and Mj now belong to different tasks.

If Mi and Mj are assigned to the same PN, communica-
tion between them can be achieved via accessing shared
memory. Overheads of such communications are usually
much smaller than those when Mi and Mj reside on differ-
ent PNs. Any two communicating modules that reside on
two different PNs will incur interprocessor communication
(IPC). IPC introduces a communication delay, which is a
function of intermodule communication (IMC) volume
(measured in data units) and the worst case link delay (or

delay per data unit) between the two communicating PNs.2

It is important to observe that, even if exact module exe-
cution times were known in advance, task execution times
are not known, due to, for instance, the existence of data-
dependent (thus, probabilistic) branches/loops in the task
(to be discussed below) and/or inexact knowledge of
IMC/IPC delays.

2.1.3 Task Flow Graph (TG)
A TG is commonly used to describe the logical structure of
modules, and the communications and precedence con-
straints among them. A TG is composed of four types of sub-
graphs: chain, AND-subgraph, OR-subgraph, and loop. See
[1], [24] for a detailed account of the four component sub-
graphs. Here we assume that the probability for taking a
particular branch in an OR-subgraph or for repeating/exiting
the body of a loop is assumed to be independent of that for
others (residing either in modules of different tasks or in
modules of the same task). These probability values could
be set to worst-case values and can be obtained from the ex-
tensive simulations and testing—usually required of critical
real-time systems—during the system-design phase. We also
assume that the number of times a loop can be executed is no
more than its maximum loop count. Imposing a maximum
loop count for each loop is necessary for real–time applica-
tions, since each real-time task must be completed in a finite
time. Fig. 1a shows a simple example of a TG.

2.1.4 Communication Primitives
The semantics of the most general communication primitive
SEND-RECEIVE-REPLY,3 can be embedded into precedence
relations between modules. If module Ma of task Ti issues a
SEND to task Tj, Ti remains blocked, or cannot execute
module Mb that follows Ma until the corresponding REPLY
from Tj is received. If the module, Mc, responsible for the
corresponding communication activity on Tj’s side executes
a RECEIVE before the SEND arrives, Tj also remains
blocked. For example, the communication activities be-
tween tasks in Fig. 1a can be embedded into the precedence
constraints between modules, as shown in Fig. 1b.

2.2 The Distributed System
The distributed system considered here consists of K proc-
essing nodes (PNs). For clarity of exposition, all PNs are as-
sumed to have the same processing power and the same set
of resources. (This assumption can, however, be easily re-
laxed, but with more complex notation.) The time required
by an IMC within a PN is assumed to be negligible, while
that between two PNs is expressed as the product of the
IMC volume (measured in data units) and the worst case
link delay (measured in time units per data unit) between
the two PNs on which the communicating modules reside.4

Note that the worst case link delay is the communication delay
bound guaranteed by the underlying communication subsys-
tem to provide to messages with time constraints. Here, we

2. See Section 2.2 for the reason of expressing IPC as a function of IMC
volume and worst case link delay.

3. Other communication primitives, such as QUERY–RESPONSE and
WAITFOR [1], can always be realized using SEND–RECEIVE–REPLY.

4. The time for packetization and depacketization is lumped into module
execution time for the clarity of algorithm description.

HOU AND SHIN: ALLOCATION OF PERIODIC TASK MODULES WITH PRECEDENCE AND DEADLINE CONSTRAINTS 1341

assume that the communication subsystem and the underly-
ing protocol support time-constrained communications, and
the worst-case delay experienced by time-constrained
messages is bounded and predictable. Examples of such
communication subsystems are the highly responsive token
ring described in [25], the FDDI network with the timed-
token MAC protocol [26], [27], [28], [29], [30], the distrib-
uted queue dual bus (DQDB) network with the isochronous
services [31], [32], and the point–to–point packet-switched
network described in [33], [34]. No restriction is imposed on
the topology of the communication subsystem.

Each PN Nk and each link ,mn between Nm and Nn are as-

sumed to fail independently with exponential rates lk and
�lmn , respectively. We do not take into account of repair and
recovery times for failed PNs in assessing the logical cor-
rectness of an allocation. Instead, we shall allocate modules
to PNs on which failures are least likely to occur during the
execution of task modules. That is, we shall assign modules
to PNs with maximum reliability and thus eliminate the
need of on-line repair and recovery. To guard against the
unlikely failures of these PNs, one can assign copies of a
module to multiple PNs, but this subject is not the scope of
this paper. The rationale behind the above assumption is
that

1) repair and recovery times are largely implementation-
dependent, and

2) repair and recovery routines usually introduce too
high time overheads to be used on-line for time-
critical applications.

3 MODULE ALLOCATION ALGORITHM

Let N be the number of modules to be allocated within a
planning cycle. The module allocation problem can be for-
mulated as that of maximizing PND(x) = PND1(x) ◊ PND2(x)
over all possible allocations subject to

x i Nik
k

K

=
Â = £ £

1

1 1, for ,

where xik = 1 if and only if Mi is assigned to Nk, PND1(x) is
the probability that all tasks meet their deadlines under
allocation x, and PND2(x) is the probability that all PNs are
operational during the execution of modules assigned to
them and all communication links are operational during
the IPCs that use these links under x. As will be clear later,
the precedence constraints among modules are figured in
the calculation of module release times (to be defined later),
and the timing constraints on modules/tasks are consid-
ered when PND1(x) is evaluated; for example, PND1(x) = 0 if
some task in the TG misses its deadline under x. The ex-
pressions for PND1(x) and PND2(x) will be derived in Sections 4
and 5.

To solve the above module allocation problem, we pro-
pose the MA scheme which uses:

Branch–and–Bound (BB) method to implicitly enumerate
all possible allocations while effectively pruning unnec-
essary paths in the search tree.

Module Scheduling (MS) algorithm to schedule the modules
assigned to each PN subject to precedence constraints
and latest module completion times.

Fig. 1. An example of task flow graph. The label that appears in the upper right corner of each box in (b) is the acyclic number associated with
each module.

1342 IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 12, DECEMBER 1997

The BB method enumerates all possible solutions to a given
problem by “growing” the corresponding search tree. Each
intermediate (leaf) vertex in the search tree corresponds to a
partial (complete) allocation. This method is composed of two
procedures: branching and bounding. The branching process
generates the child vertices of an intermediate vertex x in the
search tree, until an optimal solution is completely specified.
Usually a dominance relation is derived to limit the number of
child vertices generated for each intermediate vertex x without
eliminating any path to an optimal solution. On the other
hand, the bounding process calculates a tight upper bound of
the objective function (UBOF) for each newly-generated vertex
x, based on which one can decide whether or not x may lead to
an optimal solution. If the UBOF of a vertex x is less than the
current best objective found in the search process, then x will
never lead to an optimal solution, and should thus be pruned.
The interested reader is referred to [35] for a detailed account
of the branch-and-bound method.

The MA scheme works as follows: All modules in the
task system are assumed to be numbered in acyclic order,
such that, if Mi Æ Mj, then i < j. For example, the numbers
which appear on the upper right corner of the boxes in Fig. 1b
give an example of acyclic numbering. The MA scheme
begins with a null allocation x0 which corresponds to the
root of the search tree, and allocates modules in the order of
their acyclic numbering. Let TG(x) denote the set of mod-
ules which are already allocated under x,5 and AN the set of
active vertices in the search tree to be considered for expan-
sion. (AN is determined by the bounding test.)

Expanding a vertex x Œ AN corresponds to allocating the
module, Mi, with the smallest acyclic number in TG\TG(x)
to a PN, where \ denotes the difference of two sets. Only
those PNs which have enough idle times to ensure the
timely completion of Mi and survive the branching test will

be considered as candidates for allocating Mi. After the ex-
panding operation is performed, the bounding test is ap-
plied to those vertices expanded from x by allocating Mi to

one of the candidate PNs. The UBOF, � ()P yND , of each newly-
generated (intermediate) vertex y is calculated by scheduling
modules Œ TG(y) with MS and evaluating PND1(y) and PND2(y)
with the expressions derived in Sections 4 and 5, respectively.
If a vertex y has its � ()P yND greater than the current best ob-

jective function value PND
* , it survives the bounding test,

might possibly lead to the optimal solution, and will be
made active and considered for vertex expansion in the
next stage; otherwise, it will be pruned. The scheme termi-
nates when an optimal solution is found.

The MA scheme is outlined below. The MS algorithm
which schedules the modules assigned to each PN (under
the given allocation and the given timing constraints) will
be discussed in Section 4.1. The expressions of PND1(y) and
PND2(y) (used to assess the likelihood of the timeliness and
the logical correctness of an allocation y) will be derived in
Sections 4.2 and 5, respectively. The branching and bounding
tests used to achieve BB efficiency will be treated in Sec-
tions 6.1 and 6.2, respectively.

5. TG(x) = TG if x is a complete allocation.

MA Algorithm:

Step 1. Generate the root, x0, of the search tree, which cor-
responds to a null allocation. Set AN :={x0}.

Step 2. Set TG(x0) := ∆, xopt := x0, and the objective function

value achieved by xopt, P P xND ND
* = =0 0 0. � ().

Step 3. While AN π ∆ do
 /* an optimal allocation has not yet been found */
 Step 3.1. Node Selection Rule:

Step 3.1.1. Select the vertex x Œ AN with the largest
� ()P xND .

Step 3.1.2. If � ()P x PND ND< * , terminate MA, and xopt

is the optimal solution. Otherwise, set Mi to be

the module Œ TG\TG(x) with the smallest acy-
clic number, and AN := AN\{x}.

 Step 3.2. Branching Test:
Step 3.2.1. Conduct the branching test on each PN.

Only those PNs which survive the branching
test will be considered for allocating Mi.

Step 3.2.2. Expand x by generating its valid child
vertices, each of which corresponds to allocating
Mi to one of the surviving PNs.

 Step 3.3. Bounding Test: For each newly-generated
vertex y,

Step 3.3.1. Use MS to find an optimal schedule for
TG(y) under y and calculate the UBOF, � ()P yND .

Step 3.3.2. If � ()P y PND ND£ * , then prune y. Other-
wise, the following two cases are considered:
Case 1. If y is a partial allocation, then set AN :=

AN < {y}, i.e., make y an active vertex.
Case 2. If y represents a complete assignment,

� ()P yND is the actual PND achieved under y. Since
� ()P y PND ND> * , set xopt := y and P P yND ND

* = � () to
indicate that y has now become the best allo-
cation found thus far.

4 EVALUATION OF TIMELINESS

In this section, we evaluate PND1(x) for a given allocation x.
We first describe how MS schedules all the modules as-
signed to a PN, say Nk, under x to minimize the maximum
module tardiness subject to task release times and prece-
dence constraints. By applying MS to each PN, we can ob-
tain a module schedule under x. Second, we calculate the
probability, P(T, is timely completed under x), for every T,

in TG. PND1(x) can then be calculated from P(T, is timely
completed under x).

4.1 The Module Scheduling Algorithm
To facilitate the description and analysis of MS, we need to
introduce the following notation:

• TGc: a component task graph of TG. If TG contains
loops or OR-subgraphs, it will be replaced by a set of
component task graphs without loops and OR-graphs
before applying MS (see Section 4.2 for more on this).
For the time-being, we only need to know that TGc
contains neither loops nor OR-subgraphs.

HOU AND SHIN: ALLOCATION OF PERIODIC TASK MODULES WITH PRECEDENCE AND DEADLINE CONSTRAINTS 1343

• TGc(x): the set of modules Œ TGc allocated under x.
• Sk(x) = {Mi : xik = 1}: the set of modules assigned to Nk

under x.
• ri: the release time of Mi, or the earliest time Mi can

start its execution.
• LCi: the latest completion time of Mi to ensure that all

of its succeeding tasks will meet their deadlines.
• Ci: the completion time of Mi, which is determined by

MS.
• ei: the execution time of Mi.
• �ei : the modified execution time of Mi, where

�e

e
M

r
C r

i

i
i

i

i i

=

-

%
&K

'K

if is scheduled to be executed

upon its release at time
otherwise.

�ei is used to include the effect of queuing Mi on the

release times of all the modules that succeed Mi.
• fi(Ci): the cost incurred by completing Mi at Ci.
• comij(x): the IMC time between Mi and Mj under x.
• dij: the IMC volume (measured in data units) between

Mi and Mj.
• tmn: the worst case link delay (measured in time units

per data unit) of link ,mn.
• n(k, ,): the number of edge-disjoint paths between Nk

and N,.
• I(m, n, k, ,): the indicator variable such that I(m, n, k,

,) = 1 if ,mn lies on one of the n(k, ,) edge-disjoint
paths between Nk and N,.

• Y I m n k tk n k n

K

m

K
mn, ,

,= ◊
== ÂÂ1

11(,) , , ,1 6 : the worst case

delay (measured in time units per data unit) between

Nk and N,.
• B: the minimal set of modules that are processed

without any idle time in [r(B), c(B)), where

r B r c B r B e BM B ii
0 5 0 5 0 5 0 5= = +Œmin , ,

and
e B ei

M Bi

0 5 =
Œ

Â .

• dgi: the outdegree of Mi within a block of modules
under consideration.

Specifically, |Sk(x)| modules (possibly belonging to
different tasks) are to be scheduled preemptively on Nk.
Each module Mi becomes available upon its release at time
ri, which is initially set to the invocation time of the task to
which Mi belongs. Precedence relations (Æ) are considered
in the entire task system: If Mj Æ Mi, then Mi cannot start its
execution before the completion of Mj, regardless of
whether Mi and Mj are assigned to the same PN or not.
Execution of a module may be preempted and then re-
sumed later. Associated with each Mi is a monotone nonde-
creasing cost function fi(Ci). We want to find a schedule for
the modules in Sk(x) such that

f S x f Ck M S x i ii kmax 0 52 7 2 70 5= Œ
D

max

is minimized. The schedule with the minimal cost
f S xkmax

* (()) is said to be an optimal schedule of Sk(x).

Before proceeding to describe and analyze MS, we define
the cost function fi(Ci) and discuss how to calculate the two
parameters, LCi and ri, "i. The cost function is defined as

fi(Ci) = Ci - LCi, (4.1)

where LCi is the latest time Mi must be completed to ensure
the timeliness of all of its succeeding modules, and Ci is the
completion time of Mi determined by MS. If Ci > LCi, a
positive cost will occur. Thus, with the definition of this
cost function, minimizing the maximum cost function is
equivalent to minimizing the maximum tardiness of mod-
ules in TGc.

The latest completion time, LCi, of Mi Œ TGc is obtained
as follows: Let LCi be initially set to the deadline of the task
to which Mi belongs. Then, modify LCi as

LC LC LC e com x M Mi i j j j ij i j= - - Æ%&'
()*

min min :0 5J L ,

i N= - 1 1, ,� , (4.2)

where the modules are assumed to be numbered in acyclic
order and

com x

M M

x

d Y
M M N N

x

ij

i j

ij k
i j k

0 5 =

%

&
KK

'
K
K

0,
,

,
,

if and are assigned to the same PN

under
if and are assigned to and

under respectively.,

,

Note that (4.2) computes backward from i = N - 1 to i = 1,
because MN has no successor by the nature of acyclic order,
and, thus, the latest completion time of MN is exactly the
deadline of the task it belongs to. When x is a partial alloca-
tion and either Mi or Mj or both have not yet been assigned,
comij(x) is (optimistically) assumed to be 0.

The release time, ri, of Mi Œ TGc(x) is obtained as follows:
Let ri be initially set to the invocation time of the task to
which Mi belongs. Then, modify ri as

r r r e com x M Mi i j j j ji j i= + + Æ%&'
()*

max , max � :0 5J L ,

2 £ £i N , (4.3)

where r1 is the invocation time of the task to which M1 be-
longs, and � max{ , }e C r ej j j j= - is the modified execution

time which equals the sum of Mj’s execution time, ej, and

Mj’s queuing time (if Mj is not scheduled to be executed
upon its release). �e j is used to include the effect of queuing

Mi’s preceding module, Mj, on Mi’s release time.
Note that the modified execution times of all Mi’s pre-

ceding modules must be available prior to the calculation of
ri. This is ensured by allocating the modules in the order of
their acyclic numbers. When an intermediate vertex y sur-
vives the bounding test and is put in AN, all modules in
TGc(y) would have been scheduled and their completion
times (and, thus, modified execution times) would have
been determined in the bounding process in the previous
stage (Step 3.3 in MA in Section 3). Thus, when x is ex-
panded from its parent vertex y by adding the new assign-
ment of Mi, the schedules, completion times and modified

1344 IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 12, DECEMBER 1997

execution times of all modules in TGc(y) (which includes all
preceding modules of Mi) must have been determined. So,
all the �e j ’s needed in (4.3) are known at the time of calcu-
lating ri.

EXAMPLE 1. Fig. 2 shows an example of how ris and LCis are
calculated. The allocation x in Fig. 2 assigns M1, M3,
M5, and M6 to N1, and the other modules to N2. Both
module execution times and task deadlines are speci-
fied in the figure. The worst case IPC delay is as-
sumed to be 0.5 unit of time, i.e., dijYk, = 0.5 wherever
applicable. For example, the release time r4 of M4 is
calculated as

r

r r e com x r e com x r e com x
4

4 1 1 14 2 2 24 3 3 34

0 0 1 0 0 1 1 2 0 4

=

+ + + + + +

= + + + + + =

max , � , � , �

max , .5, , .5 .5 ,

0 5 0 5 0 5< A
< A

and the latest completion time, LC12, of M12 is calcu-
lated as

LC LC LC e com x12 12 13 13 12 13

10 12 1 10

= - -

= - =

min ,

min , , .

0 5J L
< A

Now, we describe the MS algorithm, the theoretical base
of which is grounded on the result of [36]. First, we arrange

the modules Œ Sk(x) in the order of nondecreasing release

times. We then decompose Sk(x) into blocks, where a block

B Ã Sk(x) is defined as the minimal set of modules processed
without any idle time from r B rM B ii

() min= Œ until c(B) =

r(B) + e(B), where e B eiM Bi

() =
ŒÂ . That is, each Mi œ B is

either completed no later than r(B) or not released before c(B).
For example, as shown in Fig. 3, the set of modules as-
signed to N1 in Fig. 2, S1(x) = {M1, M3, M5, M6}, can be de-
composed into three blocks, while the set of modules as-
signed to N2, S2(x) = {M2, M4, M8, M9, M10, M11, M12, M13},
can be decomposed into two blocks.

Obviously, scheduling modules in a block B is irrelevant
to that in other blocks, so we can consider each block sepa-
rately. Let dgi denote the outdegree of Mi within B, i.e., the

number of modules Mj Œ B such that Mi Æ Mj. For each block

B, we first determine the set � { : , }B M M B dgi i i= Œ =
D

0 , i.e.,
modules without successors in B, and then select a module
Mm such that

f c B f c Bm
M B

i
i

0 52 7 0 52 7=
Œ

min
�

, (4.4)

i.e., Mm has no successor within B and incurs a minimum

cost if it is completed last in �B . (In case of a tie, we choose
the module with the largest acyclic number.) Now, consider
an optimal schedule for the modules in B subject to the re-
striction that Mm is processed only if no other module is
waiting to be processed. This optimal schedule consists of
two parts:

Sched1: An optimal schedule with the cost f B Mmmax
* -({ })

for the set B - {Mm}, which could be decomposed into a

number of subblocks � , � , , � �B B B
b1 2 � .

Sched2: A schedule for Mm, which is given by

r B c B r B c Bj j
j

b

0 5 0 5 4 9 4 9, � , �

�

-
=1
� ,

where r B rM B ii
() min= Œ and c(B) = r(B) + e(B) with

e B eiM Bi

() =
ŒÂ .

For this optimal schedule, we have

f B

f c B f B Mm m

max

max

*

*

=

-

0 5
0 52 7 < A3 8J L

 with the above restriction

max ,

£ *f Bmax0 5 , (4.5)

where the last inequality comes from:

1) f B f C f c BM B i i M B ii imax
*

Œ Œ= ≥ =() min max () min (())
D

min (()) (())�M B i m
i

f c B f c B
Œ

= by the way �B was con-

structed from B and (4.4).
2) Since B - {Mi} is a subset of B, f B f B Mimax max

* *≥ -() ({ }),
"Mi.Fig. 2 . An example showing how ri s and LCi s are computed. All tasks

are first invoked at time 0. (In this particular example, �e ej j= , 1 £ j £ 12.)

HOU AND SHIN: ALLOCATION OF PERIODIC TASK MODULES WITH PRECEDENCE AND DEADLINE CONSTRAINTS 1345

It follows from (4.5) that there exists an optimal schedule in
which Mm is scheduled only if no other module is waiting
to be scheduled. By repeatedly and recursively applying the
above procedure to each of the subblocks � , � , , �B B Bb1 2 � , we
obtain an optimal schedule for B. The rationale behind MS
is that a PN is never left idle when there are modules ready
to execute, and, by virtue of the cost function defined, it is
always the module Mi with the smallest LCi that will be
executed among all released modules.

EXAMPLE 2. Take the task graph in Fig. 2 as an example, and
consider the schedule on N1. As shown in Fig. 3, S1(x)

is composed of three blocks, B1 = {M1}, B2 = {M3}, and

B3 = {M5, M6}. The optimal schedule can be readily

obtained (Fig. 3), since the schedules for B1 and B2 are

trivial, and, for B3, we have � { }B M3 6= , meaning that

M6 has to be processed only when no other module is
waiting to be processed.

EXAMPLE 3. Fig. 4 gives another (more complicated) illustra-
tive example, showing how MS schedules the mod-
ules assigned to a PN. ri and LCi, 1 £ i £ 5, are as-
sumed to have been computed from the entire task
graph and are given in the figure. By ordering the
modules according to their increasing release times,
we obtain two blocks: B1 = {M1, M2, M3, M4} from [0, 8]

(i.e., r(B1) = 0, e(B1) = 8, and c(B1) = 8) and B2 = {M5}

from [9, 11] (i.e., r(B2) = 9, e(B2) = 2, and c(B2) = 11).

The schedule for B2 is trivial, because B2 consists of a
single module and itself represents an optimal sched-
ule for B2. For B1 we have � { , }B M M1 3 4= and select M3

to be processed only when no other modules are
waiting, since LC3 > LC4. Now, B - {M3} consists of

two subblocks: B11 = {M1, M2} from [0, 3] and B12 =

{M4} from [4, 6]. B12 itself represents an optimal

schedule. For B11, we have � { , }B M M11 1 2= and select

M1 to be processed last, since LC1 > LC2. The final op-

timal schedule for B1 is obtained by combining the

optimal schedule for B11 and B12 (Sched1) and the

schedule for M3 (Sched2) which consists of [0, 8] - [0, 3]
< [4, 6]. The result is depicted in the last row of Fig. 4.

The MS algorithm along with the time complexity in
each step is summarized below.

MS Algorithm:

Step 1: Compute the latest completion time LCi, 1 £ i £ N,
for TGc. This computation requires O(N2) time.

Step 2: Compute the release time ri for Mi Œ TGc(x) with re-
spect to their precedence constraints. This computation, in
the worst case, requires O(N2) time.

Step 3: Construct the blocks B1, B2, ..., Bb of Sk(x) for every
Nk by ordering the modules Œ Sk(x) according to their
nondecreasing release times. This ordering requires
O(|Sk(x)| ◊ log |Sk(x)|) time, "k.

Step 4: For each block Bi, 1 £ i £ b, update the outdegree, dgj,
of every Mj Œ Bi. This update requires O(|Sk(x)|2) time
for all Bis Ã Sk(x).

Fig. 3. Optimal schedule on N1 under allocation x in which M1, M3, M5, and M6 are assigned to N1, while the other modules are assigned to N2.

Fig. 4. An example showing how MS schedules the modules assigned
to a PN. Note that all modules make their latest completion times under
the optimal schedule.

1346 IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 12, DECEMBER 1997

Step 5: For each block Bi, select Mm Œ Bi subject to (4.4), de-
termine the subblocks of Bi - {Mm}, and construct the
schedule for Mm as given in Sched 2. Then, update the
dgj of every Mj Œ Bi - {Mm} with respect to the subblock
of Bi - {Mm} to which Mj belongs. By repeatedly applying
Step 5 to each of the subblocks of Bi - {Mm}, one can obtain
an optimal schedule. The time complexity for all repeated
applications of Step 5 is bounded by O(|Sk(x)|3).

Since the time complexity associated with each step is
polynomial, the MS algorithm is a polynomial algorithm.

4.2 Calculation of PND1(x)
We are now in a position to discuss how to calculate P(T, is
timely completed under x). Conceptually, given TG and x,
we can determine the set, Sk(x), of modules Œ TG assigned
to Nk and, then, use MS to schedule modules in Sk(x), "k.
The completion time(s) of the last module(s) in T, > TG
under these schedules determines whether T, can be com-
pleted in time or not. However, since TG may contain loops
and/or OR-subgraphs, the release times and the latest
completion times of modules needed in Step 3 of MS may
not be readily determined. Moreover, one cannot determine
which module of T, to execute last if the last component in
T, is an OR-subgraph.

4.2.1 Component Graphs
To resolve the above problem, we must eliminate the
loops/OR-subgraphs in TG while retaining all the timing
and probabilistic properties of TG. We first calculate the
latest completion time, LCi, of Mi Œ TG using (4.2), assum-
ing that

A1. Every OR-subgraph following Mi, if any, is viewed as
an AND-subgraph by ignoring branching probabilities.

A2. Every loop La following Mi, if any, is replaced by a cas-
cade of nLa

 copies of its loop body, where nLa
 is the

maximum loop count.

With A1 and A2, the LCis calculated are the worst-case lat-
est completion time.

Second, we represent each loop La Œ TG with the cas-
caded m copies of its loop body with probability
()1 1- -q qa a

m , where 1 £ £m nLa
, and qa is the looping-back

probability of La. The last copy of Mi Œ La bears the LCi cal-

culated above, while the ()n jLa
- th copy of Mi bears the

latest completion time LCi - j ◊ e(La), where e(La) is the exe-
cution time of the loop body. Also, we represent each OR-
subgraph Ob Œ TG with its nth branch with probability qb,n,

where 1 £ £n nOb
, qb,n is the branching probability of the

nth branch of Ob, and nOb
 is the number of branches in Ob.

The TG can then be represented by the set of all possible
combinations—which is termed as the set of component task
graphs. For example, if there exists a loop La and an OR-

subgraph Ob in TG, then there are a total of n nL Oa b
¥ com-

ponent graphs of TG, and, with probability
p q q qc a a

m
b n= - ◊-() ,1 1 , the TG is represented by the TG,

with La replaced by the cascaded m copies of its loop body

and Ob replaced by its nth branch. (One can trivially extend
this to the case where there is more than one loop and/or
OR-subgraph.)

For each component graph, TGc, of TG, we then calcu-
late the release time, ri, of Mi Œ TGc using (4.3). Using the ris
and LCis determined above, we can apply Steps 3-5 in MS
to find the best schedules for all modules in TGc. Note that,
in a component graph TGc, the release time, ri, and the
number of times Mi is executed are both fixed, making it
possible to decompose Sk(x) into blocks.

For real-time applications in which the worst-case per-
formance is the main concern or, for a TG which contains a
large number of loops and/or OR-subgraphs, we can repre-
sent the TG with the set of single component task graphs in
which each loop La is replaced by the cascaded nLa

 copies of

the loop body (while each OR-subgraph is replaced by one
of its branches). This significantly reduces the number of
component graphs needed to be considered.

4.2.2 Calculation of PND(x)
We now calculate, for every T, in a component task graph
TGc, the probability P(T, is timely completed under x). Let
the critical time of Mi Œ T,, Di, be defined as the latest time
Mi should be completed for the timely completion of the
task T, only. Note that Di can be obtained in the same way
as LCi, except that the precedence relations, Mi Æ Mj when
Mj œ T,, are ignored. That is, let Di be initially set to the
deadline of T, to which Mi belongs. Then, Di is modified as:

D D D e com x M M

i N N

i i M T j j ij i j
j

= - - Æ
%
&
'

(
)
*

= - -

Œ
min , min : ,

, , , .
,

0 5J L
1 2 1�

Obviously, Di ≥ LCi. Also, let

� : ,T M M T dg Ti i c i c, , ,
= Œ =
D

� �TG TG0 with respect to < A

be the set of modules without any successor in T, > TGc.

Then, T, can be timely completed under the allocation x in

the component task graph TGc if Di ≥ Ci for every module

Mi which has no successor in T, > TGc (i.e., " ŒM Ti
�
,
). In

other words, the probability P(T, is timely completed under

x in TGc) can be expressed as

P T x c,
 is timely completed under in TG2 7 =

d D Ci i
M Ti

-
Œ

’ 2 7
�
,

, (4.6)

where d(◊) is the step function, i.e., d(t) = 1 for t ≥ 0, and d(t)
= 0, otherwise. Consequently, P(T, is timely completed un-
der x) can be expressed as

P T x
,
 is timely completed under 2 7 =

p P T xc c

c

◊
¢

Â ,
 is timely completed under in

all s

TG
TG

2 7 , (4.7)

where pc is the probability that TG is represented by TGc.
Finally, PND1 can be expressed as

HOU AND SHIN: ALLOCATION OF PERIODIC TASK MODULES WITH PRECEDENCE AND DEADLINE CONSTRAINTS 1347

P x P T xND

NT

2
1

0 5 2 7=
=

’ ,

,

 is timely completed under , (4.8)

where NT, as defined in Section 2, is the number of periodic
tasks in the system.

5 EVALUATION OF LOGICAL CORRECTNESS

In this section, we calculate the probability, PND2(x), that:

1) All PNs are operational during the execution of mod-
ules assigned to them, and

2) All communication links are operational during the
course of IPCs.

he derivation of PND2(x) is similar to that of the reliability
function in [18], [19], but we relax the following two unre-
alistic assumptions used in [18], [19]:

A1) The network topology is cycle-free, i.e., there is one
and only one path between any pair of PNs;

A2) Each module is executed only once in a task invoca-
tion.

Instead of the first assumption, we allow an arbitrary
network topology, and also allow the IPCs between Nk and
N, to take place over one of the (arbitrarily chosen) edge-
disjoint paths between the two PNs. In contrast to the sec-
ond assumption, we allow modules to be contained in
loops and/or branches of OR-subgraphs, i.e., modules may
be executed more than once, or not executed at all in a task
invocation.

To facilitate the derivation of PND2(x), we need the fol-
lowing notation:

• LP: the set of modules which are contained in loops.
• OR: the set of modules which are on the branches of

OR-subgraphs.
• qa: the looping-back probability of loop La.
• qb,,: the branching probability of the ,th branch of an

OR-subgraph, Ob.
• nLa

: the maximum count of loop La.

• nOb
: the number of branches in an OR-subgraph Ob.

• lk: the constant exponential failure rate of Nk.
• �lmn : the constant exponential failure rate of link ,mn.

Failure occurrences are assumed to be statistically in-
dependent of one another.

• Rmn(i, j, nc, x): the probability that link ,mn is operational
during the nc occurrences of IMC between Mi and Mj
under allocation x.

• Rpn(x): the probability that all PNs are operational
during the execution of modules assigned to them
under x.

• Rlink(x): the probability that all links are operational
for all IMCs under x.

Under allocation x, the probability that all PNs remain
fault-free during the execution of the modules assigned to
them is:

R x x e

q q x e

pn k ik i
k

K

M LP OR

a a k ik i
k

K

M L

n

L LP

i

i a

La

a

0 5 2 7

2 7 2 7

= - ◊

- ◊ -
�

!

"

$
#
◊

=œ

-

=Œ=Œ

’’

’’Â’

{ exp }

{ exp }

l

l

1

1

11

1

�

,

,

,

{ exp },q x eb k ik i
k

K

M
O

n

O OR i

b

Ob

b

,

,,

◊ -

�

!

"

$

#
#
##=Œ=Œ

’’Â’ l2 7
11 th

branch of

. (5.1)

Note that all factors, except the one associated with xik = 1 in

the term exp()-
=’ l k ik ik

K
x e

1
, reduce to one. The expression

within the first pair of braces is the probability that the PNs
on which stand-alone modules6 reside are operational
during the execution of these modules. Similarly, the ex-
pression in the second (third) pairs of braces is the prob-
ability that the PNs on which the modules in loops (OR-
subgraphs) reside are operational during the execution of
these modules. In case Mi is contained in a loop La, with

probability q qa a
,- -1 1() , Mi requires an execution time , ◊ ei,

and, in case Mi is on the ,th branch of an OR-subgraph, Ob,

with probability qb,,, Mi will be executed. Note that (5.1) can
be readily extended to the case where a loop/OR–subgraph
is contained in other loops and/or OR-subgraphs.

EXAMPLE 4. Consider Fig. 1b as an example, where LP = {M8}
and OR = {M6, M7}. If all modules of T1 are assigned
to N1 and all modules of T2 and T3 are assigned to N2,
i.e., x11 = x51 = x61 = x71 = 1 and x22 = x32 = x42 = x82 = x92
= x102 = x112 = 1, then

R y e e

qe q e p p e

pn
e e e e e e e e

e e e
nL

1 6

1 6J L 1 6

2 7 2 7= ◊ ◊

+ - ◊ -

- + - + + + + +

- - - -

=
Â

l l

l l l

1 1 5 2 2 3 4 9 10 11

1 0 1 7 2 81 1 1

1

, ,

,

.

The expression of Rlink(x) calls for the derivation of the
probability that link ,mn is operational during the nc occur-
rences of IMC between Mi and Mj under x, Rmn(i, j, nc, x):

R i j n xmn c, , ,2 7 =

exp �
,

, , ,- ◊ ◊ ◊
�
��

�
��= π=

’’ lmn
c mn ij

ik j
k

K

k

K n t d

n k
x x I m n k

,
,

,

, ,
1 6 1 6

1,1

. (5.2)

Two remarks are in order:

• All the K(K - 1) terms in (5.2)—except for the term
corresponding to xik = xj, = 1—reduce to one.

• If Mi is assigned to Nk (xik = 1), Mj is assigned to N,

(xj, = 1), and ,mn lies on one of the edge-disjoint paths
between Nk and N, (I(m, n, k, ,) = 1), then

R i j n x
n t d

n km n c mn
c mn ij

, , , , exp �
,2 7 1 6= -

�
��

�
��

l
,

,

where
n t d

n k
c mn ij

(,),
 is the (average) worst case communication

6. Modules which are contained in neither loops nor OR-subgraphs in the
TG.

1348 IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 12, DECEMBER 1997

time over link ,mn contributed by the nc occurrences of

IMC between Mi and Mj.

EXAMPLE 5. Given the simple distributed system repre-
sented by a complete graph of three PNs (where n(k,
,) = 2 and I(m, n, k, ,) = 1, 1 £ m, n £ 3, m π n, 1 £ k, , £
3, k π ,) and the TG in Fig. 1b, we have

R i j n x
n t d

x x x x x x x s x x x x

c
c ij

i j i j i j i j i j i j

12 12
12

1 2 1 3 2 1 2 3 3 1 3 2

2, , , exp �

.

2 7

4 99

= - ◊ ◊
�
��

+ + + + +

l

Under the allocation x in which modules of T1 and T2

< T3 are assigned to N1 and N2, respectively,

R n x
n t d

c
c

12 12
12 141 4 2, , , exp �2 7 = - ◊

�
��

�
��l ;

since x11x42 = 1, and R12(2, 4, nc, x) = 1 , i.e., the IMCs

between M2 and M4 are accomplished via shared

memory and do not use link ,12 at all.

Now, we are in a position to derive the expression of
Rlink(x). Let

C

C

C

C

1

2

3

4

0

0

0

0

1

= >

= >

= >

" Œ

= >

" Œ

D

D

D

D

M M d M M

M M d M M

L M M d M M

L L LP

O M M d M M

O

O OR

i j ij i j

i j ij i j

a i j ij i j

a a

b i j ij i j

b

b

, : ,

,

, : ,

,

, :

, ;

, , :

,

,

4 9J
A

4 9J

A

2 7 4 9J
A

2 7 4 9J
A

 and neither of and

resides in a loop or an OR - subgraph

 and one of or

resides in a loop while the other (not
contained in an OR - subgraph)

resides immediately before or afterthe loop

 and both and reside

in the loop

 and either or or both

reside on the th branch of

,

,

£ £, nOb
,

where dij > 0 indicates that Mi and Mj communicate with

each other. The rationale behind defining C1, C2, C3(La), and

C4(Ob, ,) is as follows: If (Mi, Mj) Œ C1 < C2, then Mi and Mj

communicate with each other exactly once. If (Mi, Mj) Œ
C3(La), then Mi and Mj communicate nc times (each with

data amount dij) with probability q qa
n

a
c - -1 1() , where qa is

the looping-back probability of loop La. On the other hand,

if (Mi, Mj) Œ C4(Ob, ,), then Mi and Mj communicate once

with probability qb,,, where qb,, is the branching probability

of the ,th branch of the OR-subgraph Ob. Rlink(x) can then be
expressed as:

R x R i j x

q q R i j n x

link mn
M M

a
n

a
n

n

L LP
mn c

M M L

mni j

c

c

La

a mni j a

0 5 2 7

2 7 2 7

4 9

4 9 2 7

= ◊

- ◊ ◊

’’

Â’ ’’

Œ »

-

=Œ Œ

{ , , , }

{ [, , ,]}

,

,

1

1

1 2

3

1

1

,

,

C C

C

{ [, , ,]},
, ,

q R i j xb

n

O OR
mn

M M O

Ob

b mni j b

,

, ,,=Œ Œ
Â’ ’’◊

1

1
4

2 7
4 9 2 7C

. (5.3)

For clarity of presentation, (5.3) excludes the case where a
loop/OR-subgraph is contained in other loops and/or OR-
subgraphs. However, it is straightforward to extend (5.3) to
include such a case.

EXAMPLE 6. Consider again the example of allocating the TG
in Fig. 1b to the distributed system represented by a
three-complete graph. We have C1 = {(M1, M4), (M1, M5),
(M2, M3), (M2, M4), (M3, M4), (M4, M5), (M9, M10), (M9,
M11), (M10, M11)}, C2 = {(M4, M8), (M8, M9)}, C3 = ∆,
C4(O1, 1) = {(M1, M6)}, and C4(O1, 2) = {(M1, M7)}.
Thus,

R x R i j x

q R x q R x

link mn
M M

mn mn

mni j

mn mn

0 5 2 7

2 7 1 6 2 7
4 9

= ◊

+ -

’’

’ ’
Œ »

{ , , , }

{ , , , , , , }.

,

1

1 6 1 1 1 7 1

1 2
,

, ,

C C

Under the allocation x given in Example 5, we have

R R y R y

e e

link mn mn

t t t d t t t d

mn mn

= ◊

= ◊

’ ’
- + + - + +

1 4 1 4 5 1

12 12 13 13 32 32 14 12 12 13 13 32 32 452 2

, , , , , ,

,
� � � � � �

2 7 2 7

4 9 4 9

, ,

l l l l l l

where the first and the second factors are contributed
by the IMC between M1 and M4 and between M4 and

M5, respectively. For example, e t d- �l 12 12 14 2 is contributed

by the IPC between M1 and M4 which runs through

,12, and e t t d- +(� �)l l32 32 13 13 14 2 is contributed by the IPC

which routes through ,13 and ,32.

Finally, we have

PND2(x) = Rpn(x) ◊ Rlink(x). (5.4)

6 BRANCHING AND BOUNDING TESTS

The branching test uses the dominance relation derived
from the requirement of timely completion of tasks to limit
the number of child vertices generated in the branching
process. The bounding test derives an UBOF for each in-
termediate vertex with which one decides whether or not to
prune an intermediate vertex in the bounding process. In
this section, we discuss how we design the branching and
bounding tests.

6.1 Branching Test
Recall that expanding an intermediate vertex x in the search
tree corresponds to allocating the module with the smallest
acyclic number that has not yet been allocated (i.e., a mod-
ule in TG\TG(x)). The branching test uses the following

HOU AND SHIN: ALLOCATION OF PERIODIC TASK MODULES WITH PRECEDENCE AND DEADLINE CONSTRAINTS 1349

dominance relation. Mi can be invoked after all its prece-
dence constraints are met and must be completed by its
latest completion time, LCi, to ensure that all its succeeding
tasks meet their deadlines. Hence, if

1) the idle time of a PN, say Nk, during the interval
[ri, LCi] is smaller than ei, and

2) the module, say Mj, scheduled to be executed7 on Nk
in [ri, LCi] under a partial allocation x has tighter tim-
ing constraints than Mi (so no preemption on Nk is
possible to ensure the completion of Mi before LCi),

then allocating Mi to Nk is likely to miss Mi’s latest comple-
tion time. Thus, Nk should not be a candidate PN for allo-
cating Mi, i.e., Nk fails the branching test.

Branching Test:

Step 1. Calculate optimistic estimates, ri
o and LCi

o , of ri and

LCi, assuming that
A1. Every pair of communicating modules that have not

yet been assigned (i.e., Œ TG\TG(x)) reside on the
same PN.

A2. The OR-subgraph preceding or following Mi, if any,
is replaced by the branch with the smallest flowtime.

A3. The loop preceding, containing, or following Mi, if
any, is replaced by its loop body (i.e., the loop exe-
cutes only once).

Step 2. Calculate an pessimistic estimate, LCi
p , of LCi, as-

suming that
A4. The IMCs in TG\TG(x) are executed on Nk and N,

with the largest nominal inter-PN delay Yk,.
A5. The OR-subgraph following Mi is replaced by the

branch with the largest flowtime.
A6. The loop following Mi (if any) is replaced by the cas-

caded nL copies of its loop body, where nL is its
maximum loop count.

Step 3. For each Nk, check whether the following two con-
ditions are true or not:
C1. The idle time of Nk in [,]r LCi

o
i
o is less than ei.

C2. LC LCj i
p£ , where LCj is the latest completion time of

the module, Mj, scheduled last in [,]r LCi
o

i
o on Nk un-

der the partial allocation x.

If both conditions are true, then Nk fails the test and is
not considered for allocating Mi.

A1-A3 ensure r ri
o

i£ and LC LCi
o

i≥ , thus making the

interval [,]r LCi
o

i
o larger than [ri, LCi]. A4-A6 ensure

LC LCi
p

i£ , making Mi likely to preempt other modules on

Nk. Consequently, the use of the optimistic interval,

[,]r LCi
o

i
o , and the pessimistic value, LCi

p , ensure that the
PNs which fail the branching test cannot indeed complete
Mi in time.

6.2 Calculation of an UBOF for the Bounding Test
The bounding test calculates an UBOF for each intermedi-

7. By “last,” we mean the module is executed only if no other modules
are waiting for processing on Nk.

ate vertex, and prunes (keeps) the intermediate vertex
when the calculated UBOF £ (>) the best objective function,
PND

* , found thus far. The bounding test uses the following
principles. A vertex y is generated from its parent vertex x
by adding the assignment Mi Æ Nk to the partial allocation

x for some Nk that survives the branching test. After in-

cluding Mi Æ Nk, Nk needs to reschedule the modules as-

signed to it under y (i.e., the modules Œ Sk(y)) using MS.
Because modules are assigned in acyclic order, all preced-
ing modules of Mi in Sk(y) have their latest completion

times < LCi, and their schedules will not be changed by the

addition of Mi. On the other hand, if some nonpreceding

module Mj does change its schedule as a result of Mi Æ Nk,

then the release time(s) of all Mjs succeeding module(s)

have to be changed accordingly. Consequently, the PNs (π
Nk) on which these succeeding modules of Mj reside need to
reconsider their module schedules.

EXAMPLE 7. Fig. 5 gives an example of how adding Mi Æ Nk
to a partial allocation might affect the schedules on
other PNs. In the partial allocation x prior to the as-
signment M6 Æ N1, M1 and M2 are assigned to N1, and
M3, M4, and M5 are assigned to N2. The optimal
schedules on N1 and N2 for x (obtained from the
bounding process of the last stage) are shown in
Fig. 5a. Now, assign M6 to N1 to get the child vertex,
y, of x. As shown in Fig. 5b, N1 needs to reschedule its
assigned modules. (Note that the schedule for M1,
however, does not change, since M1 is a preceding
module of M6.) Also, the schedule change on N1—
especially, the schedule change for M2—alters the re-
lease times of M2’s succeeding modules, M4 and M5.
So, the schedule on N2, the PN on which M4 and M5
reside, needs to be changed as well (Fig. 5b).

Let PN
^

 denote the set of PNs which need to reconsider
their module schedules as a result of Mi Æ Nk. Then, a
UBOF is calculated by the following steps.

Calculation of a UBOF:

Step 1. Represent the TG with the set of component graphs.
Step 2. Calculate � ()P yND1 as follows:

Step 2.1. In each component graph TGc:
Step 2.1.1. Reschedule the modules Œ Sm(y) for every

N PNm Œ
^

 using MS and A1 in the branching test.

Step 2.1.2. Use (4.6) to calculate P(T, is timely com-

pleted under y in TGc) for every T, Œ TGc, where
�T
,
, in (4.6) is modified as A7.

� { : (), ()}T M M T y dg T yi i c i c, , ,
= Œ « = «
D

TG TG0 w. r. t. ,

i.e., TGc in (4.6) is replaced by the set of mod-

ules Œ TGc allocated under y.

Step 2.2. Calculate P(T, is timely completed under y) for

1350 IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 12, DECEMBER 1997

every T, Œ TG and � ()P yND1 , using (4.7) and (4.8), re-
spectively.

Step 3. Calculate � ()P yND2 using (5.1), (5.3), and (5.4), and
A8. Every Mj Œ TG\TG(y) is assumed to be allo-

cated to the most reliable PN, and every pair of
communicating modules in TG\TG(y) reside on
the same PN.

Step 4. Calculate � () � () � ()P y P y P yND ND ND= ◊1 2 .

Note that, because of the use of A1 and A7, � ()P yND1 derived

above is an upper bound of PND1 of any leaf vertex
(complete allocation) generated from y. Moreover, whether
or not modules Œ TG\TG(y) meet their latest completion
times need not be considered in the calculation of � ()P yND1 ,
and is thus excluded by A7.

7 NUMERICAL EXAMPLES

The performance of MA is evaluated according to the fol-
lowing sequence:

1) discussion on the generation of task graphs and dis-
tributed systems;

2) the characteristics of MA;
3) the practicality of MA.

7.1 Generation of Task Graphs and Distributed
Systems

There are a large number of parameters that may affect the
performance of MA. They can be classified as system pa-
rameters, which specify the distributed system under con-
sideration, and task parameters, which specify the TG. The
generation of realistic TGs and distributed systems largely
depends on how these parameters are specified. However,
little is reported in the literature about “typical” real-time
TGs and their communication patterns. Thus, we randomly
generate both system and task parameters in our numerical
experiments. We believe these randomly generated task
graphs cover a wide spectrum of real-time applications.

The number of PNs in the distributed system is varied
from three to 40. After the number of PNs is selected, the
network topology is then arbitrarily generated. The worst
case link delay, tmn, associated with ,mn is exponentially dis-
tributed with mean 0.1 e , where e is the mean module exe-
cution time. The node failure rate, li, and the link failure rate,

�lmn , were varied from 10-5 to 0.5 (1/time unit). The number
of modules, N, to be allocated is varied from four to 50. The
execution time of a module is exponentially distributed with
mean 1.0 unit of time. The IPC volume between two commu-
nicating modules is uniformly distributed over (0, 10] data
units. The precedence constraints and the timing require-
ments of the TG are also randomly generated.

Before running experiments, we eliminated the TGs
which were definitely infeasible. Infeasibility is detected by

Fig. 5. An example showing how a new assignment Mi Æ Nk might affect the module schedule of Nm π Nk.

HOU AND SHIN: ALLOCATION OF PERIODIC TASK MODULES WITH PRECEDENCE AND DEADLINE CONSTRAINTS 1351

calculating release times and latest completion times of all
modules, while ignoring all IMC times. If the interval be-
tween the latest completion time and the release time is less
than the execution time for some module(s) in all the com-
ponent graphs of a TG, this TG is infeasible (in the sense
that some tasks cannot be completed in time even if infinite
resources were available) and is not considered any further.

All experiments were performed on a Sun4 SPARC sta-
tion running the SUNOS 4.1.3 operating system. Due to
space limitation, we present only a few representative cases
and statistical results. However, the conclusions drawn
from the following summary were corroborated by all the
experiments conducted.

7.2 Characteristics of MA
By virtue of the BB method, MA always yields the best allo-
cation. To further examine the characteristics of the optimal
allocation found by MA, experiments were performed on

1) TGs with different degrees of parallelism8;
2) task sets with different degrees of deadline tightness;
3) distributed systems with different worst case link de-

lays and node/link failure rates.

Several interesting properties observed in the experi-
ments are given below.

P1. MA allocates sequentially-executing modules subject to
the same tight timing constraints to the same PN. For ex-
ample, the best allocation of the TG in Fig. 1b to the dis-
tributed system represented by a complete graph of
three PNs and with homogeneous node failure rates (lk =
0.001) and link failure rates (lmn = 0.001) is to assign T1 to
N1, and both T2 and T3 to N2. MA recognizes that the
execution path M2 Æ M3 Æ M4 Æ M8 Æ M9 Æ M10 Æ
M11 in the TG is critical subject to T3’s deadline and can-
not tolerate any IPC delay, thus allocating both T2 and T3
to the same PN. The resulting best objective function
value is PND = 9.8227 ¥ 10-1.

P2. Heavily communicating modules may not necessarily
be allocated to the same PN. For example, consider the
allocation of the TG in Fig. 6a. The attributes of both the
TG and the distributed system are specified in Experi-
ment I. As shown in Fig. 6b, MA allocates M1, M6, and
M7 to N1; M4, M8, M9, and M10 to N2; M2, M3, and M5 to
N3 so that all modules meet their latest completion times
(PND1 = 1.0) and are allocated to the most reliable PNs, N1 �
- N3 (PND2 = 9.7933 ¥ 10-1). Although the IMC between M4
and M5 is twice more than the others, M4 and M5 are allo-
cated to different PNs. This is mainly because T2 has a less
tight timing constraint than others and can thus allow IPCs
among its modules. This observation is in sharp contrast to
the common notion that heavily communicating modules
should always be co-allocated [23], [37].

P3. If the distributed system is homogeneous, MA assigns
modules, subject to task timing constraints, in such a

8. A TG is said to have a high-degree of parallelism if most of its modules
can be executed in parallel when there are enough resources. This could
occur if the TG contains AND-subgraphs with a large number of branches
and/or most tasks in the TG do not communicate with one another so that
only a few precedence constraints are imposed on the modules belonging
to different tasks.

way that as few IPCs as possible will occur. To demon-
strate this tendency, consider Experiment II in Fig. 6. The
attributes of both the TG and the distributed system re-
main the same as in Experiment I, except that l4 = 0.001
(i.e., the distributed system becomes homogeneous).
Now, the allocation and schedules specified in Fig. 6c

give the best solution (PND1 = 1.0, PND2 = 9.8096 ¥ 10-1).

Note that the only IPC occurs between M1 and M3, which

cannot be eliminated, because all modules of T1 cannot

be allocated to the same PN under T1’s timing constraint.
P4. If both timeliness and logical correctness cannot be

achieved at the same time, MA maximizes PND by mak-
ing a compromise between these two objectives. This is
demonstrated by conducting three experiments: in Ex-
periment I, the deadlines of the four tasks are set as d1 =

5.0, d2 = 6.0, d3 = 6.0, and d4 = 8.0. As shown in Fig. 6b,
MA allocates modules only to (three) reliable PNs while
meeting the timing constraints (PND1 = 1.0, PND2 = 9.7933

¥ 10-1). As the deadline constraints get tighter, in Experi-

ment III, i.e., d1 and d2 remain unchanged while d3 be-

comes 4.0 and d4 becomes 7.5, MA is “forced” to allocate

some of the modules (M1) to a less reliable PN (N4) in or-
der to meet all timing constraints. Fig. 6c gives the best
allocation and schedules: T2 and T3 are now allocated to

N1, T4 to N2, and T1 to N3 and N4 (PND1 = 1.0, PND2 = 9.6346

¥ 10-1). On the other hand, if N4 is highly prone to failure,

as is assumed in Experiment IV (l4 is increased from 0.01

to 0.5), MA decides not to use N4 at the risk of not making

task T4’s deadline, as depicted in Fig. 6d (PND1 = 0.7, PND2 =

9.8096 ¥ 10-1, and PND = 6.8667 ¥ 10-1).

Note that, for ease of exposition, we choose the simple TG
given above as the example task system. However, the ob-
servation made was corroborated by all the experiments
conducted. See [38] for more experimental results.

7.3 Practicality of MA
To test the practicality of MA for reasonably large TGs
and/or distributed systems, we ran experiments on

1) TGs with 4-50 modules, while varying module execu-
tion times, IMC volumes, task deadlines, and ran-
domly generating precedence constraints;

2) distributed system topologies with 3-40 PNs, while
randomly varying worst case link delays and the de-
gree of network connectivity.

We then computed the ratio of the number of search-tree
vertices visited to the total number, KN+1 - 1, of vertices in
the search tree. The numerical results for different combi-
nations of N and K are summarized in Table 1. The number
of trials in each combination of N and K was determined,9

9. Under the assumption that the parameter to be estimated (i.e., the
mean number of search–tree vertices visited) has a normal distribution with

1352 IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 12, DECEMBER 1997

so that a 95 percent (90 percent) confidence level may be
obtained for a maximum error within 10 percent of the av-
erage numbers reported for N £ 10 (N > 10). Also given in
each combination are the worst and best results ever found
in these trials.

In all the experiments conducted, no more than 9 percent
of the search-tree vertices were visited before finding the best
allocation for N ≥ 6 and K ≥ 3. Also, the percentage of search-
tree vertices visited falls drastically as N and/or K grows, as
shown in Table 1. This is because the “increasing rate” for the
number of vertices visited as N and/or K grows is far lower
than exponential. This suggests that both the dominance re-
lation and the UBOF derived effectively prune unnecessary
search paths at early stages of the BB process.

According to our experimental experiences, however, it
takes a significant amount of CPU run time (usually over six
hours on a SPARC Sun4 SPARC station running the SUNOS
4.1.3 operating system) for a single experiment for N ≥ 40 and
K ≥ 30, which makes collecting statistics difficult (although
obtaining the best allocation for a single experiment is still
possible). Some new techniques may be needed to reduce the
search space. For example, based on the observation P1, one
can co-allocate sequentially-executing modules in the TG
subject to the same tight timing constraints. This can be done
by calculating the release times and the latest completion
times of all modules, while ignoring all IPC delays. If some
module, Mi, has LCi - ri equal to ei

10 in all the component
graphs of the TG, then this module and both its preceding
and succeeding modules which are subject to the same tim-
ing constraint should be co-allocated.

unknown mean and variance.

10. or, LCi - ri £ fm ◊ ei, where fm ≥ 1.0 is empirically determined if subop-
timal allocations are allowed.

8 CONCLUSION

We have addressed the problem of allocating periodic task
modules in a distributed real-time system subject to prece-
dence constraints, timing requirements, and intermodule
communications. The probability of no dynamic failure is
used as the objective function to incorporate both the timeli-
ness and logical correctness of real-time tasks/modules into
module allocation. MA not only assigns modules to PNs, but
also uses MS to schedule all modules assigned to each PN.

An interesting finding from the numerical experiments is
that MA tends to allocate sequentially-executing modules
subject to the same timing constraints to the same PN. Also,
the common notion in general-purpose distributed systems
that heavily communicating modules should be co-located
[37], [23] may not always be applicable to real-time systems.
Only in case there are enough resources to meet the timing
requirement in a homogeneous distributed system, MA as-
signs modules so as to minimize IPCs. Based on a set of ex-
periments using randomly-generated TGs and distributed
systems, MA has also been shown to be computationally
tractablefor N £ 50 and K £ 40.

Despite its advantages mentioned above, MA still takes a
significant amount of time to locate an optimal allocation for
the case of N ≥ 40 and K ≥ 30, due to the fact that there exist
an extremely large number of search paths which might lead
to an optimal solution and, thus, cannot be pruned at early
stages of the BB process. One challenging extension to this
research is to investigate the problem of grouping modules
and/or PNs to reduce the size of the search space without
resorting to a heuristic-directed technique. The conditions
under which modules could be co-allocated, e.g., P1 and P2
observed in Section 7, are currently explored further, and will
be reported in a forthcoming paper.

TABLE 1
THE NUMBER AND PERCENTAGE OF VERTICES VISITED IN THE SEARCH TREE BY MA

N 6 8 10 15 20 30 40

Best # visited 19 25 166 649 1488 2,432 3,576

case % visited 0.87% 0.13% 0.09% 0.002% � � — — —

Average # visited 47 442 2,230 12,720 37,635 56,015 68,687

case % visited 2.15% 2.25% 1.26% 0.03% 3.60 ¥ 10
-4

% � — � —

Worst # visited 159 1240 14,680 79,905 150,304 268,420 374,572

 case % visited 7.27% 6.30% 8.29% 0.19% 1.44 ¥ 10
-3

% � — � —

K
N+1

- 1 2,186 19,682 177,146 4.305 ¥ 10
7

1.046 ¥ 10
10

6.177 ¥ 10
14

3.647 ¥ 10
19

(a) K = 3

K 2 3 4 5 6 8 10

Best # visited 21 166 233 426 581 705 814

case % visited 1.03% 0.09% 5.56 ¥ 10
-3

% 8.72 ¥ 10
-4

% 1.60 ¥ 10
-4

% � — � —

Average # visited 360 2,230 7,452 9,388 11,068 17,038 27,026

case % visited 17.59% 1.26% 0.178% 0.019% 3.05 ¥ 10
-3

% 1.98 ¥ 10
-3

% � —

Worst # visited 723 14,680 35,335 50,353 56,671 63,248 83,035

case % visited 35.32% 8.29% 0.842% 0.103% 0.016% 7.36 ¥ 10
-4

% � —

K
N+1

- 1 2047 177,146 4.194 ¥ 10
6

 4.883 ¥ 10
7

3.628 ¥ 10
8

8.590 ¥ 10
9

1.00 ¥ 10
11

(b) N = 10

— indicates less than 10
-6

 ¥ 100% of nodes in the search-tree were visited.

HOU AND SHIN: ALLOCATION OF PERIODIC TASK MODULES WITH PRECEDENCE AND DEADLINE CONSTRAINTS 1353

(a)

(b) (c)

(d)

Fig, 6. An example showing how MA allocates modules: (a) The task graph and the system configuration used, (b) allocation and PN schedules
for Experiment I: M1, M6, and M7 are assigned to N1; M4, M8, M9, and M10 are assigned to N2; M2, M3, and M5 are assigned to N3, (c) allocation
and PN schedules for Experiment II and III: M4, M5, M6, and M7 are assigned to N1; M8, M9, and M10 are assigned to N2; M2, and M3 are as-
signed to N3; and M1 is assigned to N4, (d) allocation and PN schedules for Experiment IV: M4, M5, M6, and M7 are assigned to N1; M1, M8, M9,
and M10 are assigned to N2; M2, and M3 are assigned to N3.

1354 IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 12, DECEMBER 1997

LIST OF SYMBOLS

PND: the probability of no dynamic failure, i.e., the prob-
ability of all tasks making their deadlines.

PND1: the probability that all tasks within a planning cycle
are completed before their deadlines.

PND2: the probability that all PNs are operational during the
execution of modules assigned to them, and the commu-
nication links between communicating PNs are opera-
tional for all the intermodule communications that use
these links.

NT: the total number of periodic tasks in the system.
ti: the invocation time of a periodic task Ti.
pi: the period of a periodic task Ti.
di: the deadline of a periodic task Ti.
L: the planning cycle of a set of periodic tasks. It is computed

as the least common multiple of {pi : i = 1, 2, ..., NT}.
Mi Æ Mj: the precedence constraint imposed on modules Mi

and Mj, meaning that the completion of Mi enables Mj to
be ready for execution.

ei: the execution time of a module Mi.
N: the number of modules to be allocated within a planning

cycle.
K: the number of PNs available for module allocation.
x: a module allocation where xik = 1 if module Mi is assigned

to PN Nk.
TG: the task flow graph representing the task system.
TG(x): the set of modules which are already allocated under

the allocation x. TG(x) = TG if x is a complete allocation.
AN: the set of active nodes in the search tree which needs to

be considered for node expansion in the next stage.
x0: a null allocation which corresponds to the root of the

search tree.
xopt: an optimal allocation.
PND

* : the objective function value achieved by xopt.
� ()P xND : the value by which the objective function, PND, of

all child nodes expanded from the allocation x is upper-
bounded.

NOTATION USED IN SECTIONS 4-7
Ptc(T, | x): the probability that a task T, is completed before

its deadline under allocation x.
TGc: a component task graph of TG.
{TGc}: the set of component task graphs of TG.
pc: the probability that TG is represented by TGc.
TGc(x): the set of modules Œ TGc which are allocated under x.
Sk(x): the set of modules which are assigned to Nk under

allocation x, i.e., Sk(x) = {Mi : xik = 1}.
ri: the release time of module Mi which can be interpreted

as the earliest time at which Mi can start its execution.
LCi: the latest completion time of Mi. Mi must be completed

before LCi to ensure all tasks to meet their deadlines.
Di: the critical time of Mi. Mi must be completed before Di to

ensure that the corresponding task (to which Mi belongs)
will meet its deadline.

Ci: the completion time of Mi which is determined by MSA.
�ei : the modified execution time of Mi. �ei is used to include

the effect of queuing Mi on the release times of all those

modules succeeding Mi.

fi(Ci): the cost incurred by completing Mi at time Ci.
comij(x): the IMC time from Mi to Mj under allocation x.
dij: the IMC volume (measured in data units) from Mi to Mj.
Yk,: the nominal delay (measured in time units per data

unit) between two PNs, Nk and N,.
B: the minimal set of modules that are processed without

any idle time from r B rM B ii
() min= Œ until c(B) = r(B) + e(B),

where e B eiM Bi

() =
ŒÂ .

b: the number of blocks in Sk(x).
dgi: the outdegree of Mi within a block under consideration.
�Bi : a subblock of B - {Mm}, where 1 £ £i b� , �b is the number

of subblocks in B - {Mm}, and Mm is the module scheduled
to be executed if no other modules in B are waiting.

qa: the looping-back probability of the loop La.
nLa

: the maximum loop count of the loop La.

qb,,: the branching probability of the ,th branch of an OR-
subgraph, Ob.

nOb
: the number of branches in the OR-subgraph Ob.

Ptc(T, | TGc, x): the probability that a task T, is completed
before its deadline under allocation x for a given compo-
nent task graph TGc.

� { : , }T M M T TG dg T TGi i c i c, , ,
= Œ =
D

� �0 with respect to :

the set of modules without any successor in T, > TGc.
LP: the set of modules which are contained in loops.
OR: the set of modules which are on branches of OR-

subgraphs.
lk: the constant exponential failure rate of Nk.
�lmn : the constant exponential failure rate of link ,mn. We

assume that lks and �lmn s are statistically independent of
one another.

tmn: the nominal delay (measured in time units per data
unit) of link ,mn.

n(k, ,): the number of edge-disjoint paths from Nk to N,.
I(m, n, k, ,): the indicator variable such that I(m, n, k, ,) = 1 if

,mn lies on one of the n(k, ,) edge-disjoint paths from Nk
to N,.

Rmn(i, j, nc, x): the probability that link ,mn is operational
during nc occurrences of IMC between Mi and Mj under
allocation x.

Rpn(x): the probability that all PNs are operational during
the execution of modules assigned to them under alloca-
tion x.

Rlink(x): the probability that all links are operational for per-
forming all the IMCs that use them under allocation x.

LCi
p : a pessimistic estimate of LCi used in the branching
process.

LCi
o : an optimistic estimate of LCi used in the branching
process.

ri
o : an optimistic estimate of ri used in the branching process.

PN̂ : the set of PNs who need to reschedule the modules
assigned to them because of the addition of Mi Æ Nk to a
partial allocation.

HOU AND SHIN: ALLOCATION OF PERIODIC TASK MODULES WITH PRECEDENCE AND DEADLINE CONSTRAINTS 1355

ACKNOWLEDGMENTS

The work reported in this paper was supported in part by
the U.S. Office of Naval Research under Grants N00014-92-
J-1080 and N00014-91-J-1115 and by DARPA under Grant
DABT63-95-C-0117. Any opinions, findings, and conclusions
or recommendations expressed in this paper are those of
the authors and do not necessarily reflect the views of the
ONR or DARPA.

REFERENCES

[1] D.-T. Peng and K.G. Shin, “Modeling of Concurrent Task Execu-
tion in a Distributed System for Real-Time Control,” IEEE
Trans.Computers, vol. 36, no. 4, pp. 500-516, Apr. 1987.

[2] J.A. Stankovic, K. Ramamritham, and S. Chang, “Evaluation of a
Flexible Task Scheduling Algorithm for Distributed Hard Real-
Time Systems,” IEEE Trans. Computers, vol. 34, no. 12, pp. 1,130-
1,141, Dec. 1985.

[3] K. Ramamritham, J.A. Stankovic, and W. Zhao, “Distributed
Scheduling of Tasks with Deadlines and Resource Requirements,”
IEEE Trans. Computers, vol. 38, no. 8, pp. 1,110-1,123, Aug. 1989.

[4] K.G. Shin and Y.-C. Chang, “Load Sharing in Distributed Real-
Time Systems with State Change Broadcasts,” IEEE Trans. Com-
puters, vol. 38, no. 8, pp. 1,124-1,142, Aug. 1989.

[5] K.G. Shin and C.-J. Hou, “Analytic Models of Adaptive Load
Sharing Schemes in Distributed Real-Time Systems,” IEEE Trans.
Parallel and Distributed Systems, vol. 4, no. 7, pp. 740-761, July 1993.

[6] C.-J. Hou and K.G. Shin, “Load Sharing with Consideration of
Future Task Arrivals in Heterogeneous Distributed Real-Time
Systems,” IEEE Trans. Computers, vol. 44, no. 9, pp. 1,076-1,090,
Sept. 1994.

[7] P.-Y. Ma, E.Y.S. Lee, and M. Tsuchiya, “A Task Allocation Model
for Distributed Computing Systems,” IEEE Trans. Computers, vol. 31,
no. 1, pp. 41-47, Jan. 1982.

[8] H.S. Stone, “Multiprocessor Scheduling with the Aid of Network
Flow Algorithms,” IEEE Trans. Software Eng., vol. 3, no. 1, pp. 85-
93, Jan. 1977.

[9] V.M. Lo, “Heuristic Algorithms for Task Assignment in Distributed
Systems,” IEEE Trans. Computers, vol. 37, no. 11, pp. 1,384-1,397,
Nov. 1988.

[10] C.E. Houstis, “Module Allocation of Real-Time Applications for
Distributed Systems,” IEEE Trans. Software Eng., vol. 16, no. 7,
pp. 699-709, July 1990.

[11] J.A. Bannister and K.S. Trivedi, “Task Allocation in Fault-Tolerant
Distributed Systems,” Acta Informatica, vol. 20, pp. 261-281, 1983.

[12] A.N. Tantawi and D. Towsley, “Optimal Static Load Balancing in
Distributed Computer Systems,” J. ACM, vol. 32, pp. 445-465,
Apr. 1985.

[13] T.C.K. Chou and J.A. Abraham, “Load Balancing in Distributed
Systems,” IEEE Trans. Software Eng., vol. 8, pp. 401-422, July 1982.

[14] C.C. Shen and W.H. Tsai, “A Graph Matching Approach to Opti-
mal Task Assignment in Distributed Computing Systems Using a
Minimax Criterion,” IEEE Trans. Computers, vol. 34, no. 3, pp. 197-
203, Mar. 1985.

[15] W.W. Chu and L.M.T. Lan, “Task Allocation and Precedence
Relations for Distributed Real-Time Systems,” IEEE Trans. Com-
puters, vol. 36, no. 6, pp. 667-679, June 1987.

[16] W.W. Chu and K.K. Leung, “Module Replication and Assignment
for Real-Time Distributed Processing Systems,” Proc. IEEE, vol.
75, pp. 547-562, May 1987.

[17] D.-T. Peng and K.G. Shin, “Assignment and Scheduling of Com-
munication Periodic Tasks in Distributed Real-Time Systems,” Proc.
Ninth Int’l Conf. Distributed Computing Systems, pp. 190-198, June
1989.

[18] S.M. Shatz and J.-P. Wang, “Model and Algorithm for Reliability-
Oriented Task-Allocation in Redundant Distributed-Computer
Systems,” IEEE Trans. Reliability, vol. 38, pp. 16-27, Apr. 1989.

[19] S.M. Shatz, J.-P. Wang, and M. Goto, “Task Allocation for Maxi-
mizing Realiability of Distributed Computer Systems,” IEEE
Trans. Computers, vol. 41, no. 9, pp. 1,156-1,168, Sept. 1992.

[20] K.G. Shin, C.M. Krishna, and Y.H. Lee, “A Unified Method for
Evaluating Real-Time Computer Controllers Its Application,”
IEEE Trans. Automatic Control, vol. 30, pp. 357-366, Apr. 1985.

[21] M.R. Garey and D.S. Johnson, Computers and Intractability—A
Guide to the Theory of NP-Completeness. New York: W.H. Freeman,
1979.

[22] D. Fernández-Baca, “Allocating Modules to Processors in a
Distributed System,” IEEE Trans. Software Eng., vol. 15, no. 11,
pp. 1,427-1,436, Nov. 1989.

[23] K. Ramamritham, “Allocation and Scheduling of Complex Peri-
odic Tasks,” IEEE Proc. 10th Int’l Conf. Distributed Computing Sys-
tems, pp. 108-115, May 1990.

[24] C.-J. Hou and K.G. Shin, “Module Allocation with Timing and
Precedence Constraints in Distributed Real-Time Systems,” IEEE
Proc. 13th Real-Time Systems Symp., pp. 146-155, Dec. 1992.

[25] J.K. Strosnider and T.E. Marchok, “Responsive, Deterministic
IEEE 802.5 Token Ring Scheduling,” J. Real-Time Systems, vol. 1,
pp. 133-158, Sept. 1989.

[26] B. Chen, G. Agrawal, and W. Zhao, “Optimal Synchronous Capac-
ity Allocation for Hard Real-Time Communications with the Timed
Token Protocol,” Proc. 13th Real-Time Systems Symp., pp. 198-207,
Phoenix, Ariz., Dec. 1992.

[27] G. Agrawal, B. Chen, W. Zhao, and S. Davari, “Guaranteeing
Synchronous Message Deadlines with the Timed Token Medium
Access Control Protocol,” IEEE Trans. Computers, vol. 43, no. 3,
pp. 327-350, Mar. 1994.

[28] N. Malcolm and W. Zhao, “The Timed-Token Protocol for Real-
Time Communications,” Computer, vol. 27, no. 1, pp. 35-40, Jan.
1994.

[29] C.-C. Han, K.G. Shin, and C.-J. Hou, “On Non-Existence of Opti-
mal Local Synchronous Bandwidth Allocation Schemes for the
Timed-Token MAC Protocol,” Proc. IEEE 14th Int’l Phoenix Conf.
Computers and Comm., pp. 191-197, Mar. 1995.

[30] C.-C. Han, K.G. Shin, and C.-J. Hou, “Synchronous Bandwidth
Allocation for Real-Time Communications with the Timed-Token
MAC Protocol,” submitted for publication, Jan. 1997.

[31] C.-C. Han, C.-J. Hou, and K.G. Shin, “On Slot Allocation for Time-
Constrained Messages in Dual-Bus Networks,” IEEE Trans. Com-
puters, vol. 46, no. 7, pp. 756-767, July 1997.

[32] D. Saha, M.C. Saksena, S. Mukherjee, and S.K. Tripathi, “On
Guaranteed Delivery of Time-Critical Messages in DQDB,” Proc.
IEEE INFOCOM ’94, Conf. Computer Comm., vol. 1, pp. 272-279,
June 1994.

[33] D. Ferrari and D.C. Verma, “A Scheme for Real-Time Channel
Establishment in Wide-Area Networks,” IEEE J. Selected Areas in
Comm., vol. 8, pp. 368-379, Apr. 1990.

[34] Q. Zheng and K.G. Shin, “On the Ability of Establishing Real-
Time Channels in Point-to-Point Packet Switched Network,” IEEE
Trans. Comm., vol. 42, Feb./Mar./Apr. 1994.

[35] W.L. Winston, Operations Research, Applications and Algorithms,
second ed., chapter 7, pp. 321-326. PWS-KENT Publishing, 1987.

[36] K.R. Baker, E.L. Lawler, J.K. Lenstra, and A.H.G.R. Kan,
“Preemptive Scheduling of a Single Machine to Minimize Maxi-
mum Cost Subject to Release Dates,” Operations Research, pp. 381-
386, Mar.-Apr. 1983.

[37] N.S. Bowen, C.N. Nikolaou, and A. Ghafoor, “On the Assignment
Problem of Arbitrary Process Systems to Heterogeneous Distrib-
uted Computer Systems,” IEEE Trans. Computers, vol. 41, no. 3,
Mar. 1992.

[38] C.-J. Hou, “Design and Analysis of Task Allocation and Re-
Distribution in Distributed Real-Time Systems,” PhD thesis, Univ.
of Michigan-Ann Arbor, Dept. of Electrical Eng. and Computer
Science, Aug. 1993. Also available as Technical Report CSE-TR-
172-93, Univ. of Michigan-Ann Arbor.

1356 IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 12, DECEMBER 1997

Chao–Ju Hou received the BSE degree in elec-
trical engineering in 1987 from National Taiwan
University, the MSE degree in electrical engi-
neering and computer science (EECS), the MSE
degree in industrial and operations engineering,
and the PhD degree in EECS, all from The Uni-
versity of Michigan, Ann Arbor, in 1989, 1991,
and 1993, respectively. From August 1993 to
July 1996, she was an assistant professor in the
Department of Electrical and Computer Engi-
neering at the University of Wisconsin–Madison.

Since August 1996, she has been with the Department of Electrical
Engineering at The Ohio State University–Columbus, where she is
currently an assistant professor.

She is a recipient of the U.S. National Science Foundation CAREER
award, Wisconsin/Hilldale Undergraduate/Faculty Research Fellow-
ships, and Women in Science Initiative Awards in Wisconsin. Her re-
search interests are in the areas of time-constrained communications,
design and implementation of middleware services for QoS control and
monitoring in high-speed networks, and performance model-
ing/evaluation. She has served on the program committees of several
IEEE conferences, and is a member of IEEE Computer Society, ACM
SIGCOMM, and Society of Woman Engineers.

Kang G. Shin received the BS degree in elec-
tronics engineering from Seoul National Univer-
sity, Seoul, Korea, in 1970, and both the MS and
PhD degrees in electrical engineering from
Cornell University, Ithaca, New York, in 1976
and 1978, respectively. He is a professor and
director of the Real-Time Computing Laboratory,
Department of Electrical Engineering and Com-
puter Science, The University of Michigan, Ann
Arbor, Michigan.

He has authored/coauthored more than 360
technical papers (about 150 of these in archival journals) and numer-
ous book chapters in the areas of distributed real-time computing and
control, fault-tolerant computing, computer architecture, robotics and
automation, and intelligent manufacturing. He has written (jointly with
C.M. Krishna) a textbook Real-Time Systems, (McGraw-Hill, 1996). In
1987, he received the Outstanding IEEE Transactions on Automatic
Control Paper Award for a paper on robot trajectory planning. In 1989,
he also received the Research Excellence Award from The University
of Michigan. In 1985, he founded the Real-Time Computing Labora-
tory, where he and his colleagues are investigating various issues
related to real-time and fault-tolerant computing.

He has also been applying the basic research results of real-time
computing to multimedia systems, intelligent transportation systems,
and manufacturing applications ranging from the control of robots and
machine tools to the development of open architectures for manufac-
turing equipment and processes. (The latter is being pursued as a key
thrust area of the newly-established NSF Engineering Research Cen-
ter on Reconfigurable Machining Systems.)

From 1978 to 1982, he was on the faculty of Rensselaer Polytech-
nic Institute, Troy, New York. He has held visiting positions at the U.S.
Airforce Flight Dynamics Laboratory, AT&T Bell Laboratories, Com-
puter Science Division within the Department of Electrical Engineering
and Computer Science at the University of California, Berkeley, and
International Computer Science Institute, Berkeley, California, IBM T.J.
Watson Research Center, and Software Engineering Institute at
Carnegie Mellon University. He also chaired the Computer Science
and Engineering Division, EECS Department, the University of Michi-
gan, for three years, beginning in January 1991.

He is an IEEE fellow, was the program chairman of the 1986 IEEE
Real-Time Systems Symposium (RTSS), the general chairman of the
1987 RTSS, the guest editor of the 1987 August special issue of IEEE
Transactions on Computers on real-time systems, a program cochair
for the 1992 International Conference on Parallel Processing, and
served on numerous technical program committees. He also chaired
the IEEE Technical Committee on Real-Time Systems during 1991-93,
was a distinguished visitor of the Computer Society of the IEEE, an
editor of IEEE Transactions on Parallel and Distributed Computing, and
an area editor of the International Journal of Time-Critical Computing
Systems.

