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Abstract 

A fast, scalable hardware earliest-deadline-jrst(EDF) 
link scheduler for  ATM switching network is  developed. 
This EDF scheduler is a fast hardware solution suitable fo r  
real-time scheduler on nodes in ATM switching networks 
up to 2.5 Gbps switching speed (scheduling within 0.17 ps), 
capable of perj6orming simultaneous input and output oper- 
ations within two clock cycles (mostly in one clock cycle). 
The designed hardware is eficient since the architecture 
employs the minimum size EDF priority queue, combined 
with variable-size FIFO queues fo r  channels implemented 
with a two-port memory buffeer: Early trafJic can be simply 
checked and delayed. Also, it is scalable with respect to the 
number of channels C and the total number of buffers N .  
Moreover; deadline folding technique eliminates the need 
to extend the deadline resolution. Simulation studies and 
layout design demonstrate the ejficiency and utility of the 
proposed architecture. 

Keywords: Real-time communication, real-time channel, 
ATM switch, EDF scheduler. 

1. Introduction 

The increasing demand of real-time network services has 
generated considerable interest in the development of real- 
time communication protocols. Such real-time communi- 
cation requires quality-of-service(QoS) guarantees, such as 
bounded end-to-end delay, bounded cell-loss rate, and guar- 
anteed bandwidth from the network. Real-time communica- 
tion in packet-switched networks is characterized by appli- 
cations having diverse traffic patterns and at the same time 
require certain quality-of-service(QoS) guarantees. 
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As a low layer of B-ISDN, Asynchronous Transmission 
Mode (ATM) provide,s fast switching of fixed size pack- 
ets (cells with 53 bytes). An ATM network is composed 
of a set of switching nodes (ATM switches), connected 
by many communication links with various transmission 
speeds (155 Mbps, 622i Mbps, and 2.5 Gbps, etc). Expansi- 
bility of switching nodes and communication links makes 
the ATM network carry far more communication traffics 
compared to other communication networks such as FDDI 
network. Each node in the ATM switching network pro- 
vides a switching funclion from incoming links to outgoing 
links. Each link usually contains various channels for end- 
to-end connections according to users’ requirements. 

The concept of real-time channel proposed by Ferrari 
and Verma [7] and refined by Kandlur et al. [ 1 I ]  is a uni- 
directional virtual circuit which, once established, is guar- 
anteed to meet user-splxified performance requirements as 
long as the user does not violate his a priori specified 
traffic-generation characteristics with parameters of maxi- 
mum message size s,,,,, maximum message rate R,,,, 
and maximum burst size B,,,. Two distinct phases are 
required to realize the concept of real-time channel: off- 
line channel establishment and run-time message schedul- 
ing. During the channel establishment phase, the system has 
to select a route between the source and destination of the 
channel along which sufficient resources can be reserved 
to meet the user-specified delay and buffer requirements. 
Once established, traffic shaping and link scheduling algo- 
rithms ensure that the ()OS requirements are satisfied for all 
connections passing through the node. 

Various channel establishment algorithms are suggested 
[7][ 1 11. Firoiu sugges1.ed an efficient flow admission con- 
trol for EDF (Earliest Deadline First) schedulers with sim- 
ple computation by introducing the notion of flex classes 
[61. 
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Recently, many service disciplines for scheduler are sug- 
gested. Simplest methods such as Stop-and-Go [9] and Hi- 
erarchical Round Robin [ 101 allocate the link's bandwidth, 
but introduces dependencies between delay and bandwidth 
allocation. Various algorithms are devised to distribute the 
end-to-end delay requirement into each node on the channel 
and utilizing the sorted priority queue: Generalized Proces- 
sor Sharing (GPS) [ 141 utilizes an idealized fluid model, and 
reserves link bandwidth. Weighted Fair Queueing(WFQ) 
151 uses the packet as the unit for assignment. Worst-case 
Fair Weighted Fair Queueing (WF2Q) [ l ]  is an improved 
version of WFQ which gives performance almost identical 
to GPS. 

The insertion operation in the sorted priority queue has 
complexity of O(logM), where 111 is the size of the queue. 
This makes high speed implementation of the algorithm 
very difficult. Hence, a hardware priority queue is needed to 
transmit packets at link's full speed. For example, in a 2.5 
Gbps ATM network, an ATM cell can be transmitted ev- 
ery 0.17 psecs. The priority queue must then determine the 
next highest priority cell every 0.17 psecs, while being able 
to accept new cells from any incoming links. A hardware 
solution can operate at the link's required speed, and also it 
is possible to overlap enqueue and dequeue operations with 
packet transmissions. 

Various hardware schedulers have been proposed in the 
literature: A binary tree comparator architecture utilizes N 
storage registers for buffering cells, and a binary compara- 
tor tree [ 15][ 161. When N = 2", the architecture requires 
total of ( N  - 1) comparators, and n comparison times are 
required to determine the highest priority (or the minimum 
deadline). It is conceptually straightforward, but disadvan- 
tages are decreased speed as N becomes large, FIFO order- 
ing is not maintained among cells with the same priority, 
and it is not scalable. A set of FIFO queues and a prior- 
ity encoder can be utilized to form a FIFO priority queue 
[2][3]. Each new entry is demultiplexed according to the 
priority, and stored in the FIFO of corresponding to its pri- 
ority. A priority encoder is used to dequeue the highest pri- 
ority entry - entry from the first nonempty FIFO. Main 
drawback is that it is not scalable to both the priority levels 
P and the number of buffers N. The shift register architec- 
ture consists of an array of blocks that stores the entries in 
sorted order [3][4]. Each block stores a single entry and 
communicates with blocks immediately to its left and right. 
Each block contains a comparator which compares priori- 
ties of the existing entry and the new entry - all blocks 
operate simultaneously, hence enqueue or dequeue opera- 
tion can be performed in just one clock. The advantages are 
that it is scalable and fast. One disadvantage is a bus load- 
ing problem which adds to the hardware costs (buffers) and 
decreases the maximum operating speed of the queue. 

The systolic array priority queue [ 121 has a series of sys- 

tolic blocks, with enqueueldequeue operations being per- 
formed sequentially starting from the highest priority block. 
The sequential behavior does not slow down the speed if 
pipeline operation is used. It does not have the bus loading 
problem. The main drawback is that twice the storage and 
twice the clock cycles are required compared to the shift 
register architecture. Moon and Shin 1131 suggested a hy- 
brid approach using modified systolic blocks - chips with 
a set of shift registers connected in systolic array architec- 
ture. This hybrid approach does not have the bus loading 
problem. Compared to the systolic array architecture, it re- 
quires less hardware with the same speed. Compared to the 
shift register architecture, the speed is slowed down by half. 
They treated cells in a link in the same way - the concept 
of channel is not used. They also proposed a priority queue 
which handles multiple links. Since each enqueueldequeue 
operation requires 7 clock cycles each, which is not fast 
enough for high-speed ATM switch. Moreover, the avail- 
able bandwidth should be divided into multiple links, again 
slows down the speed for each link. Zheng proposed a two- 
stage architecture [ 19][20]. In his approach, a memory with 
fixed size N is used as FIFO queues for all the C channels. 
Each channel has the same size FIFO queue of NIC cells, 
which results in a fixed size FIFO implementation. The en- 
queue or dequeue operation requires a max. of 12 clock cy- 
cles, which is not fast enough for a 2.5 Gbps ATh4 switch. 

In this paper, we developed a hardware EDF scheduler, 
which is fast, efficient, and scalable. It has the minimum 
size EDF queue, and hence minimum bus-loading prob- 
lem. The scheduler can perform simultaneous enqueue- 
ingldequeueing within two clock cycles, and can alsc han- 
dle early traffic. Deadline folding technique enables finite, 
minimum bit representation of deadlines and parallel com- 
parison of deadlines. 

This paper is organized as follows. In Section 2, the 
problem is formulated and a new fast, efficient hardware 
EDF link scheduler is proposed. Section 3 shows the perfor- 
mance of scalability, and deadline folding technique. Evalu- 
ations with simulation studies and IC layout design in Sec- 
tion 4 shows the povver and performance of the proposed 
hardware scheduler. 'This paper concludes with remarks in 
Section 5. 

2. New Scalable ]Hardware EDF Scheduler 

In this section, we formulate the hardware scheduler 
problem, and suggest a fast, scalable, two-stage hardware 
EDF link scheduler architecture. Our approach utilizes the 
shift register architeclure with the minimum size, and a vari- 
able size FIFO for channels using a two-port memory. The 
resulting hardware is efficient in hardware, with minimum 
bus-loading on the new deadline input, and is fast enough 
for a 2.5 Gbps ATh4 !switch. 
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2.1. Problem Statement 

To provide the real-time channel communication in the 
ATM switching network, a real-time ATM switch structure 
is required which is composed of receivers for incoming 
links; a router; traffic shapers, link schedulers, and trans- 
mitters for outgoing links. The router performs VPI(Virtua1 
Path Identifier) and VCI(Virtua1 Channel Identifier) trans- 
lation from incoming cells using a look-up table, and gen- 
erates new values of VPI and VCI as well as outgoing link 
number, channel number, and priority. The channel number 
will be used for channel identification in the link scheduler. 
The priority can be used to distinguish real-time traffic and 
non-real-time traffic. For non-real-time traffic, best-effort 
delivery using a separate large non-real-time FIFO usually 
suffices for vast number of VCI's. For real-time traffic with 
limited number of channels, traffic shaper algorithm can be 
utilized to assign the deadline for each packet such as jitter- 
EDD [ 171, Rate-Controlled Service(RCS) discipline [ 181, 
and per node traffic shaping [8]. After traffic shaper, a fast 
scheduler is ultimately required. 

The problem for hardware EDF scheduler can be stated 
as follows: 

Problem: Design a fast hardware EDF link scheduler 
for ATM switches with link speeds up to 2.5 Gbps which 
can schedule a cell every 0.17 ps .  The scheduler should be 
scalable with respect to deadline resolution D, number of 
channels C, and number of cell buffers N. 

2.2. Approach 

The link scheduler and buffer should perform EDF 
scheduling and store all waiting cells. Various number of 
cells for each channel can be waiting due to various traffic 
patterns of channels. Since cells for a message in each chan- 
nel have a sequence, i.e., the arrival sequence is the same as 
the delivery sequence, and usually C << N ,  we can use a 
FIFO cell storage for each channel, and an EDF queue with 
size of only C cells. Hence, a conceptual multi-channel 
EDF queue can be described as shown in Fig. 1. 

Deadline, 
Channel 1 

... 

EDFqueue 
c ceiis 

Channel Variable size FIFO queues 

Figure 1 .  Conceptual model of link scheduler 

Since storing the entire cell inside the FIFO requires a 
large size FIFO, it is more economical to store the cells in 

a cell buffer memory and instead store the cell's address in 
the FIFO [3][20]. Hence, the cell address and the deadline 
are stored in the FIFO for each channel as shown in Fig. 1. 

Each channel has different traffic patterns - rates and 
delays - and hence different buffer requirements. Hence, 
buffer space requirements and the size of the FIFO for each 
channel i ,  N;, can vary. Providing FIFOs with sufficient 
size (max. buffer requirement for each channel), Nmaz, for 
all channels (total CN,,,) is inefficient: A shared FIFO 
for all channels with size N = CL;' Ni is more efficient. 
Hence, it is more desirable to have variable-size FIFO queue 
for each channel. 

Also, the hardware solution should provide scalability 
to cope with various user requirements such as expansion 
of the deadline resolution, the number of channels, and the 
number of buffer requirements, etc. 

2.3. Architecture 

The architecture of our EDF link scheduler and buffer is 
illustrated in Fig. 2. The lower module C is the cell buffer 
for real-time cells. We used a two-port memory to enable 
simultaneous write and read operation. Since the departure 
sequence of cells for all channels is different from the ar- 
riving sequence due to allowable delay variation, an idle 
address FIFO is utilized to store and provide available ad- 
dresses(pointers) in the cell buffer. This idle address FIFO 
should be initialized to contain all the available addresses 
in the cell buffer. Its output represents an available storage 
address in the cell buffer, which is called cell-address here- 
after. When the scheduler provides a read address for the 
cell to be transmitted, a read operation at this cell-address 
in the cell buffer provides the cell output, and this read cell- 
address is returned to the idle address FIFO for future use. 

The middle module B represents the storage correspond- 
ing to the variable size FIFO queues for all channels. For 
each cell, deadline and address of cell buffer are stored in 
the two-port memory data buffer, which enables simultane- 
ous write and read operation. Available addresses in this 
data buffer, called buffer-address hereafter, are provided by 
an idle address FIFO. Since each FIFO queue is imple- 
mented as a linked list in the memory, we need to store 
the next buffer-address N A ;  for each cell. The head and 
tail buffer-addresses of the linked list for each channel are 
stored in register RAi and WAi in the upper block A. Note 
that modules B and C can be implemented using off-the- 
shelf two-port memories and FIFOs. Hence, the upper mod- 
ule A is the only portion to be custom designed. 

The upper module A contains the EDF queue and overall 
control logic for the link scheduler. The EDF queue is com- 
posed of C identical blocks, each composed with shift reg- 
isters, comparators, and control logic. Each block stores the 
deadline, the channel number, and the cell-address. Also, 
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Figure 2. Structure of link scheduler and 
buffer 

there are comparators in each block to compare deadlines 
of the enqueuing cell and the resident cell. The number 
of cells stored for each channel, either in the data buffer 
or the EDF queue, are stored in the counter array Cnt,, 
i = 0, .  . . , C - 1. The corresponding Cnt, for the cur- 
rent cell is incremented when enqueueing or buffering, and 
is decremented when dequeueing. 

When an incoming cell for channel i arrives at the link 
scheduler, it is stored either in the data buffer or the EDF 
queue. If there are no cells for the channel of the incoming 
cell (F: Cnt, = O), it  is stored in the EDF queue with the IQ 
operation: All cells having deadlines greater than the dead- 
line of incoming cell are shifted left, and the corresponding 
rightmost cell is loaded with the incoming cell. When a 
cell with the channel number i is already stored in the EDF 
queue (F': Ciiti > 0), the incoming cell's deadline, cell- 
address, next buffer-address is stored in the data buffer with 
the IB operation. The next buffer-address is supplied from 
the idle buffer address FIFO, and is also stored in NA,,  to 
be used by the next cell for channel i. Hence, the incoming 
cell's channel, deadline, and cell-address should be fed to 
both the data buffer and the EDF queue. Either input oper- 
ation requires just  one clock cycle. 

When the output operation is requested, and if it is the 
last cell for this channel j = RC (L: Cnt, = l), then 
the cell is dequeued from the EDF queue with the QO op- 

eration: When there are any cells in the data buffer for the 
channel (L': Cntj > 1), buffer-to-queue enqueueing and 
dequeueing operations are performed simultaneously with 
the BQsLQO operation. 

The EDF queue in module A has structures similar to [4], 
but our link scheduler has much more features: 

Minimum size queue: Only one EDF queue with C 
blocks is required, compared to (C + N )  blocks in 
[4]: Only one cell for each channel is stored in  the 
EDF queue. Other entries are stored in the variable- 
size FIFO queue of module B. Its control is more 
complex, but the overall hardware requires less chip 
space: A data buffer is much simpler than one block 
in the EDF queue. In addition, the bus-loading prob- 
lem can be minimized: Reduced from (C + N )  to 
C. 

Simultaneous enqueueing/dequeueing: Simultane- 
ous enqueueingjdequeueing can be performed in one 
clock cycle. Most simultaneous inputloutput opera- 
tion can be performed in one clock cycle, with one 
exception of two clock cycles when input and out- 
put both requires enqueueing operation, as shown in 
the state diagram in Fig. 3.  This performance im- 
provement is possible due to the fact that we adopted 
the two-port memory where simultaneous writing and 
reading is possible, and our controller enables simul- 
taneous enqueueldequeue operation. 

Early trajic handling: When the deadline of thc head 
cell on the EDF queue is too far (much larger than the 
current-time), the dequeueing operation can be sim- 
ply delayed. 

Deadline folding: The deadline increases as the 
current-time increases. We implemented the deadline 
folding technique to limit the deadline within finite 
bit size, and performing parallel comparisons using 
this technique. 

Scalability: We suggested a scalable architecture 
where expansion with respect to C and N is simple 
and straightforward. 

Features of our EDF scheduler will be explained in the sub- 
sequent Sections. 

2.4. Early Traffic and Non-Real-Time Communica- 
tion 

We can handle the early traffic by adding hardware as 
shown in Fig. 4. Basically, a cell is transmitted when its 
deadline is due (same as the current-time). However, if sev- 
eral cells for a message have the same logical arrival time 
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Figure 3. State diagram of link scheduler 

and hence the same deadline, it is desirable to transmit cells 
whose deadline is within the near future Also, *e may 
transmit some cells somewhat earlier when the link is not 
busy. Hence, at time t ,  we transmit a cell with deadline 
less than t + H ,  where H refers to the horizon. Cell’s with 
deadline margins (deadline - current-time) larger than H are 
not transmitted, since bottlenecks on downstream nodes can 
occur if cells are transmitted too early. 

Curerent-timetH 
I 

I Link scheduler 

Other circuits EDF queue 

L I .  

Address 

Figure 4. Early traffic handling circuit 

Using an additional comparator at the deadline output of 
the queue, and comparing the deadline of the head cell A 
with B=(current-time + H ) ,  the dequeueing and tri-state 
buffer on the cell-address output are enabled only when 
A < B. Otherwise, dequeueing is not allowed. Although 
this method uses a fixed horizon for all channels and hence 
less flexible, it is simple to implement in hardware, and the 
buffer requirement is simpler. 

the definition H’ suggested by Kandlur et al. [ 111. They de- 
fined the horizon as earliness from the logical arrival time, 
not from the deadline. They U 3 queues: Queue 1 for 
real-time traffic with the logical arrival time 5 current-time, 
queue 2 for non-real-time traffic, and queue 3 for real-time 
traffic with the logical arrival time > current-time. When 
the queues 1 and 2 are empty, and the logical arrival time of 
the head cell in queue 3 is less than (current-time + H’), this 
cell is transmitted. Continuous examination of the queue 3 

Note that, our definition of horizon H is different from 

is required to transfer packets which have I(m,) <current- 
time, to the queue 1. Also, buffer space required for each 
channel i IS given by: 

rw + d;revrous-Eznk + dturrent-lznk )KLI SL. 

Using our definition of horizon, only two queues are re- 
quired - real-time queue and non-real-time queue - and 
examination for transferring (queue 3 + queue 1 in [l 13) 
is not required. Also, our scheme requires smaller buffer 
space for each channel: 

In our early traffic handler, only one global earliness pa- 
rameter can be set for all channels, whereas the delay jit- 
ter control which can be set for each channel [17]. More 
advanced traffic shaping algorithm [ 18][8] can be applied 
prior to our scheduler. 

When there is no real-time traffic, non-real-time traffic 
can be transmitted. Non-real-time traffic is simply stored in 
a FIFO cell buffer. It IS read whenever the real-time traffic is 
idle (empty real-time queue or all real-time cells’ deadlines 
beyond the horizon). 

3. Scalability 

Scalability is essential for wide applicability of the im- 
plemented hardware. For the link scheduler, it is desirable 
to have scalability for the deadline resolution D, the number 
of channels C, and the number of cell storage N. Scalability 
w.r.t. D is solved using a deadline folding technique, and 
scalability w.r.t. C and N is solved by including additional 
logic for multiple-chip operation. 

3.1. Deadline folding 

If L bits are used for deadline representation, then the 
deadline will range between 0 and 2L - 1. Since deadlines 
need to be stored in  the EDF queue, the number of bits L 
should be finite. Also, correspodding bits of registers and 
comparators should be used for each entry. However, the 
upper range required becomes 00 as time goes by (t 4 00). 
Hence, the number of bits L should be finite, and should be 
as small as possible. 

We propose a deadline folding technique to solve this 
problem. Deadline folding uses finite L bits for dead- 
line representation, utilizing modulo arithmetic. It resolves 
deadline comparisons in the transition region: Some dead- 
lines are near the maximum ( 2 L  - l), and the other are near 
zero. 

Consider the deadline vs. time graph as shown in Fig. 4. 
Here, U(t) represents the upper bound of cell deadlines 
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stored in the EDF queue and the data buffer, and L(t) repre- 
sents the lower bound of cell deadlines. Since we are using 
modulo arithmetic, L(t) can be represented as 

L( t )  = t % D 

where D = 2 L ,  and % represents the modulo operation. Let 
the maximum allowable delay (deadline - current-time) for 
all channels be dmas: 

d,,, = maz{d(mo), d(mi), . . . , d ( ~ - I ) }  - t 

Any cell arriving at time t cannot obtain a deadline larger 
than t + dmas:  Hence, U(t) can be represented as: 

U ( t )  = (t + d,,,) % D (1) 

Since any cell should be dequeued before the deadline, 
deadline d ( t )  for any cell at time t should be in the range: 

L ( t )  IG )  < U ( t )  

Deadline 1 

FOH - 1 0 ~  = EOH with no borrow, M=l and 
FOH - 2 0 H  = DOH with no borrow, M= 1, 

where A4 denotes the MSB of the result. In this case, for 
proper enqueue operation, q1 and q2 should remain, 43 is 
loaded with e ,  and q 4  is shifted left (gets q 3  output). Hence, 
the borrow is useless in this case: Instead, we can use the 
MSB M. Let the MSB from the right(1eft) queue entry be 
Mr(Ml) .  Then we can perform a proper operation using M 
and M T :  

When M=l and M,. = 1 then shift left. 
When M=l and M,. = 0 then load the new entry. 
When M=O and M ,  = 0 then no operation. 

For simultaneous input/output operation, we can perform 

When M=l and Ml = 1 then no operation. 
When M=O and Ml = 1 then load the new entry. 
When M=O and Ml = 0 then shift right. 

In summary, by using deadline folding technique with 
representing deadlines using one more bit than required for 
d,,, representation: 

a proper operation using M and Ml: 

L = l0g2D = [log2 d-,,] + 1 

and the most significant bit instead of the borrow bit, we 
can handle the deadline with finite, smallest number of bits. 
This scheme with the most significant bit is easily hardware 
implementable. The smaller the L, the smaller the shift reg- 
ister and subtracter that are required for each entry in the 
EDF queue. 

A clock roll-over scheme by [I61 uses a similar idea 
for logical arrival time determination with finite resolution. 
They determined the logical arrival time is earlyflate by de- 
termining t - l(mi) <Time-range/2. Neither detailed hard- 
ware explanation nor parallel expansion are explained there. 
Our scheme suggests a detailed, parallel implementation: 
Utilization of subtracters' MSBs instead of carry bits. 

Figure 5. Deadline folding 
3.2. Channel Scalability 

Consider the transient region, where U(t) has changed to 
0 but L(t) has not. A new cell c of message j for channel 
i arrives at t,, and is assigned a deadline der, which is sup- 
posed to be larger than D. For proper comparison with other 
cells' deadlines, the deadline should be d,, ; but due to mod- 
ulo arithmetic, the deadline becomes d, = d,! - D. We can 
handle this by using the most significant bit (MSB) in the 
subtracter comparator as long as d,,, < 0 1 2 .  

For simplicity of explanation, suppose D is 8 bit, and 
d,,, < 128. In the transient state, suppose the EDF queue 
has 4 deadline entries of q1 = E O H , ~ ~  = F O H , ~ ~  = 
1 O ~ , q 4  = 2 0 ~ ,  and a new deadline entry of e = FOH. 

result in the following: 
Computation of e - 9% with the 8-bit subtracter hardware 

FOH - EOH = 1 0 ~  with no borrow, M=O 
FOH - FOH = OOH with no borrow, M=O 

For any hardware solution, scalability (expandability) is 
very important for a wide range of applications. 

The required size N of the cell buffer should be larger 
than or equal to the sum of buffer requirements for all chan- 
nels: 

i=c-1 

N = F(H + d2)/GinlSkaz 
2x0 

which is dependent on the user application. We have to 
provide the cell-address entry A in the EDF queue with 
rlog2N1 bits. Since the A entry in the EDF queue requires 
shift lefdright registers, which is simpler than the D entry, 
we may provide sufficient bits for the A entry, say, 20 bits, 
to handle 1M cell buffers. The number of data buffers re- 
quired is N - C, which approaches N if C << N .  
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An EDF queue with 256 cells is easily implementable 
with current hardware technology. When we require more 
channels for the link scheduler (many channels with slower 
traffics), we can combine several link scheduler modules. 
Fig. 6 shows an EDF scheduler expansion with 4 modules. 
Only one 240-4 decoder chip is required for external hard- 
ware. The first module at the top compares(subtractsj the 
deadline output D with the external deadline input DI (all 
1's in this case). The lower value of the deadlines are se- 
lected by the multiplexer MUX and fed to the next mod- 
ule as DO output. The next module performs the same 
way, and the output of the final module will be the mini- 
mum of all deadline outputs of modules min(D). The output 
address lines are first fed to tri-state buffers and then con- 
nected together. Only one address output corresponding to 
the minimum deadline will be enabled via tri-state buffer 
with EIEO logic. The E1 input is fed to the lowest module 
as "1". If the A < B output of the subtracter equals 0, this 
means the deadline form this module is not the minimum, 
the output EO becomes 1 by right AND gate, which means 
this module cannot output the address. If the A < B out- 
put is 1, which means this module has the minimum dead- 
line among modules from the top to itself. The EO output 
will be 0, and the tri-state buffer of this module is enabled, 
and its address A i s  the address with the minimum deadline 
A(min(D)). When the E1 input equals 0 (lower modules al- 
ready declared to have the minimum D). the module has no 
chance to output its address. Note that not the borrow bit 
but the MSB is used in the subtracter comparator, since we 
used deadline folding. 

IN Link scheduler 0 

I I Linkscheduler 1 

Link scheduler 2 

i t  

Figure 6. Channel extension with 4 link sched- 
ulers 

By sctting DI of the top module as current-time+H, 
we can get the minimum deadlines smaller than current- 
t ime fH ,  thereby handling the early traffic. The hardware 
for early traffic handling shown in Fig. 4 and the hardware 

for scalability in Fig. 6 have subtracter and tr-state buffer in 
common, which can be shared. 

4. Evaluations 

4.1. Simulation Results 

To verify our design of real-time hardware scheduler 
chip, the architecture was simulated using the Verilog hard- 
ware description language, and the IC layout was designed 
using the Epoch compiler. 

We wrote functional level descriptions and structural 
level descriptions in Verilog that describes link scheduler's 
the internal registers and controllers of the link scheduler. 
We input a set of packets to the link scheduler and checked 
if the internal state transients and sequences of the output 
packets were correct. A typical run with input packets is 
shown in Fig. 7. We used 16 bits of D, 8 bits of C, and 12 
bits of N in this simulation. 

In each line, T denotes the time - one clock period 
equals 1 OOT. At the negative transition of the system clock 
(when T input signals are sampled; At the positive transi- 
tion of the clock (T state transition occurs, Until T < 10300, 
the chip i s  initialized: CNT registers are cleared; WA, RA, 
and the buffer address FIFO are initialized. The data buffer 
readwrite, queue inputioutput operations are performed in 
parallel within one clock cycle. We can verify that except 
when 103700 < T < 103900, all input, output, and simulta- 
neous input and output operations are performed in just one 
clock cycle. 103700 < T < 103900corresponds to the first- 
input&not-last-output, which requires two clock cycles - 
for IQ operation and then BQ&QO operation. 

The deadline folding circuit also performs well. We as- 
signed one bit of D as the bit indicating invalid entry (a 
deadline for nonoccupied cell). With the remaining 15 bits, 
the maximum modulo deadline is 215 = 32768. When 
T=104300, a new cell with deadline 2000 is input, which 
is a result of the modulo operation, and should be later than 
the previous cell's deadline of 32000. Our link scheduler 
uses the MSBs of subtracters, and can handle this situation 
neatly without much hardware overhead. 

4.2. Layout Design 

We also performed IC layout design using the Epoch 
compiler. The Verilog file was read to generate the netlist. 
The final design with 32 buffers and 16 EDF queues (but 
with the same D, C, and N widths as above) revealed to be 
a 105 pin IC with 6647 standard cells, which requires 110K 
transistor counts. Using the 0.8 micron CMOS technology, 
it requires 298 square mils of chip area, which is quite small. 
Note that, our design complexity is linear to the number of 
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T=l RESET 
T=551 Begin initialization. state=30 icnt= 0 
T=10295 1 Initialized. state=30 icnt=1024 
T=103151 state=12 in=l inch= 7 cnti= 0 out=0 outch=63 
T=103201 Queue input dl= 1024 ch= 7 adr= 1 1  
T=103251 state= 4 in=l  inch= 7 cnti= 1 out=0 outch= 7 
T=103301 dbuf write dl= 2048 adr= 12 nadr= 64 at 7 
T= 10335 1 state= 1 in=O inch= 7 cnti= 2 out= 1 outch= 7 
T=103401 dbuf read dl- 2048 adr= 12 nadr= 64 at 7 
T=103401 Queue Input dl= 2048 ch- 7 adr= 12 
T=103401 Queue Output dl= 1024 ch= 7 adr= 1 1  
T= 10345 1 state= 3 in=O inch= 7 cnti= 1 out= 1 outch= 7 
T=103501 Queue output dl= 2048 ch= 7 adr= 12 
T=103551 state=12 in=l inch= 1 cnti= 0 out=0 outch=63 
T=103601 Queue input dl= 4096 ch= 1 adr= 1 
T=103651 state= 4 in=l inch= 1 cnti= 1 out=0 outch= 1 
T=103701 dbuf write dl= 8192 adr= 2 nadr= 65 at 1 
T=103751 state=13 in=] inch= 2 cnti= 0 out=] outch= 1 
T=103801 Queue input dl=15000 ch= 2 adr= 3 
T=103851 state=29 in=l inch= 2 cnti= 1 out=l outch= 1 
T= 103901 dbuf read dl= 8 192 adr= 2 nadr= 65 at 1 
T=103901 Queue Input dl= 8 192 ch= 1 adr= 2 
T=103901 Queue Output dl= 4096 ch= 1 adrr 1 
T=103951 state=15 in=] inch= 3 cnti= 0 out=l outch= 1 
T= 10400 1 Queue Input dl= 14000 ch= 3 adr= 4 
Ts. 10400 1 Queue Output dl= 8 192 ch= 1 adr= 2 
T=104051 state= 4 in=l inch= 3 cnti= 1 out=O outch= 3 
T=104101 dbuf write dl=20000 adr= 5 nadr= 66 at 3 
T=104151 state= 5 in=l inch= 3 cnti= 2 out=] outch= 3 
T=104201 dbuf write dl=25000 adr= 6 nadr= 67 at 66 
T= 10420 1 dbuf read dl=20000 adr= 5 nadr= 66 at 3 
T=104201 Queue Input dl=20000 ch= 3 adr= 5 
T=104201 Queue Output dl=14000 ch= 3 adr= 4 
T=104251 state= 7 in=] inch= 3 cnti= 2 out=l outch= 2 
T=104301 dbuf write dl=32000 adr= 7 nadr= 68 at 67 
T=104301 Queue output dl=15000 ch= 2 adr= 3 
T=104351 state=12 in=] inch= 5 cnti= 0 out=0 outch= 3 
T=104401 Queue input dl= 2000 ch= 5 adr= 7 
T=104451 state= 1 in=O inch= 5 cnti- 1 out=] outch= 3 
T=104501 dbuf read dl=25000 adr= 6 nadr- 67 at 66 
T=104501 Queue Input dl=25000 ch= 3 adr= 6 
T=104501 Queue Output dl=20000 ch= 3 adr= 5 
T=104551 state=12 in=] inch= 6 cnti= 0 out=O outch= 3 
T=104601 Queue input dl= 1000 ch= 6 adr= 7 
@ @ @ @ @  Done. 
L135 ”1stest.v”: $finish at simulation time 104690 
710183 simulation events + 638675 accelerated events + 
24455 1 timing check event s 

Figure 7. EDF link scheduler operation 

buffers N and size of queues C, and hence can be scaled up 
easily. 

By using 12.5 MHz or faster clock for the link scheduler 
chip, we can guarantee enqueuefdequeue operation within 
0.16 ps (2 clocks), which satisfies the 0 . 1 7 ~ ~  constraint for 
2.5 Gbps operation of the ATM switch. 

5. Concluding Remarks 

A fast, scalable hardware earliest-deadline-first (EDF) 
scheduler for ATM switching network is developed. The 
major feature of this scheduler is a fast hardware solution 
for EDF link scheduling suitable for real-time channel im- 
plementation on ATM switching networks with switching 
speeds of up to 2.5 Gbps. The advantages are as follows: 
1) Speed - simultaneous input and output can be performed 
within two clock cycles (mostly within one clock cycle). 
2) Hardware efficiency - the minimum size EDF priority 
queue and minimum bus-loading problem, combined with 
variable-size FIFO queues for channels implemented with 
two-port memory buffer. 3 )  Early traffic handling - enables 
the dequeueing of entries with deadlines up to the horizon. 
4) Deadline folding - finite, minimum bit representation of 
deadlines, resulting in simpler and faster hardware. 5 )  Scal- 
ability with respect to the number of channels C and to the 
number of buffers N .  Simulation studies and layout design 
demonstrate the efficiency and power of the proposed archi- 
tecture. 
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