
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 12, DECEMBER 1997 745

Assignment and Scheduling
Communicating Periodic Tasks

in Distributed Real-Time Systems
Dar-Tzen Peng, Member, IEEE, Computer Society, Kang G. Shin, Fellow, IEEE,

and Tarek F. Abdelzaher, Student Member, IEEE

Abstract —We present an optimal solution to the problem of allocating communicating periodic tasks to heterogeneous processing
nodes (PNs) in a distributed real-time system. The solution is optimal in the sense of minimizing the maximum normalized task
response time, called the system hazard, subject to the precedence constraints resulting from intercommunication among the tasks
to be allocated. Minimization of the system hazard ensures that the solution algorithm will allocate tasks so as to meet all task
deadlines under an optimal schedule, whenever such an allocation exists. The task system is modeled with a task graph (TG), in
which computation and communication modules, communication delays, and intertask precedence constraints are clearly described.
Tasks described by this TG are assigned to PNs by using a branch-and-bound (B&B) search algorithm. The algorithm traverses a
search tree whose leaves correspond to potential solutions to the task allocation problem. We use a bounding method that prunes,
in polynomial time, nonleaf vertices that cannot lead to an optimal solution, while ensuring that the search path leading to an optimal
solution will never be pruned. For each generated leaf vertex we compute the exact cost using the algorithm developed in [1]. The
lowest-cost leaf vertex (one with the least system hazard) represents an optimal task allocation. Computational experiences and
examples are provided to demonstrate the concept, utility, and power of the proposed approach.

Index Terms —Branch-and-bound (B&B) algorithm, computation and communication modules, intertask communication,
precedence and timing constraints, task invocation and release times, lower-bound cost.

—————————— ✦ ——————————

1 INTRODUCTION

HE workload in a real-time system consists of periodic
and aperiodic tasks. Periodic tasks are the “base load”

invoked at fixed time intervals while aperiodic tasks are the
“transient load” generated in response to environmental
stimuli. Periodic servers, like the deferrable server [2], are
typically used to handle aperiodic task execution requests.
The total execution time of aperiodic tasks is “charged” to
the periodically-replenished execution budget of the server,
essentially converting the “lumped aperiodics” to periodic
equivalents. In hard real-time systems, task execution must
be not only logically correct but also completed in time. A
pre-runtime analysis is, therefore, required to guarantee
a priori that all task deadlines will be met. Moreover, in a
distributed real-time system, the ability to meet task dead-
lines largely depends on the underlying task allocation, and
hence, we need a pre-runtime task allocation algorithm that
takes into consideration the real-time constraints. Since the
end-to-end system response time of distributed applica-
tions is affected significantly by intertask communication,
one must account for the effect of delays and precedence
constraints imposed by intertask communication when
task-allocation decisions are made.

In this paper, we deal exclusively with pre-runtime allo-
cation of communicating periodic tasks to processing nodes
(PNs) in a distributed real-time system. By “allocation” we
mean assignment with subsequent scheduling considered.
The value of our objective function (to be described later),
associated with a given allocation, tells whether or not the
allocation is feasible; that is, whether or not it is possible to
schedule tasks under the given assignment such that all of
their deadlines and precedence constraints can be met. This
is in contrast to conventional methods which deal with ei-
ther assignment or scheduling of tasks alone, but not both.
Our allocation algorithm finds a feasible allocation, if any.

Allocation of aperiodic tasks can usually be treated as a
dynamic load sharing problem and is beyond the scope of
this paper. (See [3], [4], [5] for examples of dynamic load
sharing in distributed real-time systems.) The three main
features of our task allocation problem are:

F1. Tasks communicate with one another during the course
of their execution to accomplish a common system goal,
thus generating precedence constraints among them.
These precedence constraints must be taken into ac-
count when deriving an optimal task allocation.

F2. The tasks to be allocated are invoked periodically at
fixed time intervals during the mission lifetime.

F3. Tasks are time-critical, meaning that each task must be
completed before its deadline, otherwise serious conse-
quences may ensue.

F1 and F2 describe the structure of the task system under
consideration, while F3 suggests the objective function for

0098-5589/97/$10.00 © 1997 IEEE

¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥

• D.-T. Peng, K.G. Shin, and T.F. Abdelzaher are with the Real-Time Com-
puting Laboratory, Department of Electrical Engineering and Computer
Science, University of Michigan, Ann Arbor, MI 48109.
E-mail: kgshin@eecs.umich.edu.

Manuscript received 3 Dec. 1992; revised 17 Jan. 1995.
Recommended for acceptance by M. Vernon.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 101171.

T

746 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 12, DECEMBER 1997

the task allocation problem. F3 requires each task’s re-
sponse time (the time interval between a task’s invocation
and completion) to be no larger than its relative deadline
(the value of a task’s deadline relative to its invocation
time). The ratio of a task’s response time to its relative
deadline is called normalized task response time [1]. This ratio
should not exceed 1 for the task to meet its deadline. Also,
in order for all tasks to meet their deadlines, the maximum
normalized task response time must not exceed 1. The ob-
jective function, called the system hazard, is therefore de-
fined to be the maximum normalized task response time
over all tasks in the system. The algorithm presented in this
paper searches for an allocation that minimizes the system
hazard (and may be terminated once it finds an allocation
whose hazard is less than 1).

The rest of the paper is organized as follows. Section 2
reviews the related work and differentiates our approach
from others. Section 3 describes the system model and
states the problem. Section 4 gives an overview of the pro-
posed B&B algorithm. Section 5 presents illustrative exam-
ples and Section 6 presents computational results, demon-
strating the utility and power of the algorithm. The paper
concludes with Section 7.

2 RELATED WORK

Task assignment and scheduling problems are studied ex-
tensively in both fields of Operations Research and Com-
puter Science [6], [7], [8], [9], [10], [11], [12], [13], [14]. For a
set of independent periodic tasks, Dhall and Liu [15] and
their colleagues developed various assignment algorithms
based on the rate monotonic scheduling algorithm [16], or
intelligent fixed priority algorithm [17]. However, if there exist
precedence constraints among tasks like our task system,
these algorithms cannot be used. Instead, an approach to
general task assignment problems must be taken. Depend-
ing on the assumptions and the objective functions used,
general task assignment problems are formulated differ-
ently. However, most prominent methods for task assign-
ment in distributed systems are concerned with minimizing
the sum of task processing costs on all assigned processors
and interprocessor communications (IPC) costs. Examples
of such methods typically include graph-theoretic solutions
[18], [19] and integer programming solutions [20] among
others [20], [21], [22], [23]. Note that minimizing the aggre-
gated processing of, and/or communication cost among, all
tasks does not guarantee that individual deadlines will be
met. Generally, it is difficult to add real-time constraints
when a graph-theoretic approach is used. Integer pro-
gramming methods, on the other hand, allow for timing
constraints. However, these constraints do not account for
task queueing and intertask precedence constraints.

Since the problem of assigning tasks subject to prece-
dence constraints is generally NP-hard [24], [25], [26], [27],
some form of enumerative optimization or approximation
using heuristics needs to be developed for this problem. For
example, in [28] an enumeration tree of task scheduling is
generated and searched using a heuristic algorithm called
the CP/MISF (Critical Path/Most Immediate Successors
First) and an optimal/approximate algorithm called the

DF/IHS (Depth-First/Implicit Heuristic Search) to obtain
an approximate minimum schedule length (i.e., makespan)
for a set of tasks. Chu and Lan [8] chose to minimize the
maximum processor workload for the assignment of tasks
in a distributed real-time system. Workload was defined as
the sum of IPC and accumulated execution time on each
processor. A wait-time-ratio between two assignments was
defined in terms of task queueing delays. Precedence rela-
tions were used, in conjunction with the wait-time-ratios, to
arrive at two heuristic rules for task assignment. Under a
slightly different model, Chu and Leung [29] presented an
optimal solution to the task assignment problem in the
sense of minimizing average task response time subject to
certain timing constraints. Since constraints are defined in
terms of average performance, their models are not suitable
for hard real-time systems. Shen and Tsai [21], Ma et al. [20],
and Sinclair [22] derived optimal task assignments to
minimize the sum of task execution and communication
costs with the branch-and-bound (B&B) [30] method. The
computational complexity of this method was also evalu-
ated using simulation in [20], [22]. Minimizing the sum of
task execution and communication costs, however, in itself
does not guarantee that all task deadlines will be met, since
an allocation that causes a short task to miss its deadline
may be preferred to the one that doubles the execution time
of a significantly longer task, yet meeting all deadlines.

More recent results have been reported in the literature
that deals with some or all of the foregoing three features,
F1–F3, of distributed real-time systems. They are more di-
rectly applicable to hard real-time systems and have been
motivated primarily by the need of contemporary embed-
ded systems whose growing complexity of software and
hardware requires an automated resource allocation ap-
proach. For example, task allocation algorithms have been
reported for process control [31], [32] turbo engine control
[33], autonomous robotic systems [34], and avionics [35].
AI-based approaches that utilize application domain
knowledge are described in [31], [34], [35]. Solutions to the
allocation problem have also been presented for specific
hardware topologies such as hypercubes [36], hexagonal
architectures [37], and mesh-connected systems [38].

While these application- or topology-specific approaches
are efficient in solving the allocation problem for the par-
ticular real-time system at hand, those algorithms based on
“abstract” task and resource models have the merit of more
general applicability. Several such algorithms have recently
been reported in the literature. The complexity of the allo-
cation problem usually calls for the use of heuristic solu-
tions. Simulated annealing [39] has been proposed as an
optimization heuristic. Different flavors of using simulated
annealing in the context of real-time task assignment and
scheduling can be found in [40], [41], [42], [43]. The quality
of the solution found using simulated annealing depends
on the selected energy-decay function, and in general, is not
guaranteed to be optimal.

Other heuristic solutions to task allocation in real-time
systems include graph-theoretical, communication-oriented
and schedulability oriented methods. For example, [44]
considers an abstract problem where a given task graph is
invoked periodically under an end-to-end deadline. A task

PENG ET AL.: ASSIGNMENT AND SCHEDULING COMMUNICATING PERIODIC TASKS IN DISTRIBUTED REAL-TIME SYSTEMS 747

allocation and message schedule are computed such that
the end-to-end deadline is satisfied for each invocation. In
[45], [46], [47] efficient methods are considered for allocat-
ing periodic tasks where different tasks may have different
deadlines. To reduce the size of the problem, tasks are pre-
clustered before allocation begins. Task clusters (instead of
individual tasks) are then assigned to individual proces-
sors. Graph-based heuristics, which attempt to minimize
interprocessor communication, are used for task assign-
ment in [45], [46]. In contrast, the approach in [47] searches
the space of all (cluster) assignments and schedules until
either a feasible solution is found or the space of all solu-
tions have been searched exhaustively. The search is di-
rected by a heuristic that explores the most “likely” parts of
the search space first and is usually efficient in finding a
feasible solution, if any. However, since tasks are pre-
clustered without considering their timing constraints, op-
timality can be lost because of clustering. Moreover, the
approach was concerned with homogeneous systems and
nonpreemptive scheduling only.

Optimal solutions for some class of real-time task alloca-
tion problems have been reported in the literature. For ex-
ample, [48] describes an optimal branch and bound (B&B)
algorithm for task assignment and scheduling on multi-
processors subject to precedence and exclusion constraints.
In [49] a task assignment and scheduling algorithm is pre-
sented to optimally minimize the total execution time (TET)
of an arbitrary task graph in a distributed real-time system.
It employs a stochastic optimization phase to find a solu-
tion with “good” TET. The computed TET then serves as an
upper bound to restrict the search space of a subsequent
mixed integer-linear programming optimization phase that
finds the optimal allocation. The algorithm is applicable to
systems with a single end-to-end deadline. In systems
where different tasks have different deadlines minimizing
TET does not necessarily lead to a feasible schedule.

Fault-tolerance requirements have also been considered
in task allocation problems. A k-Timely-Fault-Tolerant prob-
lem is solved in [50] where an assignment and schedule are
found for replicated tasks such that all deadlines are met in
the presence of up to k processor failures. The solution in
[50] is concerned with independent tasks only. In [47], [51]
replicated tasks with precedence constraints are considered.
While [47] uses a deterministic task execution model, the
algorithm of [51] solves a probabilistic model trying to
maximize the probability of missing task deadlines. Al-
though it is optimal in minimizing the performance meas-
ure, the algorithm in [51] requires information about the
task model which may not be available (for example,
branching probabilities of individual branch statements).
Instead, we use a deterministic approach where worst-case
execution times are sufficient to represent task load.

We present an optimal algorithm that allocates communi-
cating periodic tasks in heterogeneous distributed real-time
systems. The algorithm is optimal both in the sense that: 1) a
feasible solution (i.e., a solution where all deadlines are met)
is found whenever one exists and that 2) the resulting solu-
tion minimizes maximum normalized task response time, or
the system hazard. We show in Section 3 that 2) implies 1).
Note however, that 2) is stronger since it specifies the behav-

ior of the algorithm even when no feasible solution exists. If
the problem is unsolvable, the algorithm returns the closest-
to-feasible solution, in the sense of minimizing the objective
function. In our task model, replicated tasks can be expressed
as separate tasks with allocation constraints. In general, alloca-
tion constraints dictate if particular tasks cannot be coallo-
cated (e.g., replicas of the same computation), must specify
which tasks must be co-allocated, must be allocated to par-
ticular processors, or cannot be allocated to particular proces-
sors. To our knowledge, the algorithm presented in this pa-
per is the first optimal task allocation result for heterogene-
ous distributed systems and precedence constrained com-
municating periodic tasks.

3 TASK SYSTEM AND PROBLEM STATEMENT

In order to meet the deadlines of communicating tasks in a
distributed real-time system, it is necessary to accurately
describe the computational load imposed by each task, the
effects of intertask communication and the ability of each
PN to execute tasks. In what follows, we first introduce the
task model and important definitions to be used, then for-
mulate the allocation problem.

3.1 Task System Model
Let T = {Ti : i = 1, 2, ..., m} be the set of m � 2 periodic tasks
to be allocated among a set of n � 2 processing nodes, N =
{Nq : q = 1, 2, ..., n} of the system. Let pi be the period of task
Ti ° T, and L be the least common multiple of all pi s. The
interval I = [0, L) is called the planning cycle of T. For this
task set, it suffices to analyze the behavior of the system
only in one planning cycle, since it will repeat itself for all
subsequent planning cycles. A set, AC, of allocation con-
straints may be imposed on tasks. The most common con-
straints are 1) Ti and Tj must be allocated to the same proces-
sor, 2) Ti and Tj must be allocated to different processors (e.g.,
replicated tasks), or 3) Ti must be allocated to Nq ° P ® N.

Let Tiv be the vth invocation of task Ti within a planning
cycle (i.e., 0 � v � (L � 1)/pi). The release time of Tiv is the earli-
est time it may start execution, which is vpi. In the task model
considered here, the deadline of Tiv must be on or before the
release time of the next invocation, which is (v + 1) pi. Each
invocation Tiv of task Ti ° T consists of one or more task
modules, which are the smallest objects to be scheduled.
Precedence constraints may exist between modules of the
same or different tasks. A precedence constraint, Mj a Mk,
between two modules Mj and Mk means that Mj precedes Mk,
i.e., Mk cannot start execution before Mj completes. Let PR be
the set of all precedence constraints defined in the system.

A task module Mj can be one of two types: computation
module or communication module. The execution time of a
computation module depends on processor speed. Com-
munication modules do communication-related processing.
In the current model each communication module has a
single communication partner, which is a communication
module in a different task. The execution time of communi-
cation modules depends both on processor speed and on
whether or not the communication partner is remote (i.e.,
assigned to a different PN). Let ejq denote the execution

748 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 12, DECEMBER 1997

time of a computation module Mj on processor Nq. The exe-

cution time of a communication module Mj on Nq is de-
noted by ejqremote

 if the partner is remote, and ejqlocal
 if the

partner is local, where ejqlocal
 � ejqremote

. For example, the exe-

cution of an RPC to some server can be modeled by a com-
munication module. If the RPC is remote, the execution
time of the module is larger than when the RPC is local due
to the additional overhead of executing a network commu-
nication protocol. Note that the difference in module exe-
cution time is due to processing at the end host. Network
delays are considered separately since they do not consume
host’s processing power.

Let dij be the network delay between two communicating
modules Mi and Mj allocated to different PNs. It includes
network propagation delays, link/packet contention delays
as well as the delays incurred by communication proces-
sors, if any, in processing the message en route. (For exam-
ple, dedicated network processors may be used for routing
and/or switching at the source and intermediate nodes.) Of
these, contention delays are usually dominant and depend
on the underlying routing and switching strategies. For
example, in a store-and-forward switching network where an
intermediate node must receive a complete packet before
forwarding it to the next node, the hop count between the
PNs on which modules Mi and Mj reside, denoted by nij, as
well as message length, lij, generally affect the delay most.
In a wormwhole or circuit-switched network, on the other
hand, where a dedicated circuit is set up between source
and destination over which data is pipelined, the delay is
affected mostly by the length, lij, of the communicated mes-
sage. In general, for some hybrid switching scheme like the
one in [52], the delay may be approximated by dij = a nij + b
lij + c nij lij, where a, b, and c are constants for the particular
network. Note that the above expression is merely an ap-
proximation. If a particular communication paradigm
(e.g., real-time channels [53]) is known then dij may be ex-
pressed precisely. Our allocation algorithm does not make
assumptions as to how dij is computed. Also, note that
module execution times and communication delays may
be interpreted as worst-case estimates when exact values
cannot be obtained.

To describe the task system within a planning cycle, an
acyclic directed task graph (TG) is used, where modules are
represented by boxes labeled with module numbers, and
precedence constraints are represented by arcs. The graph
contains all invocations of all tasks in one planning cycle.
Fig. 1 is an example task graph for a three task system.
Communication modules in the graph are shaded to distin-
guish them from computation modules. Communication
partners are connected by bold arrows representing the
delay dij and the direction of communication. Note that the
periods of T1 and T2 are 40 while the period of T3 is 20.
Thus, T3 has two invocations in the task graph. Also note
that we distinguish modules belonging to different invoca-
tions of the same task, because we view a module as an
execution instance of a certain chunck of code, rather than
the chunk of code itself. We call a module which may exe-
cute last in a task invocation (such as M4, M5, M16, M20, and
M24) a completing module. Such modules are of special inter-

est since the completion time of a task invocation, used to
compute the system hazard, is always equal to the comple-
tion time of a completing module.

Fig. 1. An example task graph.

3.2 Problem Statement

Consider the task set T. Let riv, and div be the release time

and absolute deadline of the vth invocation, Tiv , respec-

tively. Let civ be the invocation’s completion time under
some allocation G. Define the normalized task response time,
civ , of a task invocation Tiv as

c
c r
d riv

iv iv

iv iv

�

�
 (1)

Notice that civ depends on the allocation G. The system haz-
ard, 4G for an allocation G is defined as:

4
G

°

max
T T

iv
i

c (2)

In other words, 4G is the maximum normalized response
time, civ , over all invocations of all tasks in T (in a planning
cycle). We want to find an optimal task allocation G* that

minimizes the system hazard, i.e., 4 4
G

G
G* min . Note that

civ (and thus 4G) depends on how the tasks are assigned
under G and how they are scheduled on each PN. As men-
tioned in Section 1, an allocation G is feasible if a task as-
signment and schedule is found such that all task invoca-
tions meet their deadlines (i.e., �Tiv : civ � div). From (1) and

(2), this means 4G � 1.
Minimizing maximum task lateness (i.e., max (civ � div))

comes close to the system hazard. Whenever an allocation
algorithm J that minimizes maximum task lateness finds a

PENG ET AL.: ASSIGNMENT AND SCHEDULING COMMUNICATING PERIODIC TASKS IN DISTRIBUTED REAL-TIME SYSTEMS 749

feasible solution, so does our algorithm. This is because a
feasible solution to task lateness minimization (i.e., one in
which all deadlines are met) implies the existence of a solu-
tion to the problem of minimizing the system hazard for
which 4G � 1. This implies that the optimal solution to the
system hazard minimization has the property 4 4

G G*
� � 1,

meaning that it too is feasible. The difference between the
two solutions would be that in system hazard minimiza-
tion, task laxity is more likely to be distributed in propor-
tion to task timing constraints. In [1], [54] it is argued that
this results in a more “robust” schedule. The argument,
however, is rather subjective. Generally, the choice between
the two objective functions may depend on the application
at hand. In cases where the only requirement is to find a
feasible allocation whenever one exists, both measures are
equally acceptable.

4 THE TASK ALLOCATION ALGORITHM

The algorithm proposed in this paper employs a branch-
and-bound (B&B) technique to solve the allocation prob-
lem. Section 4.1 presents a general overview of the pro-
posed algorithm. A detailed description of the proposed
algorithm is given in Section 4.2.

4.1 Overview of the Main Algorithm
Our goal is to find a task allocation that minimizes the sys-
tem hazard. The algorithm considers m tasks, one at a time,
in the task set T. Without loss of generality, we can number
tasks in the order they are considered for allocation. Thus, if
i < j then Ti is allocated prior to Tj. Looking for an allocation
which minimizes the system hazard may be viewed as
traversing a search tree. Each vertex in the tree corresponds
to a partial/complete allocation. Hence, we will occasion-
ally use terms vertex and allocation interchangeably. The
root of the search tree is the null allocation in which no
tasks have been assigned. It is expanded by considering all
possible assignments of T1. Each subsequent level in the
tree corresponds to assigning the next numbered task.
Thus, a vertex at level k in the tree represents an assignment
of tasks {T1, ..., Tk}. Such a vertex is expanded by consider-
ing all possible assignments of Tk+1 to a PN. Since there are
n PNs in the system, each vertex has exactly n children rep-
resenting all possible ways of assigning the next task (most
of which will be pruned in the search process). Since there
are m tasks in the system, vertices at level m are the leaves
of the tree, corresponding to complete allocations, i.e., alloca-
tions of all m tasks in T. These are the possible solutions to
the task allocation problem. The set of all leaves represents
all possible solutions. For example, Fig. 2 gives the search
tree and all solutions for a system of three tasks and two
PNs, N1 and N2. Our goal is to find an optimal solution while
generating as few vertices in the search tree as possible.

In general, a B&B search that minimizes a performance
measure 4 starts at the root of the search tree and computes
a lower bound 4lb(x) of the performance measure (also called
the vertex cost) at each generated vertex x. The bound repre-
sents the smallest value of the performance measure that a
solution descending from this vertex might have. For ex-
ample, if in Fig. 2 leaf vertices 8, 9, 10, and 11 have system

hazards of 0.6, 0.7, 1.2, and 0.4, respectively, then a valid
lower bound for, say, vertex 2 is 0.4 or less, and a valid
lower bound for, say, vertex 4 is 0.6 or less. Furthermore,
0.4 and 0.6 are called the exact lower bounds for vertices 2
and 4, respectively. Note that if the lower bound of the
system hazard at some vertex is more than 1, then there are
no feasible solutions descending from that vertex. The
lower bound is used to prune vertices. In general, if 4lb at a
vertex is higher than the value of performance measure 4
of some already found solution, then the vertex may be
pruned because none of its descendants improve on the
solution found. Note that in order for pruning to work for
the allocation problem defined in Section 3, we must be
able to do the following:

• Compute the value of performance measure 4 for a
vertex representing a solution. That is, we need a
method to compute the system hazard for leaf verti-
ces (i.e., those representing complete allocations).
Computing the system hazard for a given task as-
signment requires an optimal schedule to be gener-
ated for that assignment. For this purpose, we use the
optimal scheduling algorithm described in [1].

• Compute a good lower bound 4lb of the system haz-
ard for a vertex. We call it the cost of the vertex. Note
that at leaf vertices the (exact) lower bound is equal to
the actual value of the performance measure com-
puted using the algorithm in [1]. The remaining
problem is to compute the cost of nonleaf vertices.

In the rest of this paper, we denote the cost of vertex x by
4(x), where at leaf vertices 4(x) is the exact system hazard
computed using the algorithm in [1], while at a nonleaf
vertex it is the lower bound 4lb(x) computed for the vertex.
An optimal solution is a leaf vertex with minimum cost.

Fig. 2. The overall search tree for assigning three tasks on two PNs.

Our B&B algorithm maintains a set of active vertices,
which is the subset of all vertices searched that is considered
to contain, or lead to, an optimal solution. Initially, this set
contains only the root vertex whose cost may be set to zero (a
trivial lower bound on the system hazard). The algorithm
proceeds by alternating branching and bounding operations.
Branching expands the minimum-cost vertex in the active set
by generating its children, i.e., adding them to the active set
and removing their parent. Bounding evaluates the cost of
the newly added vertices to the active set. The algorithm also

750 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 12, DECEMBER 1997

keeps track of the minimum leaf vertex cost obtained so far,
4min . Initially, 4min is set to infinity. Whenever a better
(lower) value for 4min is found, all vertices with higher costs
than 4min are pruned (i.e., removed from the active set). In
the case where two or more leaf vertices have the same cost,
only one of them is retained arbitrarily. The algorithm termi-
nates when the active set contains exactly one leaf vertex. It
has been proven in [30] that there always exists a leaf vertex
surviving the above search process, which is the optimal so-
lution to the original problem.1

Fig. 3 gives the algorithm’s pseudocode. It completely
specifies our algorithm except for the function used to
compute vertex cost on line 15. This function and the in-
sights behind it are described in the following subsection.

 1. let active set A = {Root}
 2. let vertex cost 4(Root) = 0
 3. let best solution cost, 4min = �

 4. while true do
 5. let Vbest = minimum cost vertex in A
 6. if Vbest is a leaf vertex then
 7. prune all vertices V ° A except Vbest
 8. return Vbest as optimal solution
 9. else
10. generate (task assignments of) all children of Vbest
11. remove Vbest from active set A
12. for each child x of Vbest do
13. if assignment constraints in set AC are not satisfied then
 prune x
14. else
15. compute vertex cost 4(x)
16. add x to active set A
17. if x is a leaf vertex then
18. if 4 (x) < 4min then
19. 4min = 4 (x)
20. prune all vertices V ° A for which V � x and
 4(V) � 4min
21. else prune x
22. end if
23. end if
24. end for
25. end if
26. end while

Fig. 3. The branch and bound algorithm.

4.2 Computing Vertex Cost
The B&B algorithm needs an efficient bounding process
such that an optimal solution can be found in reasonable
time. An efficient bounding process tries to prune a gener-
ated vertex, x, as early as possible by computing a lower
bound on the system hazard associated with the vertex. The
tighter (i.e., higher) the lower bound, the more likely the
vertex will be pruned at an early stage. We describe a
method for computing the lower bound at nonleaf vertices
in polynomial time. As mentioned in Section 4.1, at leaf
vertices the vertex cost is equal to the system hazard com-
puted as described in [1]. The lower bound, 4lb(x), of the
system hazard for some nonleaf vertex x is computed in three
steps:

1. This is assuming there exists a solution that satisfies all allocation con-
straints in set AC.

Step 1. Compute the minimum computational load im-
posed on each processor by tasks already assigned to
PNs at search vertex x.

Step 2. Estimate the minimum additional load to be imposed
on each PN due to those tasks not yet assigned at x.

Step 3. Schedule the combined load at each PN and com-
pute the system hazard. We ensure that the system
hazard of the resulting schedule is a lower bound on
the system hazard of any leaf vertex descending from
x, i.e., it represents 4(x) = 4lb(x).

We summarize below the measures taken to ensure that the
computed value of 4(x) is indeed a true lower bound on the
system hazard achievable at any of x’s descendants.

First, as shown in the subsequent sections, the task/
module execution times computed in Step 1 and Step 2 are
the minimum possible task/module execution times given
a partial allocation. Thus, under any complete allocation
resulting from the partial allocation at vertex x, the actual
task set assigned to each PN will impose a greater load than
the one computed in Steps 1 and 2. Second, for the purpose
of computing a task schedule for some node Nq, in Step 3,
we assume that all task invocations on other PNs with
modules which precede a module on Nq start exactly at
their release times (i.e., start as early as possible). Third, the
scheduling algorithm employed in Step 3 on each PN is
locally optimal with respect to the node hazard which is de-
fined as the maximum normalized response time among all
tasks assigned to a given node. The node hazard (and there-
fore the system hazard) computed for vertex x subject to the
above assumptions will, therefore, be smaller than, or equal
to, the one computed for x under a schedule which consid-
ers all precedence constraints for the same task set. Thus, it
is indeed a true lower bound on the system hazard achiev-
able at any descendent of x.

In what follows we give the details of computing the cost
of a nonterminal vertex x. Section 4.2.1 and Section 4.2.2
describe how the load of each PN is computed in Step 1 and
Step 2, respectively. The load is represented as a set of jobs,
each with a known release time, execution time, deadline,
and possibly precedence constraints. Section 4.2.3 shows
how these jobs are scheduled in Step 3 to compute 4lb(x).

4.2.1 Load of Allocated Tasks
Consider some nonleaf search vertex x for which vertex cost
4(x) needs to be computed. Vertex x corresponds to a par-
tial assignment where some tasks have already been allo-
cated to PNs. The first step in computing 4(x) is to find the
minimum load imposed by these tasks on different PNs in
any complete allocation descending from x. This is done by
evaluating the minimum execution time for each module of
an allocated task, as well as evaluating the minimum com-
munication delays. The following rules are used to compute
the minimum load:

• Each computation module Mj allocated to Nq contrib-
utes an execution time ej = ejq on Nq, where ejq is as de-
fined in Section 3.

• Each communication module Mj allocated to node Nq

contributes an execution time e ej jqremote
 if its commu-

nication partner is remote in the current assignment, and

PENG ET AL.: ASSIGNMENT AND SCHEDULING COMMUNICATING PERIODIC TASKS IN DISTRIBUTED REAL-TIME SYSTEMS 751

contributes e ej jqlocal
 otherwise (i.e., if its communica-

tion partner is either local or has not been allocated yet).
• A delay dij, computed as described in Section 3, is in-

serted between any pair of communicating modules
allocated to different PNs. No delay is inserted between
communication partners allocated to the same PN, or
where one of the partners has not yet been allocated.

For the purpose of scheduling in Step 3, each module Mj
of a task invocation (or job) Tiv allocated to Nq is viewed as
a job on Nq with execution time ej, deadline div, and the
precedence constraints defined for Mj in the original prece-
dence constraint set, PR. Only precedence constraints be-
tween allocated modules are considered (i.e., retained as
precedence constraints between the corresponding jobs). As
described in the next section, we ignore the precedence
constraints with modules that have not yet been allocated.
Finally, since Mj cannot start execution before its predeces-
sors, the release time, rj, of the corresponding job is set to
the larger of the release time of Tiv and the maximum re-
lease time of any task invocation containing a predecessor
of Mj. This is expressed in (3).

r r r M T M Mj iv uw k uw k j � °max { , max { : }}a (3)

4.2.2 Load of Unallocated Tasks
Consider the tasks that have not been assigned to PNs at the
search vertex x. The second step in computing vertex cost is
to estimate the minimum load such tasks will contribute to
each PN at any complete allocation descending from vertex x.
By scheduling this load in addition to allocated tasks (as will
be described in Section 4.2.3), a tight lower bound of the sys-
tem hazard can be computed for vertex x.

Consider an invocation Tiv of some unassigned task Ti.
Let Uq Tiv, be the minimum additional load (execution time)

to be imposed on node Nq due to Tiv with deadline div. This

load depends on whether or not Ti will be assigned to Nq.

• If Ti is eventually assigned to Nq, Tiv will increase the
node’s load by the sum of its modules’ processing
times,

M Tj iv°6 ejq. All of that load will have to be exe-

cuted by deadline div.

• If Ti is eventually assigned elsewhere then each mod-

ule Mj, assigned to Nq, that communicates with Tiv

will have a longer processing time ejqremote
 than ejqlocal

assumed by default in Step 1. Of these only the mod-
ules that precede their communication partners in Tiv

are necessary for Tiv to complete by deadline div. Let
\ q Tiv, be the set of all such (preceding) communica-

tion modules on Nq. Thus, the load increment on Nq

will be
\ q ivT,6 e ejqremote jqlocal

�).

To compute a lower bound on load increment on Nq due to

Tiv, and since we do not know where Ti will be allocated,
we set Uq Tiv, to the smaller of the two load increments men-

tioned above. The expression for Uq Tiv, is given as:

U

\

q T
M T

jq
T

jq jqiv

j iv q iv

remote local
min e e e,

,

, () �

�

�
�
�

�

�
�
�

°

Ç Ç (4)

The above computed load is considered as a lump sum rep-
resented by a single job on Nq of execution time Uq Tiv, , and

deadline div. Since Uq Tiv, is, in fact, obtained by adding up

execution times (or parts thereof) of modules from different
tasks which generally have different precedence con-
straints, it is not straightforward to compute the resultant
“aggregate” precedence constraints on Uq Tiv, . To simplify

the problem (since we are looking only for a lower bound),
precedence constraints on Uq Tiv, are ignored. By neglecting

precedence constraints, we assume that the job representing
Uq Tiv, can be released as early as possible. Its release time is

given as the earliest release time of any task invocation
containing a module that contributes to Uq Tiv, as:

r r r M T Mj iv uw k uw k q Tiv
 � ° °min { , min{ : }},\ (5)

The release time thus computed reflects the fact that the
execution time Uq Tiv, belongs to either the unallocated task

invocation Tiv, or its communication partners on Nq, ex-
pressed by the set \ q Tiv, . Since we do not know a priori

which alternative should be the case, the minimum of the
two corresponding release times is taken. This ensures that
the system hazard computed from the schedules in Step 3 is
a lower bound. Furthermore, minimization over release
times of predecessors is performed because different parts
of the “lumped” execution time Uq Tiv, are released at differ-

ent times. Since we deal only with the lumped sum, we do
not state which parts are released when. We, thus, have to
assume that all parts are released at the earliest possible
time, to guarantee that we always get a true lower bound of
the system hazard. Note that unlike the case in Step 1,
where each allocated module is translated into a total of one
job on the processor it is assigned to, unallocated task invo-
cations are translated each into a set of n jobs, one for each
PN. Some of these jobs might have zero execution time in
which case they are neglected. Section 4.2.3 considers how
to schedule jobs on each PN.

4.2.3 Job Scheduling

At search vertex x, let J = {J1, J2, ..., Jp} be the set of all jobs,
with nonzero execution times, generated in Steps 1 and 2.
Let JQ ® J be the subset of jobs assigned to some processing
node Nq. As described earlier, each job Jk represents either a

module of some task invocation allocated to Nq (see Section

4.2.1) or the minimum aggregate load on Nq by some unal-
located task invocation (see Section 4.2.2) at search vertex x.
Let rk, ek, and dk denote the release time, execution time and

deadline of job Jk as computed in Section 4.2.1 and Section
4.2.2. For notational convenience let r

k0 be the release time

of the task invocation who/whose module is being repre-
sented by Jk. Table 1 summarizes how job parameters have
been computed.

752 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 12, DECEMBER 1997

TABLE 1
JOB PARAMETERS ON NODE Nq

A job represents an
allocated module Mj ° Tiv

A job represents an
unallocated invocation Tiv

rj max {riv, max {ruw|� Mk ° Tuw

: Mk a Mj}}
min {riv, min {ruw|∃ Mk ° Tuw

: Mk ° \q, T,iv}}

ej ejq or ejqremote
 or ejqlocal

Uq, Tiv

dj div div

r
j0 riv riv

A lower bound of the node hazard is computed for each
node Nq by applying the optimal uniprocessor scheduling
algorithm Algorithm A of [55] to the set of jobs, JQ. The al-
gorithm is applied for each processor independently. For
completeness, Algorithm A of complexity O(|JQ|2) is
briefly described below, where |JQ| is the number of jobs
to be scheduled. The algorithm is optimal with respect to
any regular measure, where a regular measure is any cost
function which increases monotonically with job comple-
tion time. In this case, we are interested in minimizing the
system hazard. (Note that the system hazard is a regular
measure.) The following steps show how a set of jobs with
arbitrary release times and precedence constraints is to be
scheduled on a single machine so as to minimize such a
regular measure.

SA1. For the purpose of scheduling, modify job release
times, where possible, to meet the precedence con-
straints among the jobs and then arrange the jobs in
nondecreasing order of their modified release times to
create a set of disjoint blocks of jobs. Let �rk denote the
modified release time of job Jk of original release time
rk. For example, if jobs J1, J2, and J3 are released at t = 0,
2, 15, respectively, J1 precedes J2 which in turn precedes
J3, and 5 units of time are required to complete each of
J1 and J2, then job J2’s release time is modified to t = 5
(i.e., �r2 = 5), J3’s is kept at t = 15 and two blocks of jobs
{J1, J2}, which occupies interval [0, 10), and {J3}, which
occupies interval [15, 20), will be created.

SA2. Consider a block B with block completion time t(B).
Let B� be the set of jobs in B which do not precede any
other jobs in B. Select a job Jl such that fl(t(B)) is the
minimum among all jobs in B�, where fl(t) is the non-
decreasing cost function of job Jl if it is completed at t
(in this case fl(t) is the job’s normalized response
time). This implies that Jl be the last job to be com-
pleted in B.

SA3. Create subblocks of jobs in the set B � {Jl} by arranging
the jobs in nondecreasing order of modified release
times, �rk , as in SA1. The time interval(s) allotted to Jl

is then the difference between the interval of B and
the interval(s) allotted to these subblocks.

SA4. For each subblock, repeat SA2 and SA3 until time
slot(s) is(are) allotted to every job.

To compute vertex cost we simply substitute the com-
pletion times of task invocations from the obtained sched-
ule into (1) and (2)). Let a job Jk be called a completing job if it
corresponds to either an allocated completing module or an

unallocated task invocation. Thus, the completion time, ck,
of such a job is the completion time of a task invocation in
the original task graph. Let the set JC ° JQ be the set of all
completing jobs in JQ. The lower bound, 4lb(x), of the sys-
tem hazard, associated with vertex x, is computed from:

c
c r

d rk
k

k

k

k

�

�

�

0

0
 (6)

where ck is the normalized response time of job Jk.

4lb J JC
kx c

k

() max�
°

 (7)

Note that the above equations are the result of rewriting (1)
and (2) in terms of job parameters. A few remarks are due
on computing the function fl(t) for job Jl in Algorithm A. As
alluded in Step SA2 of Algorithm A, to minimize the sys-
tem hazard, the function should express job’s normalized

response time f tl

t r

d r
l

l l

()
�

�

0

0
. Note, however, that the system

hazard (see (7)) is affected only by the normalized response
time of completing jobs. Thus, fl(t) needs to be calculated for
these jobs only, and can be set to zero for the rest. Since
Algorithm A is performed for one PN at a time, precedence
constraints among tasks on different PNs are not accounted
for, except for the way job arrival times are computed. This
may result in a loose lower bound since the schedule is not
“constrained” enough. A tighter lower bound can be ob-
tained if such precedence constraints were accounted for in
fl(t).

To derive fl(t) that considers precedence constraints
among tasks on different PNs the notion of an outgoing
module (OM) needs to be introduced. An OM, at search
vertex x, refers to a module that has a precedence constraint
(in the precedence constraint set PR) with another module
in some remote task invocation. Typically, these are com-
munication modules which send messages to a remote
partner. A job representing such a module in the schedule
is called an OM job. Completion of such jobs may enable
modules on other PNs to execute. Consider an OM job, Jb,
and let C (Jb) denote the set of all completing jobs Jz pre-
ceded by Jb but assigned to a different PN at search vertex x.
Let bz be the length of the critical path from the OM job to the
end of completing job Jz. It represents the minimum time
elapsed from the completion of the OM job before the remote
task invocation can complete.2 The cost function fl (t) of Jl can
be rewritten to account for such dependency as follows:

R1. If Jl is not a completing job and Jl is not an OM job then

fl (t) = fl1 (t) = 0.

R2. If Jl is an OM job (but not a completing job) then fl (t) =

fl2
(t) = max ()J C Jz l°

 {Gz(t), where Gz (t) = (t + bz � r
z0)/

(dz � r
z0)}.

R3. If Jl is completing job (but not an OM job) then fl (t) =

fl3
(t) = (t � r

l0)/(dl � r
l0).

R4. If Jl is both a completing job and an OM job then fl (t) =

2. This is where network delays dij come into play.

PENG ET AL.: ASSIGNMENT AND SCHEDULING COMMUNICATING PERIODIC TASKS IN DISTRIBUTED REAL-TIME SYSTEMS 753

fl4
(t) = max { fl2

(t), fl3
(t)}.

Once expressions for cost functions of modules residing
on Nk are determined, Algorithm A can be applied to obtain
the node hazard for each node. Vertex cost is set to the
maximum computed node hazard. The computational com-
plexity of deriving vertex cost is O(nM2), where n is the num-
ber of PNs and M the total number of modules in the system.

5 EXAMPLES

Two illustrative examples are presented in this section to
demonstrate the power and utility of our task allocation
algorithm. The examples are simplified for the purpose of
clear demonstration of key ideas in the algorithm. In the
first example, we consider the allocation of the workload
shown in Fig. 1. The second example is the allocation of
part of a real turbofan engine control workload. In this ex-
ample, the workload has been simplified and partitioned
into tasks such that a task communicates only at the begin-
ning and/or at the end of its execution. The examples
mainly serve to illustrate how the algorithm works. The
second example is to demonstrate the applicability of the
proposed algorithm to a real-life problem. To obtain more
experience with our algorithm’s performance, a workload
generator has been constructed to create task sets of arbi-
trary size. The computational results obtained from run-
ning the algorithm on the created task sets are presented is
Section 6.

5.1 Example 1

Consider an example of allocating the three tasks T1, T2,

and T3 in Fig. 1 to two processors N1 and N2. Within the

planning cycle [0, 40), T1 and T2, both with period 40, are

invoked only once while T3, with period 20, is invoked
twice. Assume the deadline of each task invocation is at the
end of its period. The execution times of various modules
are shown in Table 2 for processor N1. The execution times
of communication modules are given in the format
e ejq jqlocal remote

: . For simplicity we assume that the execution

times on N2 are exactly a half of those on N1. In general, the
ratio between module execution times on two processors
may be different for different modules since it depends on
the instruction mix. For example, if one of the processors
has a more powerful floating-point unit then floating-point
instructions will execute faster while, say, memory access
instructions may take the same amount of time on both.

TABLE 2
MODULE EXECUTION TIMES ON N1 IN EXAMPLE 1

Mj ej1 Mj ej1 Mj ej1

M1 4 M9 1:3 M17 1:3
M2 1:4 M10 1:4 M18 1
M3 2 M11 1 M19 2
M4 2 M12 2:4 M20 0:1
M5 2:6 M13 0:2 M21 1:3
M6 2 M14 2 M22 1
M7 1 M15 2:3 M23 2
M8 1:2 M16 3 M24 1:2

Fig. 4 shows all generated search vertices numbered in
the order of their generation times. The assignment and
cost, 4(x), associated with each vertex x are also indicated
in Fig. 4. In this example, two leaf vertices are generated
before our B&B algorithm finds an optimal solution. Spe-
cifically, vertex 6, with 4(6) = 39/40, is eliminated first as
soon as vertex 8 with the exact cost 28/40 < 4 (6) is gener-
ated. Then, all active vertices 4, 5, and 8 are eliminated after
vertex 9 is generated since the system hazard of this com-
plete assignment, 23.5/40, is the smallest. Thus, vertex 9,
which assigns all three tasks to N2, is an optimal solution to
the allocation problem, and its optimal schedule is shown
in Fig. 5.

Fig. 4. The search tree generated for example 1.

Fig. 5. An optimal schedule for example 1.

The optimal allocation assigns all three tasks to the same
PN. One reason for this is that communication modules and
delays in this example are the major part of the task load,
and thus, assigning all tasks to a single PN is the best. Note
also that the tasks have been assigned to the faster PN. To
see how 4(x) is obtained for a nonterminal vertex x, con-
sider the computation of 4(5). Fig. 4 shows that at vertex 5
task T1 is assigned to N1, T2 is assigned to N2 while task T3
has not been assigned. Fig. 6 redraws the task graph in Fig. 1,
showing the execution times of allocated modules and
communication delays computed for this particular alloca-
tion (from data in Table 2) as described in Section 4.2.1. In-
vocations of the unallocated task T3 are represented, as de-
scribed in Section 4.2.2, by a lumped execution time Uq for
each Nq. For a particular task invocation, Uq denotes the
minimim load the invocation imposes on Nq at any solution
descending from vertex 5.

754 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 12, DECEMBER 1997

To compute 4(5), first the load of allocated tasks (i.e.,

modules M1, ..., M16) is computed. M2, M5, M10, and M12 are
considered to communicate remotely (i.e., their execution
time is ejremote

), since they and their communication partners

are assigned to different PNs. Modules M8, M9, M14, and

M15 are, by default, considered to communicate locally
since their communication partners are not yet allocated.
The rest are computation modules whose execution times,
ejq are fixed by their assignment. Fig. 6 gives the resulting
module execution times. For purposes of scheduling, a job
is associated with each allocated module Mj. A job repre-

senting Mj has the execution time shown for Mj in Fig. 6

and the deadline of the task invocation containing Mj. For

example, the deadline of (the job representing) M1 is that of

task invocation T11, which is 40. Jobs’ release times are
computed from (3). For example, the release time of (the job
representing) M3 is zero, and the release time of (the job

representing) M16 is 20, because the latter is preceded by

modules in task invocation T32, which is released at r32 = 20.

Fig. 6. Task graph at vertex 5.

Next, the minimum load imposed on each PN by unas-
signed tasks, in this case only task T3, is computed. T3 has

two invocations, T31 and T32, within a planning cycle. Thus,

we need to compute loads U1, 31T and U1, 32T (imposed on N1)

and loads U2 31,T and U2 32,T (imposed on N2) using (4). Since

neither invocation communicates with modules on N1, the

minimum load imposed on N1 due to T3 is zero (which cor-

responds to assigning T3 to N2). In other words, U1, 31T and

U1, 32T are zero because the summation in the second argu-

ment of the min function in (4) is vacuous. To compute the
minimum load imposed on N2, note that the sets \ 2 31,T and

\ 2 32,T of communication modules on N2 preceding the

completion of T31 and T32 are {M8}, and {M14}, respectively.

Substituting in (4), the load imposed on N2 by T31 is U2 31,T =

min {4, 0.5} = 0.5, where 4 is the sum of execution times of
T31’s modules on N2, and 0.5 is the increase in the execution

time of M8, which precedes T31’s completion. Similarly,
U2 32,T = min {5, 1} = 1, where 5 is the sum of execution times

of T32’s modules on N2, and 1 is the increase in the execu-

tion time of M14, which precedes T32’s completion. For the
purpose of scheduling, a job is associated with each unallo-
cated invocation Tiv, in this case T31 and T32. As described in
Section 4.2.2 the jobs’ execution times are set to U2 31,T and

U2 32,T , respectively, and their deadlines are set to the corre-

sponding invocation deadline. The release time of both jobs
are zero, as computed from (5). This is self-evident for T31

and is true of T32 because some of its modules are preceded

by the modules of T2 which is released at time zero.
Having computed the job set for allocated and unallo-

cated tasks, the third and final step is to compute the cost
functions fl(t) of each job Jl and schedule these jobs using
Algorithm A. To find the cost functions, rules R1–R4 of
Section 4.2.3 are followed. For example, consider the jobs
representing the modules of the allocated task T1. (For sim-
plicity we will use module names to denote the corre-
sponding jobs.) From R3 the cost function of M4 and M5 is
t/40. From R1, the cost functions of M1 and M3 are 0. Fi-
nally, the cost function of M2 is determined by considering
the critical paths from M2 to the completion of task invoca-
tions T21 and T32 which depend on M2. Let these paths be of
lengths b1 and b2, respectively. Thus, from R2, the cost func-
tion of M2 is max {(t + b1 � 0)/40, (t + b2 � 0)/40} = (t + 13)/40.
Cost functions of jobs representing unallocated task invo-
cations are computed similarly. In this case, R3 yields the
cost function (t � 0)/20 for T31 and the cost function (t �
20)/20 for T32. As a result of applying Algorithm A, the
node hazard of the obtained schedule is 27.5/40 for N1 and
20/40 for N2. Therefore, 4(5) = 27.5/40.

5.2 Example 2
We consider allocating parts of a real turbofan engine con-
trol program. The workload has been simplified and parti-
tioned into 13 tasks, T1, �, T13 all of which have an identical
period of 300 time units and communicate with one another
only at the beginning and/or at the end of, but not during,
their execution. Eack task is partitioned into three modules
D, E, and J, where D represents the sum of all execution
times associated with pure computation of the task, while E
and J denote the the sums of all execution times associated
with processing incoming and outgoing messages, respec-
tively. For simplicity, the following assumptions are made.

• We assume that the amount of communication be-
tween any task Tj and each of its immediate predeces-
sors is the same. Similarly, we assume that the

PENG ET AL.: ASSIGNMENT AND SCHEDULING COMMUNICATING PERIODIC TASKS IN DISTRIBUTED REAL-TIME SYSTEMS 755

amount of communication between the task and each
of its successors is equal. Therefore, if a fraction I1 of
Tj’s predecessors and a fraction I2 of Tj’s successors
are assigned to PNs where Tj does not reside, then the
total execution time of Tj is computed as D + I1 E + I2
J. (More precisely, Ejq = Djq + I1 Ejq + I2 Jjq, where Djq,
Ejq, and Jjq are the aforementioned components of exe-
cution time measured for Tj on processor Nq.)

• The communication delay dij between any two tasks
assigned to different PNs is constant for all task pairs
and equal to two time units.

• A task is considered completed only after all of its
computation and communication modules have been
completed.

Consider the allocation of the above workload to a dis-
tributed system of two PNs where N2 is twice faster than
N1. The task graph and task execution times (on N1) are
shown in Fig. 7. Since the invocation periods of all tasks are
the same, the optimal allocation with respect to the system
hazard is the same as that w.r.t. the makespan or the maxi-
mum task completion time among all tasks. The optimal
allocation is found after visiting only 81, out of a total of
214 � 1 = 16383 vertices in the B&B search tree. The optimal
allocation assigns T1 and T3, ..., T9 to the faster processor
and the rest to the slower one. The minimum system haz-
ard achieved is 183/300 = 0.61. Note that the reduction of
search tree observed above may be attributed to the sim-
plicity of the example. In the following section we explore
algorithm efficiency for more complex systems.

Fig. 7. Task graph for example 2.

6 COMPUTATIONAL EXPERIENCES

In order to test the performance of the algorithm with
larger task systems, a workload generator has been con-
structed to create task sets of arbitrary size. The generator
creates a specified number of tasks, with a given average
number of invocations per task, and a given average num-
ber of modules per invocation (Poisson-distributed), then
constructs the task graph by generating precedence con-
straints (with no directed cycles) among modules. Prece-
dence constraints created between pairs of modules in the
same task represent the sequence of computation in that
task. Precedence constraints created between pairs of mod-
ules of different tasks result from intertask communica-
tions. Module types are selected accordingly, and delays
are inserted in their appropriate places between communi-
cating modules. Module execution times are represented by
a Poisson-distributed random variable of a specified aver-
age. The number of precedence constraints is approxi-
mately the number of modules in the task graph. The num-
ber of communicating task pairs is approximately 1 to 1.5
times the number of created tasks.

To assess algorithm performance with variable task sys-
tem sizes, 50-task sets were generated and divided into five
categories of 6-, 8-, 10-, 12-, and 14-task sets with an average
of 60, 80, 100, 120, and 140 modules per set, respectively. A
homogeneous 4-PN architecture, and fixed message size
was assumed. The B&B algorithm was applied to each task
set, and the number of expanded vertices was recorded in
each run. Table 3 summarizes the obtained results. It can be
seen that the heuristic employed at nonterminal search ver-
tices guides the algorithm efficiently for an optimal solu-
tion. For example, it takes less than 100 vertices to find an
optimal allocation of 10 tasks (100 modules) on four PNs,
which is less than 0.01 percent of the total search space, and
takes less than 300 vertices to find an optimal allocation of
14 tasks, which is about 4 � 10–7 of the total search space.

TABLE 3
ALGORITHM PERFORMANCE FOR DIFFERENT TASK-SET SIZES

Tasks
Expanded
Vertices Total Space

Expanded
(%)

6 18 4096 0.43
8 65 65536 0.1

10 95 1048576 0.01
12 133 16777216 0.0008
14 274 268435456 0.0000004

To explore the performance of the algorithm for different
number of PNs, 10 task sets were generated, each with 8
tasks and 80 modules. The algorithm was used to allocate
the tasks on homogeneous 2-PN, 4-PN, and 6-PN architec-
tures, and the number of expanded vertices was recorded
in each run. Table 4 summarizes the obtained results. It can
be seen from Table 4 that less than 40 vertices are expanded
on average in all cases. It can also be seen that the average
number of expanded vertices is almost the same for 4- and
6- PN architectures. The relative “saturation” in the number
of expanded vertices with respect to the number of PNs in
the system is because when the number of available PNs
exceeds that required by the optimal allocation, the heuris-
tic tends to guide the search away from expanding vertices

756 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 12, DECEMBER 1997

which exploit a larger (than necessary) number of PNs.
Therefore, the subset of searched vertices before a solution
is found tends to remain the same.

TABLE 4
ALGORITHM PERFORMANCE FOR DIFFERENCE NUMBER OF PNS

Tasks
Expanded
Vertices

Coef of
Variation

Total
Space

Expanded
(%)

2 16 0.35 256 6.17
4 37 0.8 65536 0.06
6 38 0.8 1679616 0.002

Note that the purpose of the above experiments was not
to accurately quantify the behavior of the algorithm, but
rather to verify its qualitative performance trends. Thus, for
example, we conducted only 10 experiments per data point
in Tables 3 and 4. The conclusion we draw from the above
experimental observations is that the algorithm has poten-
tial to find optimal solutions efficiently. In particular, the
diminishing percentage of expanded vertices relative to
total search space shows that the pruning function is effi-
cient. More accurate analysis of algorithm performance is
not meaningful without a more representative load genera-
tion technique that reflects more faithfully the structure of
real applications of interest. Such analysis and techniques,
however, are outside the scope of this paper. In general, the
algorithm is expected to work best when intertask commu-
nication is considerable and when communication costs are
comparable to computation costs. A careful analysis of the
way the load of unallocated task is computed in Section
4.2.2 (see (4)) can show that if communication is insignifi-
cant \ q Tiv, tends to be vacuous, which causes this load to be

inadequately represented. As a result, the computed lower
bounds are loose and a larger number of vertices are ex-
panded. However, this is not a disadvantage of our algo-
rithm. When tasks tend not to communicate, many of ear-
lier research results on task allocation are applicable. The
difficult challenge addressed in this paper is the case when
intertask communication plays an important role. To give
an example of performance improvement with increasing
intertask communication, let’s compare Table 3 with Table
4. The latter table is computed for a set of experiments
where the number of communicating task pairs was ap-
proximately 1.5 times that in the former, thus representing
more heavily communicating tasks. Table 3 shows that for
eight tasks on a four-processor system the average number
of expanded vertices was 65. Table 4, on the other hand,
shows that for eight tasks on a four-processor system the
average number of expanded vertices was only 37. This
comparison3 supports our theoretical expectations regard-
ing algorithm performance.

7 CONCLUSIONS

Task allocation is one of the most important issues in de-
signing distributed real-time systems. However, this problem
is generally known to be NP-hard even without considering
the precedence constraints resulting from inter-task commu-

3. The authors thank the anonymous reviewer of an earlier manuscript of
this paper for pointing out this observation from data in the two tables.

nications. In this paper, we have addressed the problem of
allocating a set of communicating periodic tasks to the proc-
essing nodes of a distributed real-time system. We solved this
problem by using a B&B algorithm which employs a new
bounding function (at nonleaf vertices) to guide the search to
the optimal allocation. The proposed solution can be easily
extended to the case where tasks are not periodic. Note that
the periodicity assumption has been used only to derive the
length of the planning cycle and the release times of task in-
vocations. The rest of the paper (as well as the scheduling
algorithms [1], [55]) does not rely on this assumption. Fur-
thermore, our model can be easily extended to the case where
modules, rather than tasks, are the objects to be allocated.

The lower-bound costs presented in this paper are
shown to reduce the computational difficulty significantly.
Therefore, the proposed task allocation algorithm has high
potential for practical use. This fact has been confirmed by
our computational experiences.

Because of the enumerative nature of the proposed B&B
algorithm, it is also possible to apply it to task allocation
problems with other resource constraints, such as those on
memory and communication bandwidths.

ACKNOWLEDGMENTS

The work reported in this paper was supported, in part, by
the Office of Naval Research under Grant No. N00014-94-1-
0229 and the National Science Foundation under Grant No.
MIP-9203895. Any opinions, findings, conclusions, or rec-
ommendations expressed in this publication are those of
the authors and do not necessarily reflect the view of the
funding agencies.

REFERENCES

[1] D. Peng and K.G. Shin, “Optimal Scheduling of Cooperative
Tasks in a Distributed System Using an Enumerative Method,”
IEEE Trans. Software Eng., vol. 19, no. 3, pp. 253,-267, Mar. 1993.

[2] J.K. Strosnider, J.P. Lehoczky, and L. Sha, “The Deferrable Server
Algorithm for Enhanced Aperiodic Responsiveness in Hard Real-
Time Environments,” IEEE Trans. Computers, vol. 44, no. 1, pp. 73-
91, Jan. 1995.

[3] K.G. Shin and Y.-C. Chang, “Load Sharing in Distributed Real-
Time Systems with State-Change Braodcasts,” IEEE Trans. Com-
puters, vol. 38, no. 8, pp. 1,124-1,142, Aug. 1989.

[4] K. Goswami, M. Devarakonda, and R. Lyer, “Prediction-Based
Dynamic Load-Sharing Heuristics,” IEEE Trans. Parallel and Dis-
truting Systems, vol. 4, no. 6, pp. 638-648, June 1993.

[5] K.G. Shin and C.-J. Hou, “Analytic Models of Adapative Load
Sharing Schemes in Distributed Real-Time Systems,” IEEE Trans.
Parallel and Distributed Systems, vol. 4, no. 7, pp. 740-761, July 1993.

[6] K.R. Baker, Introduction to Sequencing Scheduling. John Wiley &
Sons, 1974.

[7] W.W. Chu, “Task Allocation in Distributed Data Processing,”
Computer, vol. 13, pp. 57-69, Nov. 1980.

[8] W.W. Chu and L.M. Lan, “Task Allocation and Precedence Rela-
tions for Distributed Real-Time System,” IEEE Trans. Computers,
vol. 36, no. 6, pp. 667-679, June 1987.

[9] S. French, Sequencing and Scheduling. Halsted Press, 1982.
[10] R.E.D. Woolsey and H.S. Swanson, Operations Research for Immedi-

ate Applications: A Quick and Dirty Manual. Harper and Row, 1974.
[11] S. Selvakumar and C.S.R. Murthy, “Static Task Allocation of Con-

current Programs for Distributed Computing Systems with Proc-
essor and Resource Heterogeneity,” J. Parallel Computing, vol. 20,
no. 6, pp. 835-851, 1994.

PENG ET AL.: ASSIGNMENT AND SCHEDULING COMMUNICATING PERIODIC TASKS IN DISTRIBUTED REAL-TIME SYSTEMS 757

[12] H.H. Ali and H. El-Rewini, “Task Allocation in Distributed
Sytems: A Split Graph Model,” J. Computer Math. Combination
Computing, vol. 14, no. 1, pp. 15-32, Jan. 1993.

[13] A. Billionnet, M.-C. Costa, and A. Sutter, “An Efficient Algorithm
for a Task Allocation Problem,” J. ACM, vol. 39, no. 3, pp. 502-518,
Mar. 1992.

[14] S.H. Bokhari, “A Network Flow Model for Load Balancing in
Circuit-Switched Multicomputers,” IEEE Trans. Parallel and Dis-
tributed Systems, vol. 4, no. 6, pp. 649-657, June 1993.

[15] S.K. Dhall and C.L. Liu, “On a Real-Time Scheduling Problem,”
Operations Research, vol. 26, no. 1, pp. 127-140, 1978.

[16] C.L. Liu and J.W. Layland, “Scheduling Algorithms for Multipro-
gramming in a Hard-Real-Time Environment,” J. ACM, vol. 20,
no. 1, pp. 46-61, 1973.

[17] O. Serlin, “Scheduling of Time Critical Processes,” Proc. AFIPS
1972 Spring Joint Computer Conf., pp. 925-932, Montvale, N.J.,
AFIPS Press, 1972.

[18] H.S. Stone, “Multiprocessor Scheduling with the Aid of Network
Flow Algorithms” IEEE Trans. Software Eng., vol. 3, no. 1, pp. 85-
93, Jan. 1977.

[19] H.S. Stone and S.H. Bokhari, “Control of Distributed Processes,”
Computer, vol. 11, pp. 97-106, July 1978.

[20] P.Y.R. Ma et al., “A Task Allocation Model for Distributed Com-
puting Systems,” IEEE Trans. Computers, vol. 31, no. 1, pp. 41-47,
Jan. 1982.

[21] C.C. Shen and W.H. Tsai, “A Graph Matching Approach to Opti-
mal Task Assignment in Distributed Computing Systems Using a
Minimax Criterion,” IEEE Trans. Computers, vol. 34, no. 3, pp. 197-
203, Mar. 1985.

[22] J.B. Sinclair, “Efficient Computation of Optimal Assignments for
Distributed Tasks, J. Parallel and Distributed Computing, vol. 4, pp.
342-362, 1987.

[23] V.M. Lo, “Heuristic Algorithms for Task Assignment in Dis-
trubted Systems,” IEEE Trans. Computers, vol. 37, no. 11, pp. 1,384-
1,397, Nov. 1988.

[24] E.G. Coffman, Computer and Job-Shop Scheduling Theory. New
York: John Wiley & Sons, 1976.

[25] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H. Freeman Co., 1979.

[26] J.K. Lenstra and A.H.G.R. Kan, “Complexity of Scheduling Under
Precedence Constraints,” Operations Research, vol. 26, no. 1, pp. 23-
35, Jan. 1978.

[27] E.L. Lawler, “Deterministic and Stochastic Scheduling,” Recent
Developments in Deterministic Sequencing and Scheduling: A Survey,
pp. 35-74. The Netherlands: Reidel, Dordrecht, 1982.

[28] H. Kasahara and S. Narita, “Practical Multiprocessor Scheduling
Algorithms for Efrficient Parallel Processing,” IEEE Trans. Com-
puters, vol. 33, no. 11, pp. 1,023-1,029, Nov. 1984.

[29] W.W. Chu and K. Leung, “Module Replication and Assignment
for Real-Time Distributed Processing Systems,” Proc. IEEE, vol.
75, no. 5, pp. 547-562, May 1987.

[30] W.H. Kohler and K. Steiglitz, “Computer and Job-Shop Schedul-
ing Theory,” Enumerative and Iterative Computational Approach, pp.
229-287. John Wiley & Sons, 1976.

[31] M. Alfano. A. Di-Stefano, L. Lo-Bello, O. Mirabella, and J.H.
Stewman, “An Expert System for Planning Real-Time Distributed
Task Allocation,” Proc. Florida AI Research Symp., Key West, Fla.,
May 1996.

[32] P. Altenbernd, C. Ditze, P. Laplante, and W. Halang, “Allocation
of Periodic Real-Time Tasks,” Proc. 20th IFAC/IFIP Workshop, Fort
Lauderdale, Fla., Nov. 1995.

[33] J.L. Lanet, “Task Allocation in a Hard Real-Time Distributed
System,” Proc. Second Conf. Real-Time Systems, pp. 244-252, Szlar-
ska Poreba, Poland, Sept. 1995.

[34] T.C. Lueth and T. Laengle, “Task Description, Decomposition,
and Allocation in a Distributed Autonomous Multi-Agent Robot
System,” Proc. Int’l Conf. Intelligent Robots and Systems, pp. 1,516-
1,523, Munich, Germany, Sept. 1994.

[35] C.M. Hopper and Y. Pan, “Task Allocation in Dstributed Com-
puter Systems Through an AI Planner Solver,” Proc. IEEE 1995
Nat’l Aerospace and Electronics Conf., Dayton, Ohio, vol. 2, pp. 610-
616, May 1995.

[36] B.R. Tsai and K.G. Shin, “Assignment of Task Modules in Hyper-
cube Multicomputers with Component Failures for Communica-
tion Efficiency,” IEEE Trans. Computers, vol. 43, no. 5, pp. 613-618,
May 1994.

[37] K.G. Shin and C.J. Hou, “Evaluation of Load Sharing in HARTS
with Consideration of Its Communication Activities,” IEEE Trans.
Parallel and Distributed Systems, vol. 7, no. 7, pp. 724-739, July 1996.

[38] S.M. Yoo and H.Y. Youn, “An Efficient Task Allocation Scheme
for Two Dimensional Mesh-Connected Systems,” Proc. 15th Int’l
Conf. Distributed Computing Systems, pp. 501-508, Vancouver, Can-
ada, 1995.

[39] S. Kirkpatrick, C. Gelatt, and M. Vecchi, “Optimization by Simu-
lated Annealing,” Science, vol. 220, pp. 671-680, 1983.

[40] K. Tindell, A. Burns, and A. Wellings, “Allocating Hard Real-
Time Tasks: An np-Hard Problem Made Easy,” J. Real-Time Sys-
tems, vol. 4, no. 2, pp. 145-166, May 1992.

[41] E. Wells and C.C. Caroll, “An Augmented Approach to Task Al-
location: Combining Simulated Annealing with List-Based Heu-
ristics,” Proc. Euromicro Workshop, pp. 508-515, 1993.

[42] J.E. Beck and D.P. Siewiorek, “Simulated Annealing Applied to
Multicomputer Task Allocation and Processor Specification,”
Proc. Eighth IEEE Symp. Parallel and Distributed Processing, pp. 232-
239, Oct. 1996.

[43] S.T. Cheng, S.I. Hwang, and A.K. Agrawala, “Schedulability
Oriented Replication of Periodic Tasks in Distributed Real-Time
Systems,” Proc. 15th Int’l Conf. Distributed Computing Systems,
Vancouver, Canada, 1995.

[44] S.B. Shukla and D.P. Agrawal, “A Framework for Mapping Peri-
odic Real-Time Applications on Multicomputers,” IEEE Trans.
Parallel and Distributed Systems, vol. 5, no. 7, pp. 788-784, July 1994.

[45] T.-S. Tia and J.W.-S. Liu, “Assigning Real-Time Tasks and Re-
sources to Distributed Systems,” Int’l J. Minim and Microcomputers,
vol. 17, no. 1, pp. 18-25, 1995.

[46] S.S. Wu and D. Sweeping, “Heuristic Algorithms for Task As-
signment and Scheduling in a Processor Network,” Parallel Com-
puting, vol. 20, pp. 1-14, 1994.

[47] K. Ramamritham, “Allocation and Scheduling of Precedence-
Related Periodic Tasks,” IEEE Trans. Parallel and Distributed Sys-
tems, vol. 6, no. 4, pp. 412-420, Apr. 1995.

[48] J. Xu, “Multiprocessor Scheduling of Processes with Release
Times, Deadlines, Precedence, and Exclusion Relations,” IEEE
Trans. Software Eng., vol. 19, no. 2, pp. 139-154, Feb. 1993.

[49] P. Scholz and E. Harbeck, “Task Assignment for Distributed
Computing,” Proc. 1997 Conf. Advances in Parallel and Distributed
Computing, pp. 270-277, Shanghai, China, Mar. 1997.

[50] Y. Oh and S.H. Son, “Scheduling Hard Real-Time Tasks with
Tolerance to Multiple Processor Failures,” Multiprocessing and
Multiprogramming, vol. 40, pp. 193-206, 1994.

[51] C.-J. Hou and K.G. Shin, “Replication and Allocation of Task
Modules in Distributed Real-Time Systems,” Proc. 24th IEEE
Symp. Fault-Tolerant Computing Systems, pp. 26-35, June 1994.

[52] K.G. Ashin and S. Daniel, “Analysis and Implementation of Hy-
brid Switching,” IEEE Trans. Computers, pp. 211-219, 1995.

[53] D. Kandlur, K.G. Shin, and D. Ferrari, “Real-Time Communica-
tion in Multihop Networks,” IEEE Trans. Parallel and Distributed
Systems, vol. 5, no. 10, pp. 1,044-1,056, Oct. 1994.

[54] D.-T. Peng and K.G. Shin, “ A New Performance Measure for
Scheduling Independent Real-Time Tasks,” J. Parallel Distributing
Computing, vol. 19, no. 12, pp. 11-16, 1993.

[55] K.R. Baker et al., “Preemptive Scheduling of a Single Machine to
Minimize Maximum Cost Subject to Release Dates and Prece-
dence Constraints,” Operations Research, vol. 31, no. 2, pp. 381-386,
Mar. 1983.

758 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 12, DECEMBER 1997

Dar-Tzen Peng received his BSEE degree from
National Cheng-Kung University, Taiwan, in
1974, his MS degree in management science
from National Chiao-Tung University, Taiwan, in
1976, and his PhD degree in computer science
and engineering in 1990 from the University of
Michigan, Ann Arbor. From 1990 to 1995, he
was with the Allied Signal Microelectronics and
Technology Center as a member of technical
staff, where he was involved in the research and
design of distributed fault-tolerant real-time com-

puting systems MAFT and RTEM. From 1996 to 1997, he was with the
Allied Signal Guidance and Control Systems, where he participated in
the design of the Redundancy Management System (RMS) for the X-
33 test vehicle, the NASA concept demonstration of the next genera-
tion space shuttle program called the RLV. For X-33, he established
the initial top level system requirements and designed the Synchro-
nizer subsystem of the RMS. He joined the ARINC corporation in No-
vember 1997, where his duties involve the fault-tolerance aspect of
ACARS and the next generation satellite communication between air-
craft and ground-based stations. Dr. Peng is a member of the IEEE
Computer Society and the Avionics Systems Division of the Society of
Automotive Engineers (ASD/SAE).

Kang G. Shin received the BS degree in elec-
tronics engineering from Seoul National Univer-
sity, Korea, in 1970, and the MS and PhD de-
grees in electrical engineering, both from Cornell
University, Ithaca, New York, in 1976 and 1978,
respectively. He is professor and director of the
Real-Time Computing Laboratory, Department of
Electrical Engineering and Computer Science,
University of Michigan, Ann Arbor. He has
authored/co-authored more than 400 technical
papers (about 160 of these in archival journals)

and numerous chapters in the areas of distributed real-time computing
and control, fault-tolerant computing, computer architecture, robotics
and automation, and intelligent manufacturing. He has co-authored
(jointly with C.M. Krishna) a text Real-Time Systems (McGraw-Hill,
1997). In 1987, he received the Outstanding IEEE Transactions on
Automatic Control Paper Award for his paper on robot trajectory plan-
ning. In 1989, he received the Research Excellence Award from the
University of Michigan.

In 1985, he founded the Real-Time Computing Laboratory, where
he and his colleagues are investigating various issues related to real-
time and fault-tolerant computing. He has also been applying the basic
research results of real-time computing to multimedia systems, intelli-
gent transportation systems, embedded systems, and manufacturing
applications ranging from the control of robots and machine tools to the
development of open architectures for manufacturing equipment and
processes. (The latter is being pursued as a key thrust area of the
newly established National Science Foundation Engineering Research
Center on Reconfigurable Machining Systems.). From 1978 to 1982 he
was on the faculty of Rensselaer Polytechnic Institute, Troy, New York.

He has held visiting positions at the U.S. Air Force Flight Dynamics
Laboratory, AT&T Bell Laboratories, Computer Science Division within
the Department of Electrical Engineering and Computer Science at the
University of California at Berkeley, the International Computer Science
Institute, Berkeley, IBM Thomas J. Watson Research Center, and
Software Engineering Institute at Carnegie Mellon University. He also
chaired the Computer Science and Engineering Division, EECS De-
partment, University of Michigan for three years beginning January
1991.

He was program chair of the 1986 IEEE Real-Time Systems Sym-
posium (RTSS); general chair of the 1987 RTSS; guest editor of the
1987 August special issue of IEEE Transactions on Computers on real-
time systems; program co-chair for the 1992 International Conference
on Parallel Processing; and served on numerous technical program
committees. He also chaired the IEEE Technical Committee on Real-
Time Systems during 1991–1993; was a distinguished visitor of the
IEEE Computer Society; an editor of IEEE Transactions on Parallel
and Distributed Computing; and an area editor of the International
Journal of Time-Critical Computing Systems. Dr. Shin is a fellow of the
IEEE.

Tarek F. Abdelzaher received his BSc and MSc
degrees in electrical and computer engineering
from Ain Shams University, Cairo, Egypt, in
1990 and 1994, respectively. Since 1994, he
has been a PhD student of Professor Kang G.
Shin in the Department of Electrical Engineering
and Computer Science at the University of
Michigan, Ann Arbor. His research interests are
in the field of real-time computing, real-time
software architecture, and embedded systems.
Abdelzaher has been an assistant lecturer at Ain

Shams University, Cairo, in 1990-1994. He served as a research as-
sistant for the Egyptian Academy of Scientific Research and Technol-
ogy, Cairo, Egypt, from 1991 to 1993. Since 1994, he has been a re-
search assistant in the Department of Electrical Engineering and Com-
puter Science, University of Michigan, Ann Arbor. He received a Dis-
tinction Award from Ain Shams University, Cairo, in 1990 for excellent
academic achievement, an EECS Summer Research Fellowship from
the University of Michigan in 1994, and a Best Student Paper Award at
RTAS’96 for a paper on real-time group membership. He is a student
member of the IEEE.

