IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 1, JANUARY 1997 25

PP-MESS-SIM: A Flexible and Extensible
Simulator for Evaluating
Multicomputer Networks

Jennifer Rexford, Member, IEEE, Wu-chang Feng, Student Member, IEEE,
James Dolter, Member, IEEE Computer Society, and Kang G. Shin, Fellow, IEEE

Abstract —This paper presents pp-mess-sim , an object-oriented discrete-event simulation environment for evaluating
interconnection networks in message-passing systems. The simulator provides a toolbox of various network topologies,
communication workloads, routing-switching algorithms, and router models. By carefully defining the boundaries between these
modules, pp-mess-sim creates a flexible and extensible environment for evaluating different aspects of network design. The
simulator models emerging multicomputer networks that can support multiple routing and switching schemes simultaneously; pp-
mess-sim achieves this flexibility by associating routing-switching policies, traffic patterns, and performance metrics with collections
of packets, instead of the underlying router model. Besides providing a general framework for evaluating router architectures, pp-
mess-sim includes a cycle-level model of the PRC, a programmable router for point-to-point distributed systems. The PRC model
captures low-level implementation details, while another high-level model facilitates experimentation with general router design
issues. Sample simulation experiments capitalize on this flexibility to compare network architectures under various application

workloads.

Index Terms —Multicomputers, routers, routing, switching, object-oriented simulation.

1 INTRODUCTION

M ESSAGE-PASSING parallel machines have emerged as a
cost-effective platform for exploiting concurrency or
parallelism in applications. These multicomputer systems
consist of processors linked by an interconnection network,
where fast message exchange enables efficient cooperation
between processing elements [1], [2]. Router hardware con-
nects each processing node to the interconnection fabric
and manages traffic flowing through the node en route to
other nodes. The router architecture greatly affects the abil-
ity of the interconnection network to deliver good commu-
nication performance to parallel applications. This paper
presents pp-mess-sim (point-to-point message simulator), a
flexible and extensible simulation environment for evalu-
ating and tuning multicomputer router designs [3], [4].
Maximizing system performance requires matching ap-
plication communication requirements with a suitable net-
work design. While many simulation toolkits can flexibly
model local and wide area networks [5], few simulators
sufficiently capture the characteristics of emerging multi-
computer router architectures. In contrast to LANs/WAN:Ss,
parallel systems typically employ regular network topolo-
gies that facilitate efficient, flexible routing schemes.

» J.Rexford is with AT&T Labs Research, Murray Hill, New Jersey.

* W. Feng and K.G. Shin are with the Real-Time Computing Laboratory,
Department of Electrical Engineering and Computer Science, University of
Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109-2122.

E-mail: {wuchang, kgshin}@eecs.umich.edu.
« J. Dolter is with Qualcomm Inc., San Diego, California.

Manuscript received June 19, 1995.
For information on obtaining reprints of this article, please send e-mail to:
transpds@computer.org, and reference IEEECS Log Number D95256.

Tighter coupling between nodes enables network designers
to consider more diverse switching schemes and flow-
control policies. In addition, mapping concurrent applica-
tions across multiple nodes generates unique communica-
tion patterns and requirements in message-passing parallel
machines [6], [7], [8], [9]. These communication workloads
affect the performance of particular routing algorithms and
switching schemes [10], [11], [12], [13].

As a result, several recent router architectures support
multiple routing or switching schemes simultaneously to
tailor network policies to application performance require-
ments [13], [14], [15], [16], [17]. Evaluating and tuning such
router designs requires special support in the network
simulator. Several recent simulation tools evaluate various
aspects of multicomputer applications and interconnection
networks. Execution-driven simulators [18], [19], [20] typi-
cally capture the instruction-level operation of applications
on particular multicomputer architectures. Other simula-
tion tools emphasize multicomputer network architectures,
allowing users to vary the router’s buffer architecture,
switching scheme, and routing algorithm, under different
synthetic traffic patterns [21], [22], [23]. However, existing
multicomputer simulators do not accommodate router ar-
chitectures that allow multiple routing algorithms or
switching schemes to coexist in the underlying network.

This paper presents pp-mess-sim, an object-oriented,
discrete-event simulator for experimenting with flexible
router policies in multicomputer interconnection networks.
Implemented in C++, pp-mess-sim achieves a high degree
of flexibility and extensibility by separating its major com-
ponents into different classes, representing the network

1045-9219 97$10.00 ©1997 IEEE

26 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 1, JANUARY 1997

topology, application workloads, routing-switching algo-
rithms, and the router architecture. By carefully defining
the boundaries between these components, pp-mess-sim
enables users to extend one module without altering the
internal representation of the other classes. For example,
users can easily incorporate new routing algorithms or traf-
fic patterns without knowing the details of the underlying
router model. In fact, as long as each model implements the
necessary interfaces, these router models can vary from
high-level architectures to detailed, low-level specifications
of actual devices, allowing incremental investigation of im-
plementation approaches and design enhancements.

The simulator includes several novel features that facili-
tate experimentation with flexible router architectures that
can support multiple classes of traffic, with different com-
munication workloads, performance metrics, and network
policies. The routing algorithm class defines a powerful
language which can be used to write a large number of
routing-switching algorithms, independent of the timing
characteristics of the underlying router model. By associat-
ing these algorithms with collections of packets, instead of
the router model, the simulator is able to support multiple
routing algorithms and switching schemes simultaneously.
The workload class also supports the flexible composition
of diverse traffic patterns, as well as a history-list mecha-
nism for accumulating performance metrics with user-
selectable data collection functions. Finally, pp-mess-sim
includes a powerful input specification language for con-
structing simulation experiments with diverse network pa-
rameters and complex communication workloads.

The next section of the paper provides an overview of
multicomputer router design issues; the components of pp-
mess-sim derive directly from these main architectural pa-
rameters, as shown in Section 3. Section 4 describes how
this framework enables the evaluation of a variety of router
models. Currently, pp-mess-sim includes a cycle-level
model of the programmable routing controller (PRC) [16], a
router for point-to-point distributed systems, as well as a
general, higher-level router model. The simulator supports
a broad spectrum of routing and switching schemes by de-
coupling them from the router models, as discussed in Sec-
tion 5. Section 6 describes how pp-mess-sim insulates these
routing-switching algorithms from the details of the net-
work topology. The simulator can also construct diverse
traffic patterns and performance metrics, as discussed in
Section 7. In Section 8, sample simulation experiments
capitalize on this flexibility to compare network architec-
tures under a variety of application workloads. Section 9
concludes the paper with a discussion of future pp-mess-
sim enhancements.

2 MOTIVATION

This section gives an overview of the major architectural
issues in multicomputer network design to motivate the
need for a flexible simulation environment. The selection of
these design parameters impacts both the cost and per-
formance of the design. Router performance is further in-
fluenced by the characteristics of the applied communica-
tion workload.

2.1 Topology

The choice of network topology affects multicomputer per-
formance and implementation complexity. By defining the
connections between processing nodes, the topology de-
termines the number of communication links at each node
and how far a packet must travel to reach its destination.
This impacts both the complexity of network wiring and
the achievable communication bandwidth in the system
[24], [25]. Depending on the communication workload, the
network topology affects how nonuniform traffic patterns,
such as hot-spots, form and dissipate over time. Although
parallel machines may connect processing nodes in a vari-
ety of topologies, many multicomputers have regular, di-
rect networks. Regular topologies simplify packet routing
and the placement of application processes in the network;
direct networks, consisting of point-to-point links, capital-
ize on spatial communication locality. Many multicomput-
ers employ the k-ary n-cube family of topologies, with k
nodes along each of n dimensions [24]. Currently pp-mess-
sim supports k-ary n-cube topologies, square meshes, and
wrapped hexagonal meshes.

A multicomputer can construct logical topologies on top
of the physical network by providing multiple virtual
channels on each physical link. These logical resources may
be employed to prevent communication deadlocks [26] and
improve network throughput [27]. Although virtual chan-
nels improve router flexibility, they also affect network
speed and implementation complexity [28]; since these
trade-offs greatly influence communication performance,
pp-mess-sim can vary the number of virtual channels in the
network. In addition, multicomputer networks can use
virtual channels to separate traffic with different character-
istics or performance requirements. To evaluate such net-
work partitioning schemes, pp-mess-sim can associate each
traffic class with a communication pattern, performance
metric, and routing-switching policy on a set of virtual
channels.

2.2 Switching

Switching schemes have significant influence on router per-
formance and implementation complexity. The switching
scheme impacts performance by determining the link and
buffer resources a packet consumes at a given node in its
route. Traditional packet switching requires incoming packets
to buffer completely before transmission to a subsequent
node can begin. In contrast, cut-through switching schemes,
such as virtual cut-through [29] and wormhole [30], try to for-
ward incoming packets directly to an idle output link. If the
outgoing link is busy, virtual cut-through switching buffers
the packet, whereas a blocked wormhole packet stalls pend-
ing access to the link. While first-generation multicomputers
employed packet switching, most contemporary routers
utilize cut-through switching for lower latency and reduced
buffer space requirements [2].

Wormhole switching achieves low latency without re-
quiring packet buffers, but virtual cut-through and packet
switching may achieve larger throughput at high loads.
Packet size also impacts switching performance, since mul-
ticomputer communication often consists of large data
transfers, coupled with small request and acknowledge-

REXFORD ET AL.: PP-MESS-SIM: A FLEXIBLE AND EXTENSIBLE SIMULATOR FOR EVALUATING MULTICOMPUTER NETWORKS 27

ment packets [7]. A flexible router can accommodate this
mixture of traffic by having long packets use wormhole
switching to reduce buffer space requirements, while al-
lowing short packets to use virtual cut-through switching to
reduce network contention [13]. To study these effects, pp-
mess-sim supports virtual cut-through, wormhole, and
packet switching, as well as hybrids of these schemes [31],
each under a variety of routing algorithms.

2.3 Routing

The routing algorithm determines which nodes a packet
traverses to reach its destination. Oblivious routing gener-
ates a single, deterministic outgoing link for an incoming
packet, whereas adaptive schemes can incorporate prevail-
ing network conditions into the routing decision. By con-
sidering multiple outgoing links, adaptive algorithms can
balance network load and increase a packet’s chances of
cutting through intermediate nodes. Additionally, adaptive
schemes may consider nonminimal paths in the hope of cir-
cumventing network congestion or faulty links. When the
algorithm must select from multiple output links at a node,
the actual route chosen depends on a selection function that
determines the order in which the algorithm considers these
candidate links.

Minimal and nonminimal adaptive routing can reduce
end-to-end delay, but out-of-order packet arrival can com-
plicate protocol processing at the receiving node [32]. Op-
portunities for adaptive routing vary depending on the to-
pology, the distance a packet must travel, and the traffic
patterns. A router could balance the trade-off between net-
work latency and depacketization overheads by imple-
menting adaptive routing only for single-packet messages
or packets that must visit a large number of intermediate
nodes; for these messages, additional routing adaptivity
may significantly reduce network latency, outweighing the
cost of packet reordering. By allowing multiple routing-
switching policies to coexist in the simulated network, pp-
mess-sim facilitates experimentation with flexible router
designs that tailor their routing-switching policies to appli-
cation performance trade-offs.

2.4 Queuing, Arbitration, and Flow Control

While routing and switching determine how each packet
flows through the network, the router at each node deter-
mines how the individual link and buffer resources are ac-
cessed. The router’s internal policies for queuing, arbitra-
tion, and flow control affect network performance and im-
plementation complexity by coordinating resource sharing
amongst competing packets. A bottleneck in the router de-
sign may limit achievable network throughput, potentially
outweighing the effects of the topology or the communica-
tion patterns. Thus, a crucial aspect of interconnection net-
work design is determining the size, speed, and structure of
internal components. The simulator decouples these router
policies from the network topology, routing-switching
schemes, communication workloads, and data collection to
enable a broad range of experiments on different router
models. Within the router models, pp-mess-sim represents
internal components as separate simulation modules, con-
nected by generic flow-control and arbitration models.

A particular router design may queue packets at the in-
put links, the output links, and the interface to the local
node. Depending on the structure and placement of these
buffers, packets may incur significant queuing delay [33].
When several queues vie for a resource, the router invokes
an arbitration policy, such as round-robin or a priority-
based scheme, to select the winner. The arbitration policy
may differentiate between application traffic classes to as-
sign priority to more urgent packets. Closely tied to both
gqueuing and arbitration is flow control, which affects la-
tency and throughput by limiting the rate at which packets
travel through the network. Flow control can occur any-
where from the byte level at the physical link to the mes-
sage level in the software and can influence both communi-
cation latency and network throughput. For example,
wormbhole routers typically divide the packets of a message
into small flow control units (flits); packets on different
virtual channels share the physical bandwidth, based on
flit-level link arbitration [27].

3 SIMULATOR STRUCTURE

As shown in Fig. 1, pp-mess-sim’s structure reflects the
important architectural issues outlined in Section 2. Al-
though network design parameters interact in subtle ways,
pp-mess-sim defines clean and powerful interfaces be-
tween the main simulation components, without restricting
the flexibility of the tool. The simulator also defines a speci-
fication language for composing complex experiments, with
a variety of traffic patterns and network policies.

target node
a distributions

((wr.o | channel ids
(et}

ids of|adjacent
nodes & channels

Workloa

packet
reception
(data collection)

packet
creation)
(traffic generation)

node status
(success/failure)

Fig. 1. Structure of pp-mess-sim .

3.1 Simulator Components and Interfaces

The main components of the simulator are a set of C++
classes supporting: network topologies (Net), communica-
tion patterns and data collection routines (Workload),
routing and switching policies (Ralg), and particular router
models (Node), as shown in Fig. 1. The arrows in the figure
highlight the interaction between the pp-mess-sim compo-
nents. By identifying the types of information that each
module needs from the other modules, and by carefully
defining the interface for accessing this information, com-
ponents can be independently developed without sacrific-
ing flexibility. Thus, the simulator can easily incorporate
new topologies, routing algorithms, router models, traffic
patterns, and data collection routines. As long as new
modules use the well-defined interfaces, they can interop-
erate with the pre-existing modules.

By handling all event flow in the simulator, the Node

28 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 1, JANUARY 1997

module encapsulates all information about the internal op-
eration of the router. For example, the Ralg module uses a
routing instruction interface to pass Node a series of in-
structions for it to execute; the Node executes these in-
structions and passes back the status of each one back
through the same interface. In the same manner, Workload
composes traffic patterns by mapping diverse application
“tasks” onto the simulated network and handles the details
of packet generation and data collection. The Net class in-
sulates other modules from the details of the specific topol-
ogy, by providing an interface for other modules to identify
and translate node addresses, link identifiers, and virtual
channels. Each router receives new packets from the Work-
load and in-transit packets from adjacent nodes, with no
dependence on the network topology, communication pat-
terns, or internal router policies at other nodes.

3.2 Input Specification

A separate Spec module encapsulates all functions related
to experiment specification. In order to evaluate diverse
network architectures, under complex traffic patterns, Spec
interprets a high-level language that can represent a wide
range of simulation experiments, as shown in Fig. 2. Input
specification is supported by a lexical analyzer generator
and a parser generator, which generate code that is linked
with the rest of the simulator during compilation. The input
grammar includes blocks for selecting the experiment pa-
rameters for each of the other pp-mess-sim modules. For
example, Fig. 2 specifies an 8-ary 2-cube (8 x 8 torus) net-
work that carries a mixture of time-constrained and best-
effort traffic, with different traffic patterns, performance
metrics, and network policies [12], [34].

topology begin
select kary-ncube; B
size 8; 27
s dimension 2; 20

» task time_constr begin
arrival Uniforn(100,100);
length Uniform(10,10);
target HopUniforn(0.2,0.7,0.1);
target_stack params(0.5,0.2,0.1);
routing_spec begin
1 routing ps_oblivious(0);
node default begin order random;
tasks 2; . end
history histogram(0,1000,50);

channels 3; 20
end W

select task time_constr 1;
1 end » packets 2000;
2 . drop 2003
i» task default begin > end
1 arrival NegativeExpntl(400.00);
1z length Discrete(0.7,16,0.3,512);
1o target NodeUniform(); 10
7 routing_spec begin 1

routing wh_oblivious(1,2);

o order dimorder;
20 end
n history latency:

packets 2000

drop 200;
n end

2 general begin

random seed 1353625084;

parameter RX::ack_xmit_time 1;

parameter CTBus::arbiter priority_crossbar;
e4_mix_400,00, out;
ed_mix_400.00.err;
ed_mix_400.00.results;
ed_mix_400.00.debug;

output
errors
results
debug
end

Fig. 2. Example simulation specification.

The input specification file includes “task™ blocks to de-
fine the communication workload, routing-switching algo-
rithm, and performance metric for each traffic class. As
shown in lines 18 and 31 of Fig. 2, the best-effort traffic em-
ploys two virtual channels (channels 1 and 2) for wormhole
routing while the time-constrained packets use packet
switching and oblivious routing on a single virtual channel

(channel 0). The network assigns these two traffic classes to
separate virtual channels to minimize interference and to
assign priority to the time-constrained packets. For exam-
ple, line 42 selects a priority arbiter to govern access to the
outgoing links; this arbiter is written to favor virtual chan-
nel 0 over the two wormhole virtual channels in order to
better serve the time-constrained traffic.

The simulator defines a flexible, string-mapping mecha-
nism for assigning internal router policies. In parsing the
input file, the simulator creates an entry in an associative
string map, with the key “CTBus:arbiter” and value
“priority_crossbar.” As nodes are created, pp-mess-sim
gueries the string map to retrieve the parameter values; if
no string is present the parameter is initialized with a de-
fault value. To provide more control over router features,
the string parameters can identify specific nodes or devices
(virtual channels) in the network. For example,
“node(10)::dev(8)::TX::xmit_time 100” would assign a large,
100 cycle, transmission delay for outgoing virtual channel 8
at node 10. Parameters without node and device numbers
apply to all nodes and devices, as in lines 41 and 42 in
Fig. 2. This flexibility enables pp-mess-sim to model het-
erogeneous and even faulty networks, with a range of link
speeds and router features.

4 ROUTER MODELS

By defining strict interfaces between individual parts of the
code, pp-mess-sim insulates the Node module from the
Net, Ralg, and Workload modules. This extensible frame-
work allows the user to develop and evaluate a variety of
router models without changing any of the other pp-mess-
sim modules. In addition, pp-mess-sim introduces several
useful abstractions for representing flow control and re-
source arbitration within the router models.

4.1 Node Modules

The simulator includes a cycle-level model of the PRC [3],
[16], a programmable routing controller for point-to-point dis-
tributed systems. As shown in Fig. 3, the PRC coordinates
bidirectional communication with up to four neighboring
nodes, with three virtual channels on each physical link; the
corresponding pp-mess-sim Node model includes simula-
tion modules for each of the router's main components, as
shown in Fig. 4. The host transmits a packet by feeding one
or more page tags to a transmitter fetch unit (TFU), where
each tag includes a memory address and the number of
words to transmit. Similarly, the host processor supplies
each network interface receiver (NIRX) with pointers to free
pages in the buffer memory, for use by arriving packets. To
represent software and system overheads, the pp-mess-sim
model captures the details of the page-level interaction with
the host processor; this includes the control and data trans-
fer delays associated with moving pages to/from the
router’s off-chip buffer memory.

REXFORD ET AL.: PP-MESS-SIM: A FLEXIBLE AND EXTENSIBLE SIMULATOR FOR EVALUATING MULTICOMPUTER NETWORKS 29

Programmable Routing Controller

Host interface Network Interface

] —
CRC Routing
Buffer Memory Unit | Engine
Memory | gy =
. — 3 NIRXs <
(1 MByte) =
(x 4 links)
Memory - =
- Reservation
Status Unit
Control Time [:
Interface Stamp) CTBUS
Unit cRC
Control \l, p =
L —=
i 3 TFUs 3NITXs| [F—>
To/from host (via VME bus) *alinks) 4 links)
| —

Fig. 3. PRC architecture.

class PRC : public Node {

NodeId id; // ldentifier of node

DevId max_dev_id; // Wumber of virtual channels

NodeStat node_stat; // Data collection for Node

HOST host; // Local host processor

TFU* tfu; // TFU transmission ports: tfulmax_dev_id]
NIRX* nirx; // WIRX reception channel: nirx[max_dev_id]
NITX* nitx; // WITX transmission channel: nitx[max_dev_id]
Link* link; // Physical links: link[max_direction]
CTBus ctbus; // Cut-through bus to network interface
TXBus txbus; // Bus from memory interface to TFUs
RXHost rxhost; // Data interface to host

PCBus pcbus; // Control interface

¥

Fig. 4. Internal components in the PRC Node model.

The PRC treats the outgoing virtual channels, the network
interface transmitters (NITXs), as individually reservable
resources, allowing the device to support a variety of rout-
ing and switching schemes through flexible control over
channel allocation policies. The demand-slotted cut-through
bus (CTBUS) and the reservation status unit coordinate the
low-level interaction between the incoming and outgoing
virtual channels on a word-by-word basis. Each incoming
link has a micro-programmable routing engine that can in-
terpret the wide variety of header formats used in routing-
switching algorithms; an arriving header could indicate the
packet’s destination node(s), or a relative address(es) for
the destination(s), as well as the packet’s traffic type or pri-
ority. The microcode can invoke different routing-switching
algorithms based on the packet header fields, allowing the
PRC to support multiple network policies simultaneously.

By capturing the low-level timing details for flow con-
trol, resource arbitration, and microcode execution, the PRC
Node model enables precise simulation experiments for
tuning interface speeds and flow-control policies. However,
efficiently exploring alternative architectures requires more
versatile models. Hence, pp-mess-sim includes a configur-
able, high-level model for examining techniques and per-
formance trends in router architecture. This “virtual” router
(v-router) supports various queuing, arbitration, and flow-
control policies. Since the v-router model captures less de-
tail than the PRC model, v-router experiments can effi-
ciently consider a broader range of simulation parameters
before testing specific options on a more detailed model.
For virtual cut-through and packet switching experiments,
the v-router simulations often execute an order of magni-
tude faster than comparable PRC simulations by modeling
only the head and tail flits in each packet; wormhole
switching experiments typically execute 50% faster, since

the v-router does not model low-level timing details, such
as the delay to reserve access to an idle virtual channel.

4.2 Router Components

Similar to behavioral hardware description languages, pp-
mess-sim represents each router component as a state ma-
chine, where simulation events trigger each state transition.
For example, Fig. 5a shows a state machine for an incoming
virtual channel. The channel remains idle until the incom-
ing link signals the arrival of a header word for a new
packet. After receiving the full packet header, the channel
must make a routing-switching decision, with the help of
the Ralg module; this may require the channel to reserve
buffer space or an outgoing virtual channel, as discussed in
Section 5. Once these resources are available, the channel
can forward the accumulated header bytes, followed by the
remainder of the packet, before returning to the idle state.

(first header word)

receive_header

(last header word)

acquire_resources

(decide to cut) (decide to buffer)

forward_header buffer_header

(done) (done)
forward_data buffer_data
(done) (done)
(a) Receiver state machine
(bus cycle (slave (slave not
done) ready) /submit ready)

bus cycle

(slave ready)
submit bus cycle

bus_grant_wait ready_wait

(b) Bus interface control

Fig. 5. Node state machines.

4.2.1 Flow Control

Each of these steps involves the passage of simulation time,
represented by one or more simulation events. At a lower
level, some operations require the virtual channel to interact
with other router components, such as an incoming or out-
going link. A separate state machine can encapsulate the low-

30 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 1, JANUARY 1997

level flow control at each interface, as shown in Fig. 5b. For
example, in the PRC model, an incoming virtual channel
(NIRX) waits for arriving data before forwarding the new
word across the CTBUS to an outgoing virtual channel (or
the memory interface). However, this transfer cannot occur
until the slave device (NITX) has sufficient buffer space; then,
the NIRX can request a slot on the CTBUS to forward the
word to the NITX. Similarly, the NITX model consists of a
small state machine for transmitting words and awaiting
flow-control acknowledgments from the adjacent router.

The simulator models the flow control between router
components using a wake-up queue interface, hiding the in-
ternal details of each module. For example, Fig. 5b shows
how an inco;ni,ng virtual channel remains in the
n meax P meaird state until its slave device becomes
available. To encapsulate the details of the slave device, pp-
mess-sim allows the incoming channel to register a pending
simulation event in the outgoing channel’s wake-up queue.
Once the outgoing channel becomes available, pp-mess-sim
drains the wake-up queue and inserts the entries into the
simulator’s main event queue; then, the simulation event can
execute and notify the incoming channel that the slave device
has become available, allowing the channel to transition to
the 2.7 4 ¢omea~rd »r 2ea i 4 state. The simulator uses a
similar wake-up queue mechanism to notify waiting packets
when an outgoing channel becomes eligible for reservation.

4.2.2 Resource Arbitration

Similarly, the pp-mess-sim Node models introduce useful
abstractions for representing arbitration for internal re-
sources, such as buses. When multiple modules can com-
pete for access to a resource, each module’s state transitions
depend on the behavior of other components, as well as the
arbitration policy. To insulate each module from these de-
tails, pp-mess-sim represents each shared resource with an
arbiter model that can register pending simulation events.
For example, in Fig.5b, an incoming virtual channel re-
quests access to the bus by submitting its bus-cycle event to
the arbiter, instead of the simulator's main event queue. The
channel remains in the 4 ™ & ¢nmeaw o seai 4 state
until the bus arbiter triggers execution of the bus-cycle
event.

Separate from the other components, each arbiter sched-
ules arbitration events at regular intervals, depending on
the speed of the unit. The event handler implements the
arbitration policy, determining which registered events
should be transferred to the main event queue for subse-
quent execution. This flexible framework allows pp-mess-
sim users to add new arbitration policies without affecting
the other simulation modules. In particular, the v-router
can instantiate several different arbiter models, including
various demand-slotted buses, physical crossbars, and vir-
tual-channel crossbars. Unlike bus models, crossbar models
can transfer multiple events to the simulator’s event queue
in a single arbitration cycle. By changing the order the ar-
biter scans pending events, the v-router can evaluate prior-
ity-based arbitration schemes, as shown in line 42 of Fig. 2.

4.2.3 Router Statistics
Evaluating a router design requires detailed information

about how internal features perform in operation; this in-
formation can then help pinpoint weaknesses and bottle-
necks in the design. Although the Workload module com-
putes performance statistics for arriving packets, this ap-
proach is unnatural for capturing fine-grain information
about resource usage in the router model. Consequently,
each pp-mess-sim Node model accumulates statistics for its
outgoing channels, internal buses, and packet buffers. By
maintaining separate performance data at each node, the
user can investigate the impact of nonuniform communica-
tion patterns on resource usage across all nodes in the net-
work. Each Node module updates these statistics whenever
a simulation event models access to an internal resource;
for example, if an event models the use of an internal bus,
the Node updates its count of active bus cycles. Using these
statistics, pp-mess-sim can gather detailed information
about network performance.

5 ROUTING AND SWITCHING ALGORITHMS

Tuning a network design requires evaluating routing and
switching schemes under a variety of arbitration, queuing,
and flow-control policies. The simulator facilitates such
experimentation by decoupling the router models (Node)
from the routing-switching algorithms (Ralg), as shown in
Fig. 1. This functional separation allows the user to easily
prototype new routing-switching algorithms without
changing the Node models. By associating a routing-
switching algorithm with each Workload task, pp-mess-
sim can allow multiple policies to coexist in the simulated
network.

5.1 Routing and Switching

Although multicomputer routers implement routing and
switching in various ways, every router proceeds through
common operations to service an incoming packet, as
shown in Fig. 5a. When a packet arrives from a host injec-
tion port or an incoming link the router parses the header
bytes to make a routing-switching decision. The Ralg mod-
ule decouples this decision-making process from the simu-
lation event flow in the Node model. Invoked after packet
header collection, the Ralg module interacts with the Node
using a series of instructions until they agree upon a suitable
routing-switching decision. This allows the high-level
routing-switching algorithm to make its decisions based on
feedback from the Node, without low-level knowledge of
the router architecture.

The Ralg instruction set embodies basic primitives for
constructing routing-switching algorithms. Each instruction
consists of a candidate switching decision and an ordered
list of outgoing virtual channels, as shown in Fig. 6. The list
of virtual channels encapsulates the routing options gener-
ated by the algorithm, while the candidate switching deci-
sion helps the router decide whether to buffer, stall, drop,
or forward the packet. The Node examines each instruction
and determines whether or not the output channel(s) can
satisfy the request. If necessary, the Node tries to reserve
channel or buffer resources to successfully complete the
operation; this process may involve multiple simulation
events and, perhaps, advancement in simulation time. The

REXFORD ET AL.: PP-MESS-SIM: A FLEXIBLE AND EXTENSIBLE SIMULATOR FOR EVALUATING MULTICOMPUTER NETWORKS 31

algorithm and the router model continue this request-
response handshake until they agree on a common routing-
switching decision. Additional support in the Net module
insulates the algorithms from the details of the network
topology, as discussed in Section 6.

class Ralg {
// Construct packet’s initial routing instruction at source or intermediate node
void i_source_inject(PacketPtr, HodePtr);
void i_net_inject(PacketPtr, NodePtr, DevId);

// Construct new routing instruction in response to feedback from Node
void i_complete(PacketPtr, NodePtr, DevId);

// Commit final routing-switching decision
void i_commit(PacketPtr, NodePtr, DevId);
¥

class RouterInstr {
RouterOp op;
DevOp* devop;
short num_devops;
short current_devop;

¥

// Candidate switching decision

// Ordered list of virtual channels and their status
// Number of devices (virtual channels) to attempt

// Place holder for sequencing through virtual channels

Fig. 6. Ralg routines for interacting with Node routing-switching state
machine.

Similarly, while the router model must accept com-
mands from the routing algorithm, the Node does not need
to know how this algorithm selects the sequence of opera-
tions. Node simulation events distinguish the architectural
and timing details in different router models. For example,
the PRC and v-router models differ in how they acquire
link and buffer resources for packets. The PRC has a central
reservation unit for assigning outgoing virtual channels to
incoming packets. Hence, the PRC Node module proceeds
through multiple simulation events to gain access this unit
and reserve virtual channels; in contrast, the v-router mod-
ule assumes that reserving idle channels does not incur any
delay. Using the Ralg instruction set, pp-mess-sim can eas-
ily incorporate additional routing algorithms and switching
schemes, without altering the Node models.

5.2 Routing-Switching Algorithms

For example, Fig. 7 shows a shortest-path routing algorithm
that tries to buffer a packet when its outgoing links are
busy; if the buffers are full, the incoming packet waits for a
link to become available (similar to wormhole switching).
To implement this algorithm, Ralg first asks the Node to es-
tablish a cut-through along outgoing channel 0 or 1. Upon
receiving the cut instruction, the Node module first tries to
reserve outgoing channel 0, resorting to channel 1 if the first
link is busy. To acquire a channel, the Node module may
invoke one or more simulation events to model internal
router delays. If neither attempt is successful, the Ralg re-
sponds with another instruction, asking the router to buffer
the packet for later transmission on channel 0. The router’s
queue architecture determines if the node can accommo-
date the new packet; if the router cannot store the incoming
packet, the Node rejects the buffer instruction. Ultimately,
the Ralg requests that the packet wait until channel 0 be-
comes available. Eventually, a simulation event frees the
channel 0, allowing the Node to reserve the outgoing chan-
nel and successfully complete the wait instruction; then, the
packet begins transmission to the next node in its route.

destination

source

Instructions
«Cut {0,1}

2
cut. O
L buffer == .Buffer {0}

wait o -Wait {0}

Fig. 7. Sequence of routing-switching instructions.

The Ralg instruction set enables pp-mess-sim to model a
wide range of routing-switching algorithms, as shown in
Table 1. The buffer instruction implements packet switching
algorithms, while virtual cut-through schemes employ a
combination of cut and buffer; wormhole switching schemes
utilize the wait instruction, where the underlying Node
model determines the flow-control and arbitration policies.
In addition to traditional switching schemes, sequences of
Ralg instructions can generate hybrid algorithms that in-
corporate aspects of both virtual cut-through and wormhole
switching, such as the example in Fig.7. These hybrid
switching schemes dynamically balance the use of channel
and memory resources for “storing” blocked packets. For
example, the h-hop hybrid algorithm in Table 1 allows a
blocked packet to stall (using the wait construct) only if the
packet spans fewer than h links; otherwise, the blocked
packet buffers at the intermediate node, releasing any
channel resources [31]. This algorithm limits channel con-
tention, while still restricting the use of packet buffers.

TABLE 1
EXAMPLES OF ROUTING-SWITCHING SCHEMES
IN pp-mess-sim

Routing
Minimal oblivious
Minimal adaptive
Minimal oblivious
Minimal adaptive
Nonminimal adaptive
Minimal oblivious
Minimal adaptive
Nonminimal adaptive
Minimal oblivious

Switching
Packet switching

Virtual cut-through

Wormhole

Hybrid (h-hop)

The Ralg instructions can also implement a variety of
routing algorithms by generating different lists of candidate
virtual channels. As shown in Table 1, pp-mess-sim in-
cludes a variety of oblivious and adaptive routing algo-
rithms for the different switching schemes. The simulator
uses Duato’s theory [35] to construct deadlock-free adap-
tive routing algorithms under wormhole switching. Each
algorithm requires a minimum number of virtual channels
for deadlock-free routing; the algorithm uses any additional
channels to improve network throughput. The specification
file determines how many and which virtual channels are
assigned to the routing algorithm, as shown in lines 18 and

32 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 1, JANUARY 1997

31 of Fig. 2. By specifying the same virtual channels, algo-
rithms can also share virtual channels between them. The
routing instructions provide flexibility and extensibility,
allowing pp-mess-sim users to add new routing-switching
algorithms and experiment with a mixture of policies in the
simulated network.

6 NETWORK TOPOLOGY

While some routing algorithms depend on a particular to-
pology, most schemes require only high-level information
about the various output links at each node. To facilitate
simulation experiments that vary network topology, the
pp-mess-sim Net class, as shown in Fig. 8, includes func-
tions which encapsulate the labeling scheme used to num-
ber each node, link, and virtual channel in the network;
derived classes implement the numbering schemes for the
k-ary n-cube, square mesh, and hexagonal mesh topologies.
The Net functions also assist the Workload class in con-
structing traffic patterns.

class Net {
unsigned int
unsigned int
unsigned int
Dimension
Direction
OffsetVec*
NodeId**

// Total number of nodes

// Number of virtual channels per link
// Diameter of the topology

// Dimension of the topology

// Number of links per node
get_offset(Nodeld,Nodeld); // Compute relative address of a node
hops; // Table for HopUniform distribution

total_nodes;
chan_per_link;
diameter;
edge_dimension;
max_direction

// Selection functions
Direction¥ dimension_order(), random_order(), min_congestion(), diagonal(),
nonmin_dim_order(), nonmin_random(), nonmin_min_congestion();

// WNeighbor and direction functions

NodeId neighbor_via_dir(NodeId, Direction), neighbor_via_dev(NodeId, DevId);
DevId neighbor_dev_via_vnet_and_dir(NodeId, VNet, Direction);

DevId neighbor_dev_via_dev(NodeId,DevId);

Direction dir_via_dev(DevId), reverse_dir_via_dir(Direction);

// Destination node distributions

NodeId bit_reverse(NodeId), bit_complement(lodeId), node_uniform(),

dimen_reverse(NodeId), dimen_rotate(NodeId, unsigned int);

H

Fig. 8. Internal components in the Net class.

6.1 Selection Functions

To decouple the routing-switching algorithms from the
network topology, the Net class includes functions that
generate a list of possible directions for a packet to travel.
For example, given the current node and the packet’s desti-
nation, Net identifies which output links lie on a minimal
path; in Fig. 7, Net returns the link set {0, 1}. Alternatively,
Net can determine which outgoing links would deflect a
packet away from a shortest-path route. Since routing per-
formance often depends on the order the router considers
the output links, Net includes a variety of selection func-
tions for ranking the candidate outgoing links. These selec-
tion functions, coupled with the Ralg routing-switching
instructions, enable pp-mess-sim to model a wide range of
communication policies on a variety of network topologies.

In line 19 of Fig. 2, the default best-effort traffic is as-
signed dimension-ordered routing, which requires a packet to
complete all hops in one direction before proceeding to the
next dimension; in contrast, line 32 specifies that time-
constrained packets consider their minimal-path output
links in a random order. In addition to these two selection
functions, Net can rank outgoing links according to how
much further the packet must travel in each direction; this

link ordering improves the packet’s chance of considering
multiple outgoing links at future nodes in its route [36],
[37]. For example, if a packet is traveling from node (4, 3) to
node (6, 10) in a square mesh, the diagonal selection func-
tion would recommend traveling in the y-direction, instead
of the x-direction, if both links are idle. Another selection
function ranks output links according to network conges-
tion, giving preference to links with fewer busy virtual
channels [38]; this balances traffic load amongst the outgo-
ing links, reducing contention and packet delay.

6.2 Mapping Functions

In addition to supporting routing-switching algorithms,
Net also insulates the Node and Workload modules from
the details of the network topology. As shown in Fig. 8, Net
includes a set of neighbor functions to identify adjacent
nodes. When a pending Node event sends data or a flow-
control acknowledgment across an outgoing link, these
neighbor functions identify the node, link, and virtual
channel that should receive this information, as shown in
Fig. 1; this allows a transmission event in one node to
spawn the corresponding reception event in the adjacent
router. Coupled with the support in Ralg, these mapping
functions decouple the Node models from the labeling
scheme in the Net class. This facilitates a variety of simula-
tion experiments that evaluate a router design under differ-
ent network topologies.

In addition to the neighbor and direction functions, the
Net module includes routines that assist Workload in gen-
erating traffic patterns. Mapping parallel applications
across multiple nodes results in unique communication
workloads that depend on the network topology. In order
to capture the communication behavior of scientific appli-
cations, pp-mess-sim can select packet destination nodes
from several common permutations, such as matrix-
transpose (dimension-reversal), bit-complement, and bit-
reversal, as shown in Table 2. Since these distributions de-
pend on the underlying numbering scheme for each topol-
ogy, the Net class includes functions to compute a packet's
destination, based on th/ejsource/,gode. For example, Work-
load can invoke Net's KAW kA a0k function
to return the Ax of the node whose dimension coordinates
are the same as the given node, but in the reverse order.

The underlying topology also affects the proximity of
communicating nodes. To minimize packet latency and
network throughput requirements, multicomputer applica-
tions often place communicating tasks near each other in
the network. To capture these spheres of communication
locality, pp-mess-sim includes a hop-uniform distribution,
as shown in line 28 of Fig. 2. In this example, 20% of packets
have destinations just one hop away, 70% travel two hops,
and the remaining packets traverse three hops. In order to
support this distribution, the Net class instantiates a hop
table as shown in Fig. 8; this multidimensional array, con-
structed at run-time, keeps track of which nodes are within
a certain distance of other nodes. The Workload module
consults this table to compute a packet’s destination, based
on the source node, without any dependency on the specific
network topology.

TABLE 2

REXFORD ET AL.: PP-MESS-SIM: A FLEXIBLE AND EXTENSIBLE SIMULATOR FOR EVALUATING MULTICOMPUTER NETWORKS 33

DESTINATION NODE DISTRIBUTIONS IN pp-mess-sim

Distribution Description
DimensionReversal | Source (w,z, ..., z) selects destination (z,...,z,w)
BitComplement Destination node id is the bit-complement of the source id
BitReversal Destination node id is the bit-reversal of the source id

HopUniform ({p;})
NodeUniform
Discrete ({n;,p;})

Select a destination ¢ hops away with probability p;

Uniform random selection of destination node

Select “hot spot” destination node n; with probability p;

7 COMMUNICATION WORKLOADS

Network traffic patterns and performance requirements
vary significantly across different applications. Hence, pp-
mess-sim provides flexible support for generating commu-
nication patterns and collecting performance statistics. The
Workload module insulates the rest of the simulator from
the details of the traffic generation and data collection by
handling all functions related to packet creation and recep-
tion. Flexible composition of tasks can generate complex
network workloads, with multiple traffic classes, while
history-list data collection allows the user to define differ-
ent performance metrics for each class.

7.1 Task Mapping

To construct a wide variety of traffic patterns, pp-mess-sim
generates packets from a collection of independent tasks,
which are mapped onto individual nodes in the network to
represent application behavior. For example, lines 8-11 of
Fig. 2 instantiate a time-constrained task and a “default”
best-effort task on each node. Since the performance of
routing and switching policies vary significantly depending
on application communication characteristics, each task can
select from the various routing-switching schemes in the
Ralg module. The simulator can generate complex, non-
uniform workloads by selectively mapping tasks onto par-
ticular nodes in the network. Flexible task specification and
mapping, combined with diverse traffic models, enable pp-
mess-sim to impose a wide range of communication pat-
terns on the underlying network.

The Workload module has a simple interface to the
event flow in the Node, facilitating extensions that incorpo-
rate new packet generation models. The simulator encap-
sulates packet length, interarrival, and destination node
distributions through generic functions, as shown in Fig. 9.
Workload schedules one packet creation event for each task
on each node, with _the event handler employing the
w L meat W r4 4 AR function to submit the next
creation event. By isolating creation times in the task
model, pp-mess-sim allows the user to incorporate new
packet generation schemes, including multistate models,
without affecting the rest of the simulator. By using these
generic functions, pp-mess-sim can easily be extended to
run in trace-driven mode by simply writing functions
which read packet arrival times, packet lengths, and packet
destinations from a file containing application traces rather
than generating the values from distributions.

class Task {
TaskId id;
HodeId node;

// Task identifier
// Wode identifier

Random*
MTACG*
delta_time

// Stochastic process for interarrival times
// Random number stream for arrival times
// Return next packet arrival time

arrival;
arrivalacg;
next_packet_time();

Random*
MTACG*
PacketLength

length;
lengthacg;
next_packet_length();

// Stochastic process for packet lengths
// Random number stream for packet lengths
// Return next packet length

HodeIdRand*
MTACG*
NodeId

// Stochastic process for destination node
// Random number stream for destination node
// Return next packet destination

target;
targetacg;
next_packet_target();

// Wumber of task’s packets generated
// Wumber of task’s packets delivered
// Humber of task’s packets collected
// Pointer to routing algorithm

// History list for data collection

unsigned int
unsigned int delivered;
unsigned int collected;
RoutingAlgPtr r_prog;
HistCollect* history;

generated;

Fig. 9. Workload task model.

7.2 Traffic Models

Analytical studies of multicomputer networks have typi-
cally modeled packet length, interarrival time, and destina-
tion node distributions as simple stochastic processes. For
example, packet arrivals have commonly been modeled as a
Poisson process, with exponentially-distributed interarrival
times. Detailed measurements of multicomputer applica-
tions, however, have led to more sophisticated traffic gen-
eration models [6], [7]. In order to simulate realistic work-
loads, pp-mess-sim provides a rich set of packet length,
interarrival time, and destination node distributions,® as
shown in Tables 2 and 3. Since many network protocols
enforce limits on packet size, the length distributions may
be trimmed to enforce upper and lower bounds on packet
length.

In Fig. 2 (line 15), the best-effort packets use the discrete
distribution to generate packet lengths. In this case, 70% of
the best-effort packets are short, while the remaining are
long; such bimodal distributions are common in multicom-
puter applications [7]. Packet interarrival times also stem
from a variety of distributions, as shown in Table 3. For
example, in Fig. 2, time-constrained tasks create periodic
(line 26), fixed-length (line 27) packets, while default best-
effort tasks generate packets according to a Poisson process
(line 14). Parallel applications also generate bursty network
traffic, due to multipacket messages and fine-grain hand-
shaking between cooperating nodes. The Workload module
can generate bursty traffic by using a two-stage normal
distribution, where the smaller mean represents the spacing
between packets within a burst and the larger mean repre-
sents the spacing between bursts; the burst length depends
on the probability p of selecting a packet’s interarrival time
from the first normal distribution.

TABLE 3
PACKET LENGTH AND INTERARRIVAL DISTRIBUTIONS

1. Each task on each node requires access to random number streams to
generate packet lengths, interarrival times, and destination nodes. The
simulator extends the additive congruential generator (ACG) [39] in the
GNU libg++ libraries to provide a multithreaded generator with a separate
random number streams for each stochastic process in each task. Starting
with a single input seed (e.g., line 40 in Fig. 2), pp-mess-sim divides the
resulting random number stream into consecutive chunks, assigning a
separate chunk to each stochastic process. This significantly reduces corre-
lation between the processes by generating multiple nonoverlapping ran-
dom number streams [40]. If a process exhausts its chunk, the next unused
chunk is allocated from the original stream.

34 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 1, JANUARY 1997

IN pp-mess-sim

Distribution Definition
Negative exponential () | Exponential distribution with mean A
Uniform (a,b) Select integers between a and b with equal probability
Discrete ({p;, {;}) Select £; with probability p;
Normal (p, 0) Normal distribution with mean p and standard deviation o
Two-stage normal Select from normal distribution (j1,0q) with probability p;
(p, pi1, 01, 2, 02) otherwise, select from normal distribution (y2,a3)

As shown in Section 6, pp-mess-sim implements several
destination node distributions ranging from the simple
node-uniform pattern to permutations derived from scien-
tific computations. While these distributions capture spe-
cific traffic patterns which can exist in the network, many
multicomputer applications exhibit temporal communica-
tion locality, where a node sends several messages to the
same destination over a small time interval. The simulator
captures this effect through a most-recently used stack model
for selecting destination nodes [6]. For example, line 29 of
Fig. 2 declares a three-element stack for each time-
constrained task. Half of the time, a new packet selects its
destination from the top of the stack; the second and third
destinations in the stack are chosen 20% and 10% of the
time, respectively. The task randomly selects a packet’s
destination node from the hop-uniform distribution (in line
28 of Fig. 2) the remaining 20% of the time. The destination
stack, coupled with hop-uniform communication, generates
a unique combination of spatial and temporal locality in the
simulated network.

7.3 Packet History List

Similarly, pp-mess-sim provides effective data collection by
associating performance metrics with the task construct, as
shown in Fig. 9. These performance statistics also allow the
user to study various communication patterns with differ-
ent performance requirements. Since the behavior of the
simulated network changes over time, performance metrics
are extremely sensitive to the interval of data collection.
Accurate measures of steady-state performance require
both a sufficient warm-up period and a reasonable averag-
ing interval. To prime the network, each task on each node
must deliver a certain minimum number of packets to their
destinations before any data collection commences. The
user may configure a different number of “warm-up” pack-
ets for each type of task through the “drop” field in the task
specification (as in lines 23 and 36 of Fig. 2).

After all tasks have completed their required “warm-up”
packets, each task accumulates performance data until the
required number of its packets have completed service (as
specified in lines 22 and 35 of Fig. 2); the task continues to
generate packets until every task in the network has com-
pleted data collection. During the data collection phase,
each task accumulates performance statistics as its packets
reach their destinations. The simulator provides an extensi-
ble mechanism for collecting packet statistics for each task.
As a packet travels through the simulated network, the
router model maintains a history list that records significant
events during the packet’s journey. For example, if a packet
cuts through an intermediate node, the location, time, and
event (e.g., cut) are appended to the history list. When the
packet arrives at its destination node, the data collection
routine processes the list to extract the desired performance

metrics.

With help from the Node modules, the data collection
routines can accumulate a wide variety of performance sta-
tistics, as shown in Table 4. The timestamps on the history
records indicate the end-to-end latency of the packet, as
well as the components of this delay. Logging the event
type allows the collection routines to evaluate the routing
and switching decisions that occurred for each packet. Ex-
isting history collection routines capture end-to-end delay
statistics, packet cut-through probabilities, and latency
histograms. For example, in Fig.2 the time-constrained
tasks capture a histogram of latency data to estimate the
probability distribution of packet delay (line 34), while the
best-effort tasks collect basic latency metrics (line 21), in-
cluding the mean, max, variance, and confidence intervals.

TABLE 4
HISTORY-LIST DATA COLLECTION ROUTINES IN pp-mess-sim
Metric Description
Latency Mean, max, variance, and confidence intervals for packet latency
Histogram(a, b, ¢) Histogram of packet latency with ¢ bins over range [a, b]
Cut-through statistics | Iistogram of packet cut-through history
Null No data collection

Since performance may vary with communication dis-
tance, these routines also maintain separate statistics based
on the number of hops a packet travels. Tasks may also
select a null collection routine; this avoids accumulating
unnecessary performance data for any “background” traffic
in the system. The history collection mechanism also allows
for simple extensions for additional performance metrics to
study specific research issues. For example, using statistics
on packet cut-through history, we have investigated the
effects of inter-node dependencies on the performance of
cut-through networks by comparing simulation results
with analytical models [41]. Adding customized entries to
the history list can create a fairly detailed list, allowing the
collection routines to reconstruct the behavior of the packet
and the network.

8 SIMULATION EXPERIMENTS

The simulator’s flexibility enables a broad range of experi-
ments for evaluating multicomputer router designs. As a
result, several studies have used pp-mess-sim to evaluate
the PRC and the v-router models under various routing-
switching schemes, network topologies, and application
workloads [3], [4], [12], [31], [34], [42], [43], [44]. This sec-
tion presents the results of sample pp-mess-sim experi-
ments that consider the interaction of routing-switching
algorithms and communication patterns. Additional ex-
periments show that multicomputer networks can support
a diverse mixture of application workloads by implement-
ing multiple routing-switching schemes on different virtual
channels.

8.1 Switching Schemes

In defining how packets flow between nodes, the various
switching schemes stress different resources along a
packet’s route. This section evaluates the use of packet
buffers and virtual channels to relieve congestion in the
interconnection network.

REXFORD ET AL.: PP-MESS-SIM: A FLEXIBLE AND EXTENSIBLE SIMULATOR FOR EVALUATING MULTICOMPUTER NETWORKS 35

8.1.1 Node-Uniform and Matrix-Transpose Traffic

Fig. 10 shows the performance of various switching
schemes using static dimension-ordered routing on an 8 x 8
square mesh; each node independently generates 16-word
packets with exponentially-distributed interarrival times.
The graphs plot the mean packet latency as a function of the
link utilization for node-uniform and matrix-transpose traffic
patterns. As expected, virtual cut-through switching consis-
tently outperforms packet switching, since virtual cut-
through packets often avoid buffering delay at intermediate
nodes; at high loads, virtual cut-through and packet switch-
ing performance gradually merge, as high network utiliza-
tion decreases the likelihood that an in-transit packet en-
counters an idle output link. At low loads, wormhole
switching performs extremely well for both traffic patterns,
even though blocked packets stall in the network.

However, the relative performance of virtual cut-
through and wormbhole switching varies significantly be-
tween Figs. 10a and 10b. Under node-uniform traffic, the
two switching schemes exhibit comparable performance at
low loads; however, network contention limits wormhole
throughput at higher loads. By removing blocked packets
from the network, virtual cut-through and packet switching
consume network bandwidth proportional to the offered
load. In contrast, a blocked wormhole packet stalls in the
network until its outgoing channel becomes available; this
stalled packet may then block other traffic destined for dif-
ferent output links. At higher loads, this effect enables
packet switching to outperform wormhole switching, even
though packet switching introduces buffering delay at each
hop in a packet’s route.

Despite channel contention effects, wormhole switching
excels for the matrix-transpose permutation, as shown in
Fig. 10b. This occurs because matrix-transpose traffic, cou-
pled with dimension-ordered routing, limits contention
between packets heading to different parts of the network.
In a square mesh, the matrix-transpose permutation re-
quires node (c, d) to communicate with node (d, c). With
dimension-ordered routing, each packet starting on row d
proceeds in the x-direction to node (d, d), before traveling in
the y-direction to reach the destination node. As a result,
source nodes in row d inject packets that use the same row
and column links. Although a blocked wormhole packet
may still restrict other traffic from entering a node, this traf-
fic must ultimately traverse the same links as the stalled
packet; buffering the blocked packet cannot alleviate this
contention. Neither wormhole nor virtual cut-through
switching performs best in all situations, suggesting that
router designs can incorporate the salient features of the
both schemes [31]; pp-mess-sim’s Ralg support facilitates
experimentation with such hybrid algorithms.

8.1.2 Mixing Wormhole and Packet Switching

Wormhole and packet switching exercise complementary
resources in the interconnection network, with wormhole
switching reserving virtual channels and packet switching
consuming buffers in the router. By removing blocked
packets from the network, packet switching can improve
network throughput and reduce the variability in packet
delay. While packet switching forms physical queues at

300.0 T I
G—=0 Packet SwitchedJ;)
O— Virtual Cut—ThrOLfgh /’
250.0 | & Wormhole /]
{
> {
3 | / 7u
Q2000 | / f 1
5 /
= | /]
8 /
$ 1500 / / 1
3 |
:'3’ / e//g
S 100.0 o b
|
50.0 g o]
o
OO L L L
0.0 0.2 0.4 0.6 0.8
Link Utilization
(a) Node uniform traffic
T T
&—=© Packet Switched
3—=H1 Virtual Cut-Through
150.0 &—< Wormhole 1
m
o
[5]
g
§ 100.0 | oo o9 1
©
©
-
[«
o
o
[
Z 500t 1
=
Z}f_%:cgﬁgf/‘
OO L L L L
0.00 0.05 0.10 0.15 0.20 0.25

Link Utilization

(b) Matrix transpose traffic

Fig. 10. Comparing switching schemes under dimension-ordered routing.

each outgoing link, blocked wormhole packets form logical
gueues that span multiple nodes. These decentralized
queues complicate resource allocation and scheduling,
while avoiding the cost of packet buffers in the router. As
described in Fig. 2, a flexible router can implement packet
switching for predictable communication, while permitting
best-effort traffic to employ wormhole switching [12], [34].
Fig. 11 shows results from a similar traffic mixing ex-
periment, using the PRC Node model in a 6 x 6 torus net-
work. Each node injects 64-byte packets with uniform ran-
dom selection of destination nodes and dimension-ordered
routing. The experiment varies the injection rate for best-
effort traffic, while generating a time-constrained packet
every 1,500 cycles at each node. With three virtual channels
on each physical link, the experiment assigns two virtual
channels to deadlock-free wormhole routing for best-effort

36 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 1, JANUARY 1997

packets, while dedicating the remaining virtual channel to
time-constrained, packet-switched traffic. As shown in
Fig. 11, best-effort packets incur increased latency and de-
lay variance as the traffic load increases. This contention
does not harm the time-constrained traffic, since blocked
best-effort packets temporarily stall in their own virtual
network instead of consuming link and buffer resources at
intermediate nodes.

Wormbhole switching
Packet switching

3000

2000

1000

Average packet latency (cycles)

0
0.0002

0.0004 0.0006 0.0008 0.0010
Applied wormhole load per node (packets/cycle)
(a) Average latency (all packets)
1500
Wormbhole switching
& Packet switching
3
g
S 1000
8
>
@
kel
B
o
Eel
c
£ 500
=)
<
L
<
-
0
0.0002 0.0004 0.0006 0.0008 0.0010

Applied wormhole load per node (packets/cycle)

(b) Latency standard deviation (5-hop packets)

Fig. 11. Mixing wormhole and packet switching under dimension-
ordered routing.

The average latency and predictability of time-
constrained packets are largely unaffected by the best-effort
load, due to fine-grain arbitration amongst the virtual
channels. The router can further reduce the interference of
best-effort traffic by imposing priority arbitration amongst
the virtual channels [34], as shown in Fig. 2. For a time-
constrained packet, this effectively provides flit-level pre-
emption of best-effort traffic across its entire path through
the network. These results motivate a router architecture
that tailors its low-level routing, switching, arbitration,
queuing, and flow-control policies to the conflicting re-
quirements of time-constrained and best-effort communi-
cation [17]. The simulator’s flexibility and extensibility will
permit development of a new Node model to compare this

router design to other architectures under a wide range of
traffic patterns and performance metrics.

8.2 Routing Algorithms

The simulator’s Ralg instructions and Net selection func-
tions enable multifactor experiments that study the interac-
tion of routing algorithms with the network topology and
application traffic patterns. This subsection compares the
dimension-order, diagonal, and random selection functions
under oblivious and adaptive minimal routing. In addition,
the experiment includes a class of deflection algorithms that
use a dimension-ordered selection function to select from
minimal-path links before considering any nonminimal
possibilities; the number of nonminimal hops is restricted
by a hop-threshold. The simulations consider the peak
achievable network throughput under virtual cut-through
switching and a Poissonian packet arrival process at each
node; additional experiments with bursty arrivals demon-
strate the ability of adaptive routing algorithms to dissipate
traffic bursts [4], [44]. Finally, the experiments evaluate 16-
word packets in a 16 x 16 square mesh, but simulations
with 64-word packets and torus networks show similar
trends [44].

8.2.1 Bit-Complement Traffic

Fig. 12 shows the peak throughputs of the routing algo-
rithms under bit-complement traffic. This pattern funda-
mentally congests the center of the network, in both the
torus and square mesh topologies. The bit-complement
permutation requires source node (¢, d) to communicate
with node (15 - ¢, 15 — d); as a result, all packets must
eventually cross both the middle row and the middle col-
umn of the mesh, irrespective of the routing algorithm. As
the figure shows, the selection function plays a role in de-
termining the achievable network throughput. The diago-
nal minimal algorithm performs the worst since it tends to
route packets towards the center of the network; in con-
trast, the dimension-ordered selection function performs
well by keeping packets closer to the periphery of the mesh.

Adding adaptivity to the the dimension-ordered algo-
rithm actually harms performance since the adaptive algo-
rithm mistakenly tries to avoid the heavily-congested mid-
dle column (or row) by routing packets to more lightly-
loaded rows (or columns). This ultimately pushes traffic
closer to the congested center of the network. A local deci-
sion at one node causes a packet to travel a lightly-loaded
link into a more congested region. This effect is worst in a
square mesh and on larger networks, where the regions of
congestion are magnified. Adaptivity does help improve
performance of algorithms which use the random and di-
agonal selection functions, however. Since these selection
functions tend to direct traffic into the center of the net-
work, adaptivity helps by allowing the algorithm to avoid
creating large regions of congestion. Deflection algorithms
also perform well under this traffic pattern since they are
able to circumvent the regions of congestion and correct
mistakes made earlier in the route.

REXFORD ET AL.: PP-MESS-SIM: A FLEXIBLE AND EXTENSIBLE SIMULATOR FOR EVALUATING MULTICOMPUTER NETWORKS 37

DimOrder-OblivMinPath
AdaptMinPath
AdaptDeflect-1

AdaptDeflect-2

Random-OblivMinPath

AdaptMinPath]

Diagonal-OblivMinPath J
4 |

U]

T T

0 0.1 0.2 03 0.4 05

Peak Throughput (link utilization load)

Fig. 12. Peak throughput in a 16 x 16 square mesh with bit-
complement traffic.

8.2.2 Bit-Reversal Traffic

Fig. 13 shows the peak throughputs of the routing algo-
rithms under a bit-reversal traffic pattern. In contrast to the
bit-complement experiment, the static dimension-ordered
routing algorithm performs poorly under bit-reversal traffic
since packets cannot circumvent regions of congestion to
utilize many of the lightly-loaded links in the network.
Adding adaptivity to this algorithm, however, still does not
improve performance significantly as shown by the low
peak throughputs for the adaptive dimension-ordered algo-
rithms. This indicates that just as the diagonal selection
function is pathologically bad for bit-complement traffic,
the dimension-ordered selection function is pathologically
bad for bit-reversal traffic. While changing selection func-
tions improves performance for the static routing algo-
rithms, it is not enough to obtain peak performance. As
shown in Fig. 13, adding adaptivity to the static random
and diagonal routing algorithms improves performance
considerably.

It is interesting to note that the adaptive diagonal algo-
rithm saturates at a higher peak throughput than the adap-
tive random algorithm, while the reverse is true for their
oblivious counterparts. For the adaptive algorithms, the
diagonal selection function attempts to increase a packet’s
chance of having multiple routing options at later hops in
the route. As a result, the diagonal routing algorithm in-
creases the likelihood of avoiding network congestion and
establishing packet cut-throughs, improving performance
over the adaptive random scheme. Since the diagonal se-
lection function performed the best out of the adaptive
minimal routing algorithms, additional experiments using a
diagonal deflection algorithm were also performed; as
Fig. 13 shows, the extra adaptivity makes little difference.
In contrast, deflections improve performance for the di-
mension-ordered routing algorithm by allowing packets to
route around areas of congestion caused by the poorly per-
forming selection function.

8.2.3 Tailoring Experiments

The multifactor experiments demonstrate the value of tai-
loring routing policies to application traffic patterns. For
routers which support multiple routing schemes, these re-

DimOrder-OblivMinPath
AdaptMinPath
AdaptDeflect-1

AdaptDeflect-2

Random-OblivMinPath J

AdaptMinPath

Diagonal-OblivMinPath J

AdaptMinPath

AdaptDeflect-1

AdaptDeflect-2

| I | I
LB DL DL DL LA B L B
0 01 02 03 04 05 06 07 08

Peak Throughput (link utilization load)

Fig. 13. Peak throughput in a 16 x 16 square mesh with bit-reversal
traffic.

sults serve as a guide for selecting an appropriate routing
algorithm based on the application workload. For networks
which only support a single routing scheme, these results
can influence how the operating system maps tasks onto
different nodes in the network, in effect, tailoring the com-
munication workload to the routing algorithm. In a multi-
user environment, where multiple applications execute at
the same time, supporting multiple routing schemes simul-
taneously can significantly improve performance. This sub-
section considers a set of experiments that mix bit-reversal
and bit-complement traffic in an 8 x 8 square mesh. The
experiments evaluate a wormhole network with four vir-
tual channels on each link; the two tasks route messages on
separate pairs of virtual channels to partially insulate the
applications from each other.

The graphs show average packet latency for both traffic
patterns, under increasing bit-complement load; the bit-
reversal pattern remains fixed at a link load of 0.12. Ac-
cording to Fig.12 and Fig. 13, bit-complement has peak
performance under static dimension-ordered routing, while
the bit-reversal pattern performs best under the diagonal
minimal-path algorithm. As shown in Fig. 14a, the bit-
reversal traffic has poor performance when both tasks are
forced to use the static routing algorithm. Bit-reversal per-
formance improves significantly when both tasks employ
diagonal minimal-path routing, but this configuration de-
grades the bit-complement performance, as shown in
Fig. 14b. The bit-complement traffic has low average la-
tency under static dimension-ordered routing, independent
of the algorithm assigned to the bit-reversal traffic. The
network performs best when it tailors the routing policies
to the application traffic patterns. The simulator’s Ralg and
Workload support facilitate such experimentation by al-
lowing multiple routing-switching schemes and traffic
patterns to coexist in the underlying network.

38 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 1, JANUARY 1997

200.0
G—=© Tailored
S——H1 Both Static
&—= Both Adaptive
—~ 150.0 B
w
@
[5]
g /f
> -
2
2 1000 4
]
—
] -
g _—
2 ga/ oo
50.0 | s 1
OO L L L
0.10 0.20 0.30 0.40
Link Utilization
(a) Bit-reversal traffic
400.0 T
G—=© Tailored ‘ EJJ /
350.0 | 3 o Both Static |
&——=< Both Adaptive C/b
—~ 300.0 - B
w
@
¢ |
& 2500 | i
> o /
5 /
o 2000 - / i
]
S 1500 | / / 1
o ' [/ A
o /
< 1000 + ///J@ 4@/53/ 1
//;/;g/
50.0 - o—&T 1
0.0 ‘ ‘ :
0.10 0.20 0.30 0.40

Link Utilization

(b) Bit-complement traffic

Fig. 14. Average latency under traffic mixing.

9 CONCLUSIONS AND FUTURE WORK

Evaluating multicomputer router designs requires a flexible
simulation framework. The object-oriented pp-mess-sim
environment provides a toolkit for studying different net-
work topologies, routing-switching policies, and router
models, under a variety of communication workloads.
Well-defined interfaces between the simulator components
create an extensible environment that enables independent
enhancements to the code. As part of ongoing work, addi-
tional features are continually added to the simulator. In
particular, we are extending Workload to generate more
realistic communication patterns through the use of com-
plex arrival processes, application traces, and accurate
communication models. These options will complement the
existing probability distributions for packet length, inter-

arrival times, and target destination nodes.

We are also capitalizing on the Ralg instruction set, and
the Net selection functions, to construct new routing-
switching algorithms that address application characteris-
tics and performance requirements. Using pp-mess-sim’s
flexible mechanisms for specifying and evaluating complex
network configurations, we are experimenting with how to
effectively combine multiple routing-switching policies in
the underlying network. To represent more complex rout-
ing and switching algorithms, we are extending the Ralg
instruction set to support multicast routing algorithms and
to interact more closely with the queuing models in the
Node modules.

To study general router design issues, we are extending
the v-router Node module to allow more control over in-
ternal router organization. With a diverse library of arbiters
and buffer architectures, the v-router could construct a
wider range of candidate router designs. Ultimately, multi-
computer performance depends on the interaction of these
internal router policies with the network topology, routing-
switching policies, and application workloads. Drawing on
the Net, Ralg, and Workload support, pp-mess-sim users
could then compare candidate router architectures under
the same network policies and application demands.”

ACKNOWLEDGMENTS

The work reported in this paper was supported in part by
the U.S. National Science Foundation under Grant MIP-
9203895. Any opinions, findings, and conclusions or rec-
ommendations expressed in this paper are those of the
authors and do not necessarily reflect the view of the Na-
tional Science Foundation.

REFERENCES

[1] W. Athas and C. Seitz, “Multicomputers: Message-Passing Con-
current Computers,” Computer, pp. 9-24, Aug. 1988.

[2] X. Zhang, “System Effects of Interprocessor Communication La-
tency in Multicomputers,” IEEE Micro, pp. 12-15, 52-55, Apr. 1991.

[3] . Dolter, “A Programmable Routing Controller Supporting Multi-
Mode Routing and Switching in Distributed Real-Time Systems,”
PhD thesis, Univ. of Michigan, Sept. 1993.

[4] J. Rexford, J. Dolter, W. Feng, and K.G. Shin, “PP-MESS-SIM: A
Simulator for Evaluating Multicomputer Interconnection Net-
works,” Proc. Simulation Symp., pp. 84-93, Apr. 1995.

[5] A.M. Law and M.G. McComas, “Simulation Software for Commu-
nications Networks: The State of the Art, “ IEEE Comm., pp. 44-50,
Mar. 1994.

[6] J.-M. Hsu and P. Banerjee, “Performance Measurement and Trace
Driven Simulation of Parallel CAD and Numeric Applications on
a Hypercube Multicomputer,” IEEE Trans. Parallel and Distributed
Systems, vol. 3, pp. 451-464, July 1992.

[71 R.Cypher, A. Ho, S. Konstantinidou, and P. Messina, “Architectural
Requirements of Parallel Scientific Applications with Explicit
Communication,” Proc. Int’l Symp. Computer Architecture, pp. 2-13,
May 1993

[8] M.G. Norman and P. Thanisch, “Models of Machines and Com-
putation for Mapping in Multicomputers,”“ ACM Computing Sur-
veys, vol. 25, pp. 263-302, Sept. 1993.

[91 V.M. Lo, S. Rajopadhye, S. Gupta, D. Keldsen, M.A. Mohamed, B.
Nitzberg, J.A. Telle, and X. Zhong, “OREGAMI: Tools for Map-
ping Parallel Computations to Parallel Architectures,” Int’l J. Par-
allel Programming, vol. 20, pp. 237-270, June 1991.

2. For more information about the availability of pp-mess-sim, please see
our web page at £ 4 4% Ao Ak PEALE X

REXFORD ET AL.: PP-MESS-SIM: A FLEXIBLE AND EXTENSIBLE SIMULATOR FOR EVALUATING MULTICOMPUTER NETWORKS 39

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]

[31]

[32]

[33]

[34]

F. Hady and D. Smitley, “Adaptive vs. Non-Adaptive Routing:
An Application Driven Case Study,” Technical Report SRC-TR-
93-099, Supercomputing Research Center, Bowie, Md., Mar. 1993.
J.H. Kim and A.A. Chien, “Evaluation of Wormhole Routed Net-
works Under Hybrid Traffic Loads,” Proc. Hawaii Int’l Conf. Sys-
tem Sciences, pp. 276-285, Jan. 1993.

J. Rexford, J. Dolter, and K.G. Shin, “Hardware Support for Con-
trolled Interaction of Guaranteed and Best-Effort Communication,”
Proc. Workshop Parallel and Distributed Real-Time Systems, pp. 188-
193, Apr. 1994.

S. Konstantinidou, “Segment Router: A Novel Router Design for
Parallel Computers,” Proc. Symp. Parallel Algorithms and Architec-
tures, June 1994.

D. Smitley, F. Hady, and D. Burns, “Hnet: A High-Performance
Network Evaluation Testbed,” Technical Report SRC-TR-91-049,
Supercomputing Research Center, Inst. for Defense Analyses,
Dec. 1991.

nCube Corporation, nCube-3: The Scalable Server Platform, Mar.
1995.

S. Daniel, J. Rexford, J. Dolter, and K. Shin, “A Programmable
Routing Controller for Flexible Communications in Point-to-Point
Networks,” Proc. Int’l Conf. Computer Design, pp. 320-325, Oct.
1995.

J. Rexford, J. Hall, and K.G. Shin, “A Router Architecture for Real-
Time Point-to-Point Networks,” Proc. Int’l Symp. Computer Archi-
tecture, pp. 237-246, May 1996.

E. Olk, “PARSE: Simulation of Message Passing Communication
Networks,” Proc. Simulation Symp., pp. 115-1245, Apr. 1994.

P.M. Dickens, P. Heidelberger, and D.M. Nicol, “Parallelized
Network Simulators for Message-Passing Parallel Programs,”
Proc. Int’l Workshop Modeling, Analysis, Simulation of Computer and
Telecommunication Systems, pp. 72-76, 1995.

R.C. Bedichek, “Talisman: Fast and Accurate Multicomputer
Simulation,” Proc. ACM SIGMETRICS/Performance, pp. 14-24, May
1995.

P.K. McKinley and C. Trefftz, “MultiSim: A Simulation Tool for
the Study of Large-Scale Multiprocessors,” Proc. Int’l Workshop
Modeling, Analysis, Simulation of Computer and Telecommunications
Systems, pp. 57-62, Jan. 1993.

JR. Jump and S. Lakshmanamurthy, “NETSIM: A General-
Purpose Interconnection Network Simulator,” Proc. Int’| Workshop
Modeling, Analysis, Simulation of Computer and Telecommunication
Systems, pp. 121-125, Jan. 1993.

K. Bolding, S.-E. Choi, and M. Fulgham, “The Chaos Router
Simulator.” Presentation at Parallel Computer Routing and Comm.
Workshop, May 1994.

W.J. Dally, “Performance Analysis of k-Ary n-Cube Interconnec-
tion Networks,” IEEE Trans. Computers, vol. 39, no. 6, pp. 775-785,
June 1990.

A. Agarwal, “Limits on Interconnection Network Performance,”
IEEE Trans. Parallel and Distributed Systems, vol. 2, pp. 398-412,
Oct. 1991.

W.J. Dally and C.L. Seitz, “Deadlock-Free Message Routing in
Multiprocessor Interconnection Networks,” IEEE Trans. Comput-
ers, vol. 36, no. 5, pp. 547-553, May 1987.

W.J. Dally, “Virtual-Channel Flow Control,” IEEE Trans. Parallel
and Distributed Systems, vol. 3, pp. 194-205, Mar. 1992.

A.A. Chien, “A Cost and Speed Model for k-Ary n-Cube Worm-
hole Routers,” Proc. Hot Interconnects, Aug. 1993.

P. Kermani and L. Kleinrock, “Virtual Cut-Through: A New
Computer Communication Switching Technique,” Computer Net-
works, vol. 3, pp. 267-286, Sept. 1979.

W.J. Dally and C.L. Seitz, “The Torus Routing Chip,” J. Distributed
Computing, vol. 1, no. 3, pp. 187-196, 1986.

K.G. Shin and S. Daniel, “Analysis and Implementation of Hybrid
Switching,” Proc. Int’l Symp. Computer Architecture, pp. 211-219,
June 1995. Extended version to appear in IEEE Trans. Computers.
V. Karamcheti and A.A. Chien, “Software Overhead in Messaging
Layers: Where Does the Time Go?,” Proc. Int’l Conf. Architectural
Support for Programming Languages and Operating Systems, pp. 51-
60, Oct. 1994.

M.G. Hluchyj and MJ. Karol, “Queueing in High-Performance
Packet Switching,” IEEE J. Selected Areas in Comm., vol. 6, pp. 1,587-
1,597, Dec. 1988.

J. Rexford and K.G. Shin, ”Support for Multiple Classes of Traffic
in Multicomputer Routers,” Proc. Parallel Computer Routing and
Comm. Workshop, pp. 116-130, May 1994.

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

J. Duato, “A New Theory of Deadlock-Free Adaptive Routing in
Wormhole Networks,” IEEE Trans. Parallel and Distributed Sys-
tems, pp. 1,320-1,331, Dec. 1993.

H.G. Badr and S. Podar, “An Optimal Shortest-Path Routing Pol-
icy for Network Computers with Regular Mesh-Connected To-
pologies,” IEEE Trans. Computers, vol. 38, no. 10, pp. 1,362-1,370,
Oct. 1989

A.L. Davis, “Mayfly: A General-Purpose, Scalable, Parallel Proc-
essing Architecture,” Lisp and Symbolic Computation, vol. 5, pp. 7-
47, May 1992.

W.J. Dally and H. Aoki, “Deadlock-Free Adaptive Routing in
Multicomputer Networks Using Virtual Channels,” IEEE Trans.
Parallel and Distributed Systems, vol. 4, pp. 466-476, Apr. 1993.

D.E. Knuth, The Art of Computer Programming, Vol 2: Seminumerical
Algorithms, first edition. Addison Wesley, 1969.

R. Jain, The Art of Computer Systems Performance Analysis. John
Wiley & Sons, 1991.

J. Rexford and K.G. Shin, “Shortest-Path Routing in Homogene-
ous Point-to-Point Networks with Virtual Cut-Through Switch-
ing,” Computer Science and Eng. Technical Report CSE-TR-146-
92, Univ. of Michigan, Nov. 1992.

W. Feng, J. Rexford, A. Mehra, S. Daniel, J. Dolter, and K. Shin,
“Architectural Support for Managing Communication in Point-to-
Point Distributed Systems,” Technical Report CSE-TR-197-94,
Univ. of Michigan, Mar. 1994.

W. Feng, J. Rexford, S. Daniel, A. Mehra, and K. Shin, “Tailoring
Routing and Switching Schemes to Application Workloads in
Multicomputer Networks,” Computer Science and Eng. Technical
Report CSE-TR-239-95, Univ. of Michigan, May 1995.

W. Feng and K.G. Shin, “Impact of Selection Functions on Rout-
ing Algorithm Performance in Multicomputer Networks,” Com-
puter Science and Eng. Technical Report CSE-TR-287-96, Univ.. of
Michigan, Mar. 1996.

Jennifer Rexford received a BSE. degree in
electrical engineering from Princeton University
in 1991. She received the MS and PhD degrees
in computer science and engineering from the
University of Michigan, Ann Arbor, in 1993 and
1996, respectively. She is currently with AT&T
Research in New Jersey. Her research interests
include communication networks, distributed
systems, and performance evaluation, with an
emphasis on efficient architectural support for
performance guarantees in real-time and multi-
media systems.

Wu-chang Feng received a BS degree in com-
puter engineering from Penn State University in
1992 and an MSE degree in computer science
engineering from the University of Michigan in
1994. He is currently a PhD candidate in com-
puter science engineering at the University of
Michigan. His research interests include net-
working, distributed systems, and performance
evaluation techniques.

James Dolter received the BS degree in electri-
cal and computer engineering from the Univer-
sity of California, Santa Barbara, in 1984, and
the MSE and PhD degrees in computer science
and engineering from the University of Michigan,
Ann Arbor, in 1988 and 1993, respectively. He is
currently a senior engineer and manager at
Qualcomm Inc., San Diego, California. His re-
search interests include real-time systems, fault-
tolerant computing, distributed architectures,
and VLSI design testing. He is a member of Eta

Kappa Nu, Tau Beta Pi, the IEEE Computer Society, and the Associa-

tion for Computing Machinery.

40 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 1, JANUARY 1997

Kang G. Shin received the BS degree in elec-
tronics engineering from Seoul National Univer-
sity, Seoul, Korea in 1970, and both the MS and
PhD degrees in electrical engineering from
Cornell University, Ithaca, New York, in 1976
and 1978, respectively. Dr. Shin is a professor
and director of the Real-Time Computing Labo-
ratory, Department of Electrical Engineering and
Computer Science, the University of Michigan,
Ann Arbor.

He has authored or coauthored more than
360 technical papers (about 150 of these in archival journals) and nu-
merous book chapters in the areas of distributed real-time computing
and control, fault-tolerant computing, computer architecture, robotics
and automation, and intelligent manufacturing. He has written (jointly
with C.M. Krishna) a textbook, Real-Time Systems, which is scheduled
to be published by McGraw-Hill in 1996. In 1987, he received the Out-
standing IEEE Transactions on Automatic Control Paper Award for a
paper on robot trajectory planning. In 1989, he also received the Re-
search Excellence Award from the University of Michigan. In 1985, he
founded the Real-Time Computing Laboratory, where he and his col-
leagues are investigating various issues related to real-time and fault-
tolerant computing.

Dr. Shin has also been applying the basic research results of real-
time computing to multimedia systems, intelligent transportation sys-
tems, and manufacturing applications ranging from the control of ro-
bots and machine tools to the development of open architectures for
manufacturing equipment and processes. (The latter is being pursued
as a key thrust area of the newly-established NSF Engineering Re-
search Center on Reconfigurable Machining Systems.)

From 1978 to 1982, he was on the faculty of Rensselaer Polytech-
nic Institute, Troy, New York. He has held visiting positions at the U.S.
Airforce Flight Dynamics Laboratory, AT&T Bell Laboratories, Com-
puter Science Division within the Department of Electrical Engineering
and Computer Science at the University of California at Berkeley, and
the International Computer Science Institute, Berkeley, California, IBM
T.J. Watson Research Center, and Software Engineering Institute at
Carnegie Mellon University. He also chaired the Computer Science
and Engineering Division, EECS Department, the University of Michi-
gan, for three years beginning in January 1991.

He is an |IEEE fellow, was the program chairman of the 1986 IEEE
Real-Time Systems Symposium (RTSS), the general chairman of the
1987 RTSS, the guest editor of the 1987 August special issue of IEEE
Transactions on Computers on real-time systems, a program co-chair
for the 1992 International Conference on Parallel Processing, and
served on numerous technical program committees. He also chaired
the IEEE Technical Committee on Real-Time Systems during 1991-
1993, was a distinguished visitor of the Computer Society of the IEEE,
an editor of IEEE Transactions on Parallel and Distributed Computing,
and an area editor of the International Journal of Time-Critical Com-
puting Systems.

