
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/2818091

Development of Iterative Real-time Scheduler to Planner Feedback

Article · June 1997

Source: CiteSeer

CITATIONS

12
READS

37

4 authors, including:

Some of the authors of this publication are also working on these related projects:

Multiagent Constraint-based Scheduling View project

Cloud-enabled automotive decision-making systems View project

Ella M Atkins

University of Michigan

263 PUBLICATIONS 5,882 CITATIONS

SEE PROFILE

Edmund H. Durfee

University of Michigan

345 PUBLICATIONS 9,082 CITATIONS

SEE PROFILE

All content following this page was uploaded by Ella M Atkins on 15 August 2013.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/2818091_Development_of_Iterative_Real-time_Scheduler_to_Planner_Feedback?enrichId=rgreq-05d0aa6ba27222a24549c629ba5e6bc2-XXX&enrichSource=Y292ZXJQYWdlOzI4MTgwOTE7QVM6OTk4NTA3NTQ0NjE3MDJAMTQwMDgxNzY4MzUzOQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/2818091_Development_of_Iterative_Real-time_Scheduler_to_Planner_Feedback?enrichId=rgreq-05d0aa6ba27222a24549c629ba5e6bc2-XXX&enrichSource=Y292ZXJQYWdlOzI4MTgwOTE7QVM6OTk4NTA3NTQ0NjE3MDJAMTQwMDgxNzY4MzUzOQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Multiagent-Constraint-based-Scheduling?enrichId=rgreq-05d0aa6ba27222a24549c629ba5e6bc2-XXX&enrichSource=Y292ZXJQYWdlOzI4MTgwOTE7QVM6OTk4NTA3NTQ0NjE3MDJAMTQwMDgxNzY4MzUzOQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Cloud-enabled-automotive-decision-making-systems?enrichId=rgreq-05d0aa6ba27222a24549c629ba5e6bc2-XXX&enrichSource=Y292ZXJQYWdlOzI4MTgwOTE7QVM6OTk4NTA3NTQ0NjE3MDJAMTQwMDgxNzY4MzUzOQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-05d0aa6ba27222a24549c629ba5e6bc2-XXX&enrichSource=Y292ZXJQYWdlOzI4MTgwOTE7QVM6OTk4NTA3NTQ0NjE3MDJAMTQwMDgxNzY4MzUzOQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ella_Atkins?enrichId=rgreq-05d0aa6ba27222a24549c629ba5e6bc2-XXX&enrichSource=Y292ZXJQYWdlOzI4MTgwOTE7QVM6OTk4NTA3NTQ0NjE3MDJAMTQwMDgxNzY4MzUzOQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ella_Atkins?enrichId=rgreq-05d0aa6ba27222a24549c629ba5e6bc2-XXX&enrichSource=Y292ZXJQYWdlOzI4MTgwOTE7QVM6OTk4NTA3NTQ0NjE3MDJAMTQwMDgxNzY4MzUzOQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Michigan?enrichId=rgreq-05d0aa6ba27222a24549c629ba5e6bc2-XXX&enrichSource=Y292ZXJQYWdlOzI4MTgwOTE7QVM6OTk4NTA3NTQ0NjE3MDJAMTQwMDgxNzY4MzUzOQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ella_Atkins?enrichId=rgreq-05d0aa6ba27222a24549c629ba5e6bc2-XXX&enrichSource=Y292ZXJQYWdlOzI4MTgwOTE7QVM6OTk4NTA3NTQ0NjE3MDJAMTQwMDgxNzY4MzUzOQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Edmund_Durfee?enrichId=rgreq-05d0aa6ba27222a24549c629ba5e6bc2-XXX&enrichSource=Y292ZXJQYWdlOzI4MTgwOTE7QVM6OTk4NTA3NTQ0NjE3MDJAMTQwMDgxNzY4MzUzOQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Edmund_Durfee?enrichId=rgreq-05d0aa6ba27222a24549c629ba5e6bc2-XXX&enrichSource=Y292ZXJQYWdlOzI4MTgwOTE7QVM6OTk4NTA3NTQ0NjE3MDJAMTQwMDgxNzY4MzUzOQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Michigan?enrichId=rgreq-05d0aa6ba27222a24549c629ba5e6bc2-XXX&enrichSource=Y292ZXJQYWdlOzI4MTgwOTE7QVM6OTk4NTA3NTQ0NjE3MDJAMTQwMDgxNzY4MzUzOQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Edmund_Durfee?enrichId=rgreq-05d0aa6ba27222a24549c629ba5e6bc2-XXX&enrichSource=Y292ZXJQYWdlOzI4MTgwOTE7QVM6OTk4NTA3NTQ0NjE3MDJAMTQwMDgxNzY4MzUzOQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ella_Atkins?enrichId=rgreq-05d0aa6ba27222a24549c629ba5e6bc2-XXX&enrichSource=Y292ZXJQYWdlOzI4MTgwOTE7QVM6OTk4NTA3NTQ0NjE3MDJAMTQwMDgxNzY4MzUzOQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Development of Iterative Real-time Scheduler to Planner Feedback1

Charles B. McVey Ella M. Atkins Edmund H. Durfee Kang G. Shin

University of Michigan
139 ATL, 1101 Beal Ave.

Ann Arbor, MI 48109-2110
{mcvey, marbles, durfee, kgshin}@umich.edu

Abstract

Planning for real-time applications involves
decisions not only about what actions to take in what
states to progress toward achieving goals (the
traditional decision problem faced by AI planning
systems), but also about how to realize those actions
within hard real-time deadlines given the inherent
limitations of an execution platform. Determining
how to arrange actions in a sequence such that timely
execution is guaranteed within constraints is a
manifestation of the scheduling problem. A l l cases
of the scheduling problem in any domain of non-
trivial complexity are difficult to solve (NP-Hard).
To more efficiently solve the real-time plan
scheduling problem, we propose and analyze an
iterative feedback/constraint relaxation method in
which a scheduler and planner iteratively interact to
efficiently develop a well-utilized schedule which
includes as many planned actions as possible. This
method has been successfully implemented within the
Cooperative Intelligent Real-time Control
Architecture (CIRCA).

1 Introduction
Generating plans for the control of a real-time system is an
extension of the traditional AI planning problem. Actions
must be determined to guide the system from one state to
the next, eventually reaching the goal state, as in standard
planning. However, unlike traditional planning, these
actions are time and resource dependent: they must be
executed subject to the limitations of a particular execution
platform within hard real-time deadlines to assure that the
system is successful in achieving its goals. Plans need to
fit the abilities of the execution system.

From the real-time perspective, this "fit" means that the
demands of plan execution be schedulable on the system.

Scheduling is an NP-hard problem, requiring that the
scheduler have knowledge about what the system being
scheduled can and cannot do. Meanwhile, the planning
process (which is also NP-hard) attempts to generate
demands on the system that wil l accomplish goals. A
modular, agent-oriented approach to the overall problem is
to couple separate planning and scheduling components,
where each applies its own expertise and together they
allow the system to achieve its goals reliably within its
inherently bounded range of capabilities.

Decoupling planning from scheduling cannot be
complete, however. Viewed as a configuration task [Stefik,
1995], it is not the case that the selection of the component
pieces of the plan can be done independently of trying to
arrange them within the constraints of the execution
system. More generally, the problem requires iteration
between developing alternative plans and evaluating the
schedulability of those plans, until an executable plan that
maximally accomplishes goals is found. The obvious
question, then, is what knowledge should be passed between
these component agents during this iteration to guide the
search into promising areas.

In this paper, we detail the development of scheduler
feedback mechanisms intended to support the iterative
formation of real-time guaranteed control plans. Unlike
prior work in this field [Garvey et al, 1994] we propose a
cooperative protocol in which a scheduler makes state-space
search modification suggestions to the planner as opposed
to presenting multiple schedules for acceptance based on
various criteria. Iterative scheduler/planner feedback as
described in this paper is generally applicable to any system
which can be mapped to a planner/scheduler agent-oriented
model. We have implemented and tested our feedback
mechanisms in the context of a particular system, the
Cooperative Intelligent Real-time Control Architecture
(CIRCA) [Musliner et al., 1995], applied to automated
aircraft control in flight simulation [Atkins et al, 1996], a
domain which demands strict real-time response.

'This research was supported under NSF Grant IRI-9209031.

MCVEY, ET AL. 1267

2 Iterative Real-time Planning/Scheduling
The process of planning can be thought of in three distinct
stages: projecting combinations of modeled features forward
in time to find reachable states, selecting actions to
manipulate this set of reachable states, and determining
constraints on those actions, such as timing requirements,
necessary to ensure desired changes to reach a goal state or
avoid failure states. Real-time execution, on the other hand,
deals with determining the current state of the system,
finding an action for the system to take (i f any), and
executing the action within timing constraints.

Determination of the reachable system state set involves
expanding a combinatoric search space, however, and is
infeasible for a real-time system to detect and react to each
state. Instead, since there are typically far fewer actions
than states, each expanded state can be classified by the
particular action which should be taken in that state. The
real-time system may then execute a single task for each
action rather than a task for each state.

Since these actions are typically time dependent,
meaning that execution must be completed before a certain
deadline to guarantee system transition into the new desired
state, tasks must be explicitly allocated resources on the
execution platform. In most real world domains, the set of
tasks often requires more resources than are available,
forcing the system to either fail or consider trade-offs.

The process of making trade-offs must be done carefully
to cause sufficient pruning of tasks to make scheduling
feasible while avoiding over-extensive pruning, which
causes under-utilized schedules and sub-optimal goal
achievement. To minimize the risk of over or under
pruning the task space, the knowledge of both the scheduler
and planner must be brought to bear. We propose a method
of iterative negotiation in which the planner first generates
its "best" plan in terms of accomplishing goals. The
scheduler then schedules the plan if possible, otherwise
informing the planner that a new plan must be tried. The
process repeats as necessary until a successful schedule is
constructed.

An iterative scheduler feedback protocol must specify
what information wi l l be contained within request and
feedback messages. This depends on the division of
knowledge maintained between the planner and scheduler.
The planner is an expert at determining which tasks must be
performed subject to which constraints to solve the global
problem at hand, while the scheduler is an expert at
manipulating the tasks into a specific order such that
constraints are not violated. Ideally, one would like the
scheduler to know only how to manipulate tasks into a
sequence which does not violate constraints, while a planner
knows about the global problem at hand and the tasks
required to solve the problem, but not the details of how to
organize the tasks into a schedule. For scheduler feedback

to work effectively, however, the two must share some
knowledge. How much knowledge should be shared and
how to represent this shared knowledge is not clear. It is
undesirable and impractical for the planner to share
everything it knows about the global problem with the
scheduler [Garvey et al., 1994], and vice versa.

The major question which remains, however, is the
exact nature of the feedback provided by the scheduler such
that the planner's search is guided rather than relying on
extensive blind generate and test cycles. If the planner were
allowed to consider schedulability constraints during the
process of planning, the question of feedback would be of
no concern since only schedulable plans would be generated.
However, all advantages of modularity would be lost, and
the solution obtained would likely be sub-optimal due to
the impracticality of conducting the exhaustive search
required to find a well-utilized schedule during planning.

Alternatively, the planner could allow the scheduler to
automatically explore variations of the task request,
returning the best possible schedules for pre-defined criteria
[Garvey et al.y 1994]. However, dropping, adding, or
changing the timing of a task could change the whole
topology of the reachability graph, creating the need for
increasing and/or decreasing the importance of many other
tasks. This would be acceptable if the planner identifies and
indicates tasks that are nearly independent and preferable.

Finally, the scheduler could provide feedback to the
planner which actually guides the search of the planner.
This feedback would suggest how much less (or more)
should be demanded in the task request list. Since it has
knowledge of excess available resources or particular
conflicts which cause infeasibility of scheduling, the
scheduler is in a good position to base such a suggestion
upon this information. This final approach has been taken
in our implementation within CIRCA.

3 CIRCA Background
CIRCA's realization of real-time AI emphasizes allowing
the planning algorithms to be intelligent about real-time
rather than forcing them to be intelligent in real-time
[Musliner, 1995]. CIRCA's approach is achieved by
separating the architecture into three distinct modules
(Figure 1): the Planner, Scheduler, and the Real-Time
Subsystem (RTS). The Planner includes a domain-specific
knowledge base and a planner which generates 'Test-Action
Pairs" or "TAPs" analogous to the tasks discussed above.
These TAPs are constructed based on transitions, goals, and
actions modeled in the knowledge base.

The Planner begins with a known (set of) initial state(s)
and searches a discrete (feature, value) paired state space via
modeled transitions in a best-first (descending probability)
manner. As the search progresses, each state is assigned a
probability calculated from the probabilities of its ancestors

1268 PLANNING A N D SCHEDULING

Figure 1: The CIRCA system.

and transitions leading to the state [Atkins et al., 1996]. A
cut-off threshold probability is used to l imit state
expansion. Actions are chosen by the planner to preempt
any temporal transitions to failure, and hard real-time
"required" TAPs are developed for these actions. "If-time"
TAPs are also constructed to pursue non-critical goals
specified in the knowledge base. These TAPs do not require
real-time constraints since they need not be guaranteed to
preempt transitions to failure.

Once the planner builds a complete list of required and
if-time TAPs, the scheduler attempts to form a packed (no
idle time) periodic schedule in which each required TAP is
executed at least fast enough to meet its deadline. A
successful schedule, which guarantees failure avoidance to
the level of the probability cutoff threshold, is then
transferred to the RTS, where it is executed until a new
schedule is available. If scheduling is unsuccessful, an
iterative process of feedback and re-planning is begun until a
successful schedule is developed.

3.1 The Test Action Pair (TAP)
A TAP is implemented as a class within the scheduler with
the following fields: test, action, worst-case-execution-time,
separation-constraint, and utilization. The test and action
slots contain strings which specify execution functions.
The execution of a TAP involves first evaluating the test,
which if satisfied, causes the paired action to be executed as
well. The worst-case-execution-time (wcet) is the time that
both the test and action together require to complete in the
worst case. CIRCA builds plans and schedules based on
worst case execution times to make real-time guarantees.

A separation constraint, similar to a period in periodic
scheduling literature [Liu and Layland, 1973] but subtly
different, is calculated for each TAP which is to guarantee
failure avoidance. Critical transitions to failure are modeled
to occur with a minimum delay time of D seconds, therefore
it is only necessary that a TAP designed to preempt the
failure execute at least once every D seconds, not precisely
every D seconds (periodic) [Musliner, 1995].

The utilization of a TAP measures the minimum
fraction of CPU time the TAP requires. It is defined as the
ratio of its worst case execution time to its maximum
separation constraint. The scheduler uses this information to
determine if scheduling is certainly infeasible before
attempting any scheduling, or to determine appropriate
feedback in the event that scheduling is unsuccessful.

3.2 The If-Time Server
Using techniques from [Musliner et a/., 1995], we have
implemented the scheduling of an if-time TAP server to use
slack resources available in a schedule. When executed, this
server executes if-time TAPs in a prioritized fashion.2 The
use of the server is preferrable to individually inserting if-
time TAPs into the schedule because the scheduler would
require explicit domain-specific knowledge about the
priorities of the less critical if-time tasks. Instead, when the
schedule is executed on the RTS, free time gained when
actions require less then their worst case execution times is
distributed among if-time TAPs using whatever scheduling
policy the if-time server employs. The wcet of the server
accounts for this TAP selection time plus the largest wcet
of any if-time TAP, thus the server is a guaranteed task.

Since the server does not preempt a transition to failure,
it does not have an a-priori separation constraint. To insert
it into the schedule as tightly as possible, a binary-like
search is conducted through the server's possible utilization
space. The utilization of the server can range from zero
through one minus the total utilization of the required
TAPs. The initial utilization for the first search iteration is
simply set to the average of these upper and lower bounds.
As an additional mechanism to aid rapid convergence, the
search itself is not quite binary: a factor equal to one minus
the utilization of the required TAPs is used to partition the
search intervals, whereas a binary search would use a factor
of 0.5. In testing with 2200 random scheduling requests,
this heuristically aided binary search converges faster than or
as fast as binary search in 5 1 % and 27% of the cases
respectively.

4 Feedback Scheduler Design
4.1 The Base Scheduler
Schedules are built based on a separation constrained method
of scheduling described in [Musliner, 1995]. The scheduler
simulates the execution of a dynamic scheduler by
maintaining a time counter and iteratively incrementing it
as TAPs are chosen for execution. At each iteration, the
TAP with the shortest slack time is initially chosen to be
executed. The slack time is defined as the difference
between the TAPs separation constraint and the current
time minus the time when the TAP was last chosen for

2Currently, priority is given to the least-recently executed
if-time TAP, yielding a round-robin strategy.

MCVEY, ET AL. 1269

execution:

If any other TAP (TAP) can execute within the slack time
of the originally chosen TAP:

it will be selected for placement in the schedule instead. If
the slack time of any TAP is less than zero at any point,
the TAP's deadline is violated and scheduling fails.

After all TAPs are present in the schedule, the scheduler
continues its simulation until a valid periodic subsequence
containing all TAPs can be extracted as the final schedule.

4.2 The Schedule Manager
A scheduler capable of providing meaningful feedback must
have authority to manipulate and retry scheduling the
requests it receives from the planner. Given this capability,
the scheduler can use the difference between a satisfiable
request and over-constrained request to provide more accurate
feedback to the planner.

We have augmented the original CIRCA Scheduler with
a new rule-based system known as the Schedule Manager (or
"Manager") which directs the processing of all Planner
scheduling requests. Depending upon the request, the
Manager may perform a variety of actions: schedule a
request, modify some constraints in a request, modify
parameters which govern behavior of the core scheduling
algorithm, calculate appropriate feedback, and transmit a
valid schedule or feedback.

After each scheduling attempt on a request, the Manager
invokes rules which determine what should be done next
based on the result code(s) returned from the attempt, any
error conditions, instructions received from the Planner, and
scheduling strategies in the rules. The result codes are:

• SCHEDULE-WITH-SERVER
The original scheduling request from the Planner with
the if-time server was successfully scheduled.

• SCHEDULE-TOO-LAX
The schedule found is under-utilized.

• SCHED-NO-SERVER
The required TAPs specified by the Planner were
successfully scheduled, but the if-time server could not
be scheduled.

• PARTIAL-SCHED-WITH-SERVER
Some of the required TAPs specified by the Planner
were successfully scheduled, along with the server.

• PARTIAL-SCHED-NO-SERVER
This result is the same as the previous one, except no
if-time server could be inserted into the schedule.

• NO-SCHEDULE
The Planner's original scheduling request could not be
scheduled, and no relaxations were allowed.

• NO-PARTIAL-SCHEDULE
The Scheduler could not satisfy either the Planner's
original request, or any subsequent legal relaxed request.

Failure to generate a schedule which meets the original
request from the Planner will generate an error condition
which indicates the specific constraint violation that
occurred, along with TAP(s) which caused the violation.
The Manager then returns either a suggested probability
threshold or relaxes constraints and tries scheduling again.

A new probability threshold recommendation is made
based on a heuristic-guided binary search (similar to that
described earlier for if-time server scheduling) between the
minimum, maximum, and current threshold used by the
Planner. It is calculated using the priorities and utilizations
of recently attempted schedules. When the Planner adopts
an increased probability threshold, the state search space is
pruned, causing the separation constraints of the TAPs to be
increased and/or the removal of some TAPs from the
scheduling request. Either of these effects trades off some
degree of system completeness for reductions in the
difficulty of constructing a feasible schedule. A decrease in
the threshold has the opposite effect, causing more states to
be expanded, smaller TAP separation constraints, and
possibly more TAPs in a scheduling request, increasing
system response capabilities and scheduling difficulty.

If the rule invoked by the Manager instead suggests
relaxing the constraints on the current scheduling request
and trying again, one of the two methods discussed below
will be employed.

Trading Off the WCET of the If-Time Server
Initially the execution time of the if-time server is defined
as the maximum of the if-time TAP execution times.
While this guarantees that if the server is scheduled, each if-
time TAP will have a chance to execute, it is an extremely
restrictive choice, forcing the scheduler to either allow all
possible if-time TAPs (when the schedule was successful)
or none (when the schedule was not successful).

If a conflict occurs between the server and a required
TAP, the Manager can reduce the execution time of the
server to the greatest if-time TAP wcet value possible
which removes the conflict. Chances are still good that
time will be available to execute any if-time TAPs
precluded from the server since schedules are built using
worst case execution times.

Prior i ty Scheduling
Another way of incrementally relaxing the request from the
Planner is to selectively remove required TAPs from the
request A schedule request with the TAP combination of
the next highest total priority is attempted. Differences

1270 PLANNING AND SCHEDULING

between the original request and a successful partial schedule
are used by the Scheduler to provide more accurate feedback
to the Planner. The Manager does not require further
instruction from the Planner during this process.

The priority of a TAP is originally set by the Planner to
be proportional to the average of the probabilities of the
world states from which that TAP might be executed.
These priorities serve as an approximate representation of
the Planner's search space, isolating the full complexities of
the domain from the Scheduler.

4.3 Scheduler/Planner Messages
The Planner transmits scheduling requests consisting of
TAP data and instructions for making scheduling trade-offs
to the Scheduler. The Planner can currently select among
two different primary instructions to the Scheduler:

• S C H E D U L E - T H E S E - T A P S
This instruction is followed by parameters which
govern the scheduling process and scheduling data about
the TAPs. Data for each TAP may include worst case
execution time, separation constraint, and priority.

• S C H D - P R E V - T A P S - N E W - P A R A M
This instruction is followed by the new scheduling
trade-off directives only.

The parameters which the Planner may specify include:

• I F - T I M E - S E R V E R
This parameter allows the Planner to specify whether
insertion of an if-time server into the schedule to be
built is required, desired but not imperative, or not
useful. This gives the Planner the capability of trading
off the need for an if-time server if resources and/or
deliberation time are constrained. The Planner wi l l
usually require its insertion, unless "quick" replanning
is required to respond to some emergency [Atkins,
1997].

• T R A D E - O F F - S E R V E R - E X E C - T I M E
This boolean indicates whether Scheduler trading-off of
the server worst case execution time is permitted.

• L E V E L S - O F - P R I O R I T Y - S C H E D U L I N G
This parameter specifies how many different priority
levels the Scheduler may analyze before aborting.

The Planner also sends the Scheduler three probabilities:
the maximum and minimum probabilities of the set of
expanded states and the current threshold probability. Note
that the current threshold probability is always less than or
equal to the minimum expanded state probability. These
probabilities are used during the Manager's binary search, as
discussed in Section 4.2.

The Scheduler wi l l return either a new suggested
probability threshold or a successful schedule. A new

threshold message can occur either when the Scheduler is
over or under constrained: the new value being either greater
than or less than the previous threshold, respectively.

5 Testing Scheduler Feedback
Extensions were introduced into the previous simulated
flight domain knowledge base [Atkins et a/., 1996] to
model more potential dangers, forcing the planning and
scheduling of more preemptive TAPs. The addition to the
knowledge base consisted of modeling the possibility of
colliding with other air traffic at any point in the flight.
Traffic was modeled in the system through the use of three
actions (AC): a vo id- t ra f f ic , course-correct, and
resume-heading. These actions are designed to preempt
temporal transitions to failure (TTF) and rely on temporal
transitions (TT) to function correctly together (Figure 2).

Figure 2. CIRCA traffic avoidance world model.

This complex chain of events requires the Planner to
request scheduling of three additional TAPs. One of the
Planner-Scheduler iteration cycles generated during the
operation of CIRCA is presented for analysis. The original
scheduling request sent from the Planner to Scheduler is
shown below.

MCVEY, ET AL; 1271

if-time server separation constraint bound to 9628 after the
binary search. A rule within the Manager specifies that if a
partial schedule is successfully made, the Manager should
calculate a new threshold probability suggestion for the
Planner and return it as feedback. In this case, the
algorithms for calculating the new threshold generated the
value of 0.057, which was returned to the Planner.

The Planner, using the new threshold, replanned and
submitted a new request to the Scheduler which was similar
to the original request but with slight timing relaxations
and without the previously troublesome TAP 2. This
request was satisfied by the Scheduler, and the successful
schedule was returned.

By comparison, before the feedback mechanism was
added, a scheduling failure caused the Planner to blindly
increment its probability threshold by 0.1 and replan. This
resulted in a successful but under-utilized schedule. There
was no method for detecting under-utilization and
subsequently decreasing the threshold, thus this non-optimal
schedule was accepted and the system performed below its
capabilities, potentially failing to react in time to a fatal
situation which had been needlessly pruned during planning.

6 Future Research
An open question which needs to be addressed is the
handling of under-utilized schedules. Tests of the current
implementation have shown that in some cases the
suggested probability threshold is too high. When this
occurs, too many TAPs may be excluded from subsequent
requests. To prevent this, the Scheduler (or Planner) must
be able to ascertain when a valid schedule is under-utilized.

In the future, the Planner should be provided with the
capability to reason about what it should do given Scheduler
feedback. This reasoning wi l l likely be domain dependent,
and could be specified in the form of production rules which
indicate user or designer preferences. Alternatively, the
reasoning may borrow from decision theory, computing the
expected utility for different courses of action and choosing
the strategy which yields the most benefit. Currently the
Planner blindly adopts whatever probability threshold
suggestion or schedule the Scheduler sends back, which is
not an ideal policy given the Scheduler's roughs indirect
knowledge of states and their probabilities.

7 Conclusions
We have addressed the difficult problem of interfacing an AI
planning system to a real-time scheduler by proposing,
developing, and implementing an iterative feedback
mechanism. This mechanism allows a large degree of
decoupling between the scheduler and planner, enabling the
two modules to each perform within its realm of expertise,
communicating with mutually meaningful information in a
controlled protocol to solve a global problem.

Further refinement of the CIRCA-specific methods for
calculating probability threshold feedback and detecting
under-utilized schedules is needed. However, our scheduler
feedback method gives the system an increased chance of
efficiently meeting goals under resource constraints by
providing quantitative knowledge to the planner,
eliminating the need for blind search. This represents a
crucial step towards the realization of a fully self-reliant
real-time AI architecture capable of solving difficult real
world control problems such as completely automated
flight.

References
[Atkins et al, 1996] Ella M. Atkins, Edmund H. Durfee,
and Kang G. Shin. Plan Development using Local
Probabilistic Models. In Uncertainty in Artificial
Intelligence: Proceedings of the Twelfth Conference, August
1996.

[Atkins et al., 1997] Ella M. Atkins, Edmund H. Durfee,
and Kang G. Shin. Buying Time for Resource-Bounded
Planning. To appear in AAAI-97 Workshop: Building
Resource-Bounded Reasoning Systems Technical Report,
July 1997.

[Liu and Lay land, 1973] C. L. L iu and James W. Layland.
Scheduling Algorithms for Multiprogramming in a Haid-
Real-Time Environment. In Hard Real-Time Systems.
IEEE Press, pages 174-189, 1988.

[Garvey et a/., 1994] Alan Garvey, Keith Decker, and
Victor Lesser. A Negotiation-based Interface Between a
Real-time Scheduler and a Decision-Maker. Technical
Report 94-08, University of Massachusetts Department of
Computer Science, March 1994.

[Musliner et al„ 1995] David J. Musliner, Edmund H.
Durfee, and Kang G. Shin. World Modeling for the
Dynamic Construction of Real-Time Control Plans.
Artificial Intelligence, vol. 74, pp. 83-127, 1995.
American Association for Artif icial Intelligence.

[Musliner, 1995] David J. Musliner. Scheduling Issues
Arising from Automated Real-Time System Design.
University of Maryland Department of Computer Science
Technical Report CS-TR-3364, UMIACS-TR-94-118,
January 1995.

[Stefik, 1995] Mark J. Stefik. Introduction to Knowledge
Systems. Morgan Kaufmann, San Francisco, California,
1995.

1272 PLANNING A N D SCHEDULING

PROBABILISTIC REASONING

PROBABILISTIC REASONING

Probabilistic Reasoning Distinguished Paper

View publication statsView publication stats

https://www.researchgate.net/publication/2818091

