
Proceedings of the American Control Conference
Albuquerque, New Mexico June 1997
0-7803-3832-4/97/$10.00 0 1997 AACC

Task Assignment and Scheduling
for Open Real-Time Control Systems

Byung h'ook h'im
Department of Electrical Engineering

Korea Adv. Inst. Science and Technology
373-1 Kusongdong, Yusongku

Taejon, 305-701 Korea
bkkimaee. kaist. ac. kr

Abstruct- A new problem for task assignment and
scheduling on a network of processors is formulated and
solved for open real-time control systems. In order to
ensure smooth operation and good performance of open
real-time control systems, one must analyze the problem
of task assignment and scheduling during the conceptual
system design stage. For this type of applications, we
propose use of a new performance index called the con-
trol latency, a weighted sum of feedback, command, and
monitoring latencies. Given a set of tasks for a specific
control application, the execution time of each task, and
intra/inter-processor communication latencies, we have
developed an optimal task assignment and scheduling al-
gorithm by minimizing this performance index. Since
this problem is NP-hard, we have employed a branch-
and-bound (B&B) algorithm to efficiently search for an
optimal task assignment while maintaining task schedu-
lability. A prototypical example of open-architecture con-
trol for CNC machines is presented to illustrate the good
performance of the proposed algorit$hm.

Keywords:
trol, task assignment and scheduling.

Open architecture control, real-time con-

I . INTRODUCTION

Time-critical industrial applications are usually run on
a digital computer system composed of multiple proces-
sors joined by a certain interconnection network. Control,
data logging, and monitoring functions are performed by
these processors. These processors are also connected to
management and production scheduling computers. The
rapidly increasing power of modern microprocessors and
networks at affordable prices has enabled us to implement
large-scale, complex control functions on a network of pro-
cessors, with a suitable hardware/software architecture
design.

The idea of open architecture control is to build a con-
trol system with standard modular components, includ-
ing off-the-shelf modular hardware such as buses (VME,
PCI), boards (CPU, digital/analog input/output boards),
networks (Ethernet, Fieldbus) , and stand-alone systems
(workstations, PC's). Also, modularized software can be
utilized with well-defined 1/0 and other functions, which

The work reported in this paper was done as part of Thrust Area
2 of the NSF Engineering Research Center on Recofinurable Ma-

Kang G. Shin
Real-Time Computing Laboratory

Department of Elec. Eng. Comp. Sci.
The University of Michigan

Ann Arbor, Michigan 48109-2122
kgshin@eecs.umich. edu

provide predictable behaviors. Open architecture con-
trollers should also have well-defined module interfaces so
that modules can be developed independently by different
vendors then integrated by a third party. As defined by
the IEEE 1003.0 Technical Committee of Open Systems,
an open system provides capabilities that enable properly-
implemented applications to run on a variety of platforms
from multiple vendors, interoperate with other systems
applications, and present the user with a consistent style
of interaction [5]. By effectively combining these modular
HW and SW components, a flexible and powerful con-
trol system can be built with minimum effort, and can be
modified or upgraded with ease.

Ac-
cording to system requirements, sampling rates can be
assigned to various tasks. Hence, different control and
monitoring tasks for real-time open-architecture control
systems require different sampling rates, and should be
assigned to different processors, so that the set of tasks
assigned to each processor may be completed within a
prespecified time limits called the control system dead-
lines [4]. These tasks should be able to run periodically
and in a timely manner (i.e., the set of tasks is schedula-
ble). Also, a communication channel is required between
each pair of communicating tasks, in order to exchange the
required data between them. The execution of tasks on
each processor should be sequenced properly in order to
send/receive data them in a timely manner. Considering
these facts, tasks should be distributed to processors with-
out overloading any of them (task assignment), and the
tasks assigned to each processor should be scheduled prop-
erly (task scheduling). The overall system should provide
good performance - a smooth flow of overall jobs includ-
ing communication and control (a suitable performance
index will be defined).

The issues of task assignment and scheduling for
multiple-processor systems are significantly harder to
solve than the uniprocessor case, as it requires to deter-
mine when and where to execute a given task [lo]. The
task assignment problem in distributed systems that min-
imizes the sum of task processing and interprocessor com-
munication costs can be solved by graph-theoretic, inte-
ger programming, or heuristic approaches [2]. Real-time
constraints are difficult to impose when a graph-theoretic
approach is used. Integer programming methods allow for
constraints on task completion time, but do not account
for task precedence constraints.

Control actions are usually taken periodically.

chining Systems. Since this problem is generally NP-hard, we need to
3664

develop enumerative optimization or heuristic approxima-
tion. One can use the popular branch-and-bound (B&B)
method [7] solve the problem. For example, Peng e f al.[8]
solved a combined task assignment and scheduling prob-
lem for communicating periodic tasks executing on a het-
erogeneous distributed system. The maximum normalized
task response time, called the s y s t e m hazard , is minimized
by utilizing a B&B algorithm. However, it is not easy to
use this method for modular real-time control systems
with various sampling time requirements and minimiz-
ing the overall performance index, the control latency. A
method for optimal combined task and message schedul-
ing in distributed real-time systems was proposed in [l],
where communicating tasks with precedence constraints
for each processor are scheduled off-line, without consid-
ering task assignment.

The main goal of this paper is to formulate and
solve a new task assignment and scheduling problem for
multiprocessor-based open real-time control systems. We
propose a new performance index called the control la-
t e n c y , which is a weighted sum of feedback, command,
and monitoring latencies. Given a set of tasks for a control
application, execution time of each task, and intra/inter-
processor communication time, we develop an optimal
task assignment and scheduling algorithm by minimizing
the performance index. Since this problem is NP-hard, we
use a B&B algorithm to efficiently search for an optimal
task assignment while maintaining task schedulability. A
typical example for open-architecture control for a CNC
machine is presented, illustrating the good performance
of the proposed algorithm.

The rest of this paper is organized as follows. Section
2 describes the real-time open-architecture control prob-
lem. Logical and physical architectures are described,
and a new performance index proposed there. Section
3 presents the main algorithm for task assignment and
scheduling. In order to demonstrate the utility and power
of the proposed algorithm, we present an illustrative ex-
ample of open-architecture control of a CNC system in
Section 4. The paper concludes with Section 5.

11. REAL-TIME OPEN-ARCHITECTURE CONTROL

A . Real - t ime contro l s y s t e m

The overall control function is decomposed spatially
into several functional blocks with suitable communica-
tion channels between them. The multiprocessor con-
troller acquires data from various sensors, processes the
data, and delivers the processed data to actuators and/or
display devices. Various control loops are needed to per-
form the required functions. Also, one or more graphic
user interfaces may be added as a top-level man-machine
interface, which is usually implemented on popular work-
stations or PCs. Several chasses can be networked, each
containing multiple processor cards connected via a back-
plane bus (such as VME or PCI bus) suitable for the un-
derlying applications. A set of OEM single-board com-
puters for the specific bus can comprise processing nodes.

The backplane bus, Ethernet board, or Fieldbus board
can be used as communication channels.

There are several features which distinguish our task
assignment and scheduling problem from others as follows.

F1.

F2.

F3.

F4.

Control loops are executed periodically at specified
sampling rates.

Each control loop may contain several tasks. For ex-
ample, an adaptive control loop can be decomposed
into a system identification task to estimate process
variables, an adaptation task to determine control
parameters, and a communication task sending pa-
rameters to a specific controller.

Each task can be decomposed into modules, which
may require different sampling rates and different
communication channels. Each module is associated
with a different communication channel.

There are precedence relations among the tasks and
modules. The computation module for the control
algorithm should be preceded by sensing, and actua-
tion should be preceded by the control computation,
etc.

The task system can be modeled with a task graph
(TG), in which computation and communication modules,
communication delays, and the precedence constraints
among the modules can be clearly described.

B. P e r f o r m a n c e i n d e x

The sensing-+control--tactuation sequence should be
executed within each sampling period in a feedback con-
trol system. A problem with the rate-monotonic schedul-
ing is the difficulty in guaranteeing the execution sequence
of tasks of the same period [la]. The order of task execu-
tion may result in actuation-control-isensing; the sensed
data at a certain instant will affect the actuation about
two sampling periods later, introducing an unnecessary
delay to the closed-loop system and thus degrading the
performance or even causing system instability. Hence,
the delay from sensing to actuation must be minimized;
this led us to use the control latency as a new performance
index.

An objective function can be defined in various ways.
Here we consider three types of latencies.

Feedback latency L f : The time required for activating
a sensor, computing the control command, then driv-
ing the actuator. The data sensed at t imet , following
its use for control computation, affects the process at
time t + L f . L j appears as a pure tame delay in
the closed-loop system. Its length and time variation
have detrimental effects on system performance and
stability. L f and its variation should therefore be
kept as small as possible.

Command latency Lo: The time required from receipt
of a command from the operator or host computer to

3665

the corresponding actuation. For a simple feedback-
control system, this represents the total time required
to get a reference command and a feedback input,
compute the control signal, then actuate the con-
trolled process. In a wider sense, it is the time re-
quired for receiving the task command from the op-
erator, executing the corresponding tasks, and finally
actuating the target process under control.

Monitoring latency L,: The time required to pre-
process a sensed data and report the result to the
host computer. This latency may not affect the con-
trol performance, but monitoring, human operator
decision & command, and command latencies may
constitute a wider sense of control latency consider-
ing a human as well as a machine in the control loop,
i.e., human-command loop latency.

We can define an overall performance index of the con-
trol latency L as a weighted sum of feedback, command,
and monitoring latencies:

where w f i are the weighting factors for feedback latencies
i = 1, . . . , nf , where index i is used to denote each of mul-
tiple feedback loops. w, and w, are the weighting factors
for the command and monitoring latencies, respectively.
The weights can be determined by considering the relative
importance of each latency. Usually, the control latencies
are most important, and then command and monitoring
latencies are next.

C. The Problem of Task Allocation and Scheduling

Tasks must be distributed to processors without over-
loading them (task assignment), and the tasks assigned
to each processor should be scheduled to minimize the
control latency (task scheduling).

The set of tasks assigned to each processor should be
completed in time. One can use such scheduling poli-
cies as the Earliest-Deadline-First (EDF) or Rate Mono-
tonic (RM) algorithm. The EDF algorithm requires to
check the deadlines of all tasks very frequently, but the
RM policy induces little OS overhead at the expense of
lower schedulable utilization. We have chosen the RM pol-
icy due to its implementation simplicity and low runtime
overhead, in spite of its lower schedulable utilization.
Task assignment and scheduling problem: Given a
set of np processors, a set of nt tasks Ti, i = 1, . . . , nl,
each task Ti consisting of m; modules Tij with period Pij
and execution time C$ for local communication or C&
for remote communication, find a task assignment and
schedule while minimizing the control latency L.

111. TASK ASSIGNMENT AND SCHEDULING ALGORITHM

The tasks described by the T G are assigned to proces-
sors by using a B&B algorithm. The algorithm employs a

polynomial-time bounding heuristic at non-terminal ver-
tices by figuring the subsequent task scheduling in its es-
timation of assignment cost.

The B&B algorithm maintains a set of active vertices,
which are the vertices searched and considered to con-
tain an optimal solution. Initially, this set contains only
the root vertex. The algorithm proceeds by alternating
branching and bounding operations. Branching refers to
expanding the minimum-cost vertex in the active set by
generating its children, while bounding refers to the pro-
cess of evaluating the cost of new vertices in the active
set. The algorithm also evaluates the control latency and
schedulability at each vertex. Whenever the schedulabil-
ity condition is violated at a vertex, the vertex is dis-
carded. Whenever a smaller control latency is found, all
vertices with higher latencies are removed from the active
set. The algorithm terminates when the active set con-
tains only one element representing a complete solution.
It is proven in [7] that there always exists a terminal vertex
surviving the above process, which is the optimal solution
to the original problem. Fig. 1 shows a pseudo-code form
of the B&B algorithm used in this paper.

Let active set = { Root }.
Let cost(Root) = 0.
Let best terminal vertex v* = nil .
Let best terminal cost L’ = inf.

Repeat
Find a vertex v with minimum cost.
if v is a terminal vertex then (Bound)

if cost(v) < best cost then
L = cost(v)
U* = v
Delete all vertices x with cost(x) >= L* from
active set, except for vertex v*.

else (Branch)
Generate all children of v.
for each child c do compute cost(c).
Replace v by its children in active set.
Check schedulability of its children.

until active set = { U* 1 .

Fig. 1. The branch-and-bound algorithm.

At a certain vertex in level j of the tree, a set of tasks
E , i = 1, . . . , J’ have already been assigned to processors.
In the branching process at this vertex, task qtl is as-
signed to one of np processors, which has np children to
branch to. Branch k corresponds to the case when task
Tj+l is newly assigned to processor k.

For each vertex, schedulability is checked for every pro-
cessor as follows. When task T; is assigned to this proces-
sor, for each module Tij, if the task containing the com-
munication partner’s module has not yet been assigned
or assigned to the same processor, increase utilization by
Cij/Pij. Otherwise, increase utilization by C:j/Pij. If the
utilization exceeds unity for any processor, the assigned
task set is definitely not schedulable on that processor.
The vertex is discarded if any of the processor utilization

3666

exceeds unity.
The performance index, control latency, is com-

puted for each vertex as follows. For each feed-
back/command/monitoring latency, select a processor
which contains the first task contributing to the latency
under consideration. If the next task in the sequence has
not yet been assigned or assigned to the same processor,
the (local) computation time C!. is added to the latency.
Otherwise, the remote computation time Clj and the com-
munication delay d are added to the latency. A weighted
sum of all latencies are computed to give the control la-
tency.

When the terminal vertex is reached (a vertex repre-
senting the case when all tasks have been assigned), all
the vertices having larger costs than the terminal vertex
are discarded (bounded).

The above algorithm utilizes efficient bounding by cal-
culating the achievable minimum cost for each intermedi-
ate vertex; it is usually shown to have a polynomial-time
bounding.

'?

IV. AN ILLUSTRATIVE EXAMPLE

A . An Open Architecture Controller for Computer Nu-
merical Control

We demonstrate the good performance of the pro-
posed algorithm using the University of Michigan Open-
Architecture Controller (UMOAC) testbed. It is de-
signed to control a CNC milling machine as shown in
Fig. 2. Its current physical configuration uses a PC (or
a workstation) as the host computer for program devel-
opment and operator interface. Control tasks are exe-
cuted on VMEbus-based processor boards (currently, XY-
COM XVME-675/19 VMEbus PC/AT processor mod-
ules), with commercial RTOS (QNX v4.22). Sensors and
actuators on the milling machine are accessed through
VMEbus-based 1/0 interface boards. This testbed ar-
chitecture allows for easy adoption of new hardware and
software components as they become available, and sup-
ports good hardware/software open-ness [9]. QNX uses
a priority-based, preemptive kernel scheduler, with the
real-time clock resolution adjusted to 50 ps [12].

We developed a prototype modular real-time milling
machine controller on the UMOAC testbed as shown in
Fig. 3 where rectangles represent tasks. There is a three-
axis controller with a linear or circular interpolator on the
X and Y axis, and with a one-axis interpolator on the Z
axis. Also, attached is a spindle drive which is a constant-
speed drive, but can be controlled to have variable speeds
if required.

B. Task Graph

Specifically, we consider a real-time controller without
the host computer as shown in Fig. 3, for the evaluation of
task assignment and scheduling. The GUI and interpreter
tasks are assumed to be executed by the host computer.

~

3667

PC

Ethernet

...

Milling Machine

Fig. 2. The open architecture control system.

Fig. 3. Task configuration.

The host computer usually uses standard graphic pack-
ages for user interface, and we have little control on task
scheduling on the host system.

Tasks of the real-time controller are constructed as
shown in Fig. 4. The task coordinator gets command in-
put from the host interface, which originates from the op-
erator. It performs a coordination function, decomposes
the command into a sequence of steps to be performed,
sends each step command to the interpolator, and sends
the reference force to the force controller. The interpo-
lator performs linear or circular interpolation to generate
reference positions for X, Y, and Z axes, which are then
sent to the axis controllers. The axis controller gets the
reference position from the interpolator and feedback from
the machine about its position (and velocity), generates
the control action, and sends it to the servo amplifier,
hence forming the lowest-level feedback loop under com-
puter control. The servo control of all axis uses the PID
or fuzzy logic control law [3].

The servo amplifier is usually constructed with ana-
log circuits and realized in the continuous-time domain.
However, the controller is implemented in hardware and
cannot be controlled by the controller software. Hence,

T52 Receive 1001111 s e w i c e b \ \ ~ ~ T62hW10.211 ~ r”
Recgive pos. status

T51 l~llll T54 1WlO.Wl
Task mrdination Send rei. farqe

T53 1WIO.Wl
Send step

/ I

T61 1Wi4I4
Send report

T63 100iO 211
Receive force status

x T34 10010.211
Receive step

T33 1010.211
Send ref. pas.

-------~
T2

T25 1030 211
Send force sfatus

T21 10/0.04/0.04
Force control

TZ? lOlO.211
Receive force data

Milling Machine

Fig. 4. Task graph for the real-time controller.

it is excluded from our consideration of task assignment
and scheduling.

The force control is employed at a process-control level,
to control process variables in order to maintain high pro-
duction rates and good part quality. The sensor task reads
the force sensor at a very fast rate (once every 0.1 ms),
processes the signal to compute the average or the max-
imum of 100 sampled data, and sends the resultant pro-
cessed force to the force controller.

In order to store the process data and present infor-
mation to the operator, a graphic user interface is usually
implemented on the host computer, and the real-time con-
troller is required to collect and send the process data.
The send task performs this function, by collecting pro-
cess data from the axis controllers and the force controller,
and sends data to the host computer.

Cross-coupling control can be added to minimize the
contour error [6] to build a real-time contour error model
based on feedback information, then feed back correction
signals to the axis controller.

At the highest level in the control hierarchy, we can
adopt supervisory control such as chatter detection, tool
monitoring, machine monitoring, etc. [ll].

The task assignment and scheduling problem is solved
using the algorithm presented in this paper with the fol-
lowing Input data: number of processors np = 2; number
of tasks nt = 5; weighting factors wf = 1, wo = 0.5 and
w, = 0; and communication delay d = 1 ms.

For the real-time controller, each task consists of mod-
ules as shown in Fig. 4. In each module, numbers of the
form P/C‘/Cr denote period, local execution time, and
remote execution time, respectively.

An optimal assignment is found after expanding 19 ver-

tices out of a total 27 - 1 = 127 vertices in the B&B tree.
As expected, task 4 is assigned to processor 2 (91% uti-
lization), and all other tasks are assigned to processor 1
(78.9% utilization).

V. CONCLUDING REMARKS

Task assignment and scheduling is one of the most im-
portant issues in designing distributed real-time systems.
Unfortunately, this problem is generally known to be NP-
hard even in the absence of precedence constraints. In
this paper, we proposed a new performance index, con-
trol latency, which is a natural cost for real-time dis-
tributed control systems. We solved the task assignment
and scheduling problem by using a B&B algorithm with
the new performance index. The algorithm presented in
this paper is shown to reduce the computational cost sig-
nificantly. This fact has been confirmed via an illustrative
example. The resultant task assignment and scheduling
ensures smooth operation within each processor’s capabil-
ity, while minimizing the control latency, hence providing
best control performance.

REFERENCES

T. F. Abdelzaher, K. G. Shin, “Optimal combined task and
message schedulingin distributed real-time systems,” Proceed-
ings Real-Time Systems Symposium, Pisa, Italy, 1995.
W. W. Chu et al., “Task allocation in distributed data pro-
cessing,” IEEE Computer, vol. 13, pp. 57-69, Nov. 1980.
Open-Architecture Controls Team, Developer’s Guide fo r
Open-Architecture Control of the Robotool, Department of
Electrical Engineering and Computer Science and Department
of Mechanical Engineering and Applied Mathematics, The
University of Michigan, November 1995.
Hagbae Kim, “Design and evaluation of real-time fault-
tolerant control systems,” Ph.D. Thesis, the University of
Michigan, 1994.
IEEE, IEEE Guide to POSIX Open System Environment
(IEEE 1003.0), 1995.
Y . Koren and C. C. Lo, “Advanced controllers to feed drives,”
Annals o j the CIRP, vol. 41, no. 2, pp. 1 - 10, 1992.
W. H. Kohler and K. Steiglitz, “Enumerative and itera-
tive computational approach,” i n Computer and Job-Shop
Scheduling Theory, Coffman eds., Wiley and Sons, pp. 229-
287, 1976.
D. T. Peng, K. G. Shin, and T. Abdelzaher, “Assignment
and scheduling of communicating periodic tasks in distributed
real-time systems,” IEEE Trans. on Software Engineering (in
press).
J. Park et al., “An openarchitecture testbedfor real-time mon-
itoring and control of machiningprocesses,” American Control
Conference, WA08-2, Seattle, June 1995.
K. G. Shinand P. Ramanathan, “Real-time computing: A new
discipline of computer science and engineering,” Proceedings of
the IEEE, vol. 82, no. 1, pp. 6-24, Jan. 1994.
A. G. Ulsoy and Y. Koren, “Control of machining processes,”
Journal of Dynamic Systems, Measurement and control, vol.
115, no. 6, pp. 301 - 308, June 1993.

L. Zhou, M. J. Washburn, K. G. Shin and E. Rundensteiner,

“Performance evaluation of real-time controllers,” 1996 A S M E
International Mechanical Engineering Congress and Exposi-
tion, Atlanta, Georgia, Nov. 1996.

3668

