
Scalable Hardware Earliest-Deadline-First Scheduler for ATM Switching
Networks

Byung Kook Kim
Department of Electrical Engineering

Korea Advanced Institute
of Science and Technology

373-1 Kusongdong
Taejon 305-701 Korea
bkkim@ee.kaist.ac.kr

Abstract

A fast, scalable hardware earliest-deadline-jrst(EDF)
link scheduler for ATM switching network is developed.
This EDF scheduler is a fast hardware solution suitable fo r
real-time scheduler on nodes in ATM switching networks
up to 2.5 Gbps switching speed (scheduling within 0.17 ps),
capable of perj6orming simultaneous input and output oper-
ations within two clock cycles (mostly in one clock cycle).
The designed hardware is eficient since the architecture
employs the minimum size EDF priority queue, combined
with variable-size FIFO queues fo r channels implemented
with a two-port memory buffeer: Early trafJic can be simply
checked and delayed. Also, it is scalable with respect to the
number of channels C and the total number of buffers N .
Moreover; deadline folding technique eliminates the need
to extend the deadline resolution. Simulation studies and
layout design demonstrate the ejficiency and utility of the
proposed architecture.

Keywords: Real-time communication, real-time channel,
ATM switch, EDF scheduler.

1. Introduction

The increasing demand of real-time network services has
generated considerable interest in the development of real-
time communication protocols. Such real-time communi-
cation requires quality-of-service(QoS) guarantees, such as
bounded end-to-end delay, bounded cell-loss rate, and guar-
anteed bandwidth from the network. Real-time communica-
tion in packet-switched networks is characterized by appli-
cations having diverse traffic patterns and at the same time
require certain quality-of-service(QoS) guarantees.

Kang G. Shin
Real-Time Computing Laboratory

Department of Electrical Engineering
and Computer Science

The University of Michigan
Ann Arbor, Michigan 48 109-2 122

kgshin@eecs.umich.edu

As a low layer of B-ISDN, Asynchronous Transmission
Mode (ATM) provide,s fast switching of fixed size pack-
ets (cells with 53 bytes). An ATM network is composed
of a set of switching nodes (ATM switches), connected
by many communication links with various transmission
speeds (155 Mbps, 622i Mbps, and 2.5 Gbps, etc). Expansi-
bility of switching nodes and communication links makes
the ATM network carry far more communication traffics
compared to other communication networks such as FDDI
network. Each node in the ATM switching network pro-
vides a switching funclion from incoming links to outgoing
links. Each link usually contains various channels for end-
to-end connections according to users’ requirements.

The concept of real-time channel proposed by Ferrari
and Verma [7] and refined by Kandlur et al. [1 I] is a uni-
directional virtual circuit which, once established, is guar-
anteed to meet user-splxified performance requirements as
long as the user does not violate his a priori specified
traffic-generation characteristics with parameters of maxi-
mum message size s,,,,, maximum message rate R,,,,
and maximum burst size B,,,. Two distinct phases are
required to realize the concept of real-time channel: off-
line channel establishment and run-time message schedul-
ing. During the channel establishment phase, the system has
to select a route between the source and destination of the
channel along which sufficient resources can be reserved
to meet the user-specified delay and buffer requirements.
Once established, traffic shaping and link scheduling algo-
rithms ensure that the ()OS requirements are satisfied for all
connections passing through the node.

Various channel establishment algorithms are suggested
[7][1 11. Firoiu sugges1.ed an efficient flow admission con-
trol for EDF (Earliest Deadline First) schedulers with sim-
ple computation by introducing the notion of flex classes
[61.

210
0-8186-8268-Xl97 $10.00 0 1997 IEEE

mailto:kgshin@eecs.umich.edu

Recently, many service disciplines for scheduler are sug-
gested. Simplest methods such as Stop-and-Go [9] and Hi-
erarchical Round Robin [101 allocate the link's bandwidth,
but introduces dependencies between delay and bandwidth
allocation. Various algorithms are devised to distribute the
end-to-end delay requirement into each node on the channel
and utilizing the sorted priority queue: Generalized Proces-
sor Sharing (GPS) [141 utilizes an idealized fluid model, and
reserves link bandwidth. Weighted Fair Queueing(WFQ)
151 uses the packet as the unit for assignment. Worst-case
Fair Weighted Fair Queueing (WF2Q) [l] is an improved
version of WFQ which gives performance almost identical
to GPS.

The insertion operation in the sorted priority queue has
complexity of O(logM), where 111 is the size of the queue.
This makes high speed implementation of the algorithm
very difficult. Hence, a hardware priority queue is needed to
transmit packets at link's full speed. For example, in a 2.5
Gbps ATM network, an ATM cell can be transmitted ev-
ery 0.17 psecs. The priority queue must then determine the
next highest priority cell every 0.17 psecs, while being able
to accept new cells from any incoming links. A hardware
solution can operate at the link's required speed, and also it
is possible to overlap enqueue and dequeue operations with
packet transmissions.

Various hardware schedulers have been proposed in the
literature: A binary tree comparator architecture utilizes N
storage registers for buffering cells, and a binary compara-
tor tree [15][161. When N = 2", the architecture requires
total of (N - 1) comparators, and n comparison times are
required to determine the highest priority (or the minimum
deadline). It is conceptually straightforward, but disadvan-
tages are decreased speed as N becomes large, FIFO order-
ing is not maintained among cells with the same priority,
and it is not scalable. A set of FIFO queues and a prior-
ity encoder can be utilized to form a FIFO priority queue
[2][3]. Each new entry is demultiplexed according to the
priority, and stored in the FIFO of corresponding to its pri-
ority. A priority encoder is used to dequeue the highest pri-
ority entry - entry from the first nonempty FIFO. Main
drawback is that it is not scalable to both the priority levels
P and the number of buffers N. The shift register architec-
ture consists of an array of blocks that stores the entries in
sorted order [3][4]. Each block stores a single entry and
communicates with blocks immediately to its left and right.
Each block contains a comparator which compares priori-
ties of the existing entry and the new entry - all blocks
operate simultaneously, hence enqueue or dequeue opera-
tion can be performed in just one clock. The advantages are
that it is scalable and fast. One disadvantage is a bus load-
ing problem which adds to the hardware costs (buffers) and
decreases the maximum operating speed of the queue.

The systolic array priority queue [121 has a series of sys-

tolic blocks, with enqueueldequeue operations being per-
formed sequentially starting from the highest priority block.
The sequential behavior does not slow down the speed if
pipeline operation is used. It does not have the bus loading
problem. The main drawback is that twice the storage and
twice the clock cycles are required compared to the shift
register architecture. Moon and Shin 1131 suggested a hy-
brid approach using modified systolic blocks - chips with
a set of shift registers connected in systolic array architec-
ture. This hybrid approach does not have the bus loading
problem. Compared to the systolic array architecture, it re-
quires less hardware with the same speed. Compared to the
shift register architecture, the speed is slowed down by half.
They treated cells in a link in the same way - the concept
of channel is not used. They also proposed a priority queue
which handles multiple links. Since each enqueueldequeue
operation requires 7 clock cycles each, which is not fast
enough for high-speed ATM switch. Moreover, the avail-
able bandwidth should be divided into multiple links, again
slows down the speed for each link. Zheng proposed a two-
stage architecture [19][20]. In his approach, a memory with
fixed size N is used as FIFO queues for all the C channels.
Each channel has the same size FIFO queue of NIC cells,
which results in a fixed size FIFO implementation. The en-
queue or dequeue operation requires a max. of 12 clock cy-
cles, which is not fast enough for a 2.5 Gbps ATh4 switch.

In this paper, we developed a hardware EDF scheduler,
which is fast, efficient, and scalable. It has the minimum
size EDF queue, and hence minimum bus-loading prob-
lem. The scheduler can perform simultaneous enqueue-
ingldequeueing within two clock cycles, and can alsc han-
dle early traffic. Deadline folding technique enables finite,
minimum bit representation of deadlines and parallel com-
parison of deadlines.

This paper is organized as follows. In Section 2, the
problem is formulated and a new fast, efficient hardware
EDF link scheduler is proposed. Section 3 shows the perfor-
mance of scalability, and deadline folding technique. Evalu-
ations with simulation studies and IC layout design in Sec-
tion 4 shows the povver and performance of the proposed
hardware scheduler. 'This paper concludes with remarks in
Section 5.

2. New Scalable]Hardware EDF Scheduler

In this section, we formulate the hardware scheduler
problem, and suggest a fast, scalable, two-stage hardware
EDF link scheduler architecture. Our approach utilizes the
shift register architeclure with the minimum size, and a vari-
able size FIFO for channels using a two-port memory. The
resulting hardware is efficient in hardware, with minimum
bus-loading on the new deadline input, and is fast enough
for a 2.5 Gbps ATh4 !switch.

211

2.1. Problem Statement

To provide the real-time channel communication in the
ATM switching network, a real-time ATM switch structure
is required which is composed of receivers for incoming
links; a router; traffic shapers, link schedulers, and trans-
mitters for outgoing links. The router performs VPI(Virtua1
Path Identifier) and VCI(Virtua1 Channel Identifier) trans-
lation from incoming cells using a look-up table, and gen-
erates new values of VPI and VCI as well as outgoing link
number, channel number, and priority. The channel number
will be used for channel identification in the link scheduler.
The priority can be used to distinguish real-time traffic and
non-real-time traffic. For non-real-time traffic, best-effort
delivery using a separate large non-real-time FIFO usually
suffices for vast number of VCI's. For real-time traffic with
limited number of channels, traffic shaper algorithm can be
utilized to assign the deadline for each packet such as jitter-
EDD [171, Rate-Controlled Service(RCS) discipline [181,
and per node traffic shaping [8]. After traffic shaper, a fast
scheduler is ultimately required.

The problem for hardware EDF scheduler can be stated
as follows:

Problem: Design a fast hardware EDF link scheduler
for ATM switches with link speeds up to 2.5 Gbps which
can schedule a cell every 0.17 ps . The scheduler should be
scalable with respect to deadline resolution D, number of
channels C, and number of cell buffers N.

2.2. Approach

The link scheduler and buffer should perform EDF
scheduling and store all waiting cells. Various number of
cells for each channel can be waiting due to various traffic
patterns of channels. Since cells for a message in each chan-
nel have a sequence, i.e., the arrival sequence is the same as
the delivery sequence, and usually C << N , we can use a
FIFO cell storage for each channel, and an EDF queue with
size of only C cells. Hence, a conceptual multi-channel
EDF queue can be described as shown in Fig. 1.

Deadline,
Channel 1

...

EDFqueue
c ceiis

Channel Variable size FIFO queues

Figure 1 . Conceptual model of link scheduler

Since storing the entire cell inside the FIFO requires a
large size FIFO, it is more economical to store the cells in

a cell buffer memory and instead store the cell's address in
the FIFO [3][20]. Hence, the cell address and the deadline
are stored in the FIFO for each channel as shown in Fig. 1.

Each channel has different traffic patterns - rates and
delays - and hence different buffer requirements. Hence,
buffer space requirements and the size of the FIFO for each
channel i , N;, can vary. Providing FIFOs with sufficient
size (max. buffer requirement for each channel), Nmaz, for
all channels (total CN,,,) is inefficient: A shared FIFO
for all channels with size N = CL;' Ni is more efficient.
Hence, it is more desirable to have variable-size FIFO queue
for each channel.

Also, the hardware solution should provide scalability
to cope with various user requirements such as expansion
of the deadline resolution, the number of channels, and the
number of buffer requirements, etc.

2.3. Architecture

The architecture of our EDF link scheduler and buffer is
illustrated in Fig. 2. The lower module C is the cell buffer
for real-time cells. We used a two-port memory to enable
simultaneous write and read operation. Since the departure
sequence of cells for all channels is different from the ar-
riving sequence due to allowable delay variation, an idle
address FIFO is utilized to store and provide available ad-
dresses(pointers) in the cell buffer. This idle address FIFO
should be initialized to contain all the available addresses
in the cell buffer. Its output represents an available storage
address in the cell buffer, which is called cell-address here-
after. When the scheduler provides a read address for the
cell to be transmitted, a read operation at this cell-address
in the cell buffer provides the cell output, and this read cell-
address is returned to the idle address FIFO for future use.

The middle module B represents the storage correspond-
ing to the variable size FIFO queues for all channels. For
each cell, deadline and address of cell buffer are stored in
the two-port memory data buffer, which enables simultane-
ous write and read operation. Available addresses in this
data buffer, called buffer-address hereafter, are provided by
an idle address FIFO. Since each FIFO queue is imple-
mented as a linked list in the memory, we need to store
the next buffer-address N A ; for each cell. The head and
tail buffer-addresses of the linked list for each channel are
stored in register RAi and WAi in the upper block A. Note
that modules B and C can be implemented using off-the-
shelf two-port memories and FIFOs. Hence, the upper mod-
ule A is the only portion to be custom designed.

The upper module A contains the EDF queue and overall
control logic for the link scheduler. The EDF queue is com-
posed of C identical blocks, each composed with shift reg-
isters, comparators, and control logic. Each block stores the
deadline, the channel number, and the cell-address. Also,

212

Figure 2. Structure of link scheduler and
buffer

there are comparators in each block to compare deadlines
of the enqueuing cell and the resident cell. The number
of cells stored for each channel, either in the data buffer
or the EDF queue, are stored in the counter array Cnt,,
i = 0, . . . , C - 1. The corresponding Cnt, for the cur-
rent cell is incremented when enqueueing or buffering, and
is decremented when dequeueing.

When an incoming cell for channel i arrives at the link
scheduler, it is stored either in the data buffer or the EDF
queue. If there are no cells for the channel of the incoming
cell (F: Cnt, = O), it is stored in the EDF queue with the IQ
operation: All cells having deadlines greater than the dead-
line of incoming cell are shifted left, and the corresponding
rightmost cell is loaded with the incoming cell. When a
cell with the channel number i is already stored in the EDF
queue (F': Ciiti > 0), the incoming cell's deadline, cell-
address, next buffer-address is stored in the data buffer with
the IB operation. The next buffer-address is supplied from
the idle buffer address FIFO, and is also stored in NA,, to
be used by the next cell for channel i. Hence, the incoming
cell's channel, deadline, and cell-address should be fed to
both the data buffer and the EDF queue. Either input oper-
ation requires just one clock cycle.

When the output operation is requested, and if it is the
last cell for this channel j = RC (L: Cnt, = l), then
the cell is dequeued from the EDF queue with the QO op-

eration: When there are any cells in the data buffer for the
channel (L': Cntj > 1), buffer-to-queue enqueueing and
dequeueing operations are performed simultaneously with
the BQsLQO operation.

The EDF queue in module A has structures similar to [4],
but our link scheduler has much more features:

Minimum size queue: Only one EDF queue with C
blocks is required, compared to (C + N) blocks in
[4]: Only one cell for each channel is stored in the
EDF queue. Other entries are stored in the variable-
size FIFO queue of module B. Its control is more
complex, but the overall hardware requires less chip
space: A data buffer is much simpler than one block
in the EDF queue. In addition, the bus-loading prob-
lem can be minimized: Reduced from (C + N) to
C.

Simultaneous enqueueing/dequeueing: Simultane-
ous enqueueingjdequeueing can be performed in one
clock cycle. Most simultaneous inputloutput opera-
tion can be performed in one clock cycle, with one
exception of two clock cycles when input and out-
put both requires enqueueing operation, as shown in
the state diagram in Fig. 3. This performance im-
provement is possible due to the fact that we adopted
the two-port memory where simultaneous writing and
reading is possible, and our controller enables simul-
taneous enqueueldequeue operation.

Early trajic handling: When the deadline of thc head
cell on the EDF queue is too far (much larger than the
current-time), the dequeueing operation can be sim-
ply delayed.

Deadline folding: The deadline increases as the
current-time increases. We implemented the deadline
folding technique to limit the deadline within finite
bit size, and performing parallel comparisons using
this technique.

Scalability: We suggested a scalable architecture
where expansion with respect to C and N is simple
and straightforward.

Features of our EDF scheduler will be explained in the sub-
sequent Sections.

2.4. Early Traffic and Non-Real-Time Communica-
tion

We can handle the early traffic by adding hardware as
shown in Fig. 4. Basically, a cell is transmitted when its
deadline is due (same as the current-time). However, if sev-
eral cells for a message have the same logical arrival time

2 13

Idla

8
IN OUT IN OUT IN OUT

Figure 3. State diagram of link scheduler

and hence the same deadline, it is desirable to transmit cells
whose deadline is within the near future Also, *e may
transmit some cells somewhat earlier when the link is not
busy. Hence, at time t , we transmit a cell with deadline
less than t + H , where H refers to the horizon. Cell’s with
deadline margins (deadline - current-time) larger than H are
not transmitted, since bottlenecks on downstream nodes can
occur if cells are transmitted too early.

Curerent-timetH
I

I Link scheduler

Other circuits EDF queue

L I .

Address

Figure 4. Early traffic handling circuit

Using an additional comparator at the deadline output of
the queue, and comparing the deadline of the head cell A
with B=(current-time + H) , the dequeueing and tri-state
buffer on the cell-address output are enabled only when
A < B. Otherwise, dequeueing is not allowed. Although
this method uses a fixed horizon for all channels and hence
less flexible, it is simple to implement in hardware, and the
buffer requirement is simpler.

the definition H’ suggested by Kandlur et al. [111. They de-
fined the horizon as earliness from the logical arrival time,
not from the deadline. They U 3 queues: Queue 1 for
real-time traffic with the logical arrival time 5 current-time,
queue 2 for non-real-time traffic, and queue 3 for real-time
traffic with the logical arrival time > current-time. When
the queues 1 and 2 are empty, and the logical arrival time of
the head cell in queue 3 is less than (current-time + H’), this
cell is transmitted. Continuous examination of the queue 3

Note that, our definition of horizon H is different from

is required to transfer packets which have I(m,) <current-
time, to the queue 1. Also, buffer space required for each
channel i IS given by:

rw + d;revrous-Eznk + dturrent-lznk)KLI SL.

Using our definition of horizon, only two queues are re-
quired - real-time queue and non-real-time queue - and
examination for transferring (queue 3 + queue 1 in [l 13)
is not required. Also, our scheme requires smaller buffer
space for each channel:

In our early traffic handler, only one global earliness pa-
rameter can be set for all channels, whereas the delay jit-
ter control which can be set for each channel [17]. More
advanced traffic shaping algorithm [18][8] can be applied
prior to our scheduler.

When there is no real-time traffic, non-real-time traffic
can be transmitted. Non-real-time traffic is simply stored in
a FIFO cell buffer. It IS read whenever the real-time traffic is
idle (empty real-time queue or all real-time cells’ deadlines
beyond the horizon).

3. Scalability

Scalability is essential for wide applicability of the im-
plemented hardware. For the link scheduler, it is desirable
to have scalability for the deadline resolution D, the number
of channels C, and the number of cell storage N. Scalability
w.r.t. D is solved using a deadline folding technique, and
scalability w.r.t. C and N is solved by including additional
logic for multiple-chip operation.

3.1. Deadline folding

If L bits are used for deadline representation, then the
deadline will range between 0 and 2L - 1. Since deadlines
need to be stored in the EDF queue, the number of bits L
should be finite. Also, correspodding bits of registers and
comparators should be used for each entry. However, the
upper range required becomes 00 as time goes by (t 4 00).
Hence, the number of bits L should be finite, and should be
as small as possible.

We propose a deadline folding technique to solve this
problem. Deadline folding uses finite L bits for dead-
line representation, utilizing modulo arithmetic. It resolves
deadline comparisons in the transition region: Some dead-
lines are near the maximum (2 L - l), and the other are near
zero.

Consider the deadline vs. time graph as shown in Fig. 4.
Here, U(t) represents the upper bound of cell deadlines

2 14

stored in the EDF queue and the data buffer, and L(t) repre-
sents the lower bound of cell deadlines. Since we are using
modulo arithmetic, L(t) can be represented as

L(t) = t % D

where D = 2 L , and % represents the modulo operation. Let
the maximum allowable delay (deadline - current-time) for
all channels be dmas:

d,,, = maz{d(mo), d(mi), . . . , d (~ - I) } - t

Any cell arriving at time t cannot obtain a deadline larger
than t + dmas: Hence, U(t) can be represented as:

U (t) = (t + d,,,) % D (1)

Since any cell should be dequeued before the deadline,
deadline d (t) for any cell at time t should be in the range:

L (t) IG) < U (t)

Deadline 1

FOH - 1 0 ~ = EOH with no borrow, M=l and
FOH - 2 0 H = DOH with no borrow, M= 1,

where A4 denotes the MSB of the result. In this case, for
proper enqueue operation, q1 and q2 should remain, 43 is
loaded with e , and q 4 is shifted left (gets q 3 output). Hence,
the borrow is useless in this case: Instead, we can use the
MSB M. Let the MSB from the right(1eft) queue entry be
Mr(Ml) . Then we can perform a proper operation using M
and M T :

When M=l and M,. = 1 then shift left.
When M=l and M,. = 0 then load the new entry.
When M=O and M , = 0 then no operation.

For simultaneous input/output operation, we can perform

When M=l and Ml = 1 then no operation.
When M=O and Ml = 1 then load the new entry.
When M=O and Ml = 0 then shift right.

In summary, by using deadline folding technique with
representing deadlines using one more bit than required for
d,,, representation:

a proper operation using M and Ml:

L = l0g2D = [log2 d-,,] + 1

and the most significant bit instead of the borrow bit, we
can handle the deadline with finite, smallest number of bits.
This scheme with the most significant bit is easily hardware
implementable. The smaller the L, the smaller the shift reg-
ister and subtracter that are required for each entry in the
EDF queue.

A clock roll-over scheme by [I61 uses a similar idea
for logical arrival time determination with finite resolution.
They determined the logical arrival time is earlyflate by de-
termining t - l(mi) <Time-range/2. Neither detailed hard-
ware explanation nor parallel expansion are explained there.
Our scheme suggests a detailed, parallel implementation:
Utilization of subtracters' MSBs instead of carry bits.

Figure 5. Deadline folding
3.2. Channel Scalability

Consider the transient region, where U(t) has changed to
0 but L(t) has not. A new cell c of message j for channel
i arrives at t,, and is assigned a deadline der, which is sup-
posed to be larger than D. For proper comparison with other
cells' deadlines, the deadline should be d,, ; but due to mod-
ulo arithmetic, the deadline becomes d, = d,! - D. We can
handle this by using the most significant bit (MSB) in the
subtracter comparator as long as d,,, < 0 1 2 .

For simplicity of explanation, suppose D is 8 bit, and
d,,, < 128. In the transient state, suppose the EDF queue
has 4 deadline entries of q1 = E O H , ~ ~ = F O H , ~ ~ =
1 O ~ , q 4 = 2 0 ~ , and a new deadline entry of e = FOH.

result in the following:
Computation of e - 9% with the 8-bit subtracter hardware

FOH - EOH = 1 0 ~ with no borrow, M=O
FOH - FOH = OOH with no borrow, M=O

For any hardware solution, scalability (expandability) is
very important for a wide range of applications.

The required size N of the cell buffer should be larger
than or equal to the sum of buffer requirements for all chan-
nels:

i=c-1

N = F(H + d2)/GinlSkaz
2x0

which is dependent on the user application. We have to
provide the cell-address entry A in the EDF queue with
rlog2N1 bits. Since the A entry in the EDF queue requires
shift lefdright registers, which is simpler than the D entry,
we may provide sufficient bits for the A entry, say, 20 bits,
to handle 1M cell buffers. The number of data buffers re-
quired is N - C, which approaches N if C << N .

2 15

An EDF queue with 256 cells is easily implementable
with current hardware technology. When we require more
channels for the link scheduler (many channels with slower
traffics), we can combine several link scheduler modules.
Fig. 6 shows an EDF scheduler expansion with 4 modules.
Only one 240-4 decoder chip is required for external hard-
ware. The first module at the top compares(subtractsj the
deadline output D with the external deadline input DI (all
1's in this case). The lower value of the deadlines are se-
lected by the multiplexer MUX and fed to the next mod-
ule as DO output. The next module performs the same
way, and the output of the final module will be the mini-
mum of all deadline outputs of modules min(D). The output
address lines are first fed to tri-state buffers and then con-
nected together. Only one address output corresponding to
the minimum deadline will be enabled via tri-state buffer
with EIEO logic. The E1 input is fed to the lowest module
as "1". If the A < B output of the subtracter equals 0, this
means the deadline form this module is not the minimum,
the output EO becomes 1 by right AND gate, which means
this module cannot output the address. If the A < B out-
put is 1, which means this module has the minimum dead-
line among modules from the top to itself. The EO output
will be 0, and the tri-state buffer of this module is enabled,
and its address A i s the address with the minimum deadline
A(min(D)). When the E1 input equals 0 (lower modules al-
ready declared to have the minimum D). the module has no
chance to output its address. Note that not the borrow bit
but the MSB is used in the subtracter comparator, since we
used deadline folding.

IN Link scheduler 0

I I Linkscheduler 1

Link scheduler 2

i t

Figure 6. Channel extension with 4 link sched-
ulers

By sctting DI of the top module as current-time+H,
we can get the minimum deadlines smaller than current-
t ime fH , thereby handling the early traffic. The hardware
for early traffic handling shown in Fig. 4 and the hardware

for scalability in Fig. 6 have subtracter and tr-state buffer in
common, which can be shared.

4. Evaluations

4.1. Simulation Results

To verify our design of real-time hardware scheduler
chip, the architecture was simulated using the Verilog hard-
ware description language, and the IC layout was designed
using the Epoch compiler.

We wrote functional level descriptions and structural
level descriptions in Verilog that describes link scheduler's
the internal registers and controllers of the link scheduler.
We input a set of packets to the link scheduler and checked
if the internal state transients and sequences of the output
packets were correct. A typical run with input packets is
shown in Fig. 7. We used 16 bits of D, 8 bits of C, and 12
bits of N in this simulation.

In each line, T denotes the time - one clock period
equals 1 OOT. At the negative transition of the system clock
(when T input signals are sampled; At the positive transi-
tion of the clock (T state transition occurs, Until T < 10300,
the chip i s initialized: CNT registers are cleared; WA, RA,
and the buffer address FIFO are initialized. The data buffer
readwrite, queue inputioutput operations are performed in
parallel within one clock cycle. We can verify that except
when 103700 < T < 103900, all input, output, and simulta-
neous input and output operations are performed in just one
clock cycle. 103700 < T < 103900corresponds to the first-
input¬-last-output, which requires two clock cycles -
for IQ operation and then BQ&QO operation.

The deadline folding circuit also performs well. We as-
signed one bit of D as the bit indicating invalid entry (a
deadline for nonoccupied cell). With the remaining 15 bits,
the maximum modulo deadline is 215 = 32768. When
T=104300, a new cell with deadline 2000 is input, which
is a result of the modulo operation, and should be later than
the previous cell's deadline of 32000. Our link scheduler
uses the MSBs of subtracters, and can handle this situation
neatly without much hardware overhead.

4.2. Layout Design

We also performed IC layout design using the Epoch
compiler. The Verilog file was read to generate the netlist.
The final design with 32 buffers and 16 EDF queues (but
with the same D, C, and N widths as above) revealed to be
a 105 pin IC with 6647 standard cells, which requires 110K
transistor counts. Using the 0.8 micron CMOS technology,
it requires 298 square mils of chip area, which is quite small.
Note that, our design complexity is linear to the number of

216

T=l RESET
T=551 Begin initialization. state=30 icnt= 0
T=10295 1 Initialized. state=30 icnt=1024
T=103151 state=12 in=l inch= 7 cnti= 0 out=0 outch=63
T=103201 Queue input dl= 1024 ch= 7 adr= 1 1
T=103251 state= 4 in=l inch= 7 cnti= 1 out=0 outch= 7
T=103301 dbuf write dl= 2048 adr= 12 nadr= 64 at 7
T= 10335 1 state= 1 in=O inch= 7 cnti= 2 out= 1 outch= 7
T=103401 dbuf read dl- 2048 adr= 12 nadr= 64 at 7
T=103401 Queue Input dl= 2048 ch- 7 adr= 12
T=103401 Queue Output dl= 1024 ch= 7 adr= 1 1
T= 10345 1 state= 3 in=O inch= 7 cnti= 1 out= 1 outch= 7
T=103501 Queue output dl= 2048 ch= 7 adr= 12
T=103551 state=12 in=l inch= 1 cnti= 0 out=0 outch=63
T=103601 Queue input dl= 4096 ch= 1 adr= 1
T=103651 state= 4 in=l inch= 1 cnti= 1 out=0 outch= 1
T=103701 dbuf write dl= 8192 adr= 2 nadr= 65 at 1
T=103751 state=13 in=] inch= 2 cnti= 0 out=] outch= 1
T=103801 Queue input dl=15000 ch= 2 adr= 3
T=103851 state=29 in=l inch= 2 cnti= 1 out=l outch= 1
T= 103901 dbuf read dl= 8 192 adr= 2 nadr= 65 at 1
T=103901 Queue Input dl= 8 192 ch= 1 adr= 2
T=103901 Queue Output dl= 4096 ch= 1 adrr 1
T=103951 state=15 in=] inch= 3 cnti= 0 out=l outch= 1
T= 10400 1 Queue Input dl= 14000 ch= 3 adr= 4
Ts. 10400 1 Queue Output dl= 8 192 ch= 1 adr= 2
T=104051 state= 4 in=l inch= 3 cnti= 1 out=O outch= 3
T=104101 dbuf write dl=20000 adr= 5 nadr= 66 at 3
T=104151 state= 5 in=l inch= 3 cnti= 2 out=] outch= 3
T=104201 dbuf write dl=25000 adr= 6 nadr= 67 at 66
T= 10420 1 dbuf read dl=20000 adr= 5 nadr= 66 at 3
T=104201 Queue Input dl=20000 ch= 3 adr= 5
T=104201 Queue Output dl=14000 ch= 3 adr= 4
T=104251 state= 7 in=] inch= 3 cnti= 2 out=l outch= 2
T=104301 dbuf write dl=32000 adr= 7 nadr= 68 at 67
T=104301 Queue output dl=15000 ch= 2 adr= 3
T=104351 state=12 in=] inch= 5 cnti= 0 out=0 outch= 3
T=104401 Queue input dl= 2000 ch= 5 adr= 7
T=104451 state= 1 in=O inch= 5 cnti- 1 out=] outch= 3
T=104501 dbuf read dl=25000 adr= 6 nadr- 67 at 66
T=104501 Queue Input dl=25000 ch= 3 adr= 6
T=104501 Queue Output dl=20000 ch= 3 adr= 5
T=104551 state=12 in=] inch= 6 cnti= 0 out=O outch= 3
T=104601 Queue input dl= 1000 ch= 6 adr= 7
@ @ @ @ @ Done.
L135 ”1stest.v”: $finish at simulation time 104690
710183 simulation events + 638675 accelerated events +
24455 1 timing check event s

Figure 7. EDF link scheduler operation

buffers N and size of queues C, and hence can be scaled up
easily.

By using 12.5 MHz or faster clock for the link scheduler
chip, we can guarantee enqueuefdequeue operation within
0.16 ps (2 clocks), which satisfies the 0 . 1 7 ~ ~ constraint for
2.5 Gbps operation of the ATM switch.

5. Concluding Remarks

A fast, scalable hardware earliest-deadline-first (EDF)
scheduler for ATM switching network is developed. The
major feature of this scheduler is a fast hardware solution
for EDF link scheduling suitable for real-time channel im-
plementation on ATM switching networks with switching
speeds of up to 2.5 Gbps. The advantages are as follows:
1) Speed - simultaneous input and output can be performed
within two clock cycles (mostly within one clock cycle).
2) Hardware efficiency - the minimum size EDF priority
queue and minimum bus-loading problem, combined with
variable-size FIFO queues for channels implemented with
two-port memory buffer. 3) Early traffic handling - enables
the dequeueing of entries with deadlines up to the horizon.
4) Deadline folding - finite, minimum bit representation of
deadlines, resulting in simpler and faster hardware. 5) Scal-
ability with respect to the number of channels C and to the
number of buffers N . Simulation studies and layout design
demonstrate the efficiency and power of the proposed archi-
tecture.

References

[I] J. Bennett, Hui Zhang, ”WF2Q: Worst-case fair
weighted fair queueing,” Proceedings of the INFO-
COM’96, Washington DC, Dec. 1996.

[2] Randy Brown, ”Calendar queues: A fast 0 (1) prior-
ity queue implementation for the simulation event set
problem,” Communications of the ACM, vol. 31, no.
10, pp. 1220-1227, Oct. 1988.

[3] Jonathan Chao, ”A novel architecture for queue man-
agement in the ATM network,” IEEE Journal on Se-
lected Areas in Communication, vol. 9, no. 7, pp.
11 10-1 118, Sep. 1991.

[4] Jonathan Chao and N. Uzun, ”A VLSI sequencer chip
for ATM traffic shaper and queue management,” IEEE
Journal of Solid-state Circuits, vol. 27, no. 1 I , pp.
1634-1643, Nov. 1992.

[5] A. Demers, S. Keshav, and S. Shenkar, ”Analysis and
simulation of a fair queueing algorithm,” Journal of
Internetworking Research and Experience, pp. 3-26,
Oct. 1990.

217

[6] V. Firoiu, J. Kurose, D. Towsley, ”Efficient admission
control for EDF schedulers,” Proceeding of the INFO-
COM’97, Nagoya, Japan, April 1997.

[7] D. Ferrari and D. C. Verma, ”A scheme for real-time
channel establishment in wide-area networks,” IEEE
J. SelectedAreas on Communications, vol. 8, pp. 368-
379, Apr. 1990.

[8] L. Georgiadis, R. Guerin, V. Peris, and K. Sivara-
jan, ”Efficient network QoS provisioning based on per
node traffic shaping,’’ IEEEIACM Trans. on Network-
ing, vol. 4, no. 4, pp. 482-501, Aug. 1996.

[9] S. J. Golestani, ”A stop-and-go queueing frmaework
for congestion management,” Proceedings of ACM
SIGCOMM’90, pp. 8- 18, Philadelphia, Pennsylvania,
Sep. 1990.

[lo] C. R. Kalmanek, H. Kanakia, and S. Keshav, ”Rate
controlled servers for very high-speed networks,”
IEEE Global Telecommunications Conference, pp.
300.3.1-9, San Diego, California, Dec. 1990.

[1 I] D. Kandlur, Kang G. Shin, ”Real-time communication
in multi-hop networks,” IEEE Transactions on Paral-
lel and Distributed Systems, vol. 5, no. 10, pp. 1044-
1056, Oct. 1994.

[12] P. Lavovie and Y. Savaria, ”A systolic architecture
for fast stack sequential decoders,” IEEE Transaction
on Communications, vol. 42, no. 21314, pp. 324-334,
Feb./Mar./April 1994.

[131 S. W. Moon, J. Rexford, and Kang G. Shin, ”Scalable
hardware priority queue architectures for high-speed
packet switches,” Submitted for publication.

[14] A. K. J. Parekh, R. G. Gallager, ”A generalized pro-
cessor sharing approach to flow control - the single
node case,” Proceedings of the INFOCOM’92, 1992.

[lS] D. Picker and R. Fellman, ”A VLSI priority packet
queue with inheritance and overwrite,” IEEE Transac-
tions on Very large Scale Integration Systems, vol. 3,
no. 2, pp. 245-252, June 1995.

[16] J. Rexford, J. Hall, and Kang G. Shin, ”A router ar-
chitecture for real-time point-to-point networks,” Pro-
ceedings of Intemational Sjniposium on Computer
Architecture, pp. 237-246, May 1996.

[17] D. Verma, H. Zhang, and D. Ferrari, ”Guarantee-
ing delay jitter bounds in packet switching networks,”
Proceediags of Triconim ’91, pp. 35-46, Chapel Hill,
North Carolina, April 199 1.

[181 H. Zhang, D. Ferrari, ”Rate-controlled service disci-
plines,” Joumal of High Speed Networks, vol. 3 , no. 4,
1994.

[191 Q. Zheng, Kang G. Shin, Real-time communication in
local area ring networks,” Conference on Local Com-
puter Networks, pp. 416-425, Sep. 1992.

[20] Q. Zheng, ”Real-time fault-tolerant communication
in computer networks,” Ph. D. Thesis, University of
Michigan, 1993.

2 18

